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Summary. The private core of an economy with differential information, (Yan-
nelis (1991)), is the set of all state-wise feasible and private information measur-
able allocations which cannot be dominated, in terms of ex ante expected utility
functions, by state-wise feasible and private information measurable net trades
of any coalition. It is coalitionally Bayesian incentive compatible and also takes
into account the information superiority of an individual. We provide a noncoop-
erative extensive form interpretation of the private core for three person games.
We construct game trees which indicate the sequence of decisions and the infor-
mation sets, and explain the rules for calculating ex ante expected payoffs. In
the spirit of the Nash programme, the private core is thus shown to be supported
by the perfect Bayesian equilibrium of a noncooperative game. The discussion
contributes not only to the development of ideas but also to the understanding of
the dynamics of how coalitionally incentive compatible contracts can be realized.
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1 Introduction

An economy with differential information consists of a finite set of agents each
of which is characterized by a random utility function, a random consumption
set, random initial endowments, a private information set and a prior probability
distribution. The private core of a differential information economy (see Yannelis
(1991)) is the set of all state-wise feasible and private information measurable
allocations which cannot be dominated, in terms of expected utility, by any
coalition’s state-wise feasible and private information measurable net trades.

The private core is not susceptible to the criticism of the traditional rational
expectations equilibrium (REE). In particular, the REE does not provide an expla-
nation as to how prices reflect the information asymmetries in the economy. On
the contrary the private core not only takes into account the information asymme-
tries but also rewards agents with “superior” information as shown in Example
3.1 in Section 3. Furthermore it is coalitionally Bayesian incentive compatible
(see Koutsougeras and Yannelis, 1993). Hence the private core can be used to
explain how incentive compatible contracts are written.

The main purpose of this paper is to provide a noncooperative, extensive form
interpretation of the private core. Generally speaking we investigate whether or
not cooperative core concepts, i.e. the private core and the weak fine core, defined
below, can be supported as a perfect Bayesian equilibrium.

This investigation falls in the area of the Nash programme, which is a research
agenda originated by Nash (1953) and emphasized by Binmore (1980a,b). The
idea is to provide support and justification of cooperative solutions to economic
problems through noncooperative formulations. More generally the issue is the
relation between dynamic and static considerations. Our approach provides a
dynamic interpretation of the static private core notion. Consequently it helps to
explain the dynamics of how incentive compatible contracts are realized.

In our analysis, in order to provide support for the private core, we introduce
game trees. They show the prior probability with which nature chooses and make
explicit the sequential moves, i.e., which player makes announcements or moves
first. They also take into account the private information sets of each player as
well as the measurability of decisions.

Given the above structure of the game tree, we specify rules, i.e., the terms of
a contract, which imply specific redistributions of the random initial endowments
in different events. The rules are a statement as to the consequences of actions
by the players under all possible states of nature. Having specified the rules, we
obtain the payoffs in terms of quantities and then we are looking for an appro-
priate refinement of Nash equilibrium for games with imperfect or differential
information.

We require an equilibrium concept which adopts a probabilistic approach
with respect to the nodes of an information set and reduces to subgame perfect
equilibrium in case the information sets are singletons. Such a concept is the
Kreps and Wilson (1982) sequential equilibrium and its variants which are either
weaker versions or refinements. We adopt here the perfect Bayesian equilibrium,
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described in Tirole (1988), where also a comparison is made with other, similar
type ideas.

A perfect Bayesian equilibrium consists of a set of players’ optimal behavioral
strategies and, consistent with these, a set of beliefs which attach a probability
distribution to the nodes of each information set. Consistency requires that the
decision from an information set is optimal given the particular player’s beliefs
about the nodes of this set and the strategies from all other sets, and that beliefs
are formed from updating using the available information. If the optimal play of
the game enters an information set then updating of beliefs must be Bayesian.
Otherwise appropriate beliefs are assigned arbitrarily to the nodes of the set.

The term “implementation” is used below in the sense of realization of an
allocation and not in the sense of implementation theory or mechanism design
which requires the introduction of a planner. Recent work in this area is by
Trockel (2000) which contributes to the Nash programme and casts the imple-
mentation discussion in its context.

The main results in this paper are the following. Despite the fact that “pooled”
information core allocations, (i.e., the weak fine core), exist under mild assump-
tions, we construct a game tree, with reasonable rules for calculating payoffs,
which shows that a redistribution of this nature cannot be supported as a perfect
Bayesian equilibrium. Indeed, such contracts (allocations) need not be Bayesian
incentive compatible which suggests a difficulty in implementing them.

On the other hand, we construct a three player example which indicates that
the private core, which is Bayesian incentive compatible, can be supported as
a perfect Bayesian equilibrium. The above results not only provide a first step
into the noncooperative extensive form interpretation of the core of economies
with differential information, but also enable us to understand how coalitionally
Bayesian incentive compatible contracts are realized.

Finally we provide a generalization of the private core existence result of
Yannelis (1991) by relaxing the continuity assumption of the random utility func-
tions. This enables us to include private information sets which not only can be
measurable partitions of the exogenously given probability measure space, but
can also be sub-σ-algebras.

To the best of our knowledge the present paper is the first attempt to provide
a noncooperative foundation for core concepts in economies with differential
information.

We note that the complete information works of Lagunoff (1994), Perry and
Reny (1994), Serrano (1995) and Serrano and Vohra (1997), which discuss a
non-cooperative approach to the core, do not apply to the differentiable economy
framework that we are considering here.

The paper is organized as follows. Section 2 contains the definition of the
differential information economy. Section 3 contains the core concepts employed
in this paper as well as a new core existence result. Section 4 discusses ideas of
incentive compatibility on the basis of which core allocations can be classified.
Section 5 discusses the non-implementation of the weak fine core and Section
6 the implementation of the private core in extensive form games. Section 7
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offers brief concluding remarks. Appendix I proves, under certain conditions, the
existence of a private core allocation and Appendix II derives the private core
allocations in an explicit example which is used in the text.

2 Differential information economy

Although we shall be concerned with a special model we repeat briefly, for
completeness, the notation used and the definition of the private core in a general
case. We define below the notion of a finite-agent economy with differential
information. Let (Ω, F , µ) be a complete probability measure space andY be a
separableBanach lattice1 with an order continuous norm denoting the commodity
space. The positive cone ofY is denoted byY+.

A differential information economy E is a set{((Ω, F , µ), Xi , F i , ui , ei ) :
i = 1, . . . , n} where

1. Xi : Ω → 2Y+ is the set-valued function giving therandom consumption set
of Agent (Player) i, who is denoted also by Pi,

2. F i is a partition (or sub-σ-algebra) ofF , denoting theprivate information2

of Pi,
3. ui : Ω×Y+ → R is therandom utility function of Pi,
4. ei : Ω → Y+ is the random initial endowment of Pi, whereei (·) is F i -

measurable andBochner integrable3, andei (ω) ∈ Xi (ω) µ-a.e., and
5. µ denotes the commonprior of all agents.

