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This paper presents a new theory of value with a personalized pricing system that
naturally induces a family of non-linear prices. This affords a coordinate free theory
of value in which the analysis is without any lattice theoretic considerations. When
commodity bundles are perfectly decomposable the generalized prices become linear
and the analysis specializes to the Walrasian model. This happens, for instance,
whenever the commodity space is a vector lattice and consumption sets coincide
with the positive cone. Our approach affords theorems on the existence of equi-
librium and provides a value-based characterization of Pareto optimality and
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Edgeworth equilibrium where the Walrasian linear price-based characterization
fails. The analysis has applications in the finite as well as the infinite dimensional
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1. INTRODUCTION

General equilibrium theory describes the equilibrium or disequilibrium
arising from the interaction of all economic agents in markets. The main
abstractions in the Arrow�Debreu�McKenzie model of general equilibrium
are the notions of commodities and prices��the classical references include
the works of Arrow and Hahn [11], Arrow and Debreu [13], Debreu
[20], and McKenzie [35]. Commodities define the universe of discourse
within which the constraints, motivations, and choices of agents are defined.
A linear price system summarizes the information concerning relative
scarcities and at equilibrium approximates the possibly non-linear primitive
data of the economy.

Of the important theoretical questions that arise in connection with the
Walrasian model of general equilibrium two are most fundamental. The
first concerns the existence of at least one competitive equilibrium under
reasonable economic assumptions. The second deals with the relationship
between optimality and price equilibrium, i.e., the decentralization (and
characterization) of optimal allocations as interpreted in the fundamental
theorems of welfare economics. These two questions have been to a large
extent settled in the case of economies with finitely many commodities��the
existence of equilibrium requires an application of Brouwer's fixed point
theorem and the validity of the welfare theorems can be established by
separating hyperplane arguments.

Unfortunately, the techniques and analysis developed for economies with
finitely many commodities are not readily applicable to models with infinitely
many commodities��for instance infinite horizon models, economies with
uncertainty, and models with commodity differentiation. The problems
associated with this deficiency have been the subject of extensive research
during the second half of the twentieth century. Early results in this direc-
tion include the works of Bewley [16], Debreu [19], Hurwicz [32], Kurz
and Majumdar [33], McFadden [37], Majumdar [38], Malinvaud [39],
Mas-Colell [40], Peleg [50], Peleg and Yaari [51, 52], and Radner [54].

It is clear that one of the major differences between economic models
with finite and infinite dimensional commodity spaces is the absence of
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interior points in the positive cone of infinite dimensional commodity spaces.
In fact, if one assumes that initial endowments are interior points in their
respective consumption sets, then many of the classical finite dimensional
results extend verbatim to infinite dimensional settings. However, unless
the commodity space is a majorizing subspace of some C(0)-space, the
positive cone of an infinite dimensional commodity space has an empty
interior.2 Moreover, in spaces where the positive cone lacks interior points
every lower bounded consumption set lacks interior points as well.3 There-
fore, the transition from finite dimensional models to infinite dimensional
settings required new mathematical concepts and techniques.

The 1980s saw the emergence of a new approach to the study of infinite
dimensional equilibrium theory. In their paper [3], Aliprantis and Brown
proposed that a Riesz commodity-price duality is the appropriate setting
for infinite dimensional analysis. This departure from the ubiquitous space
(and model) specific analysis in the literature emphasized the rich lattice
theoretic structure that is shared by the prevalent models in economics.
The most important application of this approach was presented in the work
of Mas-Colell [41] who proved the existence of equilibrium in economies with
a vector lattice commodity space. As highlighted by Mas-Colell [41, p. 1040],
a ``major surprise'' of this new analysis was the relevance of the lattice structure
to the existence of equilibrium and the validity of the welfare theorems. This
is in sharp contrast to the finite dimensional theory, where Debreu [21] shows
that it is possible to answer the main optimality questions using appropriate
cones in a coordinate free manner. Of course, Debreu's remarks [21, p. 259]
concerning the ``coordinate free theory'' can be understood as a vector lattice
free analysis.4

Mas-Colell's work was quickly extended in various important directions
��see for instance Aliprantis et al. [4], Mas-Colell and Richard [43], and
Yannelis and Zame [62]��and has spawned a large literature (for references
see [5]). There are, however, several shortcomings that have been prevalent
in this literature. First, the existence of equilibrium and the welfare theorems
are obtained by imposing very strong assumptions on the consumption
sets. Indeed, the benefit of the lattice theoretic windfall has come at the cost
of strong assumptions on consumption sets. All these results require that
consumption sets span the commodity space, and thus preclude models
where location matters and economies with differential information��where
consumption sets can be very small. In fact, most of the important results
require that consumption sets coincide with the positive cone of the
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commodity space. The second shortcoming of the lattice theoretic framework
is associated with the interpretation of the order structure of the commodity
space. As is apparent from the pioneering works of Debreu [20], McKenzie
[36], and Nikaidô [49], the positive cone of the commodity space is the
free disposal technology. Therefore, by assuming that the commodity space
is a vector lattice one precludes a rich class of free disposal technologies
(for more details see Monteiro and Tourky [48]).

This paper addresses the limitations of the vector lattice approach and
presents a new coordinate free theory of value. In our coordinate free
analysis we assume that the commodity space is simply an ordered vector
space which need not be a vector lattice. In this very general context, we
introduce an alternate theory of value that arises from a personalized
pricing system which induces a non-linear value function. Our analysis
specializes to the standard Walrasian model whenever the commodity
space is a vector lattice and consumption sets coincide with the positive
cone.

Our personalized prices are introduced by means of a discriminating
Walrasian auctioneer. The auctioneer assigns to each (price taking)
consumer i a personal linear price pi . Now the list of linear personal prices
p=( p1 , p2 , ..., pm) induces a natural value function �p on the commodity
space by calculating for each commodity bundle x the maximum revenue
that can be achieved by decomposing the bundle x into consumable alloca-
tions, where each consumer pays the price assigned to her. That is, if Ax

denotes the set of all x-feasible allocations,5 then the value of �p at the
bundle x is given by

�p } x= sup
y # Ax

[ p1 } y1+ p2 } y2+ } } } + pm } ym].

The function �p as defined above (which we shall refer to as a generalized
price) is always concave��super-additive and positively homogeneous��but
may fail to be linear. This often happens even with finitely many commodities;
see Example 9.6. We shall see that as commodity bundles ``become more and
more'' decomposable the generalized prices ``become more and more'' linear.
In fact, when we have perfect divisibility (which is expressed by a consumption
decomposition property), the personalized prices become linear��and we
are at the classical Arrow�Debreu�McKenzie world. In particular, if the
commodity space is a vector lattice and the consumption sets coincide with
the positive cone, then the generalized prices are linear.

Given the generalized prices, the main concern of this work is focused on
answering the following fundamental question:
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v Can we characterize optimality notions (Pareto optimality, Walrasian
equilibrium, Edgeworth equilibrium) in terms of generalized prices?

Non-linear prices allow for arbitrage opportunities. Consequently, in the
presence of non-linearity the standard supporting properties do not charac-
terize allocative efficiency. Indeed, there are suboptimal allocations that can
be supported by super-additive prices. Therefore, we introduce two new
notions of arbitrage-free equilibria��the personalized valuation equilibrium
and the personalized equilibrium��in terms of generalized prices. We prove
their existence and show that personalized valuation equilibria characterize
Pareto optimality and that personalized equilibria characterize Edgeworth
equilibria, i.e., allocations that belong to the core of every replica economy.
In particular, we show that an allocation is Pareto optimal if and only if
it is supported by a generalized price and the following arbitrage-free
condition holds:

v Combining the grand coalition's allocation presents no opportunity for
arbitrage.

Moreover, we establish that an allocation is an Edgeworth equilibrium if
and only if it is supported by some generalized price such that the following
coalition-based arbitrage-free condition holds:

v Coalitions��in the limit of all replication of the economy��have no
``nominal '' incentive to sell their total endowments.

We also show that an allocation is a Walrasian equilibrium if and only if
it is an personalized equilibrium for which the generalized price is linear
(and continuous). These results generalize the existence of Walrasian equi-
librium results in the literature. In particular, we generalize and provide
new proofs of existence of equilibrium results of Aliprantis et al. [4],
Mas-Colell [41], Mas-Colell and Richard [43], Podczeck [53], Yannelis
and Zame [62], and the Edgeworth equivalence results of Aliprantis et al.
[4], and Tourky [56].

Our approach provides a value-based characterization of Pareto optimal
and Edgeworth allocations where the (Walrasian) uniform price-based
characterization fails. The analysis has new applications in both the finite
and the infinite dimensional settings. In particular, Monteiro and Tourky
[48] recently showed that the lattice theoretic properties in Mas-Colell's
work [41] are relevant to the existence of equilibrium problem even when
the commodity space is finite dimensional. They provided a surprising
example of an economy with three commodities. In that example, all of
Mas-Colell's assumptions hold except that the ordering of the commodity
space is not a lattice. However, in that economy there is no Walrasian
equilibrium and the second theorem of welfare economics fails for linear
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prices. On the other hand, our personalized equilibrium exists in their
example and our generalized welfare theorems hold, i.e., our generalized
prices decentralize the optimal allocations that cannot be supported by a
uniform linear price system.

The results in the present paper are obtained for uniformly proper economies
where consumption sets may lack interior points and the commodity space
need not be a vector lattice. The results allow for consumption sets that are
much smaller than the positive orthant of the commodity space. Further-
more, since our generalized prices are functions of schedules of individual
prices, the analysis in this paper avoids a serious paradox in the theory of
Walrasian equilibrium with differential information. That is: How can the
existence of private information be reconciled with the presence of a Walrasian
price system that conveys full information? In fact, we establish that our analysis
applies even when each consumer's personal price contains no more infor-
mation than the his private information.

The paper is organized as follows. The standard model of general equi-
librium is outlined in Section 2. Section 3 introduces and studies the properties
of the generalized prices. The definitions of personalized equilibria and
their economic interpretation are included in Section 4. Our main results
are contained in subsequent sections.

The central ingredient of our analysis is the new notion of rational equi-
librium, which is a ``convexification'' of the notions of Pareto optimality
and individual rationality. This class of allocations is larger than the class
of Edgeworth equilibria and is studied in Section 6. Section 9 contains
three applications of our main result. First, we establish that the Walrasian
model of general equilibrium is a special case of our model. Second, we apply
our results to differential information economies, and the paper concludes by
offering another interpretation of our personalized pricing system and relating
our model to a discriminatory price auction which mimics the U.S. Treasury
Bill Auction.

Non-linear prices arise naturally in the presence of price discrimination,
progressive income tax tariffs, and land markets, and they have been the
subject of much literature (see for instance Arrow and Hurwicz [12],
Berliant and Dunz [15], Guesnerie and Seade [31], Spence [55], and
Villamil [58].) We note, therefore, that there is a broad range of other
applications of the analysis presented in this paper.

2. THE MODEL

We shall only deal with pure exchange economies. The commodity space
is a Hausdorff locally convex ordered topological vector space L equipped
with a linear topology { such that:
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(a) The positive cone L+ of L, is proper (i.e., L+ & (&L+)=[0]),
generating (i.e., L+&L+=L), convex, and {-closed; and

(b) The order intervals of L are {-bounded.

The topological dual of (L, {) (i.e., the vector space of all {-continuous
linear functionals on L) will be denoted L$. As usual, the algebraic dual of
L (i.e., the vector space of all linear functionals on L) is denoted L*. The
order dual of L (i.e., the vector space of all order bounded linear func-
tionals6 on L) is denoted Lt. Since every order interval of L is {-bounded,
it follows that L$�Lt�L*. As usual, if �: A � R is a real-valued function
defined on a subset of L, then we shall denote the value �(x) by � } x, i.e.,
we write � } x=�(x).

