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Abstract

This paper focus on the problem of the existence of an equilibrium in ab-

stract economies and exchange economies. Spanning over the literature we have

managed to extend and generalize some previous results. In particular, we gen-

eralize the main theorem of Yannelis (1987) on the existence of an equilibrium in

an abstract economy with a continuum of agents, by allowing for discontinuous

preferences. As a corollary of this result, we extend the finite agent Cournot-

Nash equilibrium existence theorems with discontinuous preferences (e.g., Reny

(1999), Bareli-Meneghel (2013), He-Yannelis (2016), among others), to a contin-

uum of agents. We also obtain an existence theorem for an abstract economy

which allows for a convexifying effect on aggregation and nonconvex strategy

and constraint sets. Furthermore, our new main theorem is used to prove the

existence of a Walrasian equilibrium with a continuum of agents with discon-

tinuous, non-ordered, interdependent and price-dependent preferences and thus

extending the results of Aumman (1966) and Schmeidler (1969).
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1 Introduction

It is our pleasure to contribute to the celebration of the 50 years anniversary of the

Journal of Mathematical Economics. One of the deepest problems in general equilib-

rium theory is the existence of an equilibrium. The JME was the leader in that field

and in 1970’s and 1980’s seminal papers published by Mas-Colell (1974), Gale-Mas-

Colell (1975, 1979), Shafer-Sonneschein (1975), Shafer (1976), Borglin-Keiding (1976).

This work went beyond the traditional wisdom of the Arrow-Debreu-McKenzie exis-

tence results as the transitivity and completeness of preferences were dropped. Further

contributions to the existence of an equilibrium with infinitely many commodities were

made by Mas-Colell (1975), Bewley (1982), Mas-Colell (1984), Khan-Vohra (1984),

Yannelis-Phrabakar (1983), Yannelis-Zame (1986) and Anderson et al. (2022), among

others.

The Yannelis-Phrabakar (1983) existence theorem was extended to a continuum of

agents in Yannnelis (1987). One of the main purposes of this paper is to generalize the

Yannelis (1987) theorem on the existence of Cournot-Nash equilibrium (CNE) to dis-

continuous preferences. As a consequence of this, we extend all the recent results on the

existence of CNE with a finite number of agents, e.g., Dasgupta-Maskin (1986), Lebrun

(1996), Reny (1999, 2016a), Bagh-Jofre (2006), Bareli–Meneghel (2013), Mclennan-

Monteiro-Tourky (2011), Carmona (2011), Carmona-Podczeck (2016), Prokopovich

(2011, 2016), Prokopovych-Yannelis (2017), He-Yannelis (2016, 2017), Scalzo (2015),

among others, to a continuum of agents.1 Also, we apply our new result to a concrete

exchange economy in order to obtain an extension of the classical Walrasian equilibrium

theorems of Aumann (1966) and Schmeidler (1969) to an economy with a continuum

of agents with discontinuous, non-ordered, interdependent and price dependent pref-

erences. Thus, spanning over the literature with a continuum of agents we generalize

and extend previous results, and consequently, we bring the existence of equilibrium

work to the “state of the art”.2

A short historical introduction is outlined below: Debreu (1952) generalized the

non-cooperative existence of an equilibrium theorem of Nash (1951) by introducing the

concept of a social system or abstract economy, which is a generalization of the Counot-

Nash game. The theorem of Debreu was applied in Arrow-Debreu (1954) to prove the

existence of a Walrasian equilibrium (competitive equilibrium). Debreu’s theorem was

obtained for an abstract economy with a finite number of agents whose preferences were

1see Reny (2020) for an excellent survey on the work of discontinuous noncooperative games.
2Recently and independently from our work using the excess demand approach related results have

been obtained by Otsuka (2024). See Remark 6.5.
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representable by continuous utility functions, i.e., preferences were transitive, complete,

reflexive, and continuous. Motivated by the pioneering works of Shafer (1974) and Mas-

Collel (1974), Shafer-Sonnenschein (1975) generalized the Debreu existence theorem

to non-ordered preferences and subsequently, Shafer (1976) applied this result to an

exchange economy (in a similar fashion with that of Arrow-Debreu), in order to prove

the existence of a Walrasian equilibrium with non-ordered, interdependent and price

dependent agent preferences. The Shafer-Sonneschein (1975) theorem was obtained for

a finite number of agents and with a finite-dimensional strategy/commodity space. It

was pointed out in Yannelis-Prabhakar (1983)3 that the Shafer-Sonneschein as well as

the Borglin-Keiding (1976) theorems fail if the commodity space or the set of agents

is infinite. Yannelis-Prabhakar generalized the Shafer-Sonnenschein theorem to an

infinite dimensional commodity space and to an infinite number of agents. However,

no measure-theoretic structure of the set of agents (i.e., no continuum of agents) was

modeled in that paper, this was done in Yannelis (1987)4.

Recently the Shafer-Sonneschein (1975) and Yannelis-Prabhakar (1983) theorems,

were generalized to discontinuous preferences, (see for example Carmona-Podczeck

(2016), He-Yannelis (2016) and Reny (2016b), among others). The main question

addressed in this paper is whether or not one can model the continuum of agents and

generalize Yannelis’ (1987) theorem to allow for discontinuous preferences. We provide

an affirmative answer to this question. Our new result allows us to extend all the

previous work on discontinuous games and economies to a continuum of agents as it

was already pointed out above.

The paper proceeds as follows. Section 2 contains all notations and definitions. Sec-

tion 3 is attributed to describing the economic model and assumptions. The main

existence theorem is presented in Section 4. Section 5 is devoted to the existence of

an equilibrium of an abstract economy with a convexifying effect. Section 6 ideals

with the existence of a Walrasian equilibrium with a measure space of agents and non-

ordered, interdependent, price-dependent, and discontinuous preferences. Section 7 is

devoted to a technical proof. Several technical lemmata needed for the proof of our

main theorem are concentrated in Section 8.

3See also Khan and Uyanik (2021) for a recent extension of Yannelis-Prabhakar (1983).
4We would like to mention that early contributions to games with a continuum of agents were made

by Schmeidler(1973), Mas-Collel (1974), Khan (1986), Khan-Vohra (1984), and Khan-Papageorgiou

(1987). However, these results do not extend the Yannelis-Prabhakar existence theorem.
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2 Preliminaries

2.1 Notation

� 2A denotes the set of all subsets of the set A,

� R denotes the set of real numbers,

� Rℓ denotes the ℓ-fold product of R,

� clA denotes the closure of the set A,

� conA denotes the convex hull of the set A,

� conA denotes the closed convex hull of the set A,

� bdA denotes the boundary of the set A,

� \ denotes the set-theoretic subtraction,

� If Φ : X ⇒ Y is a correspondence then Φ|U : U ⇒ Y denotes the restriction of Φ

to U ,

� proj denotes projection.

2.2 Definitions

Let X, Y be two topological spaces. A correspondence Φ : X ⇒ Y is said to be

upper-semicontinuous (u.s.c.) if the set {x ∈ X : Φ(x) ⊆ V } is open in X for every

open subset V of Y . The graph of the correspondence Φ : X ⇒ Y is defined as

GΦ = {(x, y) ∈ X × Y : y ∈ Φ(x)} .

The correspondence Φ : X ⇒ Y is said to have a closed graph if the set GΦ is

closed in X × Y . A correspondence Φ : X ⇒ Y is said to be lower-semicontinuous

(l.s.c.) if the set {x ∈ X : Φ(x) ∩ V ̸= ∅} is open in X for every open subset V of Y .

A correspondence Φ : X ⇒ Y is said to have open lower sections if for each y ∈ Y ,

the set Φ−1(y) = {x ∈ X : y ∈ Φ(x)} is open in X. If Φ(x) is open in Y for each x ∈ X,

Φ is said to have open upper sections.

Let (T,T , µ) be a complete finite measure space, i.e., µ is a real-valued, non-

negative, countable additive measure defined in a complete σ-field T of subsets of

T such that µ(T ) < ∞. We denote by L1(µ,Rℓ) the space of equivalence classes of

Rℓ-valued Bochner integrable functions f : T → Rℓ normed by ∥f∥ =
∫
T
∥f(t)∥dµ(t).
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A correspondence Φ : T ⇒ Rℓ is said to be integrably bounded if there exists an

element g ∈ L1(µ,R) such that

sup {∥x∥ : x ∈ Φ(t)} ≤ g(t)µ-a.e.