The ex ante expected utility of Pi is given by

vi (xi ) =
∫

Ω

ui (ω, xi (ω))dµ(ω). (1)

Denote byEi (ω) the event in the partitionF i of Agent i which contains the
realized state of nature,ω ∈ Ω. The interim expected utility function of Agent i
is given by

vi (ω, xi ) =
1

µ(Ei (ω))

∫

ω′ ∈Ei (ω)

ui (ω
′
, xi (ω

′
))dµ(ω

′
), (2)

whereµ(Ei (ω)) is assumed to be positive.
Despite the fact that the differential information economy is static, we can

provide a two-period interpretation as follows. In the first period agents make
contracts in the ex ante stage. In the interim stage, i.e., after they have received
a signal4 as to what is the event containing the realized state of nature, one
considers the incentive compatibility of the contract.

1 See Appendix I.
2 Following Aumann (1987) we assume that the players’ information partitions are common

knowledge.
3 See Appendix I.
4 A signal to a player is a function from states of nature to the possible observations specific to

the player, which induces onΩ a sub-σ-algebra ofF .
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3 The private core and the weak fine core

First we define the notion of the private core (Yannelis (1991)). We begin with
some notation. Denote byL1(µ, Y ) the space of all equivalence classes of Bochner
integrable functions.

LXi is the set of all Bochner integrable andFi -measurable selections from
the random consumption set of Agent i, i.e.,

LXi = {xi ∈ L1(µ, Y ) : xi : Ω → Y is Fi -measurable andxi (ω) ∈ Xi (ω) µ-a.e.}

and letLX =
n∏

i=1
LXi .

Also let

L̄Xi = {xi ∈ L1(µ, Y ) : xi (ω) ∈ Xi (ω) µ-a.e.}

and letL̄X =
n∏

i=1
L̄Xi .

An elementx = (x1, . . . , xn ) ∈ L̄X will be called anallocation. For any subset
of players S , an element (yi )i∈S ∈ ∏

i∈S
L̄Xi will also be called an allocation,

although strictly speaking it is an allocation toS .

Definition 3.1. An allocation x ∈ LX is said to be a private core allocation if

(i)
∑n

i=1 xi =
∑n

i=1 ei and
(ii) there do not exist coalition S and allocation (yi )i∈S ∈ ∏

i∈S
LXi such that

∑
i∈S

yi =
∑
i∈S

ei and vi (yi ) > vi (xi ) for all i ∈ S .

Hence, a private core allocation is feasible, reflects the private information
of each agent, i.e., eachxi (·) is F i -measurable, and has the property that no
coalition of agents can redistribute their initial endowments, based on their own
private information, and make each of its members better off. It is important
to notice that since initial endowments are private information measurable, net
tradesxi (·) − ei (·) are alsoF i -measurable.

Observe that despite the fact that a coalition of agents get together they do not
necessarily share their own information. On the contrary, the redistributions of the
initial endowments are based only on their own private information. This is quite
important because the resulting private core allocation has desirable properties,
i.e., it is coalitionally incentive compatible, as we shall see below, and takes into
account the information superiority of an individual.5

5 See Koutsougeras and Yannelis (1993) and Example 3.1 below. Notice that in Definition 3.1
the ex ante expected utility function is used. The (interim) private core is also defined similarly by
replacing (ii) in Definition 3.1 by
(ii) there do not exist coalitionS and allocation (yi )i∈S ∈

∏
i∈S

LXi such that
∑
i∈S

yi =
∑
i∈S

ei and

vi (ω, yi ) > vi (ω, xi ) for all i ∈ S andµ-a.e.
Both private cores (ex ante and interim) exist and also have similar qualitative properties (see Hahn
and Yannelis, 2000).
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Although several private core existence results can be found in the literature,
as for example in Yannelis (1991), Allen (1991), Koutsougeras and Yannelis
(1993), Balder and Yannelis (1994), Page (1997) and Lefebvre (2001), among
others, the proof of the theorem below appears to be the shortest, simplest and
quite general. It improves on the original one of Yannelis (1991).

Theorem 3.1: Let E = {((Ω, F , µ), Xi , F i , ui , ei ) : i = 1, . . . , n} be a differen-
tial information economy satisfying for each i the following assumption:
ui is concave, upper semicontinuous (u.s.c.) and integrably bounded.
Then a private core allocation exists inE .

Proof. See Appendix I.
The theorem in Yannelis (1991) is generalized in the following way. The util-

ity functions need not be weakly continuous, but only u.s.c. in the norm topology.
However in the presence of concavity they become weakly u.s.c. (Balder - Yan-
nelis (1993)). The latter enables us to generalize the private information setsF i

of each agent from partitions to a sub-σ-algebra. Furthermore, we do not need to
assume that the dual ofY has the Radon - Nikodym property. In the examples
below theσ-algebras will be generated from partitions.

The example below illustrates the private core.

Example 3.1 Consider the following three agents economy,I = {1, 2, 3} with
one commodity, i.e.Xi = R+ for each i, and three states of natureΩ = {a, b, c}.

The agents are characterized by their initial endowments, their private infor-
mation and their utility functions. We assume that the structure is

e1 = (5, 5, 0), F 1 = {{a, b}, {c}};
e2 = (5, 0, 5), F 2 = {{a, c}, {b}};
e3 = (0, 0, 0), F 3 = {{a}, {b}, {c}}.

Notice that the initial endowment of each agent isF i -measurable. It is also

assumed thatui (ω, xi (ω)) = x
1
2

i , which is a typical strictly concave and monotone
function in xi , and that each state of nature occurs with the same probability,
i.e. µ({ω}) = 1

3, for ω ∈ Ω. For convenience, in the discussion below expected
utilities are multiplied by 3.

It can be shown6 that a private core allocation of this economy isx1 = (4, 4, 1),
x2 = (4, 1, 4) and x3 = (2, 0, 0). Clearly this allocation is feasible andF i -
measurable. It is important to observe that in spite of the fact that Agent 3
has zero initial endowments, her superior information allows him to make a
Pareto improvement for the economy as a whole and clearly he was rewarded
for doing so. In other words, Agent 3 traded her superior information for actual
consumption in statea. In return Agent 3 provided insurance to Agent 1 in state
c and to Agent 2 in stateb. Notice that if the private information set of Agent 3

is the trivial partition, i.e.,F
′
3 = {a, b, c}, then no trade takes place and clearly

in this case she gets zero utility. Thus the private core is sensitive to information
asymmetries.

6 See Appendix II.
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Contrary to the private core any rational expectation Walrasian equilibium
notion will always give zero to Agent 3 since her budget set is zero in each state.
This is so irrespective of whether her private information is the full information

partition F 3 = {{a}, {b}, {c}} or the trivial partitionF
′
3 = {a, b, c}. Hence

the rational expectations equilibrium does not take into account the informational
superiority of an agent.

Next we define another core concept, the weak fine core (see Yannelis, 1991,
p. 188; Koutsougeras and Yannelis, 1993). This concept is a refinement of the
fine core of Wilson (1978). Recall that the fine core notion of Wilson as well
as the fine core in Yannelis, and Koutsougeras and Yannelis may be empty in
well behaved economies. It is exactly for this reason that we are working with a
different concept.