There are m consumers; we let I=[1, ..., m] for the set of consumers and
designate the arbitrary consumer by the index i. The bundle |i # L is the
i th consumer's initial endowment. As usual, |=�m

i=1 |i is the total endowment.
The consumption set of consumer i is Xi . Throughout this paper, for

each consumer i, we assume that:

v the consumption set Xi is a convex {-closed subcone of L+ , and

v 0<|i # Xi .

It should be clear that >m
i=1 Xi �Lm

+ is a closed convex cone of (L, {)m.
Also, since each consumption set is a {-closed subcone of L+ and |i # Xi ,
it follows that each Xi is non-empty and the entire half-ray [:|i : :�0] lies
in Xi .

The correspondence Pi : Xi �� Xi denotes the ith consumer's preference.
The following conditions on preferences will play a critical role in our
discussion.

(A1) For a preference correspondence Pi : Xi �� Xi , we distinguish
the properties.

(1) Pi is irreflexive, i.e., x � Pi (x) for each x # Xi .

(2) Pi is convex-valued, i.e., Pi (x) is a convex set for each x # Xi .

(3) Pi is strictly monotone, i.e., x # Xi implies x+ y # Pi (x) for each
y # Xi"[0].

(4) Pi has open values in Xi relative to a linear topology on L.

(5) Pi has weakly open lower sections, i.e., for each y # Xi the lower
section P&1

i ( y)=[x # Xi : y # Pi (x)] is weakly open in Xi .
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Notice that if some Pi is strictly monotone, then from x+:|i # Pi (x) for
each :>0, it follows that x # Pi (x) for each x # Xi . In particular, if Pi is
strictly monotone, then Pi is a non-empty-valued correspondence. We let

A|={( y1 , y2 , ..., ym) # `
m

i=1

Xi : :
m

i=1

yi�|= .

The members of A| will be referred to as feasible allocations or simply as
allocations. Clearly, A| is a non-empty, convex and weakly closed subset
of Lm. Moreover, in view of A| �[0, |]m, it should be noticed that if the
order interval [0, |] is a weakly compact subset of L, then A| is also a
weakly compact subset of Lm.

The following compactness property of the set of all allocations will be
used for establishing existence of equilibria.

(A2) (Compactness). The non-empty convex set A| is weakly compact.

The notion of properness that will be employed in this work is the one
introduced by Tourky [56]. It is weaker than Mas-Colell's uniform proper-
ness condition [41].7

(A3) (Properness). The economy is said to be v-proper, where the
vector v=(v1 , ..., vm) is an allocation satisfying vi>0 for each i, if for each
i there exists another correspondence P� i : X �� L (which is convex-valued
if Pi is also convex-valued) such that for each x # Xi :

(i) the vector x+vi is a {-interior point of P� i (x); and

(ii) P� i (x) & X=Pi (x).

We conclude by defining the standard notions of optimality and equilibrium.

Definition 2.1. An allocation (x1 , x2 , ..., xm) is said to be:

(1) individually rational, if |i � Pi (xi) for each i # I,

(2) weakly Pareto optimal, if there is no allocation ( y1 , y2 , ..., ym)
satisfying yi # P(xi) for each i # I,
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(3) a core allocation, if it cannot be blocked by any allocation in the
sense that there is no allocation ( y1 , y2 , ..., ym) and a coalition S�I such
that

(a) �i # S yi��i # S |i , and

(b) yi # Pi (xi) for all i # S, and

(4) an Edgeworth equilibrium if it belongs to the core every r-fold
replica economy.8

Observe that an allocation (x1 , x2 , ..., xm) is weakly Pareto optimal if
and only if A| & >m

i=1 Pi (xi)=<. Also, the following simple property
should be obvious: Every core allocation (in particular every Edgeworth
equilibrium) is individually rational and weakly Pareto optimal.

Definition 2.2. An allocation (x1 , x2 , ..., xm) is said to be:

(1) a Walrasian valuation equilibrium, if there exists some continuous
price q # L$ satisfying q } |{0 and

x # Pi (xi) O q } x�q } xi ,

(2) a Walrasian quasi-equilibrium, if there exists some continuous
price q # L$ satisfying q } |{0, q } xi=q } |i for each i, and

x # Pi (xi) O q } x�q } |i ,

(3) a Walrasian equilibrium, if there exists some price q # L$ satisfying
q } |{0, q } xi=q } |i for each i, and

x # Pi (xi) O q } x>q } |i .

3. GENERALIZED PRICES

We shall call an arbitrary linear functional p=( p1 , p2 , ..., pm) on Lm a
list of personalized prices (or simply a list of prices). In this section, we
define a value function that is naturally induced by such a list of personalized
prices. The domain, C, of this value function will be the convex cone generated
in L by �m

i=1 X i , i.e.,

C=X1+X2+ } } } +Xm .
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Clearly, C is a convex subcone of L+ and | # C. The vector space
generated by C is denoted by M, i.e., M=C&C.

For each commodity bundle x # L+ , we let Ax denote the set of all
allocations when the total endowment is x, i.e.,

Ax={y=( y1 , y2 , ..., ym) # `
m

i=1

Xi : :
m

i=1

yi�x= .

Clearly, each Ax is a nonempty, convex and closed subset of (L, {)m; and
hence also a weakly closed subset of Lm. Notice also that for each x, y # L+

and all :�0, we have

Ax+Ay �Ax+ y and A:x=:Ax .

Definition 3.1. The generalized price of an arbitrary list of personalized
prices p=( p1 , p2 , ..., pm) is the function �p : C � [0, �] defined by

�p } x= sup
y # Ax

[ p1 } y1+ p2 } y2+ } } } + pm } ym].

Clearly, if p # (Lt)m (in particular, if p # (L$)m), then �p is a real-valued
function. The value �p } x is the maximum value that one can obtain by
decomposing the bundle x into consumable allocations, where each consumer
i pays the price pi assigned to her. For obvious reasons, we shall call any alloca-
tion ( y1 , y2 , ..., ym) # A| that maximizes value, i.e., �p } |=�m

i=1 pi } yi , a
maximizing allocation for the list of personalized prices p=( p1 , p2 , ..., pm).

Lemma 3.2. If the economy satisfies the compactness property (A2), then
maximizing allocations exist for any list of continuous personalized prices.

Proof. Let p=( p1 , p2 , ..., pm) # (L$)m be a list of continuous personalized
prices. Now notice that the function R: Lm � R, defined by

R(x1 , x2 , ..., xm)= :
m

i=1

pi } x i ,

is weakly (i.e., _(Lm, (L$)m-) continuous. If the non-empty convex set A| is
weakly compact (which is precisely what the compactness property (A2)
asserts), then R attains its maximum on A| . Clearly, any maximizer of R
on A| is a maximizing allocation for the list of personalized prices p. K

The basic properties of the generalized prices are included in the next
result.
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Lemma 3.3. If p=( p1 , p2 , ..., pm) # (Lt)m is a list of order bounded
personalized prices, then its generalized price �p : C � [0, �) is a non-
negative real-valued function such that:

(1) �p is monotone, i.e., x, y # C with x� y implies �p } x��p } y,

(2) �p is super-additive, i.e., �p } x+�p } y��p } (x+ y) for all x, y # C,

(3) �p is positively homogeneous, i.e., �p } (:x)=:(�p } x) for all :�0
and x # C,

(4) if p1= p2= } } } = pm=q�0, then �p } x=q } x for all x # C, i.e.,
�p=q, and

(5) if x # Xi , then pi } x��p } x.

Proof. Item (3) is straightforward.

(1) Assume x, y # C satisfy x� y. If z=(z1 , z2 , ..., zm) # Ax , then the
inequalities �m

i=1 zi�x� y imply z # Ay , i.e., Ax �Ay . This easily yields
�p } x��p } y.

(2) Assume u=(u1 , u2 , ..., um) # Ax and v=(v1 , v2 , ..., vm) # Ay . Then,
from the inclusion Ax+Ay �Ax+ y , it follows that u+v # Ax+ y . So,

:
m

i=1

pi } xi+ :
m

i=1

pi } yi= :
m

i=1

pi } (x i+ y i)��p } (x+ y),

from which the desired inequality follows.

(4) Assume p1= p2= } } } = pm=q�0 and let x # C. If a decomposi-
tion z=(z1 , z2 , ..., zm) # Ax , then �m

i=1 pi } zi=q } (�m
i=1 zi)�q } x, and so

�p } x�q } x. On the other hand, if we write x=�m
i=1 xi with x i # Xi for

each i, then we have q } x=q } (�m
i=1 xi)=�m

i=1 q } xi��p } x. This implies
�p } x=q } x for each x # C.

(5) Fix x # Xi . Since 0 # Xj for each j implies (0, ..., 0, x, 0, ..., 0) is
in Ax , where x # Xi occupies the ith position, we see that pi } x��p } x. This
completes the proof. K

We now introduce the decomposability property of the consumption
sets. This property provides a ``measure'' of the linearity of the generalized
prices. This property is not used in our major results.

(A3) (Consumption Decomposability). The economy has the Consump-
tion Decomposability Property if for each x, y # C we have Ax+Ay=Ax+ y .
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When the consumption sets coincide with the positive cone L+ , the
Consumption Decomposability Property is equivalent to the Riesz Decom-
position Property. (Recall that the Riesz Decomposition Property asserts
that for all x, y # L+ the following equality holds [0, x]+[0, y]=
[0, x+ y].)

Lemma 3.4. If Xi=L+ for each consumer i, then the economy has
the Consumption Decomposability Property if and only if L has the Riesz
Decomposition Property.

Proof. Notice that C=L+ . Assume first that the economy has the
Consumption Decomposability Property and let three vectors x, y, z # L+

satisfy 0�z�x+ y. Then u=(z, 0, 0, ..., 0) # Ax+ y=Ax+Ay . So, there
exist v=(v1 , v2 , ..., vm) # Ax and w=(w1 , w2 , ..., wm) # Ay satisfying u=v+w.
The latter implies vi=wi=0 for i=2, 3, ..., m, and so the vectors v1 , w1 # L+

satisfy 0�v1�x, 0�w1� y and v1+w1=z. This shows that L has the Riesz
Decomposition Property.

For the converse, suppose that L satisfies the Riesz Decomposition
Property and let x, y # L+ . We must show Ax+ y �Ax+Ay . So, choose a
decomposition (u1 , u2 , ..., um) # Ax+ y , i.e., �m

i=1 u i�x+ y. Since L has the
Riesz Decomposition Property, there exist x1 , y1�0 satisfying 0�x1�x,
0� y1� y and �m

i=1 ui=x1+ y1 . To complete the proof, now invoke
[7, Theorem 1.15, p. 14]. K

Theorem 3.5. For a vector subspace P of Lt the following statements
are equivalent.

(1) For each non-zero list of prices p=( p1 , p2 , ..., pm) # Pm the
generalized price �p : C � [0, �) is additive��and hence it has a unique linear
extension to M=C&C.

(2) For each x, y # C we have Ax+ y �Ax+Ay , where the bar denotes
_(Lm, Pm)-closure.

Proof. Let P be a vector subspace of Lt.

(1) O (2). Suppose by way of contradiction that there exist x, y # C
and some z=(z1 , z2 , ..., zm) # Ax+ y such that z � Ax+Ay . Since _(Lm, Pm)
is a locally convex topology on Lm, there exists some non-zero list of prices
p=( p1 , p2 , ..., pm) # Pm which strongly separates z and Ax+Ay ; see
[2, Corollary 5.59, p. 194]. That is, there exists some =>0 satisfying

:
m

i=1

pi } zi�=+ :
m

i=1

p i } u i
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for all (u1 , u2 , ..., um) # Ax+Ay . This easily implies

�p } (x+ y)� :
m

i=1

p i } zi�=+�p } x+�p } y>�p } x+�p } y,

which contradicts the additivity of �p .