A correspondence Φ : T ⇒ Rℓ is said to have a measurable graph if GΦ ∈ T ⊗
B(Rℓ), where B(Rℓ) denotes the Borel σ-algebra on Rℓ and ⊗ denotes σ-product

field. A correspondence Φ : T ⇒ Rℓ is said to be lower measurable if the set

{t ∈ T : Φ(t) ∩ V ̸= ∅} ∈ T for every open subset V of Rℓ. It is worth pointing out

that if T is complete and the correspondence Φ : T ⇒ Rℓ has a measurable graph,

then Φ is lower measurable. Moreover, if Φ is closed valued and lower measurable, then

Φ has a measurable graph. For an extensive survey, see Yannelis (1991a).

Let now, X be a topological space. Let Φ : X ⇒ Rℓ be a nonempty valued

correspondence. A function f : X → Rℓ is said to be a continuous selection from

Φ if f(x) ∈ Φ(x) for all x ∈ X, and f is continuous. Let (T,T , µ) be an arbitrary

measure space. Let Ψ : T ⇒ Rℓ be a non-empty valued correspondence. A function

f : T → Rℓ is said to be a measurable selection of Ψ if f(t) ∈ Ψ(t) for all t ∈ T ,

and f is measurable. We denote by S1
Ψ the set of integrable selections of Ψ, i.e.,

S1
Ψ :=

{
ψ ∈ L1(µ,Rℓ) : ψ is a measurable selection of Ψ

}
.

For any correpondence Ψ : T ⇒ Y , the integral of Ψ is defined by∫
T

Ψ dµ =

{∫
T

ψ dµ : ψ ∈ S1
Ψ

}
.

If the correspondence Ψ is integrably bounded and has measuranble graph or it is

closed valued and lower measurable then by virtue of the Aumann or Kuratowski–Ryll-

Nardzewski measurable selection theorem, the integral is nonempty.

We now define the concept of a Caratheodory-type selection which roughly

speaking combines the notions of continuous selection and measurable selection. Let

Z be a topological space and Φ : T × Z ⇒ Rℓ be a nonempty valued correspondence.

A function f : T × Z → Rℓ is said to be a Caratheodory-type selection from Φ if

f(t, z) ∈ Φ(t, z) for all (t, z) ∈ T × Z, f(·, z) is measurable for all z ∈ Z, and f(t, ·) is
continuous for all t ∈ T . For any correspondence F : T × Z ⇒ Rℓ , define

UF = {(t, x) ∈ T × Z : F (t, x) ̸= ∅}.

For any t ∈ T , let U t
F = {x ∈ Z : (t, x) ∈ UF}, and for any x ∈ Z, let Ux

F = {t ∈ T :

(t, x) ∈ UF}.
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3 Abstract Economies and Assumptions

Let (T,T , µ) be a complete, finite, and positive measure space of agents. For any

correspondence X : T ⇒ Rℓ, we define

LX =
{
x ∈ L1(µ,Rℓ) : x(t) ∈ X(t)µ-a.e.

}
.

An abstract economy Γ is a quadruple ⟨(T,T , µ), X, P,A⟩, where

(i) (T,T , µ) is a measure space of agents;

(ii) X : T ⇒ Rℓ is a strategy correspondence;

(iii) P : T × LX ⇒ Rℓ is a preference correspondence such that P (t, x) ⊆ X(t) for

all (t, x) ∈ T × LX ; and

(iv) A : T × LX ⇒ Rℓ is a constraint correspondence such that A(t, x) ⊆ X(t) for

all (t, x) ∈ T × LX .

By definition, the preference correspondence P captures the idea of interdepen-

dence. The interpretation of these preference correspondences is that y ∈ P (t, x)

means that agent t strictly prefers y to x(t) if the given strategies of other agents are

fixed. Note that LX is the set of all joint strategies. As in Khan-Vohra (1984), Schmei-

dler (1973) and Yannelis (1987), we endow LX throughout the paper with the weak

topology. This signifies a natural form of myopic behaviour on the part of the agents.

In particular, an agent has to arrive at his/her decisions on the basis of knowledge of

only finitely many (average) numerical characteristics of the joint strategies.

We now define the concept of an equilibrium in an abstract economy.

Definition 3.1. An equilibrium for an abstract economy Γ is an element x∗ ∈ LX
such that for µ-a.e. on T , we have x∗(t) ∈ A(t, x∗) and P (t, x∗) ∩ A(t, x∗) = ∅.

We introduce the following notion of “continuous inclusion property”, which is a

generalization of that in He and Yannelis (2017) to a large economy.

Definition 3.2. A correspondence G : T × LX ⇒ Rℓ is said to have the continuous

inclusion property if for each y ∈ LX , there exists a correspondence Fy : T×LX ⇒ Rℓ

satisfying the following:

(i) If Uy
G ̸= ∅ then there exists a collection {Ot

y : t ∈ Uy
G} of weakly open neighbour-

hoods of y in LX such that Fy(t, x) ̸= ∅ and Fy(t, x) ⊆ G(t, x) for all x ∈ Ot
y and

all t ∈ Uy
G;
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(ii) Fy(t, ·) : Ot
y ⇒ Rℓ is lower-semicontinuous for all t ∈ Uy

G and Fy(t, ·) : LX ⇒ Rℓ

is lower-semicontinuous for all t /∈ Uy
G;

5 and

(iii) Fy : T × LX ⇒ Rℓ is jointly lower measurable.

Definition 3.3. A correspondence G : T × LX ⇒ Rℓ is said to have the strong

continuous inclusion property if it satisfies the continuous inclusion property and

the following measurability condition.

Measurability Condition: If Fy ̸= Fz for some y, z ∈ LX , then any one of the

following is true:

(a) The collection {Fy : y ∈ LX} and {Ot
y : (t, y) ∈ UG} are countable, and the set

{(t, x) : x ∈ Ot
y} is T ⊗ Bw(LX)-measurable for each y ∈ LX , where Bw(LX) is

the Borel σ-algebra for the weak topology on LX .
6

(b) UG ∈ T ⊗ Bw(LX). For each y ∈ LX , the correpondence I : T × LX ⇒ LX ,

defined by I(t, x) = {y ∈ U t
G : x ∈ Ot

y}, is jointly lower measurable and is

finite valued.7 Furthermore, for each fixed (t, x) ∈ T × LX , the correpondence

H : LX ⇒ Rℓ, defined by H(y) = Fy(t, x), is continuous and is contained in X(t)

for all y ∈ LX .

The definition of continuous inclusion property is similar to those in He-Yannelis

(2016) except for the closed graph condition of conFy(t, ·) in He-Yannelis (2016) is

replaced with the lower-semicontinuity of Fy(t, ·). In the next section, we use this con-

dition to show the equilibrium existence theorem when the measure space is purely

atomic. However, to deal with more general case, i.e, an economy with an arbitrary

complete finite positive separable measure space of agents, we require the strong con-

tinuous inclusion property, which satisfies some measurability condition along with the

continuous inclusion property.

5Note that the lower-semicontinuity of Fy(t, ·) : LX ⇒ Rℓ also implies that of Fy(t, ·) : Oty ⇒ Rℓ.
6Under our assumptions for the main result, we can show that LX is a non-empty, closed, weakly

compact and metrizable space, and hence it is also a separable metrizable space. Let D = {y1, y2, · · · }
be a dense subset of LX . We denote by O the collection of neighbourhood base at each point of D,

i.e.,

O =

{
B

(
yk,

1

m

)
; k,m ∈ N

}
.

Therefore for each Oty, there exists some V ty ∈ O such that y ∈ V ty ⊆ Oty. Note that the collection

{V ty : t ∈ UyG} satisfies the condition (i) and (ii), and it is countable. However, the measurability of

{(t, x) : x ∈ Oty} may not imply that of {(t, x) : x ∈ V ty }. Hence, we assume that {Oty : (t, y) ∈ UG} is

countable.
7The finiteness assumption is also follows from the assumption that {Oty : x ∈ LX} is locally finite.
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Remark 3.4. It should be noted that if a correpondence G : T × LX ⇒ Rℓ is jointly

lower measurable and the correspondence G(t, ·) : LX ⇒ Rℓ is lower-semicontinuous

for all t ∈ T then G satisfies the strong continuous inclusion property. Indeed, we can

take Ot
y = U t

G for all t ∈ Uy
G if Uy

G ̸= ∅ and Fy = G for all y ∈ LX . Since Fy = Fz for all

y, z ∈ LX , the measurability condition is vacuously satisfied. The lower measurability

of Fy(t, ·) : Ot
y ⇒ Rℓ for all t ∈ Uy

G follows from the fact that G(t, ·) : LX ⇒ Rℓ is

lower-semicontinuous for all t ∈ T and U t
G = {x ∈ LX : G(t, x) ∩ Rℓ ̸= ∅} is weakly

open in LX . The rest of the conditions are also immediate.

To define a set of assumptions for our main result, we let ψ(t, x) := A(t, x) ∩
conP (t, x) for all (t, x) ∈ T × LX .