Definition 3.2. An allocation x = (x1, . . . , xn ) ∈ L̄X is said to be a weak fine core
allocation if

(i) each xi (·) is
n∨

i=1
F i -measurable 7

(ii)
∑n

i=1 xi (ω) =
∑n

i=1 ei (ω) µ-a.e. and
(iii) there do not exist coalition S and allocation (yi )i∈S ∈ ∏

i∈S
L̄Xi such that

yi (·) − ei (·) is
∨

i∈S
F i -measurable for all i ∈ S ,

∑
i∈S

yi (ω) =
∑
i∈S

ei (ω) µ-a.e.,

and vi (yi ) > vi (xi ) for all i ∈ S .

Notice that now in the weak fine core, coalitions of agents are allowed to
pool their own information. Identical assumptions with those in Theorem 3.1
and a similar argument shows that a weak fine core allocation exists inE . The
example below illustrates this concept.

Example 3.2 Consider Example 3.1 without Agent 3. Then if Agents 1 and 2 pool
their own information a possible allocation isx1 = x2 = (5, 2.5, 2.5). Notice that

this allocation is
2∨

i=1
F i -measurable and cannot be dominated by any coalition

of agents using their pooled information. Hence it is a weak fine core allocation.

4 Incentive compatibility

A careful examination of Example 3.1 indicates that the private core allocation is
incentive compatible in the sense that no coalition of agents has an incentive to
misreport the realized state of nature and become better off. The argument which
supports this conclusion is as follows. Agent 3 can presumably lie to Agents 1
and 2 if the realized state of nature isa since Agent 1 cannot distinguish statea
from stateb and Agent 2 statea from statec. However, Agent 3 has no incentive

7
n∨

i=1

F i denotes the smallestσ-algebra containing eachF i .
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to do so since only in statea does she get positive consumption. Hence, Agent
3 who would potentially cheat in statea has no incentive to do so.

We could consider the example in more detail. We ask the question whether
the coalitionS = {1, 3} can cheat P2. This is not possible because P3 would
become worse off. For suppose that the state of nature isa but S reportsc.
Then u1(e1(a) + x1(c) − e1(c)) = u1(5 + 1− 0) > u1(x1(b)) = u1(x1(a)) = u1(4)
but u3(e3(a) + x3(c) − e3(c)) = u3(0) < u3(x3(a)) = u3(2). Similarly the coalition
S = {2, 3} cannot form, and the coalitionsS = {1, 2}, S = {1} and S = {2}
cannot misreport to P3.

Generalizing we have a coalitionS and the complementary set which we
denote byI \ S . The members ofS will be denoted byi and the members of
I \ S by j . Suppose that the realized state of nature isω∗. A memberi ∈ S
seesEi (ω∗). Obviously not allEi (ω∗) need be the same since differenti ’s have
different information sets. However they all know from their information that the
actual state of nature could beω∗.

Consider now a state of natureω
′

with the following property. For allj ∈ I \S
we haveω

′ ∈ Ej (ω∗) and for at least onei ∈ S we haveω
′

/∈ Ei (ω∗) (other-
wiseω

′
would be indistinguishable fromω∗ for all players so in effect could be

considered as the same element ofΩ). Now the coalitionS decides that each
memberi will announce that she has seen her own setEi (ω

′
) which, of course,

definitely contains a lie. On the other hand we have thatω
′ ∈ ⋂

j /∈S
Ej (ω∗) (we

also denotej ∈ I \ S by j /∈ S ).
Now the idea is that if all members ofI \S believe the statements of the mem-

bers ofS then eachi ∈ S expects to gain. Forcoalitional Bayesian incentive
compatibility (CBIC) of an allocation we require that this is not possible.

A formal definition of the notion of CBIC8 is:

Definition 4.1. An allocation x = (x1, . . . , xn ) ∈ L̄X with
∑n

i=1 xi =
∑n

i=1 ei is
said to be CBIC if it is not true that there exist coalition S and states ω∗, ω

′
, with

ω∗ different than ω
′
, and ω

′ ∈ ⋂
j /∈S

Ej (ω∗) such that

1
µ(Zi (ω∗))

∫

ω∈Zi (ω∗)

ui (ω, ei (ω) + xi (ω
′
) − ei (ω

′
))dµ(ω)

>
1

µ(Zi (ω∗))

∫

ω∈Zi (ω∗)

ui (ω, xi (ω))dµ(ω) (3)

for all i ∈ S , where Zi (ω∗) = Ei (ω∗) ∩ (
⋂

j /∈S
Ej (ω∗)) and µ(Zi (ω∗)) is assumed to

be positive.
The integrals above can be evaluated since, due to the common knowledge

assumption of Section 2, each player knows all the information sets of the other
players and therefore can calculate the relevant intersectionZi (ω∗).

This definition implies that no coalition of agents has an incentive to misreport
the realized state of nature to the complementary set, despite the fact that the latter

8 See also Krasa and Yannelis (1994), Hahn and Yannelis (2001) for other CBIC concepts.
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cannot distinguish the actual state from the misreported one. They do not expect
that, by misreporting, each member of the coalition could become better off. If,
for example, the realized state of nature isω∗ and for all j 
∈ S , ω′ ∈ Ej (ω∗),
while for at leasti ∈ S it is true thatω

′
/∈ Ei (ω∗), it must be the case that the

agents inS have no incentive to report stateω
′
. I.e., they do not expect that it

is possible to become better off if they are believed, by adding to their initial
endowment the net trade in stateω

′
. If S = {i} the above definition reduces to

individual Bayesian incentive compatibility (IBIC).
It has been shown in Koutsougeras - Yannelis (1993) that if the utility func-

tions are monotone and continuous then private core allocations arealways CBIC.
On the other hand the weak fine core allocations are not always CBIC, as the
above Example 3.2 with proposed redistributionx1 = x2 = (5, 2.5, 2.5) shows.

Indeed, if Agent 1 observes{a, b}, she has an incentive to reportc, as
Agent 2 cannot distinguish betweena and c. Agent 1 stands to gain if she
is believed, which is a possibility asa might be the true state and Agent 2
believes the statement that it isc. In this case Agent 1 keeps the 5 units of
the initial endowments in statea, and also gets an additional 2.5 units from
Agent 2. In terms of the Definition 4.1, the fact thatu1(e1(a) + x1(c) − e1(c)) =
u1(5 + 2.5 − 0) > u1(5) = u1(x1(a)) implies that the proposed allocation is not
CBIC. Similarly Agent 2 has an incentive to reportb when he observes{a, c}.

Now in employing game trees in the analysis, as it is done below, we will
adopt the definition of IBIC. The equilibrium concept employed will be that of
perfect Bayesian equilibrium the application of which is explained below.

A core allocation will be IBIC if there is a profile of optimal behavioral
strategies and equilibrium paths along which no player misreports the state of
nature he has observed. This allows for the possibility, as we shall see later, that
such strategies could imply that players have an incentive to lie from information
sets which are not visited by an optimal play. The definition of a play of the
game is a directed path from the initial to a terminal node.

The issue is whether core allocations can be obtained as perfect Bayesian
equilibria. That is whether the cooperative core solutions can also be supported
through an appropriate noncooperative solution concept. The analysis in Sec-
tions 5 and 6 below shows that the private core which is CBIC can be supported
by a perfect Bayesian equilibrium while for the weak fine core, which may not
be CBIC, we find that a reasonable extensive form game does not support it.

5 Non-implementation of the weak fine core in an extensive game

In this section we investigate, by considering sequential decisions, whether in
Example 3.2, a particular contract between P1 and P2, with a distribution which
is Pareto superior to the initial allocation, will be signed or not.

