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Summary. This note provides an elementary short proof  of the Knas t e r -  
Kuratowski-Mazurkiewicz-Shapley ( K - K - M - S )  Theorem based on Brouwer's 
fixed point theorem. The usefulness of the K - K - M - S  Theorem lies in the fact that 
it can be applied to prove directly Scarf's (1967) Theorem, i.e. any balanced 
game has a non-empty core. We also show that the K - K - M - S  Theorem and the 
Ga le -N ika ido -Debreu  Theorem can be proved by the same arguments. 

1 Introduction 

In a seminal paper Scarf(1967) proved that any non-transferable utility (NTU) game 
whose characteristic function is balanced, has a non-empty core. His proof  is based 
on an algorithm which approximates fixed points. 

Shapley (1973) provided a generalization of the Sperner Lemma, which in turn 
was used to obtain a generalization of the classical K n a s t e r - K u r a t o w s k i -  
Mazurkiewicz ( K - K - M )  Lemma. The latter result has been known as the 
K - K - M - S  Theorem and it is useful because it allows to prove directly Scarf's 
Theorem, i.e., that any NTU-game  whose characteristic function is balanced has a 
non-empty core. In other words, Shapley replaced the algorithm of Scarf by a 
generalized version of the Sperner Lemma. 

Subsequently, Ichiishi (1981) gave an alternative short proof  of the K - K - M - S  
Theorem which is based on the coincidence theorem of Fan (1969). It should be 
noted that the coincidence theorem was proved by means of an existence of maximal 
elements theorem which in turn was obtained by means of an infinite dimensional 
generalization of the classical K - K - M  Theorem. 

Ichiishi (1987) and Shapley-Vohra  (1991) provided alternative proofs of the 
K - K - M - S  Theorem based on the Kakutani  fixed point theorem. 1 

* We wish to thank Roko Aliprantis for useful comments. 
1 A version of the Shapley and Vohra proof can also be found in Aliprantis, Brown and Burkinshaw 
(1989). 
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The purpose of this note is to provide one more  proof  of  the K - K - M - S  
Theorem which seems to us to be short  and elementary. In particular, it is based 
on the Brouwer fixed point theorem for which by now we have completely 
elementary proofs (see for instance Kannai  (1981)). Our  proof  has been inspired by 
reading Ichiishi (1981, 1987). In essence, we have replaced some of his arguments  by 
a simple maximal element theorem which is a corollary of  the Brouwer fixed point  
t h e o r e m )  Consequently,  we do not  need to appeal either to the powerful 
coincidence Theorem of Fan (1969) or to the generalization of  the Brouwer fixed 
point  theorem known as the Kakutani  fixed point  theorem (Kakutani  (1941)) or to 
the generalization of  the Sperner Lemma of Shapley (1973). 

It should be pointed out  that  our  mathematical  tools used to prove the 
K - K - M - S  Theorem are the same as those needed to prove the G a l e - N i k a i d o -  
Debreu Theorem (see Debreu (1959)). Hence, the level of  sophistication of these two 
basic theorems is the same. 

2 Preliminaries 

2.1 Notation 

Let N = { 1,2 . . . . .  n}. Then A N denotes the ( n -  1)-simplex A N = {xeR":  x i > 0, and 
Z7=1 xl = 1}. For  S c N let A s = {x~AU:Ei~sXi = 1}. 

For  any set X, let 2 x denote the set of all subsets of  the set X. Denote  by IX I 
the cardinality of  the set X, i.e., the number  of  elements in X, and by IR" the negative 
cone of R". 3 

Let m s be the center of the simplex A s. Thus, raN= (1/n . . . . .  1/n) and mS= 
(mS,..., mS), where m s = 1/[SI if i~S and m~ s = 0 if ir Let e s = (e~S . . . . .  e,)S where 
e s = 1 if iES and e s = 0, otherwise. 

Let ~ be a collection of subsets of N. Then g is balanced if and only if there 
exist weights 2 s, S ~  with 2 s > 0 and ~ s ~  2s es= eu. It is easy to see that  ~ is 
balanced if and only if mNEcon { rnS:S~} .  4 

2.2 Two simple facts 

First, recall that  a correspondence q~: AN--~ 2 ~" has open lower sections if q~- l (y )=  
{x~dN:y~o(x)}}  is open in A N for all y ~ " .  