Assumptions: Below, we state a set of assumptions that will be used in the main

result of the paper:

(A.1) X : T ⇒ Rℓ is a correspondence such that:

(a) it is integrably bounded and for all t ∈ T , X(t) is a non-empty, convex,

closed subset of Rℓ;

(b) for every open subset V of Rℓ, {t ∈ T : X(t) ∩ V ̸= ∅} ∈ T .

(A.2) A : T × LX ⇒ Rℓ is a correspondence such that:

(a) for each t ∈ T , A(t, ·) : LX ⇒ Rℓ is upper-semicontinuous;

(b) for all (t, x) ∈ T × LX , A(t, x) is a non-empty, convex, closed subset of Rℓ;

(c) for each fixed x ∈ LX , A(·, x) is lower measurable.

(A.3) P : T × LX ⇒ Rℓ has the property that x(t) /∈ conP (t, x) for all x ∈ LX and

almost all t ∈ T .

(A.4) ψ : T × LX ⇒ Rℓ satisfies the continuous inclusion property if the economy Γ is

purely atomic8 and the strong continuous inclusion property, otherwise.

8The economy Γ is said to be purely atomic if µ({t}) > 0 for all t ∈ T . Note that He-Yannelis

(2016) considers countably many agents in their existence proof, but their approach was not measure-

theoretic as in this paper.
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4 The main result

In this section, we study our main result, namely the existence of an equilibrium in an

abstract economy with discontinuous preferences. We also show that our main result

generalizes the main result of Yannelis (1987) and gives the existence theorem of a

Nash equilibrium as a simple corollary.

4.1 The existence of an equilibrium in an abstract economy

with discontinuous preferences

Before we state our main result we should mention that existence theorems in infinite

dimensional commodity/strategy spaces for abstract economies without ordered pref-

erences were based on extensions of the finite dimensional Michael continuous selection

theorem (that was used in Gale and Mas-Collel (1975)), see for example, Yannelis-

Prabhakar (1983), Wu-Shen (1996), Kim-Prikry-Yannelis (1987). Our proof follows

this type of argument, i.e., a Carathéodory-type selection theorem which generalizes

the continuous and measurable selections theorems simultaneously. However, due to

discontinuity of preferences, our proof becomes significantly more difficult and chal-

lenging.

Theorem 4.1. Under the assumptions (A.1)-(A.4), there exists an equilibrium for the

abstract economy Γ.

Proof. Letting

Jψ =
{
x ∈ LX : Ux

ψ is not null
}
,

we consider the following two cases.

Case 1. Jψ = ∅. In this case, we have µ(Ux
ψ) = 0, which implies P (t, x)∩A(t, x) = ∅

for all x ∈ LX and almost all t ∈ T . Since A is closed-valued and A(·, x) is lower

measurable, we conclude that A(·, x) has a measurable graph, for all x ∈ LX . Define

Ψ : LX ⇒ LX by

Ψ(x) = {y ∈ LX : y(t) ∈ A(t, x)µ-a.e.} .

In view of Lemma 8.6, Ψ is non-empty valued and weakly upper-semicontinuous. Since

A is convex valued, so is Ψ. Furthermore, Lemma 8.5 guarantees that LX is non-

empty, convex, and weakly compact. Hence by Fan-Glicksberg’s fixed point theorem,

there exists x∗ ∈ LX such that x∗ ∈ Ψ(x∗), which means x∗(t) ∈ A(t, x∗) µ-a.e. Since

P (t, x∗) ∩ A(t, x∗) = ∅ µ-a.e., it follows that x∗ is an equilibrium for the abstract

economy Γ.
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Case 2. Jψ ̸= ∅. By Theorem 7.1, we can find a correspondence Φ : T × LX ⇒ Rℓ

satisfying the following:

(A) Φ(t, x) ⊆ ψ(t, x) for all (t, x) ∈ Uψ;

(B) Uψ = UΦ;

(C) Φ(t, ·) : LX ⇒ Rℓ is lower-semicontinuous for all t ∈ T ;

(D) Φ is jointly lower measurable; and

(E) There exists a Carathéodory-type selection f : UΦ → Rℓ of Φ|UΦ
.

Given an x ∈ LX , the set Ux
Φ can be expressed as

Ux
Φ = projT

({
(t, x) ∈ T × LX : Φ(t, x) ∩ Rℓ ̸= ∅

}
∩ (T × {x})

)
.

Since Φ(·, ·) is jointly lower measurable, by the projection theorem (see Yannelis (1991b)),

we have that Ux
Φ is measurable. Let Λ : T × LX ⇒ Rℓ be a correspondence such that

Λ(t, x) =

{
{f(t, x)}, if (t, x) ∈ UΦ;

A(t, x), otherwise.

Clearly, Λ is non-empty and convex valued. In view of the lower-semicontinuity of

Φ(t, ·), we conclude that

U t
Φ =

{
x ∈ LX : Φ(t, x) ∩ Rℓ ̸= ∅

}
is a weakly open subset of LX . Hence, by Lemma 8.12, we have that Λ(t, ·) is upper-
semicontinuous in the sense that {x ∈ LX : Λ(t, x) ⊂ V } is a weakly open subset of LX
for every open subset V of Rℓ. As in Case 1, we conclude that A(·, x) has a measurable

graph. It can be easily seen that for each x ∈ LX , Λ(·, x) has a measurable graph. In

fact, for all x ∈ LX ,

GΛ(·,x) =
{
(t, y) ∈ T × Rℓ : y ∈ Λ(t, x)

}
= B ∪ C,

where

B =
{
(t, y) ∈ T × Rℓ : y = f(t, x) and t ∈ Ux

Φ

}
and

C =
{
(t, y) ∈ T × Rℓ : y ∈ A(t, x) and t /∈ Ux

Φ

}
.
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As B,C belong to T ⊗ B(Rℓ), we infer that GΛ(·,x) = B ∪ C is in T ⊗ B(Rℓ). Define

Ψ : LX ⇒ LX by

Ψ(x) = {y ∈ LX : y(t) ∈ Λ(t, x)µ-a.e.} .

Again, by repeating the argument of Case 1, we can find an x∗ ∈ LX such that

x∗ ∈ Ψ(x∗), which means x∗(t) ∈ Λ(t, x∗) µ-a.e. We claim that µ(Ux∗
Φ ) = 0. This

follows from the fact that for t ∈ Ux∗
Φ , we have x∗(t) = f(t, x∗) ∈ Φ(t, x∗) ⊆ ψ(t, x∗) ⊆

conP (t, x∗),9 a contradiction to Assumption (A.3) if µ(Ux∗
Φ ) > 0. Therefore, µ-a.e. on

T , x∗(t) ∈ A(t, x∗) and ψ(t, x∗) = ∅, which implies that P (t, x∗) ∩ A(t, x∗) = ∅ µ-a.e.,
i.e. x∗ is an equilibrium for Γ. This completes the proof.

Remark 4.2. As it was mentioned previously the definition of continuous inclusion

property is similar to the one in He-Yannelis (2016) except for the closed graph con-

dition of conFy(t, ·) in He-Yannelis (2016) is replaced with the lower-semicontinuity.

This is due to the fact that our approch is measure-theoretic whereas the approach

in He-Yannelis (2016) is purely non measure-theoretic. More precisely, the lower-

semicnontinuity condition in our measure-theoretic setup guarantees the existence of a

Carathéodory-type selection, which plays a pivotal role in our proof.

4.2 Corollaries of the main existence theorem

In this subsection, we show that our main result is a generalization of that in Yannelis

(1987). We further show that, as an immediate corollary of our main result, one can

establish the existence of a Nash equilibrium.

The followings assumptions for Γ were made in Yannelis (1987):

(B.1) (T, τ, µ) is a finite, positive, complete, separable measure space.

(B.2) X : T ⇒ Rℓ is a correspondence such that:

(a) it is integrably bounded and for all t ∈ T , X(t) is a non-empty, convex,

closed subset of Rℓ;

(b) for every open subset V of Rℓ, {t ∈ T : X(t) ∩ V ̸= ∅} ∈ T .

(B.3) A : T × LX ⇒ Rℓ is a correspondence such that:

(a) for each t ∈ T , A(t, ·) : LX ⇒ Rℓ is continuous;

9Note that, by (A), Φ(t, x) ⊆ ψ(t, x) for all (t, x) ∈ Uψ.
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(b) for all (t, x) ∈ T × LX , A(t, x) is convex, closed, and nonempty;

(c) for each fixed x ∈ LX , A(·, x) is lower measurable.

(B.4) P : T × LX ⇒ Rℓ is a correspondence such that:

(a) for each t ∈ T , P (t, ·) : LX ⇒ Rℓ has an open graph in LX × Rℓ;

(b) x(t) /∈ conP (t, x) for all x ∈ LX for almost all t in T ;

(c) {(t, x) ∈ T × LX : A(t, x) ∩ conP (t, x) ∩ V ̸= ∅} ∈ T ⊗ Bw(LX) for every

open subset V of Rℓ.