In particular we consider the weak fine core allocation (5, 2.5, 2.5) in Example
3.2. As we saw in the previous section this is not CBIC which suggests a difficulty
in implementing it by means of a contract. We construct a game tree and employ
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reasonable rules for describing the outcomes of combinations of states of nature
and actions of the players. We find that although the Pareto superior allocation (5,
2.5, 2.5) is possible, the optimal strategies of the players imply no trade because
of lack of IBIC. Hence there is no advantage in signing such a contract.

One of the issues that has been considered is whether, in order to implement
the allocation (5, 2.5, 2.5), the information of P1 and P2 can be pooled into
F 1

∨
F 2 = {{a}, {b}, {c}} through the two agents informing each other. The

proposed allocation (5, 2.5, 2.5) is measurable with respect toF 1
∨

F 2 and it
is a Pareto improvement over the initial endowments.

When the agents form their coalition, they do so in order to sign a contract.
The contract depends on their realization that together they could know the state
of nature. If each player announces truthfully what he sees, the state of nature
would then be common knowledge. Having written the contract, another issue
then arises. That is whether the players have an incentive to lie about what
they have seen in the interim state. It is this second stage that the game tree is
analysing. The game is played before the state is revealed and as the extensive
form indicates, in the interim stage each player has an incentive to lie. Therefore
the pooling of information does not take place because of lack of incentive
compatibility.

We discuss the possible realization of the allocation (5, 2.5, 2.5) through the
analysis of a specific sequence of decisions and information sets shown in the
game tree in Figure 1. The players are given choices to tell the truth or to lie,
i.e., we model the idea that agents truly inform each other about what states of
nature they observe, or deliberately aim to mislead their opponent. The issue is
what type of behaviour is optimal and therefore whether a proposed contract will
be signed or not.

Figures 1 and 2 show that the allocation (5, 2.5, 2.5) will be rejected by the
players. It is not IBIC and the proposed contract will not be signed. Notice that
vectors at the terminal nodes of a game tree will refer to payoffs of the players,
in terms of allocations. The first element will be the payoff to P1, etc.

The explanation of Figure 1 is as follows. Nature chooses statesa, b or c
with equal probabilities. This choice is flashed on a screen which both players
can see. P1 cannot distinguish betweena andb, and P2 betweena andc . This
accounts for the information setsI1, I2 andI

′
2 with more than one node. A player

to which such an information set belongs cannot distinguish between these nodes
and therefore his decisions are common to all of them. A behavioral strategy of
a player is an assignment of a probability distribution per information set that
belongs to him over the choices available from that set. This is irrespective of
whether a particular play of the game will imply that all these choices will have
an effect on the payoffs. Indistinguishable nodes imply theF i -measurability of
decisions.

P1 moves first and has two choices. That is he can either playA1 = {a, b} or
c1 = {c}, i.e., he can say “I have seen{a, b} being unable to distinguish between
the two”, or “I have seenc”. Obviously one of these declarations will be true
and the other a lie. Following a choice by P1 then P2 is to respond saying that
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the signal he has seen on the screen isA2 = {a, c} or that it isb2 = {b}. One of
these statements is of course a lie.

Strictly speaking the notation for choices should vary with the information set
but, for simplicity, we do not modify it, as there is no danger of confusion here.
Finally notice that the structure of the game tree is such that when P2 is to act
he knows exactly what P1 has chosen before him. This is an assumption about
the relation between decisions. In general, in forming game trees the sequence
of events and the information of the agents must be specified explicitly.

Next, given the sequence of decisions of the players, shown on the tree, we
specify the rules for calculating the payoffs, i.e. we specify the terms of the
contract. This is a statement of what to do under all possible states of nature and
declarations by the players.

The rules are:

(i) If the declarations by the two players are incompatible, that is (c1, b2) then at
least one of the players is lying and, moreover, the opponent of a lying player
detects that lie. This is the case when statec occurs and agent 1 reports
statec and agent 2 stateb. In statea both agents can lie and the lie cannot
be detected by either agent (however, the agents are in the events{a, b}
and{a, c}, respectively and they get five units of the initial endowments).
Therefore, whenever the declarations are incompatible, no trade takes place
and the players retain their initial endowments.

(ii) If the declarations are (A1, A2) then even if one of the players is lying, this
cannot be detected by his opponent who believes that statea has occured
and both players have received endowment 5. Hence no trade takes place.

(iii) If the declarations are (A1, b2) then a lie can be beneficial and undetected, and
P1 is trapped and must hand over half of his endowment to P2. Obviously
if his endowment is zero then he has nothing to give.

(iv) If the declarations are (c1, A2) then again a lie can be beneficial and unde-
tected. P2 is now trapped and must hand over half of his endowment to P1.
Obviously if his endowment is zero then he has nothing to give.

The calculations of payoffs do not require the revelation of the actual state
of nature. Optimal decisions from an information set will be denoted by a heavy
line. If either decision is optimal then both will be shown with a heavy line. We
could assume that a player does not lie if he cannot get a higher payoff by doing
so.

Assuming that each player chooses optimally from the information sets which
belong to him, the game in Figure 1 folds back to the one in Figure 2. This is
achieved by considering the optimal decisions of P2 and applying backward
induction. Inspection of Figure 1 reveals that from the information setI2 he can
play b2 with probability 1. (A heavy lineA2 indicates that this choice also would
not affect the analysis). This accounts for the payoff (2.5, 7.5) and the first payoff
(0, 5) from left to right in Figure 2. Similarly we undo all other information sets
of P2 and we arrive at Figure 2. Inspection of this figure reveals also the optimal
strategies of P1.
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Summarizing, the optimal behavioral strategy for P1 is to playc1 from I1,
i.e to lie, and from the singleton to play any mixture of options, and we have
chosen (A1,

1
2; c1,

1
2). This is the meaning of12 on the branches from the singleton.

Optimal behavioral strategy of P2 is to playb2 with probability 1 from bothI2

and I
′
2, i.e. to lie, and from the singletons he can either tell the truth or lie, or

spin a wheel to decide what to do.
Finally we point out that in Figures 1 and 2 the fractions next to the nodes

in the information sets correspond to beliefs of the agents obtained, wherever
possible, through Bayesian updating. I.e., they are consistent with the choice of
a state by nature and the optimal strategies of the players. Hence strategies and
beliefs satisfy the conditions of a perfect Bayesian equilibrium. This is a concept
employed in analyzing games with information sets with more than one node.
As explained above, it requires that given the beliefs, the strategies are optimal,
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and given the strategies, the beliefs are, wherever possible, obtainable through
Bayesian updating.

These probabilities are calculated as follows. We give labels to the nodes of
the information sets: From left to right, inI1, we denote them byj1 and j2, in I2

by n1 andn2 and in I
′
2 by n3 andn4. The probabilities attached to the nodes in

I1 follow from the fact that the probability with which nature chooses statea is
the same as the one with which it chooses stateb. Given the choices by nature,
the strategies of the players described above and using the Bayesian formula for
updating beliefs we also calculate the conditional probabilities

Pr(n1/A1) =
Pr(A1/n1) × Pr(n1)

Pr(A1/n1) × Pr(n1) + Pr(A1/n2) × Pr(n2)

=
1 × 0

1 × 0 + 1× 1
3 × 1

2

= 0 (4)

and

Pr(n3/c1) =
Pr(c1/n3) × Pr(n3)

Pr(c1/n3) × Pr(n3) + Pr(c1/n4) × Pr(n4)

=
1 × 1

3

1 × 1
3 + 1× 1

2 × 1
3

=
2
3

. (5)

Obviously from the above we obtainPr(n2/A1) = 1 andPr(n4/c1) = 1
3.