(2) O (1). Let p=( p1 , p2 , ..., pm) # Pm. The function �p : C � [0, �],
defined by

�p } x= sup
z # Ax

[ p1 } z1+ p2 } z2+ } } } + pm } zm],

is real-valued, positively homogeneous and super-additive. To see that �p

is additive, let x, y # C, and fix z=(z1 , z2 , ..., zm) # Ax+ y �Ax+Ay . Then
there exist two nets [(u:

1 , ..., u:
m)]�Ax and [(v:

1 , ..., v:
m)]�Ay such that

(u:
1+v:

1 , ..., u:
m+v:

m) wwww�
_(Lm, P m) z.

In particular, we have lim: �m
i=1 pi } (u:

i +v:
i )=�m

i=1 p i } zi . Now taking
into account that

:
m

i=1

pi } (u:
i +v:

i )= :
m

i=1

p i } u:
i + :

m

i=1

p i } v:
i ��p } x+�p } y,

we see that �m
i=1 p i } zi��p } x+�p } y. Since z=(z1 , z2 , ..., zm) # Ax+ y is

arbitrary, we conclude that �p } (x+ y)��p } x+�p } y. Consequently,
�p } (x+ y)=�p } x+�p } y, so that �p is additive on C.

Now we leave it to the reader to verify that if for each x # M we write
x=a&b with a, b # C, then the formula

�p } x=�p } a&�p } b

is independent of the representation of x as a difference of two vectors of
C and defines a (unique) linear extension of �p to all of M. (Notice also
that �p is a positive linear functional on M with respect to the generating
cone C.) K

Consumption decomposability guarantees linearity of the generalized prices.

Corollary 3.6. If the Consumption Decomposability Property (A4) is
satisfied, then every generalized price is additive��and hence it has a unique linear
extension to M=C&C.

Regarding continuity and extendability of the generalized prices, we have
the following result��which also shows that our analysis reduces to a
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uniform price setting whenever the commodity space has the Riesz Decom-
position Property. For more results in this direction see [9].

Theorem 3.7. Assume that consumption sets coincide with the positive
cone (i.e., Xi=L+ for each i) and let p=( p1 , p2 , ..., pm) # (Lt)m be a list
of personalized prices.

(1) If the generalized price �p has a {-continuous linear extension to
all of L, then the linear functional q=(�m

i=1 pi)
+ exists in Lt, is {-continuous,

and �p=q.

(2) If the space L has the Riesz Decomposition Property and the linear
functional q=(�m

i=1 pi)
+ (which exists in Lt) is {-continuous, then we have

�p=q (and so �p has a {-continuous linear extension to all of L).

Proof. For every i, Xi=L+ and p # (Lt )m.

(1) Let q # L$ be a {-continuous linear extension of �p to all of L.
Since C=L+ , it should be clear that q�0. Note that if x # L+=Xi , then
pi } x��p } x=q } x, and so q�p i for each i. To see that q is the least upper
bound of the set [ p1 , ..., pm] in Lt, assume that some 0�? # Lt satisfies
?�pi for each i. Then for each x # L+ we have

? } x=�(?, ?, ..., ?) } x��p } x=q } x.

Thus, ?�q, and so q=(�m
i=1 p i)

+ holds in Lt.

(2) Assume that L has the Riesz Decomposition Property. In this case
Lt is a Riesz space and q=(�m

i=1 pi)
+ is given by the Riesz�Kantorovich

formula,

q } x=sup { :
m

i=1

p i } xi : x i # L+ for each i and :
m

i=1

xi�x= ,

for all x # L+ ; see [7, Theorem 1.13, p. 12]. Clearly, q } x=�p } x for every
point x # L+ and if q # L$, then q is a {-continuous linear extension of �p

to all of L. This completes the proof. K

4. PERSONALIZED EQUILIBRIA

We are now ready to introduce our basic concepts of equilibria.

Definition 4.1. An allocation (x1 , x2 , ..., xm) is said to be a:

(1) personalized valuation equilibrium, whenever there exists some list
of personalized prices p=( p1 , p2 , ..., pm) # (Lt)m such that
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(i) �p } |>0,

(ii) y # Pi (xi) O �p } y��p } xi , and

(iii) the following arbitrage-free condition holds

�p } |= :
m

i=1

�p } xi ;

(2) personalized quasi-equilibrium, whenever there exists some list of
personalized prices p=( p1 , p2 , ..., pm) # (Lt)m such that

(a) �p } |>0,

(b) y # Pi (xi) O �p } y��p } xi , and

(c) for each (:1 , :2 , ..., :m) # Rm
+ we have

�p } \ :
m

i=1

:i|i+� :
m

i=1

:i �p } x i ,

(3) personalized equilibrium, whenever there exists a list of personalized
prices p=( p1 , p2 , ..., pm) # (Lt )m such that

(a) �p } |>0,

(b) y # Pi (xi) O �p } y>�p } xi , and

(c) for each (:1 , :2 , ..., :m) # Rm
+ we have

�p } \ :
m

i=1

:i|i+� :
m

i=1

:i �p } x i .

It should be clear that

Personalized Equilibrium O Personalized Quasi-equilibrium

O Personalized Valuation Equilibrium.

Conditions (ii) and (b) in the definitions of a personalized valuation
equilibrium and a personalized equilibrium are analogous to the standard
supporting properties in the Arrow�Debreu�McKenzie model of general
equilibrium.

Condition (iii) in the definition of a personalized valuation equilibrium
is a non-arbitrage condition which states the following:

v The grand coalition cannot combine the commodity bundles and obtain
a bundle with a greater valued than the sum of the original values.
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To give an interpretation to condition (c) in the definition of a personalized
equilibrium consider an economy with a continuum of agents indexed by
the unit interval [0, 1] equipped with the Lebesgue measure *. We define
the m order intervals

J1=_0,
1
m& , J2=\ 1

m
,

2
m& , ..., Jm=\m&1

m
, 1& .

We let the total endowment |: [0, 1] � L be the measurable simple function
defined by |(t)=|i for t # Ji . Also, we can identify any vector (x1 , x2 , ..., xm)
with the simple measurable function x: [0, 1] � L defined by x(t)=xi for
t # Ji . In the next lemma, the integral of simple functions is defined in the
obvious way.

Lemma 4.2. For a list of order bounded prices p=( p1 , p2 , ..., pm) and an
allocation x=(x1 , x2 , ..., xm) the following statements are equivalent:

(1) For each (:1 , :2 , ..., :m) # Rm
+ we have

�p } \ :
m

i=1

:i|i+� :
m

i=1

:i �p } x i .

(2) For each measurable coalition S of the continuum economy we
have

�p } _|S
|(t) d*(t)&�|

S
[�p } x(t)] d*(t).

Proof. Assume that (1) holds and let S�[0, 1] be any measurable
coalition. Then

�p } _|S
|(t) d*(t)&=�p } _ :

m

i=1

*(S & J i) | i&
� :

m

i=1

*(S & Ji) �p } x i

=|
S

[�p } x(t)] d*(t).

Therefore (1) O (2).
Next, assume that (2) holds and let (:1 , :2 , ..., :m) be any vector in Rm

+ .
Choose a positive integer n such that for each i we have :i �n�*(Ji)=1�m.
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Also for each i pick a measurable set Si �Ji with *(Si)=:i �n and consider
the coalition S=�m

i=1 Si . We have

�p } \ :
m

i=1

:i

n
|i+=�p } _|S

|(t) d*(t)&�|
S

[�p } x(t)] d*(t)= :
m

i=1

: i

n
�p } x i .

From the homogeneity of �p we get �p } (�m
i=1 : i|i)��m

i=1 : i�p } xi . So,
(2) O (1). K

Using Lemma 4.2 we can now give the following coalition based, arbitrage
free, interpretation of condition (c) in the definition of a personalized
equilibrium:

v Coalitions��in the limit of all replications of the economy��cannot
combine their commodity bundles and obtain a bundle with a greater valued
than the coalitions' endowment.

We conclude this section by presenting some relationships between
Walrasian equilibria and personalized equilibria. In view of Theorem 3.7
the next result also states that we are in the Arrow�Debreu�McKenzie
world whenever our generalized price is additive.

Theorem 4.3. The following statements are true:

(1) Every Walrasian equilibrium with positive equilibrium price is an
personalized equilibrium.

(2) Every personalized equilibrium with an additive {-continuous
generalized price is a Walrasian equilibrium.

Proof. The validity of (1) is an easy consequence of Lemma 3.3(4). To
establish (2), let x=(x1 , x2 , ..., xm) be a personalized equilibrium with
respect to some {-continuous additive generalized price �p . Notice that
�p } |i��p } x i for each i. A quick glance at the inequality

:
m

i=1

�p } x i=�p } \ :
m

i=1

x i+��p } |=�p } \ :
m

i=1

|i += :
m

i=1

�p } |i ,

shows that �p } |i=�p } xi for each i. Now any {-continuous linear extension
of �p to all of L guarantees that x is a Walrasian equilibrium for this price
system. K

5. WEAK PARETO OPTIMALITY

In this section we shall establish that under certain general conditions
the notions of a personalized valuation equilibrium and that of a weakly
Pareto optimal allocation coincide.
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Theorem 5.1. We have the following relationships between weakly
Pareto optimal allocations and personalized valuation equilibria:

(1) If properties (A1.2), (A1.3), and (A3) are satisfied, then every
weakly Pareto optimal allocation x # A| is a personalized valuation equi-
librium with respect to some list of continuous prices p # (L$)m. Moreover, the
allocation x is a maximizing allocation for p.

(2) If (A1.4) is satisfied, then every personalized valuation equilibrium
is weakly Pareto optimal.

Proof. We begin with the analogue of the second welfare theorem.

(1) Let x=(x1 , x2 , ..., xm) be a weakly Pareto optimal allocation.
This means that A| & >m

i=1 Pi (xi)=<. Now from (A1.2) and the proper-
ness assumption (A3), there exist convex-valued correspondences
P� i : X� i �� L (for i # I ) whose values have non-empty interior satisfying

P� i (xi) & Xi=Pi (x i).

for each i. Since A| �>m
i=1 Xi , it follows that A| & >m

i=1 P� i (xi)=<.
Since both sets A| and >m

i=1 P� i (xi) are non-empty and convex, and
each P� i (xi) has a non-empty interior, there exists a non-zero list of con-
tinuous personalized prices p=( p1 , p2 , ..., pm) # (L$)m�(Lt)m such that

:
m

i=1

pi } yi� :
m

i=1

p i } zi (C)

for all ( y1 , y2 , ..., ym) # A| and all (z1 , z2 , ..., zm) # >m
i=1 P� i (x i). Fix a

v # A| for which the economy is v-proper and note that x+v is an interior
point of >m

i=1 P� i (xi). This, combined with (C) and the facts that
(x1 , x2 , ..., xm) # A| and p is non-zero, yields �m

i=1 pi } (vi+xi)>�m
i=1 pi } xi ,

which in view of v # A| implies �p } |��m
i=1 p i } v i>0.

Next, notice that since (A1.3) implies x # >m
i=1 Pi (x i), it follows from

(C) that

:
m

i=1

pi } yi� :
m

i=1

p i } xi

for all y=( y1 , y2 , ..., ym) # A| . Taking into account that x # A| , the latter
inequality implies

�p } |= :
m

i=1

pi } x i . (CC)
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Thus, x is a maximizing allocation for the list of personalized prices p. Now
the monotonicity and super-additivity of �p imply the validity of the
inequality �m

i=1 �p } x i��p } (�m
i=1 x i)��p } |. So, from (CC), we get

:
m

i=1

�p } xi� :
m

i=1

pi } x i . (CCC)

Since 0 belongs to each consumption set, it is easy to see that pi } z��p } z
for all z # Xi . In particular, pi } xi��p } xi , which in view of (CCC) yields
�p } xi= pi } xi for each i, and so �m

i=1 �p } xi=�p } |.