Corollary 4.3. (Yannelis (1987)) Under the assumptions (B.1)-(B.4), there exists

an equilibrium for the abstract economy Γ.

Proof: Define ψ : T × LX ⇒ Rℓ by letting ψ(t, x) = A(t, x) ∩ conP (t, x) for all

(t, x) ∈ T × LX . Since A(t, ·) is continuous and P (t, ·) has open graph in LX × Rℓ, it

follows from Lemma 8.7 and Lemma 8.8 that ψ(t, ·) : LX ⇒ Rℓ is lower-semicontinuous

for all t ∈ T . Clearly, ψ is jointly lower measurable. Since any jointly lower measurable

correpondence ψ with ψ(t, ·) : LX ⇒ Rℓ lower-semicontinuous, always satisfies the

strong continuous inclusion property, the assumptions (A.1)-(A.4) are satisfied. Hence,

this corollary follows from Theorem 4.1.

A game G is a quadruple ⟨(T,T , µ), X, P ⟩, where

(i) (T,T , µ) is a measure space of agents;

(ii) X : T ⇒ Rℓ is a strategy correspondence; and

(iii) P : T × LX ⇒ Rℓ is a preference correspondence such that P (t, x) ⊆ X(t) for

all (t, x) ∈ T × LX .

We now define the concept of a Nash equilibrium in our game G.

Definition 4.4. A Nash equilibrium of G is an element x∗ ∈ LX such that for µ-a.e.

on T , we have x∗(t) ∈ X(t) and P (t, x∗) = ∅.

Note that if A(t, x) = X(t) for all x ∈ LX , in our abstract economy Γ, that is,

A(t, ·) is a constant correspondence, we can assume that P has the continuous inclusion

property, and the existence of Nash equilibrium follows as a corollary. To this end, we

state the relevant assumptions.

12



(C.1) X : T ⇒ Rℓ is a correspondence such that:

(a) it is integrably bounded and for all t ∈ T , X(t) is a non-empty, convex,

closed subset of Rℓ;

(b) for every open subset V of Rℓ, {t ∈ T : X(t) ∩ V ̸= ∅} ∈ T .

(C.2) P : T × LX ⇒ Rℓ has the property that x(t) /∈ conP (t, x) for all x ∈ LX and

almost all t ∈ T .

(C.3) P : T ×LX ⇒ Rℓ has the continuous inclusion property if the economy is purely

atomic and the strong continuous inclusion property, otherwise.

This corollary extends the finite player theorems on Nash equilibrium with discon-

tinous games to infinitely many agents without ordered preferences.

Corollary 4.5. Under the assumptions (C.1)-(C.3), there exists a Nash equilibrium

for the game G.

Proof: Define the constrained correspondence A : T × LX ⇒ Rℓ by letting A(t, x) =

X(t) for (t, x) ∈ T×LX . Note that the correspondece A satisfies the assumption (A.2).

Moreover, the correspondence ψ : T×LX ⇒ Rℓ, defined by ψ(t, x) = A(t, x)∩conP (t, x)
for all (t, x) ∈ T × LX , satisfies the condition (C.3) because ψ(t, x) = conP (t, x) for

all (t, x) ∈ T × LX and the condition (C.3) is satsified by conP as it is satisfied by P .

Thus, the assumptions (A.1)-(A.4) are verified and hence, this corollary follows from

Theorem 4.1.

5 Convexifying effect

In order to obtain a convexifying effect, we will define the preference and constraint

correspondences to depend on the average (integral) strategies of all all other agents.

As in Section 4, we again assume that (T,T , µ) is a complete finite positive separable

measure space of agents.

An abstract economy with a convexifying effect Γ̃ is a quadruple ⟨(T,T , µ), X, P,A⟩,
where

(i) (T,T , µ) is a measure space of agents;

(ii) X : T ⇒ Rℓ is a strategy correspondence;

13



(iii) P̃ : T ×
∫
T
X dµ⇒ Rℓ is a preference correspondence such that P̃ (t, x̃) ⊆ X(t)

for all (t, x̃) ∈ T ×
∫
X dµ; and

(iv) Ã : T ×
∫
T
X dµ ⇒ Rℓ is a constraint correspondence such that Ã(t, x̃) ⊆ X(t)

for all (t, x̃) ∈ T ×
∫
T
X dµ.

We now define the concept of an equilibrium in an abstract economy with a con-

vexifying effect.

Definition 5.1. An equilibrium for an abstract economy with a convexifying effect

Γ̃ is an element x̃∗ ∈
∫
T
X dµ, i.e., there exists x ∈ LX with

∫
T
x dµ = x̃∗, such that for

µ-a.e. on T , we have x(t) ∈ Ã(t, x̃∗) and P̃ (t, x̃∗) ∩ Ã(t, x̃∗) = ∅.

Below we modify the notion of “(strong) continuous inclusion property”, which is

analogous to the one stated in Section 3 and is compatible with a convexifying effect.

However, the lower measurability is replaced with the graph measurability.

Definition 5.2. A correspondence G : T ×
∫
T
X dµ ⇒ Rℓ is said to have the con-

tinuous inclusion property if for each ỹ ∈
∫
T
X dµ, there exists a correspondence

Fỹ : T ×
∫
T
X dµ⇒ Rℓ such that

(i) If U ỹ
G ̸= ∅ then there exists a collection {Ot

ỹ : t ∈ U ỹ
G} of open neighbourhoods of

ỹ in
∫
T
X dµ such that Fỹ(t, x̃) is a non-empty, closed set with Fỹ(t, x̃) ⊆ G(t, x̃)

for all x̃ ∈ Ot
ỹ and all t ∈ U ỹ

G;

(ii) Fỹ(t, ·) : Ot
ỹ ⇒ Rℓ is lower-semicontinuous for all t ∈ U ỹ

G and Fỹ(t, ·) :
∫
T
X dµ⇒

Rℓ is lower-semicontinuous for all t /∈ U ỹ
G;

(iii) Fỹ : T ×
∫
T
X dµ⇒ Rℓ is jointly lower measurable.

Definition 5.3. A correspondence G : T ×
∫
T
X dµ ⇒ Rℓ is said to have the strong

continuous inclusion property if it satisfies the continuous inclusion property and

the following measurability condition.

Measurability Condition: If Fỹ ̸= Fz̃ for some ỹ, z̃ ∈
∫
T
X dµ, then any one of the

following is true:

(a) The collection {Fỹ : ỹ ∈
∫
T
X dµ} and {Ot

ỹ : (t, ỹ) ∈ UG} are finite,10 and the set

{(t, x̃) : x̃ ∈ Ot
ỹ} is T ⊗ B(

∫
T
X dµ)-measurable for each ỹ ∈

∫
T
X dµ.

10Countable collection condition in Definition 3.3 is replace with finite collection in this definition

to guarantee that the function Φ constructed in the proof of Theorem 5.4 is closed valued.
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(b) UG ∈ T ⊗ B(
∫
T
X dµ). For each ỹ ∈

∫
T
X dµ, the correpondence I : T ×∫

T
X dµ⇒

∫
T
X dµ, defined by I(t, x̃) = {ỹ ∈ U t

G : x̃ ∈ Ot
ỹ}, is jointly lower mea-

surable and is finite valued. Furthermore, for each fixed (t, x̃) ∈ T ×
∫
T
X dµ, the

correpondence H :
∫
T
X dµ ⇒ Rℓ, defined by H(ỹ) = conFỹ(t, x̃), is continuous

and is contained in X(t) for all ỹ ∈
∫
T
X dµ.

To define a set of assumptions for our next result, we let ψ̃(t, x̃) := Ã(t, x̃)∩ P̃ (t, x̃)
for all (t, x̃) ∈ T ×

∫
T
X dµ.

Assumptions: As preference and constraint correpondences depend on the average of

strategies of all agents rather than the set LX , i.e., the set of joint strategies, we now

state a set of assumptions (analogous to those in Section 3) that will be used in the

next result. These assumptions are different from those in Section 3 in the sense that

the convexity assumptions of the strategy and constraint correpondences are dropped.

Further, (A.3′) below is weaker than (A.3).

(A.1′) X : T ⇒ Rℓ is a correspondence such that:

(a) it is integrably bounded and for all t ∈ T , X(t) is a non-empty, closed subset

of Rℓ containing 0;

(b) for every open subset V of Rℓ, {t ∈ T : X(t) ∩ V ̸= ∅} ∈ T .