Therefore the perfect Bayesian equilibrium obtained above confirms the initial
endowments and the decisions to lie imply that the contract (5, 2.5, 2.5) cannot
be realized and the players will not sign.

In Figure 3 we indicate, through heavy lines, plays of the game which are
the outcome of the choices by nature and the optimal behavioral strategies by
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the players. The interrupted heavy lines at the beginning of the tree signify that
nature does not take an optimal decision, as it has no payoff function, but simply
chooses among three alternatives, with equal probabilities. From each such choice
the play of the game continues through the optimal decisions by the agents to
a specific terminal node. The directed path (a, c1, b2) with payoffs (5, 5) occurs
with probability 1

3. The paths (b, c1, A2) and (b, c1, b2) lead to payoffs (5, 0) and
occur with probability1

3(1 − q) and 1
3q , respectively. The values (1− q) andq

denote the probabilities with which P2 decides to choose betweenA2 andb2 from
the singleton node at the end of (b, c1). Of course no matter whatq is selected
this does not affect the payoffs. The paths (c, A1, b2) (c, c1, b2) lead to payoffs (0,
5) and occur, each, with probability13× 1

2, as, by assumption, from the singleton
node at the end of (c), P1 chooses betweenA1 and c1 with probability 1

2. This
of course is not significant because any other probabilities attached toA1 andc1

would not affect the payoffs.
Summarizing, we note that the implied equilibrium paths are as follows. If

nature choosesa or b, P1 responds by playingc1, i.e. he lies. Then P2 lies from
I

′
2 and from the singleton node at the end of (b, c1) he can tell the truth or lie.

The players end up with their initial endowments. If nature choosesc, P1 can
tell the truth, or even lie, but P2 will playb2, i.e. he will lie. Again the players
end up with their initial endowments. It follows that for all choices by nature,
at least one of the players tells a lie on the optimal play. The players by lying
avoid the possibility of having to make a payment to their opponent.

We have constructed an extensive form game and employed reasonable rules
for calculating payoffs and shown that the proposed allocation (5, 2.5, 2.5) will
not be realized. The same conclusion would have been reached if P2 were as-
sumed to move first.

6 The implementation of private core allocations

Next we investigate the role of P3 in the implementation, or realization, of
private core allocations in Example 3.1 of Section 3. We have seen that such core
allocations are CBIC, which is a desirable property of the cooperative solution.
We shall now show how they can be supported as perfect Bayesian equilibrium
of a noncooperative game. This falls into the agenda of the Nash programme.

We use as an example the private core allocation

 4 4 1

4 1 4
2 0 0


 .

The ith line refers to Player i and the columns from left to right to statesa,
b andc.

When P3 enters the scene he is characterized bye3 = (0, 0, 0) with F 3 =
{{a}, {b}, {c}}. P3 announces his observation and this implies that, if he is
believed, P1 and P2 will now be able to figure out all states of nature. We shall
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show how the payoffs of the matrix above will be realized from the optimal
decisions of the players in a sequential game.

P1 and P2 see on a screen the announced state but P1 cannot distinguish
between statesa and b and P2 betweena and c. P3 sees the correct state and
moves first. However he can either announce exactly what he saw or he can lie.
Obviously he can lie in two ways. Following the announcement of P3 it is the
turn of P1 to act. When he comes to decide he has his information from the
screen and also he knows the strategy that P3 played. Then it is the turn of P2
to act. When he comes to decide he has his information from the screen and he
also knows what P3 and P1 played before him. Both P1 and P2, when it is their
turn to act, can either tell the truth about what they saw on the screen or they
can lie.

We must distinguish between the announcements of the players designed to
maximize their expected returns, and the true state of nature. The former, with
the players’ temptations to lie, cannot be used to determine the true state which
is needed for the purpose of making payoffs, which include any imposition of
penalties for lying. P3 has a special status but he should also take into account
that in the end the lie will be detected and this can affect his payoff. The terms
of the contract, which we propose to examine below, take this into account.

The rules of calculating payoffs, i.e. the terms of the contract, are as follows:
If P3 tells the truth we implement the redistribution in the matrix above which
is proposed for this particular choice of nature.
If P3 lies then we look into the strategies of P1 and P2 and decide as follows:

(i) If the declaration of P1 and P2 are incompatible we go to the initial endow-
ments and each player keeps his.

(ii) If the declarations are compatible we expect the players to honour their
commitments for the state in the overlap, using the endowments of the true
state, provided these are positive. If a player’s endowment is zero then no
transfer from that agent takes place as he has nothing to give.

We are looking for a perfect Bayesian equilibrium, i.e. a set of optimal be-
havioral strategies consistent with a set of beliefs. The beliefs are indicated by
the probabilities attached to the nodes of the information sets in Figure 4 with
arbitraryr , s, q , p and t between 0 and 1. Given these beliefs optimal decisions
of P2 are indicated with heavy lines and the tree in Figure 4 folds up to the one
in Figure 5. In this, optimal decisions of P1 are indicated with heavy lines. Figure
5 then folds up into Figure 6 which shows with heavy lines optimal decisions of
P3.

In summary, an optimal behavioral strategy for P3 is to tell the truth, i.e. to
play, with probability 1,a from a, b from b andc from c. An optimal behavioral
strategy for P1 is to playA1 from both I 1

1 and I 2
1 , i.e. to tell the truth, and to

play c1 from I 3
1 , i.e. to lie. From the singletons he playsc1, i.e. he tells the truth.

Finally optimal behavioral strategy for P2 is to playb2 from the singletons, i.e. to
tell the truth, to playA2 from I 1

2 andI 6
2 , i.e. to tell the truth, and to playb2 from
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I 2
2 , I 3

2 , I 4
2 and I 5

2 , i.e. to lie. Each player is rational and reaches the conclusion
that P3 has no incentive to lie, before any revelation of the actual state of nature.

It is possible to check that the beliefs indicated next to the nodes are consistent
with these strategies. Hence optimal behavioral strategies and beliefs form a
perfect Bayesian equilibrium. We note that the implied equilibrium paths are as
follows. If nature chooses a , P3 follows with a , P1 responds with A1 and P2
declares A2, and the payoffs are (4, 4, 2). If nature chooses b, P3 follows with
b, P1 responds with A1 and P2 declares b2, and the payoffs are now (4, 1, 0).
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Figure 6. This figure sums up the implications of the optimal strategies used by the players. The
payoffs at the end of the heavy lines correspond to these strategies and they are realizable by the
equilibrium paths along which no player has an incentive to lie. The private core allocation is incentive
compatible
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Finally if nature chooses c, P3 plays c, P1 follows with c1 and P2 responds with
A2, and the payoffs are (1, 4, 0).