Next, fix z # Pi (xi), and let yj=xj+vj # P� (xj) for each j # I. If for each
0<:<1, we define (u1 , u2 , ..., um) # >m

i=1 P� i (xi) by letting ui=z and
uj=:xj+(1&:) yj=xj+(1&:) vj # P� j (xj) for j{i, then from (C) it
follows that

:
m

j=1

pj } uj= pi } z+: :
j{i

p j } x j+(1&:) :
j{i

pj } yj� :
m

i=1

p i } xi .

Letting : A 1, we easily get pi } z�pi } xi for each i # I. From this, we infer
that

�p } z�pi } z�p i } x i=�p } x i

for each i. In other words, we have shown that x is a personalized valuation
equilibrium.

(2) Suppose that x=(x1 , x2 , ..., xm) is a personalized valuation
equilibrium. This means that there exists some p=( p1 , p2 , ..., pm) # (Lt)m

such that �m
i=1 �p } xi=�p } |>0 and

y # Pi (xi) O �p } y��p } xi .

Next, assume by way of contradiction that there exists some allocation
z=(z1 , z2 , ..., zm) # A| such that zi # Pi (xi) for all i # I. Since �p is support-
ing, we have �p } zi��p } x i for each i, and so

:
m

i=1

�p } zi� :
m

i=1

�p } xi=�p } |� :
m

i=1

�p } zi .

This implies �m
i=1 �p } zi=�m

i=1 �p } xi=�p } |>0 and �p } z i=�p } xi for
each i. In particular, for some j # I we have �p } xj>0. Since by A1.4 the set
Pj (xj) is open for some linear topology on L, :zj # Xj for each 0<:<1,
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zj # Pj (xj), and lim: A 1 :zj=zj for any linear topology on L, we can find
some 0<:<1 such that :zj # Pj (xj). Therefore, the homogeneity of �p

yields

�p } (:zj)=:�p } zj<�p } zj=�p } xj ,

contrary to the supporting property of �p . The proof of the theorem is now
complete. K

6. RATIONAL ALLOCATIONS

Here we shall isolate a class of allocations��whose members will be referred
to as rational allocations��that lies between the classes of weakly Pareto
optimal allocations and Edgeworth equilibria. The notion of a rational alloca-
tion is in essence a ``combination'' of the concepts of weak Pareto optimality
and individual rationality. In order to introduce the notion of a rational
allocation we need some notation. Throughout the rest of this paper the letter
L will denote the following non-empty, closed, and convex subset of Lm:

L={y # Lm : :
m

i=1

yi�|= .

Clearly, A| �L. Now let x=(x1 , x2 , ..., xm) be an allocation. With this
allocation we associate the m vectors %1

x , %2
x , ..., %m

x of Lm defined by

%1
x=(|1 , x2 , x3 , ..., xm&1 , xm),

%2
x=(x1 , |2 , x3 , ..., xm&1 , xm),

b

%m
x =(x1 , x2 , x3 , ..., xm&1 , |m).

Let 3x=[%1
x , %2

x , ..., %m
x ], and let

Zx=[co(3x _ L)] & `
m

i=1

Xi .

Clearly, Zx is non-empty and convex, and A| �Zx �>m
i=1 Xi . Now we

can introduce the notion of a rational allocation.

Definition 6.1. An allocation x=(x1 , x2 , ..., xm) is said to be rational if

Zx & `
m

i=1

Pi (xi)=co(3x _ L) & `
m

i=1

Pi (xi)=<.
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Since A| �Zx , it should be clear that every rational allocation is weakly
Pareto optimal. We shall see next that when the initial endowments can be
decomposed into non-zero consumable bundles, rational allocations are
individually rational. But first, let us introduce one more condition.

(A5) For each i there exists some (z1 , z2 , ..., zm) # A|i satisfying z j>0
for every j # I.

Notice that (A5) is satisfied when one of the following conditions holds:

v Xi=Xj for every i, j # I. (Note that ( 1
m |i ,

1
m | i , ..., 1

m |i) # A|i
.)

v There exists =>0 such that =|i�| for every i # I. (In this case,
observe that ( 1

= |1 , 1
= |2 , ..., 1

= |m) # A|i
.)

Lemma 6.2. If conditions (A1.3), (A1.4), and (A5) are satisfied, then
every rational allocation is individually rational.

Proof. Let x=(x1 , x2 , ..., xm) be a rational allocation, in other words
Zx & >m

i=1 Pi (x i)=<. Suppose by way of contradiction that x is not
individually rational. This means that |i # Pi (x i) for some i # I; without
loss of generality we can assume that |1 # P1(x1).

By (A5) there exists some (z1 , z2 , ..., zm) # A|1
satisfying z i>0 for each i.

Since P1(x1) is (by (A1.4)) an open subset of X1 for some linear topology
on L, :(x1+z1)+(1&2:) |1 # X1 for all 0<:< 1

2 , and

lim
: a 0

[:(x1+z1)+(1&2:) |1]=|1 # P1(x1),

for any linear topology on L, there exists some 0<:< 1
2 such that

:(x1+z1)+(1&2:) |1 # P1(x1). (-)

Notice that the vector

u=(x1&|1+z1 , x2+z2 , x3+z3 , ..., xm+zm) # Lm

belongs to L. This implies that the vector

v=:u+(1&:) %1
x

=(:(x1+z1)+(1&2:) |1 , x2+:z2 , x3+:z3 , ..., xm+:zm),

belongs to Zx . From the strict monotonicity of preferences (A1.3), it
follows that xi+:zi # Pi (x i) for all i�2. Now a glance at (-) guarantees
that v # >m

i=1 Pi (x i), and so v # Zx & >m
i=1 Pi (x i)=<, a contradiction.

Therefore, x is individually rational. K
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Rational allocations are personalized quasi-equilibria and when the initial
endowments are decomposable in the sense of (A5) they are also personalized
equilibria. The details are included in the next result.

Lemma 6.3. If conditions (A1.2), (A1.3), (A1.4), and (A3) are satisfied,
then a rational allocation x=(x1 , x2 , ..., xm)

(1) is always a personalized quasi-equilibrium with respect to a list of
continuous personalized prices ( p1 , p2 , ..., pm) # (L$)m, and

(2) if, in addition (A5) holds, then it is also a personalized equilibrium
with respect to a list of continuous personalized prices ( p1 , p2 , ..., pm) in
(L$)m.

Moreover, in both cases x is a maximizing allocation for the list of
personalized prices p.

Proof. We begin with the first statement.

(1) Let x=(x1 , x2 , ..., xm) be a rational allocation, in other words
Zx & >m

i=1 Pi (x i)=<. From (A1.2) and the properness Condition (A3),
for each i there is a convex-valued correspondence P� i : X� i �� L whose
values have non-empty interior such that Zx & >m

i=1 P� i (xi)=<.

Since the sets Zc and >m
i=1 P� i (x i) are both non-empty and convex,

and each P� i (xi) has a non-empty interior, there exists (by the separation
theorem) a non-zero list of personalized prices p=( p1 , p2 , ..., pm) # (L$)m

such that

:
m

i=1

pi } hi� :
m

i=1

p i } zi (C)

for all (h1 , h2 , ..., hm) # Zx and all (z1 , z2 , ..., zm) # >m
i=1 P� i (xi). Taking into

account that A| �Zx , we see (as in the proof of part (1) of Theorem 5.1)
that x is a personalized valuation equilibrium and a maximizing allocation
with respect to p.

We now show that if :=(:1 , :2 , ..., :m) # Rm
+ , then

:
m

i=1

:i�p } x i��p } \ :
m

i=1

:i |i + . (CC)

To this end, let |:=�m
i=1 :i|i and let z=(z1 , z2 , ..., zm) # A|:

. Then, it is
easy to see that

u=(x1&:1 |1+z1 , z2&:2 |2+z2 , ..., xm&:m |m+zm) # L.
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For simplicity, we let ;=�m
i=1 :i and ; j=� i{ j : i for each j. Now consider

the vector h=(h1 , h2 , ..., hm) defined by

h=
1

1+;
u+

:1

1+;
%1

x+
:2

1+;
%2

x+ } } } +
:m

1+;
%m

x # Lm,

and note that h # co(3x _ L). An easy computation shows that

hj=
1+; j

1+;
xj+

1
1+;

zj # Xj ,

and so h # >m
i=1 X i . Therefore, h # Zx=[co(3x _ L)] & >m

i=1 Xi . Next,
notice that (A1.3), implies x # >m

i=1 P i (Xi), and so from (C) it follows that

:
m

i=1

pi } xi � :
m

i=1

pi } hi

=
1+;1

1+;
p1 } x1+

1+;2

1+;
p2 } x2+ } } } +

1+;m

1+;
pm } xm

+
1

1+;
:
m

i=1

pi } zi .

Now observing that ;&;j=:j , we get 1
1+; �m

i=1 :i pi } xi�
1

1+; �m
i=1 pi } z i ,

or

:
m

i=1

:i pi } xi� :
m

i=1

p i } zi .

Since z # A|:
, where |:=�m

i=1 :i|i , was arbitrarily chosen, we see that

:
m

i=1

:ipi } x i��p } \ :
m

i=1

:i|i+ .

Finally, taking into account that �p } x i�pi } x i for each i, the validity of
(CC) follows.

(2) Once again, let x=(x1 , x2 , ..., xm) be a rational allocation. From
(1) above there is a list of continuous prices p=( p1 , p2 , ..., pm) # (L$)m

such that x is a personalized quasi-equilibrium. We want to show that p
can be chosen so that �p } x i>0 for each i # I. Notice first that (as in the
proof of Theorem 5.1) we can choose the list of continuous personalized
prices p such that, on one hand, x is a maximizing allocation for p and, on
the other hand, for each i we have

pi } xi=�p } x i and y # Pi (x i) O pi } y�pi } x i .
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Since �m
i=1 �p } xi��p } |>0, there exists some j # I such that pj } xj=

�p } xj>0. Now using (A1.4), for each y # Pj (xj) we can find 0<*<1 such
that *y # Pj (xj). Thus,

pj } y�*pj } y�pj } x j>0.

So, pj } y>0, from which it follows that pj } y>*pj } y and pj } y>pj } xj .
Now from the strict monotonicity of preferences (A1.3), if 0<z # Xj , then
xj+z # Pj (xj). Therefore, pj } (xj+z)>pj } xj>0 so that pj } z>0.

From (A5), for each i there is some z # Xj such that 0<z�|i . We
conclude that

�p } xi��p } |i��p } z�pj } z>0.

Now let y # Pi (xi). There exists some 0<*<1 such that *y # Pi (x i). Thus,
�p } y�*�p } y��p } x i>0. This implies �p } y>�p } x i , and so x is a
personalized equilibrium. K

The next result is a converse of Lemma 6.3.

Lemma 6.4. If (A1.4) is satisfied, then a personalized quasi-equilibrium is
a rational allocation.

Proof. Assume that x=(x1 , x2 , ..., xm) is a personalized quasi-equi-
librium. This guarantees the existence of some p=( p1 , p2 , ..., pm) # (Lt)m

such that

(i) �p } |>0,

(ii) y # Pi (xi) O �p } y��p } xi , and

(iii) for each (:1 , :2 , ..., :m) # Rm
+ we have

:
m

i=1

:i�p } x i��p } \ :
m

i=1

:i |i + .