Fact I. Let d be a compact  metric space (for example AN). Assume that ~o: d ~ 2 ~" 
is non-empty,  convex valued and has open lower sections. Then ~0 has a continuous 
selection, i.e., there exists a cont inuous function f :  d ~ R "  withf(x)~q~(x) for all xEd.  

Proof. Non-empty  valuedness of ~o implies that the set {~o- a(y): yeA} is an open 
cover of  d. Since A is compact  there exists a finite set of points {ya . . . . .  Ym} such 

2 Komiya (1993) has also used a similar argument to that of Ichiishi (1987) to provide a simple proof 
of the K-K-M-S Theorem. His proof is based on the Berge maximum theorem and the Kakutani fixed 
point theorem. Subsequent to the completion of our paper we became aware of an "open" K-K M-S 
theorem by Zhou (1993) who also uses the Brouwer fixed point theorem. 
3 That is, ~_ = {x~R": xi -< 0 for i = 1 ..... n}. 
4 con denotes the convex hull. 
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that  A c U m.1 (P- l(y). For  i = 1 , . . . ,  m define O~: A ~ R by g~(x) = dist(x, d \~p-  X(y~)). 
Fo r  each x ~ d  and for each i = 1 , . . . ,  m let ~i(x) = gi(x)/(~.= 1 gj(x)). Then  cq(x) = 0 
for xCq~-l(yi), 0 < ~ ( x ) <  1, and  ~i%1 ~(x)  = 1 for all xeA. Define f : A ~ R "  by 
f (x)  = ~m= 1 ai(x)yi. Then  f is a cont inuous  and f(x)etp(x) for x s A  because of 
convex valuedness of tp. 

Fact 2. Let A c P~" be compact ,  convex and non-empty .  Assume that  ~p: A ~ 2 a is 
convex valued and has open lower sections and that  xr for all xeA. Then  tp 
has a maximal element, i.e., there exists x*~A such tha t  tp(x*) = ~ .  

Proof. Suppose  otherwise, i.e., ~p(x) ~ ~ for all x s d .  Then Fac t  1 implies that  there 
exists a cont inuous  function f :  A ~ A with f(x)s~p(x) for all xed .  By the Brouwer ' s  
fixed point  theorem there exists x* with x* = f(x*)eq~(x*), a contradic t ion to xr  ~p(x) 
for all x~A. 

General iza t ions  of  Facts  1 and 2 can be found in Yannelis and P r a b h a k a r  (1983). 
However ,  in the present  form both  results are completely  elementary.  I t  should be 
noted  that  Fac t  2 is equivalent  to the following finite dimensional  version of 
Browder ' s  fixed point  theorem (see Yannelis and P r a b h a k a r  (1983)). 

Fact 3. Let d ~ R "  be compact ,  convex and non-empty .  Assume that  q~: A ~ 2 a is 
convex, non-empty  valued and has open lower sections. Then  q~ has afixed point, 
that  is there exists x*eA such that  x*~q~(x*). 

3 Statement and proof of the K-K-M-S Theorem 

Theorem ( K - K - M - S ) .  Let { Cs: S c N} be a family of closed subsets of/I  N. Assume 
that A r c  Us~ rCs for all T c N. Then there exists a balanced family ~ such that 
O s~ Cs ~ ~. 
Proof. For  each x~A N let I(x) = {S c N: x~Cs}, F(x) = con {mS: S~I(x) } and note 
that  F(x) is u.s.c. 5 Suppose  that  the Theorem is false, i.e. l(x) is not  balanced and 
consequent ly  mNq~F(x) for all x e A  N. By the separat ing hyperplane  theorem there 
exists v ~ R "  such that  vF(x) > vm N. Define the set valued function ~p: A N ~ 2 n~" by 
tp(x) = {v: vy > vm N for all y~F(x)}. Then ~p is non-empty ,  convex valued and since 
F is u.s.c, it follows that  ~p has open lower sections. By Fact  1 there exists a 
cont inuous  function f :  A N ~P~"  such that  f(x)eq~(x) for all x~A N, i.e., 

f ( x ) y >  f(x)m N, for all x e A  N, for all yeF(x). (1) 