(A.2′) Ã : T ×
∫
T
X dµ⇒ Rℓ is a correspondence such that:

(a) for each t ∈ T , Ã(t, ·) :
∫
T
X dµ⇒ Rℓ is upper-semicontinuous;

(b) for all (t, x̃) ∈ T ×
∫
T
X dµ, Ã(t, x̃) is a non-empty, closed subset of Rℓ;

(c) for each fixed x ∈
∫
T
X dµ, Ã(·, x̃) is lower measurable.

(A.3′) P̃ : T ×
∫
T
X dµ ⇒ Rℓ has the property that for almost all t ∈ T , x(t) /∈ P̃ (t, x̃)

for all x̃ ∈
∫
T
X dµ and all x(t) ∈ X(t) with

∫
T
x dµ = x̃.

(A.4′) ψ̃ : T ×
∫
T
X dµ⇒ Rℓ satisfies the strong continuous inclusion property.

Theorem 5.4. Assume that the measure space (T,T , µ) is atomless and the assump-

tions (A.1′)-(A.4′) are satisfied. Then, there exists an equilibrium for the abstract

economy with a convexifying effect Γ̃.
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Proof. Let

J̃ψ̃ =

{
x̃ ∈

∫
T

X dµ : U x̃
ψ̃
is not null

}
.

The proof is splitted into two cases.

Case 1. J̃ψ̃ = ∅. In this case, µ(U x̃
ψ̃
) = 0. This implies that U x̃

ψ̃
is measurable and

P̃ (t, x̃)∩ Ã(t, x̃) = ∅ for all x̃ ∈
∫
T
X dµ and almost all t ∈ T . Since Ã is closed-valued

and Ã(·, x̃) is lower measurable, we conclude that Ã(·, x̃) has a measurable graph for

all x̃ ∈
∫
T
X dµ. Define Ψ :

∫
T
X dµ⇒

∫
T
X dµ by

Ψ(x̃) =

∫
T

Ã(·, x̃) dµ.

Given that Ã(t, x̃) ⊆ X(t) for all (t, x̃) ∈ T ×
∫
T
X dµ, we conclude that Ã(·, x̃) is

integrably bounded for all x̃ ∈
∫
T
X dµ. By the Aumann measurable selection theorem,

we have
∫
T
Ã(·, x̃) dµ is non-empty for all x̃ ∈

∫
T
X dµ and hence, Ψ is non-empty

valued. Applying Lemma 8.2 and Lemma 8.3, we have Ψ is compact and convex valued.

By (A.1′)(a) and (A.2′)(b), we have that Ã is compact valued. Thus, by applying

Lemma 8.9, we conclude that Ψ is upper-semicontinuous. A similar argument also

guarantees that
∫
T
X dµ is non-empty, convex, and compact. Hence, by Katatuni’s

fixed point theorem, there exists some x̃∗ ∈
∫
T
Xdµ such that x̃∗ ∈ Ψ(x̃∗). Thus,

there exists some x ∈ LX such that
∫
T
x dµ = x̃∗ and x(t) ∈ A(t, x̃∗) µ-a.e. Since

Ã(t, x̃∗) ∩ P̃ (t, x̃∗) = ∅ µ-a.e., it follows that x̃∗ is an equilibrium for the abstract

economy with convexifying effect Γ̃.

Case 2. J̃ψ̃ ̸= ∅. Similar to Theorem 4.1, we can find a correspondence Φ :

T ×
∫
T
X dµ⇒ Rℓ satisfying the following:

(i) Φ is closed valued and Φ(t, x̃) ⊆ ψ(t, x̃) for all (t, x̃) ∈ Uψ̃;

(ii) Uψ̃ = UΦ;

(iii) Φ(t, ·) :
∫
T
X dµ⇒ Rℓ is lower-semicontinuous for all t ∈ T ; and

(iv) Φ is jointly lower measurable.

Let

K =

{
x̃ ∈

∫
T

X dµ : µ(U x̃
Φ) > 0

}
.

By (ii), we have K = J̃ψ̃.
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Claim 1: K is an open subset of
∫
T
Xdµ. Suppose, by way of contradiction, that K is

not an open subset of
∫
T
Xdµ. Then K is non-empty and there must exist a point x̃ of

K which is not an interior point of K in
∫
T
Xdµ. Then there is a sequence {x̃n : n ≥ 1}

of points in
∫
T
Xdµ converging to x̃ in the Euclidean norm and x̃n /∈ K for all n ≥ 1.

Define

Bn =
{
t ∈ U x̃

Φ : Φ(t, x̃n) ̸= ∅
}

for all n ≥ 1. Since x̃n /∈ K, we have

µ ({t ∈ T : Φ(t, x̃n) ̸= ∅}) = 0.

This implies that µ(Bn) = 0 for all n ≥ 1. Letting B =
⋃
{Bn : n ≥ 1}, we see that

µ(B) = 0. Let t0 ∈ U x̃
Φ \B. It follows that Φ(t0, x̃) ̸= ∅ and Φ(t0, x̃n) = ∅ for all n ≥ 1.

Since

U t0
Φ = {z̃ ∈ U t0

Φ : Φ(t0, z̃) ∩ Rℓ ̸= ∅},

by the lower-semicontinuity of Φ(t0, ·), we conclude that U t0
Φ is open in

∫
T
X dµ. Given

that x̃ ∈ U t0
Φ , we infer that x̃n ∈ U t0

Φ for all large n. This contradicts with the fact that

Φ(t0, x̃n) = ∅ for all n ≥ 1, whch verifes our claim.

Define G : K ⇒ Rℓ by letting

G(x̃) =

∫
T

Φ̂(·, x̃) dµ,

where the correspondence Φ̂ : T ×K ⇒ Rℓ is defined by

Φ̂(t, x̃) =

{
Φ(t, x̃), if x̃ ∈ K and t ∈ U x̃

Φ;

{0}, otherwise.

Since X is integrably bounded, so is Φ̂(·, x̃) for any x̃ ∈ K. Since Φ is closed valued, Φ̂

is also closed valued. By the lower measurability of Φ(·, x̃), one can verify that Φ̂(·, x̃)
is lower measurable and thus, it has a measurable graph for all x̃ ∈ K. Hence, by the

Aumann measurable selection theorem, we conclude that G is non-empty valued. Since

Φ̂ is closed valued, so is G. By virtue of Lemma 8.3, G is convex valued. Since Φ(t, ·)
is lower-semicontinuous for all t ∈ T , by Lemma 8.10, we conclude that G is lower-

semicontinuous. Thus, in view of the Michael continuous selection theorem, there is a

continuous selection f of G. Let Ψ :
∫
T
Xdµ⇒

∫
T
X dµ be a correspondence such that

Ψ(x̃) =

{
{f(x̃)}, if x̃ ∈ K;∫
T
Ã(·, x̃) dµ, otherwise.
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As in Case 1, we can show that Ψ is non-empty, compact and convex valued, and∫
T
Ã(·, ·) dµ :

∫
T
X dµ ⇒

∫
T
X dµ is upper-semicontinuous. Since K is an open subset

of
∫
T
Xdµ, Lemma 8.12 implies that Ψ is upper-semicontinuous. Hence, by Kakatuni’s

fixed point theorem, there exists some x̃∗ ∈
∫
T
Xdµ such that x̃∗ ∈ Ψ̃(x̃∗). If x̃∗ ∈ K

then11

x̃∗ = f(x̃∗) ∈ G(x̃∗) =

∫
U x̃∗
Φ

Φ(·, x̃∗) dµ ⊆
∫
U x̃∗
Φ

ψ̃(·, x̃∗) dµ ⊆
∫
U x̃∗
Φ

P̃ (·, x̃∗) dµ.

Therefore, there exists a function y : U x̃∗
Φ → Rℓ such that y(t) ∈ P̃ (t, x̃∗) for all t ∈ U x̃∗

Φ

and
∫
U x̃∗
Φ

y dµ = x̃∗. Define z : T → Rℓ such that z(t) = y(t), if t ∈ U x̃∗
Φ ; and z(t) = 0,

otherwise. It follows that
∫
T
z dµ = x̃∗ and z(t) ∈ P̃ (t, x̃∗) for all t ∈ U x̃∗

Φ . This

contradicts (A.3′). Therefore, x̃∗ /∈ K, which means ψ̃(t, x̃∗) = ∅ µ-a.e.12 Furthermore,

there exists some x ∈ LX such that
∫
T
x dµ = x̃∗ and x(t) ∈ Ã(t, x̃∗) µ-a.e. Thus, x̃∗ is

an equilibrium for Γ̃. This completes the proof.

Remark 5.5. Analogous to Corollary 4.5, we can also establish the existence of Nash

equilibrium in a game with a convexifying effect.

6 Existence of Walrasian equilibria

In this section, we consider an exchange economy and estabilsh the existence of a

Walrasian equilibrium for a measure space of agents as an application of our equilibrium

existence theorem of an abstract economy.