Along the optimal paths nobody has an incentive to misrepresent the realized
state of nature and hence the private core allocation is incentive compatible.
On the other hand the explicit considerations through a game tree show clearly
that even optimal behavioral strategies, which of course are fully rational, can
imply that players might have an incentive to lie from certain information sets,
which though are not visited by the optimal play of the game. For example, P1,
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although he knows that nature has chosen a or b, has an incentive to declare c1

from I 3
1 , trying to take advantage of a possible lie by P3. Similarly P2, although

he knows that nature has chosen a or c, has an incentive to declare b2 from
I 2
2 , I 3

2 , I 4
2 and I 5

2 , trying to take advantage of possible lies by the other players.
For example, the right hand side node of I 3

2 is reached by both P3 and P1 lying.
Incentive compatibility has now been defined to allow that the optimal behavioral
strategies can contain lies, while there must be an optimal play which does not.

In Figure 7 we indicate through heavy lines the equilibrium paths obtained
above. Again, the interrupted heavy lines at the beginning of the tree signify
that nature does not take an optimal decision, as it has no payoff function, but
simply chooses among three alternatives, with equal probabilities. The directed
paths (a, a, A1, A2) with payoffs (4, 4, 2), (b, b, A1, b2) with payoffs (4, 1, 0) and
(c, c, c1, A2) with payoffs (1, 4, 0) occur, each, with probability 1

3 . It is clear that
nobody lies on the optimal paths and that the proposed reallocation is incentive
compatible and hence it will be realized.

Off the equilibrium strategies even P3 has considered the possibility of lying.
For example when nature chooses b he would consider playing a , hoping that
P1 will respond with A1 and P2 with A2. However such a move is dismissed
because he knows that the other players are rational.

Analogous conclusions as above would have been reached if, following the
announcement of P3, it was assumed that P2 moves first.

7 Concluding remarks

We consider the area of incomplete and differential information and how it is
modeled important for the development of economic theory. Efforts are being
made in breaking new ground using formulations which are promising but rather
difficult. It is hoped that the use of game trees in the analysis helps in the
development of ideas in that it makes them more discussable.

Our discussion in Section 5 suggests that core notions which may not be
CBIC, i.e., the weak fine core, cannot easily be supported as a perfect Bayesian
equilibrium. On the other hand, as we saw in Section 6, the private core which is
CBIC can be supported as a perfect Bayesian equilibrium. The discussion above
provides a noncooperative interpretation or foundation of the private core while
making, through the game tree, the individual decisions transparent. In this way
a better and possibly deeper understanding of how CBIC contracts are formed is
obtained.

The positive result for the private core is not a general theorem but rather
a 3-agent differential information economy example. However we believe that
graph theory techniques may be adopted to construct a general result. We have
not attempted this since it would complicate the technical analysis while it is not
certain that it would advance our economic insights or knowledge very much.
At the moment we leave this as an open question.
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Appendix I: Proof of Theorem 3.1

Before we engage in the proof of Theorem 3.1, we will need some definitions.
Let (Ω, F , µ) be a finite measure space, and X be a Banach space. Following
Diestel and Uhl (1977), the function f : Ω → X is called simple if there exist
x1, x2, . . . , xn in X and A1, A2, . . . , An in F such that f =

∑n
i=1 xi X Ai where

X Ai denotes the indicator function. A function f : Ω → X is said to be µ-
measurable if there exists a sequence of simple functions fn : Ω → X such
that lim

n→∞ ‖ fn (ω) − f (ω) ‖ = 0 for almost all ω ∈ Ω. A µ-measurable function

f : Ω → X is Bochner integrable if there exists a sequence of simple functions
{fn : n = 1, 2, ...} such that

lim
n→∞

∫
Ω

‖ fn (ω) − f (ω) ‖ dµ(ω) = 0. (I.1)

In this case, for each A ∈ F , we define the integral to be
∫

A
f (ω)dµ(ω) = lim

n→∞

∫
A

fn (ω)dµ(ω). (I.2)

The integral is of course independent of the approximating sequence of simple
functions.9

9 Let Φ = {fn : n = 1, . . . , n} be a sequence of simple functions from Ω to X for which
lim

∫
fn (ω)dµ(ω) exists with respect to the norm topology and take this limit to define a quantity

I (Φ). We can certainly use linearity, particularly in the form

I (Φ − G ) = I (Φ) − I (G ), (I.3)

for any two such sequences.
We have defined that a µ-measurable function is Bochner integrable if there exists a sequence

Φ for which

lim
n→∞

∫
Ω

‖fn (ω) − f (ω)‖dµ(ω) = 0. (I.4)

Now we argue that if two sequences Φ, G both satisfy this, for some given f , then I (Φ) = I (G ).
This will establish that the value obtained only depends upon f and so can be used to define its
integral. We proceed as follows.

‖I (Φ) − I (G )‖ = ‖I (Φ − G )‖ from (I.3)

= ‖ lim
n→∞

∫
Ω

[
fn (ω) − gn (ω)

]
dµ(ω)‖ from (I.4)

= lim
n→∞

‖
∫

Ω

[
fn (ω) − gn (ω)

]
dµ(ω)‖

≤ lim
n→∞

∫
Ω

‖fn (ω) − gn (ω)‖dµ(ω) see Note * below (I.5)

= lim
n→∞

∫
Ω

‖
[

fn (ω) − f (ω)
]

−
[
gn (ω) − f (ω)

]
‖dµ(ω)

≤ lim
n→∞

∫
Ω

‖fn (ω) − f (ω)‖dµ(ω) +

∫
Ω

‖gn (ω) − f (ω)‖dµ(ω)

= 0.

Then ‖I (Φ) − I (G )‖ = 0 implies I (Φ) = I (G ).
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It can be shown (see Diestel and Uhl, 1977), Theorem 2, pp. 45) that if
f : Ω → X is a µ-measurable function, then f is Bochner integrable if and
only if

∫
Ω

‖ f (ω) ‖ dµ < ∞. It is important to note that the Dominated
Convergence Theorem holds for Bochner integrable functions. In particular, if
{fn : Ω → X : n = 1, 2, ...} is a sequence of Bochner integrable functions such
that lim

n→∞ fn (ω) = f (ω) µ-a.e., and ‖ fn (ω) ‖≤ g(ω) µ-a.e., where g : Ω → R is

an integrable function, then f is Bochner integrable and lim
∫

Ω
‖ fn (ω) − f (ω) ‖

dµ(ω) = 0, (see Diestel and Uhl, 1977), Theorem 3, pp. 45).
Denote by Lp(µ, X ) with 1 ≤ p < ∞ the space of equivalence classes of

X -valued Bochner integrable functions x : Ω → X normed by

‖ x ‖p= (
∫

Ω

‖ x (ω) ‖p dµ(ω))
1
p < ∞. (I.6)

It is a standard result that normed by the functional ‖ . ‖p above, Lp(µ, X )
becomes a Banach space (see Diestel and Uhl, 1977, p. 50). It is also well-known
that Lq (µ, X ∗) is the dual of Lp(µ, X ), where 1 ≤ p < ∞ and 1/p + 1/q = 1,
and the value w · x of x ∈ Lp(µ, X ) at w ∈ Lq (µ, X ∗) is defined by

w · x =
∫

Ω

[w(ω) · x (ω)]dµ(ω). (I.7)

Recall that σ(Lp(µ, X ), Lq (µ, X ∗)) is defined as the weakest topology on
Lp(µ, X ) for which a net {xλ : λ ∈ Λ} converges to x if and only if
{w · xλ} → w · x for all w ∈ Lq (µ, X ∗). We call this topology as weak topology
and the convergence as weak convergence. A function f : X → R is weakly
upper semicontinuous if lim sup f (xλ) ≤ f (x ), weakly lower semicontinuous if
lim inf f (xλ) ≥ f (x ), and weakly continuous if it is both weakly upper semicon-
tinuous and weakly lower semicontinuous, whenever {xλ} → x weakly.