Define ~k: A N--, 2 a" by ~(x) = {y: f (x )x  > f(x)y}. It  follows f rom the continuity o f f  
that  ~k has an open graph  6 (and hence open lower sections). Moreover ,  it is easy to 
see that  ~, is convex valued and xq~(x) for all x e A  N. Hence,  by Fact  2, ~b has a 
maximal  element, i.e., there exists x* EA/v such that  i f (x* )=  ~ and hence 

f(x*)x* < f(x*)y, for all y~d  N. (2) 

s The set-valued function F: AN--*2 R" is said to be u.s.c, if for every open subset V of R" the set 
{x~AN: F(x)~ V} is open in A N. 
6 I.e., the set G~ = {(x,y)Ed N x AN:y~b(x)} is open in A N x A ~. 
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Observe that there exists T c N such that x* is in the relative interior of A r. Then 

f (x*)y = f(x*)x* for all y e a  r. (3) 

By assumption 7 there exists S c T such that x*eCs which implies that SeI(x*) and 
therefore mSeF(x*). Combining (1) and (3) we get f(x*)x* = f(x*)m s > f(x*)m N, a 
contradiction to (2). This proves the Theorem. 

4 Concluding remarks 

Remark 1. It should be pointed out that the mathematical tools used to prove the 
K - K - M - S  Theorem are the same as the ones needed to prove the Gale -Nika ido-  
Debreu ( G - N - D )  Theorem (see Debreu (1959)). In that sense the level of sophistica- 
tion required to prove the G - N - D  Theorem and the K - K - M - S  Theorem is the 
same. For  the sake of completeness we reproduce the finite dimensional commodity 
space counterpart of the G - N - D  Theorem, given in Yannelis (1985, Theorem 3.1). 

Let A s now denote the (n - 1)-price simplex in ~". An economy is described by 
an excess demand correspondence (: A s --* 2 •", which satisfies the weak Walras law, 
i.e., for every peA N there exists xe((p) such that px < O. The price vector pea  N is 
said to be a free disposal equilibrium if ~(p)c~R" ~ ~ ,  (see Debreu (1959)). 

Theorem ( G - N - D ) .  Let (: A s ~ 2 R" be an excess demand correspondence satisfyin9 
the following conditions: 
( i ) ~ is u.s.c., convex, compact and non-empty valued. 

(ii) For all p e a  N there exists xe((p) such that px < O. 
Then there exists p*eA u such that ~(p*)nR"_ ~ Q~. 

Proof. Suppose the Theorem is false, i.e., for all pea  s, ~(p)c~R" = ~ .  Fix p in A N. 
By the separating hyperplane theorem there exist qelR", q :~ 0, and belR such that 

sup qy < b <  inf qx. 
y~R"_ xe~(p) 

Notice that b > 0 and without loss of generality we can assume that q e d  t~. Define 
F: AN~2 aN by 

F(p) = {qeAU: qx > 0 for all xe((p)}. 

Then F is convex, non-empty valued and it follows from the u.s.c, of ( that F has 
open lower sections. By Fact 1 there exists a continuous function f :  A s ~ A s such 
thatf(p)eF(p) for all pea  N. By the Brouwer fixed point theorem there exists p*eA N 
such that p* =f(p*)eF(p*), i.e., p*x > 0 for all xe((p*) a contradiction to condi- 
tion (ii). This completes the proof of the theorem. 

Remark 2. The assumption in the G - N - D  Theorem that the excess demand 
function ( is u.s.c, can be weakened to upper demicontinuity (u.d.c), i.e., for every 
open half spaced V of R" the set {peAS: ((p) c V} is open in A N. The proof of the 
G - N - D  Theorem remains unchanged since it can be easily checked that the 

7 This follows since d r c Usc rCs �9 
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set-valued function F :AN~2 a" defined by F(p)= {q~AN:qx > 0  for all x~((p)} 
has open lower sections. In that sense and in view of the weak version of the Walras 
law (condition (ii)) the G - N - D  Theorem above is slightly more general than the 
standard version found in the literature (e.g., Debreu (1959)). 

Remark 3. Since any correspondence having open lower sections is also lower 
semicontinuous (1.s.c), (see Yannelis and Prabhakar (1983, Proposition 4.1)) one 
could appear to the powerful Michael selection Theorem, (Michael (1956)) and 
complete the proof of Fact 1. However, we choose not to do so because constructing 
continuous selections from 1.s.c. correspondences is more complicated than the 
simple standard argument used in the proof of Fact 1. 

Remark 4. Border (1984) and Florenzano (1989) have proved core existence results 
for economies where agents' preferences need not be representable by utility 
functions. Their proofs are based on the Fan coincidence theorem and the Kakutani 
fixed point theorem, respectively. It would be of interest to know if the K - K - M - S  
Theorem can be applied in a direct way to simplify their proofs. 
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