Now assume by way of contradiction that x is not a rational allocation.
That is, that there exists some z=(z1 , z2 , ..., zm) # Zx & >m

i=1 Pi (xi).
Notice first that since �m

i=1 �p } xi��p } |>0, there exists some i for
which �p } xi>0. Since �p } zi��p } x i>0, it follows that zi>0 for this
particular i. Now taking into account zi # Pi (xi), it follows from (A1.4) that
there exists some 0<*<1 satisfying

*zi # Pi (x) and �p } z i>*�p } zi=�p } (*zi)��p } xi>0. (-)

Next, observe that z is the convex combination of a point u # L and the
vectors %1

x , %2
x , ..., %m

x defined before Definition 6.1. That is, we can write
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z=:u+�m
j=1 ; j% j

x , where :+�m
j=1 ;j=1 and :, ;1 , ;2 , ..., ;m�0. From

this and the definition of the vectors % j
x , it follows that

:
m

i=1

(zi&|i)=: :
m

i=1

(u i&|i)+ :
m

j=1

:
m

i=1

; j[(% j
x) i&|i]

� :
m

j=1

:
m

i=1

;j[(% j
x) i&|i]

�& :
m

j=1

;j (xj&|j).

This inequality can be rewritten as

:
m

i=1

zi+ :
m

i=1

; ixi� :
m

i=1

; i|i+ :
m

i=1

|i .

By the monotonicity of �p , we get

�p } \ :
m

i=1

zi+ :
m

i=1

;i xi+��p } \ :
m

i=1

; i|i+:m

i=1

|i+ . (C)

However, from the super additivity of �p , the definition of a personalized
quasi-equilibrium, and (-), we have

�p } \ :
m

i=1

zi+ :
m

i=1

; ix i+� :
m

i=1

�p } zi+ :
m

i=1

;i�p } x i

> :
m

i=1

�p } xi+ :
m

i=1

; i�p } xi

��p } \ :
m

i=1

;i |i+:m

i=1

|i+ ,

which contradicts (C). Therefore, x is a rational allocation. K

The following theorem summarizes the results in this section.

Theorem 6.5. We have the following interrelationships between rational
allocations and personalized quasi-equilibria:

(1) If conditions (A1.2), (A1.3), (A1.4), and (A3) are satisfied, then a
rational allocation is a personalized quasi-equilibrium��which is a personalized
equilibrium if (A5) is also valid.

(2) If (A1.4) is satisfied, then a personalized quasi-equilibrium is a
rational allocation.
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7. EDGEWORTH EQUILIBRIA

In this section we shall show that the personalized equilibria under
certain conditions coincide with the Edgeworth equilibria. We will also
show that if the Decomposition Property (A5) does not hold, then rational
allocations and personalized quasi-equilibria need not be Edgeworth equi-
libria (or even individually rational).

Let us first isolate another useful class of allocations.

Definition 7.1. An allocation (x1 , x2 , ..., xm) is a strong-Edgeworth
equilibrium if

_co .
m

i=1

[Pi (x i)&| i]&& (&L+)=<.

Now using the Debreu�Scarf proof [22], we can prove that Edgeworth
equilibria are strong-Edgeworth equilibria.

Lemma 7.2. Strong-Edgeworth equilibria are Edgeworth equilibria.
Conversely, if (A1.2) and (A1.4) are satisfied, then an Edgeworth equilibrium
is a strong-Edgeworth equilibrium.

Proof. Let x=(x1 , x2 , ..., xm) be a strong-Edgeworth equilibrium.
Assume by way of contradiction that x is not an Edgeworth equilibrium.
This means that there exists an r-fold replica of the original economy, an
allocation

( y11 , y12 , ..., y1r , y21 , y22 , ..., y2r , ..., yr1 , yr2 , ..., yrr),

and a coalition S in this r-fold replica economy such that:

(1) �(i, j) # S yij��(i, j) # S |ij , and

(2) yij # Pij (xij) for all (i, j) # S,

where |ij=|i , xij=xi , and Pij (xij)=Pi (xi) for all (i, j). If n is the number
of consumers in S, then

:
(i, j) # S

1
n

( yij&|ij) # _co .
m

i=1

[Pi (x i)&|i]&& (&L+)=<,

a contradiction. We conclude that x is an Edgeworth equilibrium.
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Now assume that (A1.4) is satisfied. Let x=(x1 , x2 , ..., xm) be an
Edgeworth equilibrium and assume by way of contradiction that it fails to
be a strong-Edgeworth equilibrium. This means that

_co .
m

i=1

[Pi (x i)&| i]&& (&L+){<.

Therefore, there exist yi # Pi (x i) and *i�0 (i=1, ..., m) such that

:
m

i=1

*i=1 and :
m

i=1

* i ( yi&|i)�0. (C)

Next, consider the set S=[i: *i>0] and note that S{<. From (C), it
follows that �m

i=1 * iy i��m
i=1 * i|i or

:
i # S

*iyi� :
i # S

*i |i . (CC)

Now for each positive integer n, let ni be the smallest integer greater than
or equal to n*i , that is, 0�ni&n*i<1; clearly, (n*i �ni) A 1 as n � � for
each i # S. Since for each i # S we have limn � �(n* i �ni ) yi= yi # Pi (x i), each
Pi (xi) is (according to Condition (A1.4)) open in Xi for some linear topology
on L, and (n*i �ni ) yi # Xi for each n, there exists some n large enough
satisfying

zi=
n*i

ni
yi # Pi (xi) for each i # S. (CCC)

Taking into account (CC), we see that

:
i # S

nizi= :
i # S

n*i yi� :
i # S

n*i| i� :
i # S

ni| i .

The preceding inequality and (CCC) show that the allocation (x1 , ..., xm)
can be blocked by a coalition in the (�i # S ni)-fold replica of the economy,
which is a contradiction. This completes the proof of the theorem. K

Strong-Edgeworth equilibria are rational allocations.

Lemma 7.3. If conditions (A1.3) and (A1.4) are satisfied, then every
strong-Edgeworth equilibrium is a rational equilibrium.
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Proof. Let x=(x1 , x2 , ..., xm) be a strong-Edgeworth equilibrium. Now
let us suppose by way of contradiction that there exists some vector

z=(z1 , z2 , ..., zm) # Zx & `
m

i=1

Pi (xi).

Notice first that zi>0 for each i # I. Otherwise, zi=0 for some i easily
implies that zi&|i=&|i belongs to [co �m

i=1 [Pi (xi)&|i]] & (&L+)=<,
which is impossible.

Next, observe that z is the convex combination of a point u # L and the
vectors %1

x , %2
x , ..., %m

x defined before Definition 6.1. That is, we can write
z=:u+�m

j=1 ; j% j
x , where :+�m

j=1 ;j=1 and :, ;1 , ;2 , ..., ;m�0. From
this and the definition of the vectors % j

x , it follows that

:
m

i=1

(zi&|i)=: :
m

i=1

(u i&|i)+ :
m

j=1

:
m

i=1

; j[(% j
x) i&|i]

� :
m

j=1

:
m

i=1

;j[(% j
x) i&|i]

�& :
m

j=1

;j (xj&|j).

If J=[ j # I : ;j>0], then the last inequality can be re-written as

:
m

i=1

(zi&|i)+ :
j # J

; j (x j&| j)�0. (1)

Since zi # Pi (x i) and each Pi (xi) is (in view of (A1.4)) open in Xi for some
linear topology on L, it follows from lim* A 1 *zi=zi that there exists some
0<*<1 such that *zi # Pi (xi) for all i # I. Next, rewrite (1) as

:
m

i=1

(*zi&|i)+ :
j # J

; j (xj&|j)+ :
m

i=1

(1&*) zi�0,

and conclude that

:
m

i=1

(*zi&|i)+ :
j # J

; j \xj+
1&*

;j
zj&| j+

= :
m

i=1

(*zi&|i)+ :
j # J

; j (xj&|j)+ :
j # J

(1&*) zi

� :
m

i=1

(*zi&|i)+ :
j # J

; j (xj&|j)+ :
m

i=1

(1&*) zi

�0.
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Now let #=�j # J ;j�0 (with #=0 if J=<), and note that the preceding
inequality yields

:
m

i=1

1
#+m

(*zi&|i)+ :
j # J

; j

#+m \x j+
1&*

; j
zj&|j+�0. (2)

Since 0<((1&*)�;j) zj # Xj for each j # J, it follows from the monotonicity
condition (A1.3) that xj+((1&*)�; j) zj # Pj (xj) for each j # J. From the
equality �m

i=1(1�#+m)+� j # J(;j �#+m)=1 and (2), we obtain

:
m

i=1

1
#+m

(*zi&|i)+ :
j # J

;j

#+m \xj+
1&*

;j
zj&|j+

# _co .
m

i=1

[Pi (x i)&| i]&& (&L+)=<,

which is impossible. This contradiction completes the proof. K

Personalized equilibria are strong-Edgeworth equilibria��and thus under
minor assumptions they are also Edgeworth equilibria.

Lemma 7.4. Every personalized equilibrium is a strong-Edgeworth
equilibrium.

Proof. Let x=(x1 , x2 , ..., xm) be a personalized equilibrium. This
guarantees the existence of some list of prices p=( p1 , p2 , ..., pm) # (Lt)m

such that

(i) y # Pi (xi) O �p } y>�p } xi , and

(ii) for every (:1 , :2 , ..., :m) # Rm
+ we have

:
m

i=1

:i�p } x i��p } \ :
m

i=1

:i |i + .

Now assume by way of contradiction that x is not a strong-Edgeworth
equilibrium. That is, there exist non-negative scalars :1 , :2 , ..., :m with
�m

i=1 :i=1 and some (z1 , z2 , ..., zm) # >m
i=1 Pi (xi) satisfying

:
m

i=1

:izi� :
m

i=1

:i| i .

The super-additivity and monotonicity of �p imply

:
m

i=1

:i�p } z i= :
m

i=1

�p } (:iz i)��p } \ :
m

i=1

:iz i +��p } \ :
m

i=1

: i| i+ . (C)
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Now a glance at (i) and (ii) yields

:
m

i=1

:i�p } z i> :
m

i=1

: i�p } xi��p } \ :
m

i=1

: i|i + ,

contrary to (C). Therefore, x is a strong-Edgeworth equilibrium. K

Combining Lemmas 6.3, 7.2, 7.3, and 7.4 we obtain the following result
regarding the relationships among various notions of equilibria that we
have introduced.

Theorem 7.5. We have the following interrelationships between personalized
equilibria, Edgeworth equilibria, and rational allocations:

(1) If conditions (A1.2), (A1.3), (A1.4), (A3), and (A5) are satisfied,
then every Edgeworth equilibrium is a personalized equilibrium.

(2) If conditions (A1.2), (A1.3), (A1.4), (A3), and (A5) are satisfied,
then a rational allocation is an Edgeworth equilibrium.

(3) A personalized equilibrium is an Edgeworth equilibrium.

(4) If conditions (A1.2), (A1.3), and (A1.4) are satisfied, then an
Edgeworth equilibrium is a rational allocation.

We also have the following equivalence result regarding the relationships
among the various notions of equilibria that we have introduced before.

Corollary 7.6. Assume (A1.2), (A1.3) (A1.4), (A3), and (A5) hold.
Then for an allocation x the following statements are equivalent.

(1) x is an Edgeworth equilibrium.

(2) x is a personalized equilibrium.

(3) x is a rational equilibrium.

(4) x is a strong-Edgeworth equilibrium.

Before moving on to the next section, we give an example which brings
out the role of the Decomposition Assumption (A5). The example presents
a rational allocation that is a personalized quasi-equilibrium but fails to be
a personalized equilibrium and individually rational��in particular it is
neither a strong-Edgeworth equilibrium nor an Edgeworth equilibrium.

Example 7.7. The commodity space is R2. There are two consumers
with characteristics:
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Consumer 1. X1=[(x, 0) : x�0], |1=(1, 0), and P1 : X1 �� X1

defined by

P1(x, 0)=[(s, 0) # X1 : s>x].