We now define a Banach lattice (see Aliprantis and Burkinshaw, 1985). A
Banach space X is a Banach lattice if there is an ordering ≥ on X with the
following properties:

(i) x ≥ y implies x + z ≥ y + z for every z ∈ X ,
(ii) x ≥ y implies λx ≥ λy for λ ∈ R+,
(iii) for all x , y ∈ X , there exist a supremum x ∨ y and an infimum x ∧ y ,
(iv) | x |≥| y | implies ‖ x ‖≥‖ y ‖ for every x , y ∈ X .

If X is a Banach lattice10 then for any x , y ∈ X , define the order interval
[x , y] = {z ∈ X : x ≤ z ≤ y}. Note that [x , y] is convex and norm closed,
hence weakly closed (Mazur’ s Theorem). Cartwright (1974) has shown that if X
is a Banach lattice with an order continuous norm11 (or equivalently has weakly

Note * : This inequality can be used since it only involves the finite sum employed in the
definition of the integral of a simple function.

10 An example of a Banach lattice is R
n with the usual vector partial ordering, the sum of moduli

as norm, and absolute value of an element, the vector of absolute values of its coordinates.
11 {xλ} ↓ 0 means that {xλ : λ ∈ Λ} is a decreasing net with inf xλ = 0. A Banach lattice X is

said to have an order continuous norm if {xλ} ↓ 0 in X implies ‖ xλ ‖↓ 0. If X is a Banach lattice,
X has an order continuous norm if and only if any order interval is weakly compact.
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compact order intervals), then Lp(µ, X ) with 1 ≤ p < ∞ has weakly compact
order intervals as well. With the above preliminaries out of the way we can
proceed with the proof.

Proof of Theorem 3.1. For each i = 1, 2, . . . , n let LXi be the set of all Bochner in-
tegrable and F i -measurable selections from the consumption set correspondence
Xi : Ω → 2Y+ of Player i, i.e.

LXi = {xi ∈ L1(µ, Y ) : xi (·) is F i -measurable and xi (ω) ∈ Xi (ω) µ-a.e.}.
(I.8)

This means that for each agent we select from her consumption correspon-
dence an element per ω and form a function. We require this function to be in
L1(µ, Y ), and measurable with respect to the agent’ s information partition.

Since by assumption each ei : Ω → Y is F i -measurable and Bochner
integrable, it follows that ei ∈ LXi for all i . Therefore each LXi is non-empty and

so is LX =
n∏

i=1
LXi .

For each i , define the correspondence Pi : LXi → 2LXi by

Pi (xi ) = {yi ∈ LXi : vi (yi ) > vi (xi )}. (I.9)

Since for each i , and each fixed ω ∈ Ω, ui (ω, ·) is concave, upper semicon-
tinuous (u.s.c.) and integrably bounded, by Theorem 2.8 in Balder and Yannelis,
vi (·) is weakly-u.s.c. Hence, the set

P−1
i (yi ) = {xi ∈ LXi : yi ∈ Pi (x )} = {xi ∈ LXi : vi (yi ) > vi (xi )} (I.10)

is weakly open in LXi . Notice that since for any fixed ω ∈ Ω, ui (ω, ·) is concave
the set Pi (xi ) for all xi ∈ LXi is convex and also xi 
∈ Pi (xi ) for all xi ∈ LXi .
Hence the correspondence Pi : LXi → 2LXi is convex valued and irreflexive.

We now have an infinite dimensional commodity space economy

Ē = {(LXi , Pi , ei ) : i = 1, 2, . . . , n} (I.11)

where

(a) LXi denotes the consumption set of Pi,
(b) Pi : LXi → 2LXi is the preference correspondence of Pi, and
(c) ei ∈ LXi , is the initial endowments of Pi.

In the new economy that has been constructed, a good is also characterized
by the state of nature, and vi (xi ), on which the preference correspondence is
based, can be thought of as a utility, rather than an expected utility, function.
It is as if uncertainty and information partitions have vanished from the scene.
However they are present since LXi , the consumption set of Agent i, takes into
account the information partition F i .

We show that a core allocation exists in Ē , i.e., there exists x∗ ∈ LX satisfying
the following two conditions:
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(1)
n∑

i=1
x∗

i =
n∑

i=1
ei , and

(2) there do not exist coalition S and allocation (yi )i∈S ∈ ∏
i∈S

LXi such that
∑
i∈S

yi =
∑
i∈S

ei , yi ∈ Pi (x∗
i ) for all i ∈ S .

It can easily be checked that the existence of a core allocation in Ē

implies the existence of a private core allocation in the original economy
E = {((Ω, F , µ), Xi , F i , ui , ei ) : i = 1, . . . , n}.

Let A be the set of all finite dimensional subspaces of L1(µ, Y ) containing the
initial endowments. For each α ∈ A define Lα

Xi
= LXi ∩ α and Pα

i : Lα
Xi

→ 2Lα
Xi

by Pα
i (xi ) = Pi (xi ) ∩ α. We have constructed an economy Ē

α = {(Lα
Xi

, Pα
i , ei ) :

i = 1, 2, . . . , n} in a finite dimensional commodity space where

(1′) Lα
Xi

is the consumption set of Pi,

(2′) Pα
i : Lα

Xi
→ 2Lα

Xi is the preference correspondence of Pi,
(3′) ei ∈ Lα

Xi
is the initial endowment of Pi.

The economy constructed is finite dimensional in that each consumption set
can be spanned by a finite number of vectors. For every such, finite dimensional,
α-economy one can prove the existence of a core allocation. This implies in
the limit, as the number of dimensions tends to infinity, the existence of a core
allocation for Ē , which has been approximated through the net of economies.

It can easily be checked that for each α ∈ A, Ē
α

satisfies all the assumptions
of Florenzano’s (1989) core existence theorem and therefore there exists xα ∈
n∏

i=1
Lα

Xi
= Lα

X such that

(4′)
n∑

i=1
xα

i =
n∑

i=1
ei

(5′) and it is not true that there exist S ⊂ {1, 2, . . . , n} and (yi )i∈S ∈ ∏
i∈S

Lα
Xi

such that
∑
i∈S

yi =
∑
i∈S

ei and yi ∈ Pα
i (xα

i ) for all i ∈ S .

From (4
′
) it follows that for each α ∈ A we have that every xα

i ∈ [0,
n∑

i=1
ei ].

Since by assumption Y is a Banach lattice with an order continuous norm by the
Cartwright theorem so is L1(µ, Y ) and therefore we can conclude that the order

interval [0,
n∑

i=1
ei ] in

n∑
i=1

LXi is weakly compact.