6.1 The existence of Walrasian equilibria with free disposal

We consider a standard exchange economy with a complete finite positive separable

measure space (T,T , µ) of agents, where T represents the set of agents, the σ-algebra

T represents the collections of allowable coalitions whose economic weights on the

market are given by µ. The commodity space is the ℓ-dimensional Euclidean space Rℓ.

We define an economy E such that E = {(X(t), P (t, ·, ·), e(t)) : t ∈ T} as follows:

(i) X(t) ⊆ Rℓ
+ denotes the consumption set of agent t ∈ T ;

11Recall that Φ(t, x̃∗) ⊆ ψ̃(t, x̃∗) for all t ∈ U x̃
∗

Φ = U x̃
∗

ψ .
12Recall that U x̃

∗
ψ = U x̃

∗
Φ .
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(ii) P (t, ·, ·) : LX ×∆ ⇒ X(t) is the prefernce correspondence of agent t, where

∆ =
{
p ∈ Rℓ

+ :
∑ℓ

k=1 p
k = 1

}
is the set of all possible prices; and

(iii) e(t) ∈ X(t) is the initial endowment of agent t.

The budget correspondece B : T ×∆ ⇒ Rℓ
+ is defined by

B(t, p) = {y ∈ X(t) : p · y ≤ p · e(t)} .

Definition 6.1. A Walrasian equilibrium for the exchange economy E is a pair

(p∗, x∗) ∈ ∆× LX such that

(i) for almost all t ∈ T , we have x∗(t) ∈ B(t, p∗), B(t, p∗) ∩ P (t, x∗, p∗) = ∅; and

(ii)
∫
T
x∗dµ ≤

∫
T
e dµ.

The following result is an extension of Theorem 2 in He and Yannelis (2016) to a

measure space of agents.

Theorem 6.2. Suppose that the economy E satisfies the following:

(i) The consumption correspondence X : T ⇒ Rℓ is integrably bounded and for all

t ∈ T , X(t) is a non-empty, convex, closed subset of Rℓ;

(ii) P : T × LX ×∆ ⇒ Rℓ has the property that x(t) /∈ conP (t, x, p) for all (x, p) ∈
LX ×∆ and almost all t ∈ T ; and

(iii) ψ : T × LX × ∆ ⇒ Rℓ, defined by ψ(t, x, p) = B(t, p) ∩ conP (t, x, p) for all

(t, x, p) ∈ T × LX × ∆, has the continuous inclusion property if the economy is

atomic and the strong continuous inclusion property, otherwise.

Then E has a Walrasian equilibrium.

Proof. The idea of the proof is to transform the exchange economy E to an abstract

economy Γ by adding a ‘fictitious agent’. For each agent t ∈ T of the economy E ,

p ∈ ∆ and x ∈ LX , let A(t, x, p) = B(t, p). In our context, we have to ensure that the

added agent is an atom ‘τ ′. Let X(τ) = A(τ, x, p) = ∆ and

P (τ, x, p) =

{
q ∈ ∆ : q ·

∫
T

(x(t)− e(t))dµ > p ·
∫
T

(x(t)− e(t))dµ

}
.

Define T̃ = T∪τ . Note that an abstract economy Γ with (T̃ , T̃ , µ̃) as the measure space

of agents can be derived from our construction, where T̃ := T ⊗{τ} is the product σ-

algebra and the measure µ̃ is an extension of µ to T̃ . Then for any (t, x, p) ∈ T̃×LX×∆,
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A(t, x, p) is a nonempty, convex, and closed set. Furthermore, A(t, ·, ·) : LX ×∆ ⇒ Rℓ

is upper-semicontinuous for all t ∈ T̃ and A(·, x, p) : T̃ ⇒ Rℓ
+ is lower measurable for

all (x, p) ∈ LX × ∆.13 By assumption, ψ : T × LX × ∆ ⇒ Rℓ has the continuous

inclusion property if the economy E is atomic and the strong continuous inclusion

property, otherwise. Hence, for each (y, q) ∈ LX × ∆, there exists a correspondence

F(y,q) : T × LX ×∆ ⇒ Rℓ such that

(i) F(y,q)(t, x, p) ̸= ∅ and F(y,q)(t, x, p) ⊆ ψ(t, x, p) for all (x, p) ∈ Ot
(y,q) and all

t ∈ U
(y,q)
ψ for a collection {Ot

(y,q) : t ∈ U
(y,q)
ψ } of weakly open neighbourhoods of

(y, q) in LX ×∆ if U
(y,q)
ψ ̸= ∅;

(ii) F(y,q)(t, ·) : Ot
(y,q) ⇒ Rℓ is lower-semicontinuous for all t ∈ U

(y,q)
ψ and F(y,q)(t, ·) :

LX ×∆ ⇒ Rℓ is lower-semicontinuous for all t /∈ U
(y,q)
ψ ; and

(iii) F(y,q) : T × LX ×∆ ⇒ Rℓ is jointly lower measurable.

Moreover, if the economy is non-atomic then the following must hold: if F(y,q) ̸= F(z,r)

for some (y, q), (z, r) ∈ LX ×∆, then any one of the following is true:

(a) The collection {F(y,q) : (y, q) ∈ LX×∆} and {Ot
(y,q) : (t, y, q) ∈ Uψ} are countable,

and the set {(t, x, p) : (x, p) ∈ Ot
(y,q)} is T ⊗ Bw(LX ×∆)-measurable.

(b) Uψ ∈ T ⊗Bw(LX×∆). The correpondence I : T×LX×∆ ⇒ LX×∆, defined by

I(t, x, p) = {(y, q) ∈ U t
ψ : (x, p) ∈ Ot

(y,q)}, is jointly lower measurable and is finite

valued. Furthermore, for each fixed (t, x, p) ∈ T × LX × ∆, the correpondence

H : LX × ∆ ⇒ Rℓ, defined by H(y, q) = F(y,q)(t, x, p), is continuous, and is

contained in X(t) for all (y, q) ∈ LX ×∆.

Furthermore, let ψ(τ, x, p) = A(τ, x, p) ∩ P (τ, x, p).14 It can be easily checked that

ψ(τ, x, p) = P (τ, x, p) and thus ψ(τ, ·, ·) has open graph. Define Oτ
(y,q) = U τ

ψ for all

(y, q) ∈ LX ×∆ and define F̃(y,q) : T̃ × LX ×∆ ⇒ Rℓ such that

F̃y(t, x, p) =

{
Fy(t, x, p), if (t, x, p) ∈ T × LX ×∆;

ψ(t, x, p), otherwise.

It can be readily verified that ψ satisfies (A.4). Further, it can be easily observed

that p /∈ P (τ, x, p) for any (x, p) ∈ LX × ∆. Thus, the original economy E has

13The upper hemi-continuity of B(t, ·) follows from the fact the graph of B(t, ·) is closed, and B(t, ·)
is compact-valued.

14Note that P (τ, x, p) is a convex set.
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been converted to an abstract economy Γ = ⟨(T̃ , T̃ , µ̃), X, P,A⟩ which satisfies all the

conditions of Theorem 4.1. Therefore, by virtue of Theorem 4.1, there exists a point

(p∗, x∗) ∈ ∆× LX such that

(i) x∗(t) ∈ A(t, x∗, p∗) = B(t, p∗), ψ(t, x∗, p∗) = ∅ µ-a.e.; and

(ii) P (τ, x∗, p∗) = ψ(τ, x∗, p∗) = ∅.

Let

z =

∫
T

(x∗(t)− e(t))dµ.

Then it follows from (i) that p∗ · z ≤ 0, and one can further observe from (ii) that

q · z ≤ p∗ · z for any q ∈ ∆. Combining these inequalities, we conclude that q · z ≤ 0 for

all q ∈ ∆. Putting q = ek the kth-unit vector, we conclude that zk ≤ 0. Consequently,

z ∈ Rℓ
−, which implies that ∫

T

x∗dµ ≤
∫
T

e dµ.

Therefore, (p∗, x∗) is a Walrasian equilibrium.

6.2 The existence of Walrasian equilibria without free disposal

In this subsection, we consider the economy E as it was defined in 6.1.

Definition 6.3. A non-free disposal Walrasian equilibrium for the exchange

economy E is a pair (p∗, x∗) ∈ (Rℓ \ {0})× LX such that

(i) for almost all t ∈ T , we have x∗(t) ∈ B(t, p∗), B(t, p∗) ∩ P (t, x∗, p∗) = ∅; and

(ii)
∫
T
x∗dµ =

∫
T
e dµ.

Define the set of feasible allocations and price space as follows

A =

{
f ∈ LX :

∫
T

f dµ =

∫
T

e dµ

}
and

∆̃ =
{
p ∈ Rℓ : ∥p∥1 ≤ 1

}
.15

15∥p∥1 =
∑ℓ
i=1 pi for p = (p1, · · · , pℓ) ∈ Rℓ.
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The following result is an extension of Theorem 3 in He and Yannelis (2016) to a

measure space of agents.