Consumer 2. X2=[(0, y) : y�0], |2=(0, 1), and P2 : X2 �� X2

defined by

P2(0, y)=[(0, t) # X2 : t> y].

Clearly, |=|1+|2=(1, 1) and C=X1+X2=R2
+ . A straightforward

verification shows that (A1), (A2), (A3), and (A4) are true. Also, an easy
argument shows that (A5) is not satisfied.

Now consider the allocation x=(x1 , x2)=((1, 0), (0, 0)). We claim that
x is a personalized quasi-equilibrium with respect to the list of personalized
prices p=((1, 0), (0, 0)). To see this, we need to verify that �p } (x, y)=x
holds for each (x, y) # R2

+ ; and so the generalized price �p is a linear price
here. Now the properties

(1) �p } |=1>0,

(2) (s, 0) # P1((1, 0)) O �p } (s, 0)=s>1=�p } (1, 0),

(3) (0, t) # P2((0, 0)) O �p } (0, t)=0=�p } (0, 0), and

(4) �p } (:1(1, 0)+:2(0, 0))=:1=:1�p } (1, 0)+:2�p } (0, 0),

guarantee that x is indeed a personalized quasi-equilibrium.
From |2 # P2((0, 0)), we see that x is not individually rational. Hence,

it is neither a core allocation nor an Edgeworth equilibrium. By Lemma 7.4,
x cannot be a personalized equilibrium.

8. EXISTENCE OF EQUILIBRIA

In this section we shall establish the existence of strong-Edgeworth equi-
libria. Our proof will be based upon a limiting argument that uses the following
fixed point theorem. This theorem can be found in the work of Toussaint [57]
and Yannelis and Prabhakar [59]. The finite dimensional version of this
theorem can be found in the proof of Gale and Mas-Colell [28].

Theorem 8.1. Assume that Xi (i=0, 1, ..., m) is a non-empty compact
convex subset of a Hausdorff topological vector space Li and let X=>m

i=0 Xi .
For each i let Pi : X �� Xi be a convex-valued correspondence which is:
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(1) irreflexive, i.e., for each x=(x0 , x1 , ..., xm) # X we have x i � Pi (x),
and

(2) has open lower sections, i.e., the set P&1
i ( y)=[x # X : y # Pi (x)]

is open in X for each y # Xi .

Then there exists some x # X with Pi (x)=< for all i.

For our proof of the existence of strong-Edgeworth equilibrium we shall
employ the following simple result from general topology.

Lemma 8.2. Let S be a subset of a topological space and let some point
x # S. Then x is an interior point of S if and only if every net of X that
converges to x lies eventually in S.

And now we are ready to prove the existence of strong-Edgeworth
equilibria; for related results see [4, 23, 27, 60].

Theorem 8.3. If (A1.1), (A1.2), (A1.4), (A1.5), and (A2) hold, then the
economy has a strong-Edgeworth equilibrium.

Proof. Since the compact convex set co[|1 , |2 , ..., |m] is disjoint from
the {-closed convex cone &L+ , there exists (by the strict separation
theorem) some positive q # L$ satisfying q } |i>0 for each i. This implies
that there is a weak*-dense subset T of L$+ such that: if p # T, then p } |i>0
for each i # I. (To see this, notice that if q # L$+ , then [:q+(1&:) p] } |i>0
holds for each i and all 0<:<1.)

Let D be the family of all convex hulls of the finite subsets of T. Also,
for each i, let Bi be the family of all convex hulls of the finite subsets of Xi

that contain 0 and |i . Put B=>m
i=1 Bi and direct both D and B by

``superset'' inclusion. For each (:, ;) # D_B, where ;=>m
i=1 ; i , define the

correspondences ':;
i , #:;

i : : �� ; i (i=1, 2, ..., m) by

':;
i ( p)=[x # ;i : p } x<p } |i] and #:;

i ( p)=[x # ;i : p } x�p } |i].

Clearly, both correspondences are convex-valued and, in view of

0 # ':;
i ( p)�#:;

i ( p), (a)

they are also both non-empty-valued.
Following the proof in Gale�Mas-Colell [28], for each (:, ;) in D_B,

where ;=>m
i=1 ; i , let us define the convex-valued correspondences

8:;
i : :_; �� ;i (i=1, 2, ..., m) by

8:;
i ( p, x1 , ..., xm)={ ':;

i ( p)
':;

i ( p) & Pi (xi)
if xi � #:;

i ( p),
if x i # #:;

i ( p),
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and the convex-valued correspondence 8:;
0 : :_; �� : by

8:;
0 ( p, x1 , ..., xm)={q # : : q } \ :

m

i=1

xi&|+>p } \:m

i=1

x i&|+= .

(Notice that we use here that each Pi is convex-valued; condition (A1.2).)
Now fix some (:, ;) # D_B, where ;=>m

i=1 ; i . Let X0=: and Xi=;i

for each i=1, ..., m. We claim that the convex-valued correspondences
8:;

i : X=>m
i=0 Xi �� Xi (i=0, 1, ..., m) satisfy the assumptions of Theorem

8.1. To see this, note first that they are irreflexive (for this we must use
Condition (A1.1)) and that 8:;

0 has {-open lower sections.
What needs verification is the {-openness of the lower sections of the

correspondences 8:;
i for i=1, 2, ..., m. To establish this, fix i and let

( p, x1 , x2 , ..., xm) # (8:;
i )&1 ( y), i.e., y # 8:;

i ( p, x1 , x2 , ..., xm). Also, assume
that a net [( p+, x+

1 , ..., x+
m)] of :_; satisfies

( p+, x+
1 , ..., x+

m) w�
+

( p, x1 , x2 , ..., xm).

Each ;i lies in a finite dimensional subspace of L, so we have x+
i

_(L, L$)
+ x i

for each i=1, ..., m. Similarly, p+ _(L$, L)
+ p.

By Lemma 8.2 it suffices to show that ( p+, x+
1 , ..., x+

m) # (8:;
i )&1 ( y) holds

true for all + eventually large. We distinguish two cases.

Case I. xi # #:;
i ( p). This implies y # ':;

i ( p) & Pi (x i). In particular, we
have p } y<p } |i . Since (according to Condition (A1.5)) Pi (xi) has weakly
open lower sections in Xi and xi # P&1

i ( y), there exists some +0 such that
p+ } y<p+ } |i and x+

i # P&1
i ( y) for all +�+0 . That is, y # ':;

i ( p+) & Pi (x+
i )

for all +�+0 . Now assume +�+0 . If x+
i # #:;

i ( p+), then

y # ':;
i ( p+) & Pi (x+

i )=8:;
i ( p+, x+

1 , ..., x+
m).

If x+
i � #:;

i ( p+), then

y # ':;
i ( p+)=8:;

i ( p+, x+
1 , ..., x+

m).

In other words, ( p+, x+
1 , ..., x+

m) # (8:;
i )&1 ( y) for all +�+0 .

Case II. xi � #:;
i ( p). Notice that xi � #:;

i ( p) is equivalent to p } xi>p } |i .
In this case, we also have y # ':;

i ( p) or p } y<p } |i , and y # Pi (xi) or
xi # P&1

i ( y). Since the : and the ; both lie in finite dimensional spaces and
the valuation is jointly continuous on finite dimensional spaces and P&1

i ( y)
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is a weakly open subset of Xi , it follows that there exists some index +1

such that

p+ } x+
i >p+ } |i , p+ } y<p+ } |i , and x+

i # P&1
i ( y)

for all +�+1 . Therefore, x+
i � #i ( p+) and

y # ':;
i ( p+) & Pi (x+

i )=8:;
i ( p+, x+

1 , ..., x+
m),

for all +�+1 .
By Theorem 8.1 for each (:, ;) # D_B there is some ( p:;, x:;

1 , ..., x:;
m ) in

:_; such that

8:;
i ( p:;, x:;

1 , ..., x:;
m )=<, for each i=0, 1, ..., m.

Since each ':;
i ( p:;) is, in view of (a), never empty, the definition of 8:;

i

implies that x:;
i # #:;

i ( p:;) and

8:;
i ( p:;, x:;

1 , ..., x:;
m )=':;

i ( p:;) & Pi (x:;
i )=<, (b)

for each i=1, ..., m. It follows that

p:; } x:;
i & p:; } | i�0. (c)

Next, we claim that z # Pi (x:;
i ) & ; i implies p:; } z>p:; } | i . Indeed, if

z # Pi (x:;
i ) & ; i , then p:; } z<p:; } |i cannot be true. Otherwise, we must

have z # ':;
i ( p:;) which violates (b). Moreover, p:; } z= p:; } |i cannot be

true either. Otherwise, if equality holds, then (since, according to Condi-
tion (A1.4), Pi (x:;

i ) is an open subset of Xi for some linear topology) for
some 0<*<1 we must have *z # Pi (x:;

i ), which in view of p:; } |i>0
(recall here that p:; # T ) implies p:; } (*z)<p:; } z= p:; } |i , contrary to (b)
again. Since p:; } (&x)�0 for each x # L+ , the preceding conclusion shows
that

co _.
m

i=1

([Pi (x:;
i ) & ;i]&|i)&& (&L+)=<. (d)

Since 8:;
0 ( p:;, x:;

1 , ..., x:;
m )=<, it follows from the definition of 8:;

0 and
(c) that for each q # : we have

q } _ :
m

i=1

(x:;
i &|i)&�p:; } _ :

m

i=1

(x:;
i &|i)&= :

m

i=1

[ p:; } x:;
i & p:; } |i]�0.

(e)

Now fix ; # B and consider the net [(x:;
1 , x:;

2 , ..., x:;
m )]: # D of the {-compact

subset ;. If (x;
1 , ..., x;

m) # ; is a {-accumulation point of this net, then it follows
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from (e) that q } [�m
i=1 (x;

i &|i)]�0 for each q # T, and consequently for all
q # L$+ . This implies �m

i=1 (x;
i &|i) # &L+ or that (x;

1 , ..., x;
m) is an alloca-

tion.9 Now we claim that

co _.
m

i=1

([Pi (x;
i ) & ;i]&|i)&& (&L+)=<. (f)

To see this, assume by way of contradiction that

co _.
m

i=1

([Pi (x;
i ) & ;i]&|i)&& (&L+){<.

So, there exist ui # Pi (x;
i ) & ;i (i=1, 2, ..., m) and a convex combination u

of the ui&|i satisfying u=�m
i=1 *i (ui&|i)�0. Since Pi has weakly open

lower sections, we see that the ui belong to Pi (x:;
i ) & ;i for all eventually

large :, which contradicts (d).
Finally, since (in view of Condition A2) A| is a weakly compact set and

the net [(x;
1 , x;

2 , ..., x;
m)]; # B lies in A| , there exists an accumulation point

(x1 , ..., xm) of this net in A| . In particular, we have �m
i=1 (xi&|i)�0. Also

since P&1
i ( y) is weakly open in X i for each y # Xi , we infer (as before) from

(f) that

co _.
m

i=1

[Pi (x i)&| i]&& (&L+)=<.

This shows that the allocation (x1 , x2 , ..., xm) is a strong-Edgeworth
equilibrium. K

9. APPLICATIONS

In this section we provide some applications of our main results.
Subsection 9.1 demonstrates that the most important results on the exist-
ence of equilibrium in the literature are easy consequences of our analysis.
Subsection 9.2 indicates how one can apply our results to differential infor-
mation economies. Subsection 9.3 offers an alternative interpretation to our
model in terms of a discriminatory price auction for the total endowment
of resources.
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9.1. The Walrasian Model

Our objective here is to demonstrate that the most important results on
the existence of equilibrium in the literature are easy consequences of our
analysis. Throughout the discussion in this section, we assume that:

(1) L is a vector lattice,

(2) Xi=L+ for each i, and

(3) L$ is a vector sublattice of the order dual Lt.