Direct the set A by inclusion so that {(xα
1 , xα

2 , . . . , xα
n ) : α ∈ A} forms a

net in
n∏

i=1
LXi . Since each xα

i lies in [0,
n∑

i=1
ei ] which is weakly compact we can

extract a subnet
{(xα(m)

1 , xα(m)
2 , . . . , xα(m)

n ) : m ∈ M },

(where M is directed by “ ≥” ), from the net {(xα
1 xα

2 , . . . , xα
n ) : α ∈ A} which

converges weakly to some vector (x1, x2, . . . , xn ) in [0,
n∑

i=1
ei ].
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We will show that (x1, x2, . . . , xn ) is a core allocation for the economy Ē .

Notice that since for each m ∈ M ,
n∑

i=1
xα(m)

i =
n∑

i=1
ei and xα(m)

i converges weakly

to xi ∈ LX we have that
n∑

i=1
xi =

n∑
i=1

ei , i.e., (x1, x2, . . . , xn ) is a feasible allocation.

In order to complete the proof we must show that:

(�) It is not true that there exists S ⊂ {1, 2, . . . , n} and (yi )i∈S ∈ ∏
i∈S

LXi such

that
∑
i∈S

yi =
∑
i∈S

ei and yi ∈ Pi (xi ) for all i ∈ S .

Suppose that (�) is not true, then there exist coalition S and (yi )i∈S ∈ ∏
i∈S

LXi

such that
∑
i∈S

yi =
∑
i∈S

ei and yi ∈ Pi (xi ) for all i ∈ S . Since xα(m)
i converges

weakly to xi and Pi has weakly open lower sections, there exists m0 ∈ M such
that yi ∈ Pi (x

α(m)
i ) for all m ≥ m0, and for all i ∈ S . Choose m1 ≥ m0 so that if

m ≥ m1, yi ∈ Lα(m)
Xi

for all i ∈ S . Then yi ∈ Pα(m)
i (xα(m)

i ), for all m ≥ m1, and

for all i ∈ S , a contradiction to (5
′
), which means that (�) holds.

Finally, the fact that Ē has been derived from the original economy E by
integrating over the states of nature implies that a core allocation in the former
is also a private core12 allocation in the latter, and this completes the proof of
Theorem 3.1.

Appendix II: The private core allocations of Example 3.1

In this section we show that the redistribution

 4 4 1

4 1 4
2 0 0


 .

where again the ith line refers to Player i and the columns from left to right
to states a , b and c, is a private core allocation.

An F i -measurable redistribution of the endowments of the three agents
above is given by 

 5 − ε 5 − ε δ1

5 − δ ε1 5 − δ
ε + δ ε2 δ2




with ε = ε1 + ε2 and δ = δ1 + δ2.
We show below that the private core allocations are obtained from

Problem
Maximize U 3 = (ε + δ)

1
2 + ε

1
2
2 + δ

1
2
2

12 This can easily be shown by contradiction. I.e. one picks a core allocation x in the economy Ē

and supposes that it is not a core allocation in E and reaches a contradiction.
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Subject to

U 1 = 2(5 − ε)
1
2 + δ

1
2
1 ≥ α

1
2
1

U 2 = 2(5 − δ)
1
2 + ε

1
2
1 ≥ α

1
2
2 ,

ε1 + ε2 = ε ≤ 5 and δ1 + δ2 = δ ≤ 5,
εi , δi ≥ 0

for Pareto optimality, and α
1
2
1 , α

1
2
2 ≥ 2(5

1
2 ) = 20

1
2 for individual rationality. We

shall not give characterizations of optimality through Lagrange or Kuhn-Tucker
conditions because the utility functions, although continuous on their domains of
definition, are not differentiable at the origin.

The solution to the problem exists because of the compactness of the feasible
set, which follows from the fact that the values of all variables are bounded
between 0 and 5 and the set defined by the utility constraints is closed, and
the maximum is unique due to the concavity of the functions. Pareto optimality
of the solution follows from the fact that there is no possible improvement to
the values of all three utility functions, because if there were then we could
increase the value of U 3 without violating the constraints. Individual rationality
follows from the fact that the initial endowments of the players imply utility
2(5

1
2 ) = 20

1
2 . Finally it is not possible for any pair of traders to redistribute their

initial endowments and become better off, while retaining measurability. Hence
the solution to the Problem is in the core.

Next we note that the solution to the problem above always satisfies the utility
constraints of P1 and P2 with equality. For suppose, say, the first constraint was
satisfied with an inequality. Then it would be possible to increase ε and ε2,
without disturbing measurability, and thus increase U 3.

The question arises whether there exist core allocations which cannot be
captured as solutions to a problem of the above type. Consider any allocation in
the core and formulate the above problem with U 1, U 2 taking the corresponding
values. From the fact that it is maximized, we should get for U 3 at least the
value of the proposed allocation, and if we actually obtain a higher one then it
must be for a different allocation for at least one of the utilities, say U 1. Now
through concavity we can improve the proposed values of U 3 and U 1 and
then through a redistribution from U 1 to U 2 and U 3, by a small increase in ε
and ε1, we can improve all utilities in relation to the proposed allocation, which
therefore was not Pareto optimal.

We shall now discuss properties of the private core allocations. We shall
call symmetric allocations those with ε = δ and εi = δi . First we consider the
case when α1 = α2 = α. This condition implies that the solution is symmetric.
For otherwise it would not be unique. A further restriction on the symmetric
solutions is when ε1 = ε. In order to investigate this we look at the function
y = 2(5 − ε)

1
2 + ε

1
2 . It is routine to show that it is a strictly concave function

attaining its maximum value 5 at ε = 1. We are interested in the values of ε for
which y ≥ 20

1
2 .
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Suppose now that the common value of α is equal to 25 which is the maxi-

mum possible such value, since α
1
2 = 2(5−ε)

1
2 +ε

1
2
1 ≤ y = 2(5−ε)

1
2 +ε

1
2 ≤ (25)

1
2 .

Then we must have ε1 = ε = 1, for otherwise the constraint will not be satisfied.
The implied value for U 3 is 2

1
2 and this confirms that the redistribution at the

beginning of this appendix is a private core allocation.
Next let the common admissible value of α be less than 25. We investigate

whether it is now possible that the solution implies ε1 = ε. In such a case the
structure of the function y above would mean that there are two such values of ε,
one smaller and one greater than 1. But then by strict concavity of the functions
we could obtain feasible ε which would satisfy the constraint and increase the
value of the objective function. It follows that although the solution is symmetric
we do not have ε1 = ε which would have implied the corner solution ε2 = 0.

Finally we look at the case where α1 
= α2. Obviously the solution cannot be
symmetric. The question arises whether we should have ε1 = ε and δ1 = δ. On a
(δ, ε) plane we consider the iso-level curves 2(5−ε)

1
2 +δ

1
2 = 5 and 2(5−δ)

1
2 +ε

1
2 =

5. In this plane the first one is a concave and the second a convex function. Their
unique common point is (1, 1). Now consider a slightly lower in value iso-level
curve of the second type while the one of the first type stays the same. The two
curves cross at a point with ε, δ > 1 and ε < δ. However there is no obvious
reason why in the solution of the maximization problem we should have both
ε1 = ε and δ1 = δ.
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