Theorem 6.4. Suppose that the economy E satisfies following assumptions:

(i) The consumption correspondence X : T ⇒ Rℓ is integrably bounded and for all

t ∈ T , X(t) is a non-empty, convex, closed subset of Rℓ;

(ii) P : T × LX × ∆̃ ⇒ Rℓ has the property that x(t) /∈ conP (t, x, p) for all (x, p) ∈
LX × (Rℓ \ {0}) and almost all t ∈ T ;

(iii) ψ : T × LX × ∆̃ ⇒ Rℓ, defined by ψ(t, x, p) = B(t, p) ∩ conP (t, x, p) for all

(t, x, p) ∈ T × LX × ∆̃, has the continuous inclusion property if the economy is

atomic and the strong continuous inclusion property, otherwise.

(iv) If x ∈ A and p ∈ ∆̃ then x(t) ∈ bdP (t, x∗, p∗) µ-a.e.

Then E has a non-free disposal Walrasian equilibrium.

Proof. Define B̃ : T × ∆̃ ⇒ Rℓ
+ by letting

B̃(t, p) = {y ∈ X(t) : p · y ≤ p · e(t) + 1− ∥p∥1} .

As in the proof of Theorem 6.2, we transform the exchange economy E to an abstract

economy Γ by adding a ‘fictitious agent’. For each agent t ∈ T of the economy E ,

p ∈ ∆̃ and x ∈ LX , let A(t, x, p) = B̃(t, p). In our context, we have to ensure that the

added agent is an atom ‘τ ′. Let X(τ) = A(τ, x, p) = ∆̃ and

P (τ, x, p) =

{
q ∈ ∆̃ : q ·

∫
T

(x(t)− e(t))dµ > p ·
∫
T

(x(t)− e(t))dµ

}
.

Define T̃ = T ∪ τ . Repeating the arguments of the proof of Theorem 6.2, one could

show that there exists a point (p∗, x∗) ∈ ∆̃× LX such that

(A) x∗(t) ∈ A(t, x∗, p∗) = B̃(t, p∗), ψ(t, x∗, p∗) = ∅ µ-a.e.; and

(B) P (τ, x∗, p∗) = ψ(τ, x∗, p∗) = ∅.

From (A), it follows that p∗ · x∗(t) ≤ p∗ · e(t) + 1− ∥p∗∥1 µ-a.e. Define

z =

∫
T

(x∗(t)− e(t))dµ.
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We must show that z = 0. Suppose that z ̸= 0. From (B), it follows that q · z ≤ p∗ · z
for any q ∈ ∆̃. Letting q = z

∥z∥1 , we note that q ∈ ∆̃ and p∗ · z ≥ q · z > 0. Define

q∗ = p∗

∥p∗∥1 . Since p∗ · z ≥ q∗ · z, it follows that ∥p∗∥1 = 1. As a result, we have

p∗ · x(t) ≤ p∗ · e(t) µ-a.e., which implies that

p∗ · z = p∗ ·
∫
T

(x− e)dµ ≤ 0.

This is a contradiction. Consequently, we have z = 0, which means∫
T

x∗dµ =

∫
T

e dµ.

Hence, x∗ ∈ A. By (iv), it follows that x∗(t) ∈ bdP (t, x∗, p∗) µ-a.e. Since x∗(t) /∈
conP (t, x∗, p∗) µ-a.e., we conclude that x∗(t) /∈ P (t, x∗, p∗) µ-a.e. We claim that

p∗ · x∗(t) = p∗ · e(t) + 1− ∥p∗∥1

µ-a.e. Suppose that the claim is false, which means that

p∗ · x∗(t) < p∗ · e(t) + 1− ∥p∗∥1

for all t ∈ S for some coalition S. Without loss of generality, we assume that x∗(t) ∈
bdP (t, x∗, p∗) for all t ∈ S. Therefore, for each t ∈ S, there exists some y(t) ∈
P (t, x∗, p∗) such that

p∗ · y(t) < p∗ · e(t) + 1− ∥p∗∥1.

Consequently, y(t) ∈ ψ(t, x∗, p∗), which contradicts (A). Therefore,

p∗ · x∗(t) = p∗ · e(t) + 1− ∥p∗∥1

µ-a.e. on T . Integrating over T yields ∥p∗∥1 = 1. Therefore, (p∗, x∗) is a non-free

disposal Walrasian equilibrium.

Remark 6.5. Our existence theorems (Theorem 6.2 and Theorem 6.4) of a compet-

itive equilibrium for an economy with a measure space of agents exhibit preferences

that may be interdependent, non ordered, price dependent, discontinuous, and are de-

rived from Theorem 4.1. Thus, our existence theorems can be viewed as extensions of

Aumann (1966), Schmeidler (1969) and Shitovitz (1973) that allow for non-ordered,

interdependent, price dependent and discontinuous preferences. However, we don’t

generalize the above theorems as we assume that the consumption sets are bounded.

It is an open question if the bound can be relaxed in this very general set up. Inde-

pendently from our work and using the excess demand approach Otsuka (2024) has

proved the existence of a free disposal equilibrium with a continuum of agents with

price dependent preferences. He also has a bound on the consumption sets.
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Remark 6.6. In view of Theorem 5.4, the existence of a competitive equilibrium

similar to Theorem 6.2 and Theorem 6.4 can also be guaranteed for an economy with

convexifying effect.

Remark 6.7. It would be of interest to see if the extension of the continuous continuous

inclusion property introduced on this paper can be used to obtain generalizations of

the existence results in Hou (2008), He (2022), Pastine-Pastine (2023), Ke-Xu (2023),

Urbinati (2023), and Podczeck-Yannelis (2024).

7 Appendix A

In this section, we outline the proof of a Carathéodory-type selection theorem for

discontinuous correspondences, recently established in Bhowmik and Yannelis (2024).

Theorem 7.1. Assume that the abstract economy Γ satisfies the assumptions (A.1)-

(A.4). Then there exists a correspondence Φ : T × LX ⇒ Rℓ satisfying the following:

(A) Φ(t, x) ⊆ ψ(t, x) for all (t, x) ∈ Uψ;

(B) Uψ = UΦ;

(C) Φ(t, ·) : LX ⇒ Rℓ is lower-semicontinuous for all t ∈ T ;

(D) Φ is jointly lower measurable; and

(E) There exists a Carathéodory-type selection f : UΦ → Rℓ of Φ|UΦ
.

Proof. For pedagogical purposes, we outline the proof of the purely atomic economy

only. The proof regarding the atomless or mixed economy is significantly more com-

plicated and the details can be found in Bhowmik-Yannelis (2024).

Since the correspondence ψ satisfies the continuous inclusion property, for each

y ∈ LX , there exists a correspondence Fy : T × LX ⇒ Rℓ satisfying:

(i) If Uy
ψ ̸= ∅ then there exists a collection {Ot

y : t ∈ Uy
ψ} of weakly open neighbour-

hoods of y in LX such that Fy(t, x) ̸= ∅ and Fy(t, x) ⊆ ψ(t, x) for all x ∈ Ot
y and

all t ∈ Uy
ψ;

(ii) Fy(t, ·) : Ot
y ⇒ Rℓ is lower-semicontinuous for all t ∈ Uy

ψ and Fy(t, ·) : LX ⇒ Rℓ

is lower-semicontinuous for all t /∈ Uy
ψ; and

(iii) Fy : T × LX ⇒ Rℓ is jointly lower measurable.
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The collection of open neigbourhoods defined above is therefore

O =
{
Ot
y : t ∈ Uy

ψ and y ∈ LX
}
.

Then O can be rewritten as O = {Ot
y : (t, y) ∈ Uψ}. Since Ot

y ⊆ U t
ψ for all y ∈ U t

ψ,

we have that U t
ψ is a weakly open subset of LX , for all t ∈ T . By Lemma 8.5, we have

that LX is non-empty, convex, weakly compact, and metrizable. Consequently, U t
ψ is

paracompact for all t ∈ T . Since {Ot
y : y ∈ U t

ψ} is an open cover of U t
ψ, it has a closed

locally finite refinement, say Ft = {V t
k : k ∈ Kt}, where Kt is an index set and V t

k is a

closed set in LX for each k ∈ Kt. For each (t, x) ∈ T × LX , we define

J(t, x) =
{
k ∈ Kt : x ∈ V t

k

}
.