In this case, the generalized price �p of a list of order bounded personalized
prices p=( p1 , p2 , ..., pm) coincides with the linear functional

\�
m

i=1

pi+
+

= p1 6 p2 6 } } } 6 pm 6 0 # Lt,

i.e., �p } x=(�m
i=1 pi)

+ (x) for each x # L+ . Notice that �p need not be
{-continuous. However, if pi # L$ for each i, then (since L$ is a vector sub-
lattice of Lt) we automatically have �p=(�m

i=1 pi)
+ # L$. Moreover, it

should be noticed that in this case:

(:) (A4) (see Lemma 3.4) and (A5) are automatically true, and

(;) (A2) is true if and only if the order interval [0, |] is weakly
compact.

Let us recall the standard properties of a preference relation (i.e., a
complete and transitive relation) p on L+ .

(a) a bundle v>0 is desirable for p if x+:vox for each x # L+

and all :>0,

(b) p is convex, if the set [ y # L+ : ypx] is convex for each
x # L+ ,

(c) p is monotone (resp. strictly monotone), if x> y�0 implies
xpy (resp. xoy),

(d) p is locally non-satiated, if for each x # L+ and each {-neighbor-
hood V of x there exists some y # V & L+ such that yox,

(e) p is upper-semicontinuous (resp. lower-semicontinuous) if for each
x # L+ the set [ y # L+ : ypx]) (resp. the set [ y # L+ : xpy]) is closed,
and

(f) p is continuous, if it is both upper and lower semicontinuous.
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Now let us make the connection between the above standard assump-
tions and our properties. If p is a preference on L+ , then we define its
strict preference correspondence P: L+ �� L+ via the formula

P(x)=[ y # L+ : yox].

We have the following relationships between the properties of p and the
properties of its strict preference correspondence P.

Non-emptiness of the values. If p is locally non-satiated (in particular
if p has a desirable bundle), then P(x){< for each x # L+ .

Transitivity. P is a transitive correspondence.

(A1.1) Irreflexivity. P is irreflexive.

(A1.2) Convexity. If p is convex, upper-semicontinuous and locally
non-satiated, then P(x) is a non-empty convex set for each x # L+ .

If y1 ox, y2 ox and 0�:�1, then the set

[z # L+ : y1 oz and y2 oz]

is a neighborhood of x in L+ , and so there exists some z1 # L+ satisfying
y1 oz1 ox and y1 oz1 ox. Now notice that :y1+(1&:) y2 pz1 ox.

(A1.3) Strict monotonicity. If p is strictly monotone, then P is
strictly monotone.

(A1.4) Open values. If p is lower-semicontinuous, then P has
{-open values in L+ .

This follows immediately from the identity

P(x)=[ y # L+ : yox]=L+"[z # L+ : xpz].

(A1.5) Weakly open lower sections. If p is convex and upper-semi-
continuous, then P has weakly open lower sections.

To see this, let y # L+ . Then we have

P&1( y)=[x # L+ : y # P(x)]

=[x # L+ : yox]=L+"[z # L+ : zpy].

Since the set [z # L+ : zpy] is a {-closed convex subset, it follows that it
is also weakly closed��recall here that the {-closed convex subsets of L
coincide with the weakly closed convex subsets of L. This implies that
P&1( y) is a weakly open subset of L+ .
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(A3) Properness. If p is |-uniformly {-proper in the sense of Mas-
Colell [41, 42], then P is ( 1

m |, 1
m |, ..., 1

m |)-proper as in (A3); for a proof
see [8].

In the first application of our results, we shall obtain as corollaries the
second welfare theorems of Mas-Colell [41] and Mas-Colell and Richard
[43] (see also [1]). K

Corollary 9.1. If (A1.2) (A1.3), and (A3) are valid, then every weakly
Pareto optimal allocation is a Walrasian valuation equilibrium.

Proof. Let x=(x1 , x2 , ..., xm) be a weakly Pareto optimal allocation.
According to Theorem 5.1(1), there exists some ( p1 , p2 , ..., pm) # (L$)m such
that x is a personalized valuation equilibrium with respect to the
generalized price 0<�p=(�m

i=1 pi)
+ # L$. This implies immediately that x

is a Walrasian valuation equilibrium with respect to the non-zero {-con-
tinuous linear price �p . K

The well-known existence of equilibrium theorems of Bewley [16],
Mas-Colell [41] and Mas-Colell and Richard [43] (which include as
corollaries the classical Arrow�Debreu�McKenzie theorem) also follow
from our results��with both order and unordered preferences.

Corollary 9.2. If (A1), (A2), and (A3) hold, then the economy has a
Walrasian equilibrium.

Proof. By Theorem 8.3 there exists a strong-Edgeworth equilibrium
x=(x1 , x2 , ..., xm). This strong-Edgeworth equilibrium x is, by Theorem
7.6, also a personalized equilibrium. In turn, by Theorem 6.3(2), x is a
personalized equilibrium with respect to a non-zero list of continuous
personalized prices p=( p1 , p2 , ..., pm) # (L$)m. Clearly �p=(�m

i=1 pi)
+ is a

non-zero {-continuous positive linear functional on L such that: y # Pi (x i)
implies �p } y>�p } xi .

Now notice that from �p } |i��p } xi , �m
i=1 xi�|=�m

i=1 |i , and the
linearity of �p , it follows that �p } xi=�p } |i . Since �p } |>0, the above
show that (x1 , x2 , ..., xm) is a Walrasian equilibrium with respect to the
(linear) price �p . K

The infinite dimensional analogue of the Debreu�Scarf core equivalence
theorem [22]��as formulated in [4]��is also true with or without local
solidness and with or without ordered preferences (see Peleg and Yaari
[52] for the commodity space of real sequences, Aliprantis et al. [4] for
topological vector lattices, and Tourky [56] for vector lattices with vector
lattice price spaces).
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Corollary 9.3. If (A1) and (A3) hold, then an allocation is an Edgeworth
equilibrium if and only if it is a Walrasian equilibrium.

Proof. Let x be an allocation. If x is a Walrasian equilibrium, then it
should be obvious that it is also an Edgeworth equilibrium. For the
converse, assume that x is an Edgeworth equilibrium. Then, by Theorem 7.6,
x is a personalized equilibrium. Now a glance at the proof of Corollary 9.2
guarantees that x is a Walrasian equilibrium. K

9.2. Economies with Differential Information

In this section, we shall indicate how one can apply our results to dif-
ferential information economies; see [61]. To do this, we need to describe
a differential information economy in the framework of our analysis. First,
let us look at its commodity space. The commodity space depends on an
underlying Banach space Y of physical commodities. We shall assume that
Y is an ordered Banach space with topological dual Y$. We shall also
assume that Y$ possesses the Radon�Nikody� m property. The nature of
the (exogenous) uncertainty is given by a probability space (0, F, +). For
instance, if there are n physical commodities, then Y=Rn and is ordered by
its canonical ordering. Now the commodity space is the space L1(+, Y), the
Banach space of all Bochner integrable functions (equivalence classes) from
0 into Y. The space L1(+, Y) is an ordered Banach space with positive
cone

L+
1 (+, Y)=[x # L1(+, Y) : x(|)�0 for +-a.e. | # 0].

As usual, the norm dual of L1(+, Y) is identified with the space L�(+, Y$);
see [18, Theorem 1, p. 98].

The m consumers have asymmetric information. The ith individual's
private information is given by a sub _-algebra Fi of F. For simplicity we
assume that �m

i=1 Fi=F. The ith consumer's consumption is limited by
his incomplete information. That is, the ith consumer can only choose
Fi -measurable consumption plans and his consumption set is

Xi=[x # L+
1 (+, Y) : x is Fi-measurable].

Clearly, each Xi is a closed convex subcone of L+
1 (+, Y). Alternatively, one

can think of Xi as being the positive cone of the space L1(+ | Fi , Y).
The initial endowment |i of each consumer i is a vector in Xi . That is,

|i is also individually measurable. Each consumer i is also given a state
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dependent utility function ui : 0_Y+ � R. We assume the standard condi-
tions which guarantee that the ex ante expected utility function Ui : Xi � R
of consumer i is given by

Ui (x)=|
0

ui (|, x(|)) d+(|).

The expected utility function Ui for consumer i induces in the standard way
a preference correspondence Pi : Xi �� Xi . That is,

Pi (x)=[y # Xi : Ui ( y)>Ui (x)].

Now the differential information economy E is the m-tuple

E=[(Xi , |i , Pi , Fi , (0, F, +)): i=1, 2, ..., m].

Before stating our result, let us define the notion of an individually measurable
list of personalized prices. We shall say that a list of personalized prices
( p1 , p2 , ..., pm) # L�(+, Y$)m is individually measurable whenever p i is
Fi -measurable for each i. This means that pi contains no more information
than the i th consumer's private information.

Definition 9.4. Let E be a differential information economy. An
allocation x # >m

i=1 X i is said to be:

(1) An individually measurable personalized valuation equilibrium, if
there exists a list of individually measurable personalized prices p # L+

�(+, Y$)m

for which x is a personalized valuation equilibrium.

(2) An individually measurable personalized quasi-equilibrium, if there
exists a list of individually measurable personalized prices p in L+

�(+, Y$)m

for which x is a personalized quasi-equilibrium.

(3) An individually measurable personalized equilibrium, if there exists
a list of individually measurable personalized prices p # L+

�(+, Y$)m for
which x is a personalized equilibrium.

Notice that the individually measurable personalized equilibrium is in
the spirit of Lucas [34]. In particular, in this differential information
economy each agent has a personalized price that reflects her private infor-
mation. Despite the fact that each agent has a different price valuation, the
generalized price (equilibrium value in the economy) is the same for every
consumer and can be seen as arising from the behavior of a fictitious
auctioneer who maximizes revenue. Such an interpretation of our notion
of personalized equilibrium will be the subject of our next application.
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Furthermore, since agents maximize ex ante utility functions, consumers do
not update their personalized prices using the generalized price. To include
updating or signaling one needs to use interim utility functions.

We are now ready to interpret our results in the differential information
setting.

Theorem 9.5. If E is a differential information economy satisfying
(A1.2), (A1.3), and (A3), then the following hold true:

(1) Every Pareto optimal allocation is an individually measurable
personalized valuation equilibrium.

(2) An Edgeworth equilibrium is an individually measurable personalized
quasi-equilibrium.

(3) A Walrasian equilibrium with respect to a price p # L+
�(+, Y$) is an

individually measurable personalized equilibrium for the list of personalized
prices

(E( p | F1), E( p | F2), ..., E( p | Fm)).

Proof. Let p=( p1 , p2 , ..., pm) # L�(+, Y$)m be a list of personalized
prices. Denote by qi the conditional expectation E( pi | Fi) for i=1, 2, ..., m;
and let q=(q1 , q2 , ..., qm). Now notice that q i } x= pi } x for every x # Xi=
L+

1 (+ | Fi , Y). It is therefore easy to see that �p=�q . Thus, an allocation
that is a personalized (valuation) equilibrium for �p must also be a
personalized (valuation) equilibrium for �q . Statements (1) and (2) now
follow easily from Theorems 5.1 and 7.5.

For statement (3) notice that for each x # Xi and j{i we have

E( p | Fi) } x= p } x�E( p | Fj) } x.

Furthermore, letting q=(E( p | F1), E( p | F2), ..., E( p | Fm)) it is easy to see
that for each i and each x # Xi we have �q } x=E( p | Fi) } x= p } x. K

We close this section with a simple illustration of a differential informa-
tion economy with non-linear generalized prices.

Example 9.6. In this model there is one physical commodity and there
are two states of the world, i.e., 0=[a, b]. Therefore, the commodity space
is R2.