Note that J(t, x) is (possibly empty) finite for all (t, x) ∈ T ×LX . Moreover, J(t, x) ̸= ∅
if and only if x ∈ U t

ψ. We choose an element ytk ∈ LX such that V t
k ⊆ Ot

ytk
for all k ∈ Kt

and all t ∈ T . Let Φ : T × LX ⇒ Rℓ be a correspondence such that

Φ(t, x) =

{
Θ(t, x), if J(t, x) ̸= ∅;

∅, otherwise,

where Θ : T × LX ⇒ Rℓ is defined by

Θ(t, x) = con
(⋃{

conFytk(t, x) : k ∈ J(t, x)
})

.

To verify Condition (A), take an element (t, x) ∈ Uψ. Since x ∈ U t
ψ, we have J(t, x) ̸= ∅.

Since Fytk(t, x) ⊆ ψ(t, x) for all k ∈ J(t, x) and ψ(t, x) is convex, we must have Φ(t, x) ⊆
ψ(t, x). On the other hand, for each (t, x) ∈ Uψ, as J(t, x) ̸= ∅, we have x ∈ Ot

ytk
for

k ∈ J(t, x). Hence, Fytk(t, x) ̸= ∅ for all k ∈ J(t, x). This implies that Φ(t, x) ̸= ∅, which
yields that Uψ ⊆ UΦ. Let (t, x) ∈ UΦ. Then J(t, x) ̸= ∅, which implies that (t, x) ∈ Uψ.

Therefore, UΦ ⊆ Uψ. Thus, Uψ = UΦ, which verifies Condition (B). Lastly, in order to

investigate Condition (C) and Condition (D), we take an arbitrary open set W in Rℓ.

For each t ∈ T , we define

Wt = {x ∈ LX : Φ(t, x) ∩W ̸= ∅}.

From the definition of Φ, it follows that Wt = U t
ψ ∩ {x ∈ LX : Θ(t, x) ∩W ̸= ∅}. In

view of Lemma 8.4 and the fact that the convex hull of a lower-semicontinuous function

is lower semicontonous, we conclude that Θ(t, ·) is lower-semicontinuous. Therefore,

{x ∈ LX : Θ(t, x) ∩W ̸= ∅} is (weakly) open in LX . Since U
t
ψ is (weakly) open in LX ,

we have that Wt is (weakly) open in LX . To verify the joint lower measurability of Φ,
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let B = {t ∈ T : Wt ̸= ∅}. Since µ(T ) < ∞, we have that T is countable and thus, B
is countable. Consequently,

{(t, x) ∈ T × LX : Φ(t, x) ∩W ̸= ∅} =
⋃

{({t} ×Wt) : t ∈ B}.

Since each atom {t} belongs to T and each Wt is (weakly) open, we conclude that

{(t, x) ∈ T × LX : Φ(t, x) ∩ W ̸= ∅} is T ⊗ Bw(LX)-measurable. Therefore, Φ is

jointly lower measurable. Finally, by Theorem 8.1, we can guarantee the existence of

a Carathéodory-type selection f : UΦ → Rℓ of Φ|UΦ
, which verifies Condition (E).

8 Appendix B

In what follows, we summarize all the results needed for our proofs, the first one of

these is a Carathéodory-type selection theorem, due to Kim-Prikry-Yannelis (1987).

Theorem 8.1. Let (T,T , µ) be a complete finite measure space, and Z be a complete,

separable metric space. Suppose that F : T × Z ⇒ Rℓ is a convex (possibly empty)

valued correspondence such that:

(i) F (·, ·) is lower measurable; and

(ii) for each t ∈ T , F (t, ·) is lower-semicontinuous.

Let UF := {(t, x) ∈ T × Z : F (t, x) ̸= ∅}, U t
F = {x ∈ Z : (t, x) ∈ UF} for each t ∈ T ,

Ux
F := {t ∈ T : (t, x) ∈ UF} for each x ∈ Z. Then there exists a Carathéodory-type

selection from F|U , i.e. there exists a function f : UF → Rℓ such that f(t, x) ∈ F (t, x)

for all (t, x) ∈ UF , f(·, x) is measurable on Ux
F for each x ∈ Z and f(t, ·) is continuous

on U t
F for each t ∈ T . Furthermore, f(·, ·) is jointly measurable.

For proofs of the following two lemmata, we refer to Aumann (1965).

Lemma 8.2. If (T,T , µ) be a complete finite measure space and Ψ : T ⇒ Rℓ is a

closed-valued and integrably bounded correspondence then
∫
T
Ψ dµ is compact.

Lemma 8.3. If (T,T , µ) be a complete finite atomless measure space and Ψ : T ⇒ Rℓ

is a correspondence then
∫
T
Ψ dµ is a convex set.

The next four lemmata can be found in in Aliprantis-Border (2006).

Lemma 8.4. Let (T,T , µ) be a complete finite measure space and X be a topological

space. Then the following hold:
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(i) If Φα : X ⇒ Rℓ is lower-semicontinuous for all α ∈ I (where I is an index

set) then Ψ : X ⇒ Rℓ, defined by Ψ(t) :=
⋃
{Φα(t) : α ∈ I} for all t ∈ T , is

lower-semicontinuous.

(ii) If Φn : T ⇒ Rℓ is lower measurable for all n ∈ N then Ψ : X ⇒ Rℓ, defined by

Ψ(t) :=
⋃
{Φn(t) : n ∈ N} for all t ∈ T , is lower measurable.

The proofs of the following four lemmata can be found in Yannelis (1987).

Lemma 8.5. Let (T,T , µ) be a complete finite positive separable measure space, and

X : T ⇒ Rℓ be an integrably bounded correspondence with measurable graph, such that

for all t ∈ T , X(t) is a nonempty, convex, closed subset of Rℓ. Then LX is nonempty,

convex, weakly compact, and metrizable.

Lemma 8.6. Let (T,T , µ) be a complete separable measure space, and Y be a separable

Banach space. Let X : T ⇒ Y be an integrably bounded, non-empty, convex, weakly

compact valued correspondence with a measurable graph. Let F : T × LX ⇒ Y be

a convex, closed, non-empty valued correspondence such that F (t, x) ⊆ X(t) for all

(t, x) ∈ T × LX , F (·, x) has a measurable graph for each x ∈ LX , F (t, ·) is upper-

semicontinuous in the sense that the set {x ∈ LX : ϕ(t, x) ⊂ V } is weakly open in LX
for every norm open subset V of Y for each t ∈ T . Then the correspondence Φ : LX ⇒
LX defined by

Φ(x) = {y ∈ LX : y(t) ∈ F (t, x)µ-a.e.}

is nonempty valued and weakly upper-semicontinuous.

Lemma 8.7. Let X and Y be two linear topological spaces, and Φ : X ⇒ Y be a

correspondence such that GΦ is open in X × Y . Then the correspondence H : X ⇒ Y ,

defined by H(x) = conΦ(x), has open graph.

Lemma 8.8. Let X and Y be any topological spaces, and Φ : X ⇒ Y , Ψ : X ⇒ Y be

correspondences such that

(i) GΦ is open in X × Y .

(ii) Ψ is lower-semicontinuous.

Then the correspondence F : X ⇒ Y , defined by F (x) = Φ(x) ∩ Ψ(x), is lower-

semicontinuous.

For proofs of the following two lemmata, we refer to Yannelis (1991a).
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Lemma 8.9. Let (T,T , µ) be a complete finite measure space and P be a metric space.

Let Ψ : T ×P ⇒ Rℓ be a non-empty, compact valued correspondence such that for each

fixed t ∈ T , Ψ(t, ·) is upper-semicontinuous and that for each p ∈ P , Ψ(·, p) has a

measurable graph. Then
∫
T
Ψ(t, ·) dµ is upper-semicontinuous.

Lemma 8.10. Let (T,T , µ) be a complete finite measure space and P be a metric

space. Let Ψ : T × P ⇒ Rℓ be an integrably bounded correspondence such that for

each fixed t ∈ T , Ψ(t, ·) is lower-semicontinuous and that for each p ∈ P , Ψ(·, p) has a
measurable graph. Then

∫
T
Ψ(t, ·) dµ is lower-semicontinuous.

For proof of the following lemma, we refer to Yannelis (1991b).

Lemma 8.11. Let (T,T , µ) be a complete finite measure space and Ψ : T ⇒ Rℓ be a

non-empty, convex, compact valued and integrably bounded correpondence. Then S1
Ψ is

weakly compact set in L1(µ,Rℓ).

For a proof of the following lemma, we refer to Yannelis-Prabhakar (1983).

Lemma 8.12. Let X, Y be topological spaces and E be an open set in X. Suppose

that Φ : X ⇒ Y is an upper semi-continuous correspondence and f : E → Y be a

continuous selection from Φ|E. Let Ψ : X ⇒ Y be a correspondence such that

Ψ(x) :=

{
{f(x)}, if x ∈ E;

Φ(x), otherwise.

Then Λ is upper-semicontinuous.
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