There are two consumers. The first consumer can distinguish between
realizations of states a and b and the second consumer cannot distinguish
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FIG. 1. There are two states of the world and one physical commodity. The first
consumer can distinguish between the two states his consumption set is R2

+. The second
cannot distinguish between the two states and her consumption set is the 45% line. In this case
�p need not be linear.

between realizations of states a and b. That is F1=[<, [a, b], [a], [b]]
and F2=[<, [a, b]]. This clearly implies that X1=R2

+ and

X2=[(x, x) # R2
+ : x�0].

The consumption cones X1 and X2 can be seen in Fig. 1.
Now if the list of personalized prices is p=((1, 1), (2, 1)), then a simple

exercise shows that �p is given by

�p } (x, y)=x+ y+min[x, y].

This functional is non-linear and its level curves are shown in Fig. 1. If, on
the other hand, the list of personalized prices is p=((1, 3), (2, 2)), then �p

is now a linear functional given by the vector (1,3), i.e.,

�p } (x, y)=x+3y.

In this case �p is not the pointwise supremum of the list of personalized
prices.
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9.3. Discriminatory Price Auctions

There is another interesting interpretation of the model studied in this
paper. In this interpretation, the principal real-world analogue of our
model is the Treasury Bill Auction. In such an auction, the auctioneer
announces an available quantity of bills and each player bids a pair com-
prising a price and an asking quantity. The auctioneer then orders the bids
according to their prices, and a quantity of bills no more than the asking
quantity is given to each player starting with the player who bids the
highest price. Most importantly, each player pays the price she bids.10 The
Treasury Bill Auction has been the subject of theoretical, empirical, and
experimental investigation and debate; see for instance Back and Zender
[14], Bolten [17], Friedman [24�26], Goswami et al. [30], Goldstein
[29], Menezes [44], and Menezes and Monteiro [45]. For surveys that
compare the various types of auctions see Milgrom [46, 47].

Our model can be viewed as an abstraction of the Treasury Bill Auction
to the case of a general equilibrium model with more than one commodity.
Consumers, who do not know the total endowment of resources, bid a pair
comprising a consumption set and a linear price system. The auctioneer
divides the total endowment into a consumable allocation and each con-
sumer pays the price she bids; see Fig. 2 where very general consumption
sets are shown. Taking a list of price-bids as given, we calculate a value for
each commodity bundle. This value is the maximum revenue that the auctioneer
can obtain by dividing the commodity bundle into consumable allocations.
This value function is precisely our generalized prices, which need not be
linear. We call an allocation that maximizes revenue for the auctioneer an
auctioneer's allocation.

Now we can reinterpret our results. As we have already shown, an
allocation is weakly Pareto optimal if and only if there exists a list of
price-bids for which the allocation is an auctioneer's allocation and the
following supporting property holds:

(C) Consumers have no incentive to re-auction their assigned bundle.
That is, given the list of price-bids, the revenue from re-auctioning an
assigned bundle is less than the value of any preferred bundle.
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FIG. 2. Agents bid a pair comprising a consumption set and a linear price system. The
auctioneer divides the total endowment into a consumable allocations and maximizes his
revenue.

Furthermore, an allocation is an Edgeworth equilibrium if and only if there
exists some list of price-bids for which the allocation is an auctioneer's
allocation, the supporting condition (C) is satisfied, and the following
condition holds:

(CC) Coalitions��in the limit of all replications of the economy��have
no ``nominal '' incentive to auction their total endowments. That is, given the
list of price-bids, the revenue from auctioning the coalition's endowments is
not greater than the total revenue from re-auctioning each member's assigned
bundle.

Interestingly, condition (CC) suggests that if all commodities are auc-
tioned in a discriminatory price auction, perfect competition prevails (there
are many consumers), and collusion is pervasive (in the above sense), then
allocative outcomes will be in the core.11
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This auction theoretic interpretation leaves open the question of whether
our personalized equilibria are Nash implementable. That is, can the
auctioneer��who may prefer Pareto optimal or Walrasian allocations but
does not know individual preferences��design an auction whose choice
space contains lists of price-bids and whose Nash equilibria are auction
equilibria? Given the scope of the results in the present paper, such an
investigation is likely to lead to a particularly palatable underpinning to
Walrasian equilibrium.

Finally, let us draw a brief connection between our non linear prices and
the revenue function of the Treasury Bill auctioneer. In a discriminatory
price Treasury Bill Auction with m players, the auctioneer announces a
minimum price p0>0 and an available quantity of bills Q>0. Subse-
quently, each player i bids a pair ( pi , Qi), where pi�p0 is her price-bid and
0<Qi�Q is her asking quantity. After receiving the bids, the auctioneer
orders them according to their prices��without loss of generality we can
assume that p1�p2� } } } �pm�p0 . Afterwards, a quantity xi of bills (less
than or equal to the asking quantity of bills Qi) is given to each player i
which is determined by the auctioneer following certain rules that will be
described below.

We shall say that an amount A of treasury bills is distributed propor-
tionally (or that it is proportionally rationed ) among a group of bidders S
if each bidder i # S receives the amount of bills (Q i �� j # S Q j)A.

The total quantity of treasury bills handed out to the players by the
auctioneer is

:
m

i=1

xi=min {Q, :
m

i=1

Qi = .

We distinguish three cases.

Case I. �m
i=1 Qi�Q. In this case each bidder i gets the quantity of treasury

bills xi=Qi and the total revenue of the auctioneer is �m
i=1 pixi=�m

i=1 piQi .

Case II. Q1>Q. In this case the auctioneer distributes proportionally
the amount Q among the group of bidders with the highest bidding price
p1 . The remaining bidders get zero. The revenue of the auctioneer in this
case is �m

i=1 p ix i= p1Q.

Case III. Q1�Q and �m
i=1 Qi>Q. Let l be the unique integer

1�l<m such that �l
i=1 Qi�Q and �l+1

i=1 Qi>Q. We distinguish two
subcases.

(1) pl>pl+1 . In this case, the auctioneer hands out the bills

x1=Q1 , x2=Q2 , ..., xl=Ql ,
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gives the quantity of bills Q&�l
i=1 Qi proportionally to the group of

players with the price pl+1 , and gives nothing to the remaining bidders.

(2) pl= pl+1 . In this case, the list of prices looks like

p1�p2� } } } �pk&1>pk= pk+1= } } } = pl

= pl+1= } } } = pl+r>pl+r+1� } } } �pm .

The auctioneer now hands out the following bills to the players,

x1=Q1 , x2=Q2 , ..., xk&1=Qk&1 ,

distributes the quantity of bills Q&�k&1
i=1 Qi proportionally to the group of

players with price pl , and gives zero to the remaining bidders.

Notice that in both subcases (1) and (2) above the auctioneer gets the
revenue

:
m

i=1

pi xi= :
l

i=1

p iQi+ pl+1 \Q& :
l

i=1

Qi + .

It turns out that in all cases the revenue obtained by the auctioneer is the
maximum revenue that the auctioneer can achieve.

Lemma 9.7. The vector of bills (x1 , x2 , ..., xm) maximizes the revenue of
the auctioneer; i.e., if another vector of treasury bills ( y1 , y2 , ..., ym) satisfies
0� yi�Qi for each i and �m

i=1 yi�Q, then

:
m

i=1

pi yi� :
m

i=1

pix i .

Moreover, if p1>p2> } } } >pm holds, then (x1 , x2 , ..., xm) is the only
maximizer of the revenue.

Proof. Assume that a vector of bills ( y1 , y2 , ..., ym) satisfies 0� yi�Q i

and �m
i=1 yi�Q. If Q1>Q, then

:
m

i=1

piyi�p1 \ :
m

i=1

y i+�p1 Q= :
m

i=1

pi xi .

Also, if �m
i=1 Qi�Q, then xi=Qi for each i and �m

i=1 pi yi��m
i=1 pixi is

trivially true.
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So, we need to consider the case Q1�Q and �m
i=1 Qi>Q. Let l be the

unique integer 1�l<m satisfying �l
i=1 Qi�Q and �l+1

i=1 Qi>Q. Then
�m

i=l+1 y i�Q&�l
i=1 yi , and so

:
m

i=1

piyi = :
l

i=1

piy i+ :
m

i=l+1

piyi

� :
l

i=1

piyi+ pl+1 \ :
m

i=l+1

yi +� :
l

i=1

piy i+ pl+1 \Q& :
l

i=1

yi +
= :

l

i=1

piyi+ pl+1 \Q& :
l

i=1

Qi++ pl+1 _ :
l

i=1

(Qi& yi)&
� :

l

i=1

piyi+ pl+1 \Q& :
l

i=1

Qi++ :
l

i=1

pi (Qi& yi)

= :
l

i=1

piQ i+ pl+1 \Q& :
l

i=1

Qi+= :
m

i=1

pi xi .

For the last part, assume p1>p2> } } } >pm>0. In this case, observe
that the auctioneer uses the following recursive process to determine the
quantities of treasury bills that must give to the players:

(1) Player 1 is given a quantity of x1=min[Q1 , Q] bills and pays p1x1 .

(2) If players 1, 2, ..., i&1 are given the quantity of bills x1 , x2 , ..., xi&1 ,
then player i>1 is given the quantity of bills

Qi if Qi�Q& :
j<i

xj ,

xi={Q& :
j<i

x j if 0<Q& :
j<i

xj<Qi ,

0 if Q& :
j<i

xj�0.

Now let z=(z1 , z2 , ..., zn) satisfy 0�zi�Q i for each i, �n
i=1 zi�Q, and

:
m

i=1

pi zi= :
m

i=1

pixi . (C)

We shall show that zi�xi holds for each i, which, in view of our assump-
tion about the prices and (C), will guarantee that zi=xi for each i.

To establish this, assume by way of contradiction that zi>xi holds for
some i, and let k=min[i : zi>xi]. From z1�[Q1 , Q]=x1 , it follows that
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1<k�m. We claim that for some 1� j<k we must have zj<x j . If this
claim can be established, then we get a contradiction as follows. Pick some
=>0 satisfying 0<zj+=<xj and zk&=>xk�0, and for each i define

zi+= if i= j,
yi={zk&= if i=k,

zi otherwise.

Clearly, 0� yi�Qi for each i and �m
i=1 yi=�m

i=1 z i�Q. Now note that
pj>pk implies

:
m

i=1

piyi= :
m

i=1

pizi+( p j& pk) => :
m

i=1

p izi= :
m

i=1

pixi ,

which is a contradiction.
To finish the proof, we shall prove that zj<xj must be true for some

1� j<k. If this is not the case, then zi=xi holds for all 1�i<k. Now
let us consider the quantity of bills Q&�i<k xi�0. If Q&� i<k x i�Qk ,
then zk>xk=Qk , which is impossible. So, 0�Q&� i<k xi<Q. If
Q&�i<k xi=0, then xk=0, and so

:
m

i=1

zi� :
i<k

z i+zk= :
i<k

x i+zk=Q+zk>Q,

which is also impossible. Finally, if 0<Q&�i<k x i<Q, then xk=
Q&�i<k xi , and

:
m

i=1

zi� :
i<k

x i+zk> :
i<k

x i+xk=Q,

which is a contradiction too. Hence, zj<xj must be true for some 1� j<k,
and the proof of the theorem is complete. K

The Treasury Bill Auction Lemma 9.7 can now be restated using the
preceding terminology as follows. (The quantities Qi , xi , and pi are as
above. L is our commodity space and Xi denotes a consumption set.)

Theorem 9.8. If L=R and Xi=[0, Qi] for each i, then the total
revenue of the Treasury Bill Auction is equal to the value of Q under �p .
That is,

�p } Q= :
m

i=1

p i } x i .
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In particular, x=(x1 , x2 , ..., xm) is an auctioneer's allocation for the list of
price-bids p=( p1 , p2 , ..., pm). Moreover, if p1>p2> } } } >pm holds, then x
is the only auctioneer's allocation for p.
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