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1. Introduction

This paper investigates the existence of a monotone pure-strategy Bayesian-Nash equilibrium in an n-player single-prize 
contest model in which the contestants have continua of possible types and bids, atomless type distributions, and their 
valuations and costs might depend not only on their own bids and types but also on other bidders’ bids and types. The 
model covers both perfectly and imperfectly discriminating contests. The two classes of contests are quite different from the 
point of view of equilibrium existence. In perfectly discriminating contests, winners’ bid ties tend to be discontinuity points 
of their ex-post payoff functions, whereas in imperfectly discriminating contests, the contestants’ ex-post payoff functions 
have only one point of discontinuity, the zero vector of bids. However, since the only difference between the two types 
of contests is in the probabilities of success, their many essential features are similar from the point of view of economic 
theory, which has found reflection in this paper’s encompassing results.

In contests with incomplete information, affiliation of types is not much of help in establishing the single-crossing prop-
erty of each contestant’s interim payoff function in her own bid and type. Instead, Krishna and Morgan’s (1997) monotonicity 
condition – Condition M in Siegel’s (2014) terminology – is often employed. According to Condition M (Condition WM), each 
contestant’s fictitious valuation (i.e., the product of her valuation and the conditional density of the other contestants’ types 
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given her type) is strictly increasing (resp., weakly increasing) in her own type.1 If a contestant’s valuation does not depend 
on bids and her cost depends only on her own bid, then Condition WM implies that the contestant’s interim payoff function 
has increasing differences in her own bid and type.2

In order to study monotone pure-strategy equilibria of contests in which the contestants’ valuations depend not only on 
types but also on bids, we additionally assume increasing differences of each contestant’s fictitious valuation in her own 
bid and type. If the contestants’ costs depend on types and/or other players’ bids, then additional conditions regarding the 
cost functions are needed as well. We provide three possible options to choose from for the conditions, with one of them 
requiring the log-supermodularity of the density function of the contestants’ types.

This paper’s approach to establishing equilibrium existence in contests extends that employed by Prokopovych and Yan-
nelis (2019) for studying equilibrium existence in first-price auctions with incomplete information. First, we prove the 
interim payoff security of the contest and the continuity of each contestant’s interim payoff function in the other con-
testants’ strategies and her own type. Then, we provide conditions under which each contestant’s interim payoff function 
exhibits increasing differences in her bid and type.3 The most important of the conditions is Condition WM. If, for example, 
an all-pay auction does not satisfy the condition, the single-crossing property tends to fail for its bidders’ interim payoff 
functions when their types are highly correlated.

We consider the truncated multi-valued selections of the ex-ante approximate best-reply correspondences that are de-
fined on the Cartesian product of the other contestants’ sets of nondecreasing strategies and consist of interim nondecreasing 
approximate best replies. Since the multi-valued selections possess the local intersection property and their values are 
nonempty H-convex sets in a compact H-space of uniformly bounded, nondecreasing strategies, the existence of a monotone 
pure-strategy approximate interim Bayesian-Nash equilibrium follows from a generalization of Browder’s (1968) fixed-point 
theorem for correspondences with open-lower sections (Theorem 1).4 H-convexity, not contractibility itself, is used in this 
paper since the contestants’ ex-post payoff functions are not continuous in bids.5 Then, in Theorem 2, we show that every 
converging sequence of monotone pure-strategy interim 1

k -equilibria converges to a pure-strategy Bayesian-Nash equilib-
rium, as k tends to infinity, without making any additional assumptions on the strict monotonicity of the contestants’ payoff 
functions in own type. Finally, we establish the better-reply security of the ex-ante generalized contest game in nonde-
creasing strategies. However, in general, Reny’s (1999) equilibrium existence theorem can not be applied to the generalized 
contest since each contestant’s ex-ante payoff function is not necessarily quasiconcave in her own strategy.

The structure of the paper is as follows. Section 2 provides an overview of existing literature on equilibrium existence 
in contests with incomplete information. Section 3 describes the generalized contest model studied in this paper. The three 
examples of contests in Section 4 illustrate the basic premises of this paper’s model. Section 5 investigates continuity-
related properties of the contestants’ interim payoff and value functions. A number of properties of the interim and ex-
ante approximate best-reply correspondences are studied in Section 6. Section 7 presents two equilibrium existence results 
establishing that the generalized contest has a monotone pure-strategy Bayesian-Nash equilibrium. In Section 8, we show 
that, though the generalized contest is better-reply secure, a direct application of Reny’s (1999) theorem might be hampered 
by the absence of the quasiconcavity of each contestant’s ex-ante payoff function in her own strategy. The Appendix contains 
a number of proofs.

2. Related literature on equilibrium existence in Bayesian games

In this section, we describe several strands of literature on equilibrium existence in Bayesian games most closely related 
to this paper’s results.

First-order optimality conditions are often employed to characterize bidding behavior and market outcomes in Bayesian 
auction games with continuous type and bid spaces. Amann and Leininger (1996) study the existence and uniqueness of a 
monotone differentiable Bayesian-Nash equilibrium in a class of asymmetric two-player all-pay auctions with independent 
private values. Krishna and Morgan (1997) extend Milgrom and Weber’s (1982) seminal analysis of symmetric auctions 
with affiliated values to all-pay auctions with several bidders. For a large class of two-player bidding games with a reserve 
price and affiliated types, Lizzeri and Persico (2000) characterize equilibrium inverse bidding functions as the solution to a 
system of differential equations and investigate the existence and uniqueness of a monotone differentiable equilibrium. Lu 
and Parreiras (2017) propose conditions weaker than Conditions WM and M for the existence of a monotone pure-strategy 
equilibrium in a two-player asymmetric all-pay auction and extend Amann and Leininger’s (1996) results to the case of 
interdependent valuations and correlated types.

1 Fictitious valuations can be interpreted as contestants’ valuations in a related fictitious contest with independent types (see Lu and Parreiras, 2017, p. 
80).

2 See, e.g., Vives (1990), Vives (1999), and Van Zandt and Vives (2007) for applications of the property of increasing differences in Bayesian games.
3 There is no need in employing tieless increasing differences in our model, in contrast to tieless single-crossing needed for first-price auctions (see Reny 

and Zamir, 2004).
4 See, e.g., Yannelis and Prabhakar (1983), Yannelis (1991), McLean (2021), and Khan and Uyanik (2021) for some applications and extensions of Browder’s 

(1968) fixed-point theorem in economics.
5 See Reny (2011) for general equilibrium existence results employing contractibility of best-reply sets in Bayesian games.
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Since many classical results in auction theory were first established using derivatives, the literature on auctions with 
continuous bid and type spaces is considerably more voluminous than that for discrete auctions, even though real-world 
auctions are discrete. Games with discrete bid and/or type spaces are often considered and used as approximations to con-
tinuous games, even though these two classes of games may have drastically different outcomes. For example, in the case 
of complete information – when type spaces are singletons – all-pay auctions typically have no pure-strategy Nash equilib-
rium if the bidders have different values. This is also the case for all-pay auctions with discrete type spaces. Consequently, 
equilibrium existence in them is usually studied in behavioral or distributional strategies. Endogenous tie-breaking rules are 
also employed to achieve the existence of pure-strategy Bayesian-Nash equilibria in all-pay auctions (see, e.g., Araujo and 
de Castro, 2009).

Studies of contests with discrete type spaces often benefit from the techniques developed for the analysis of games 
with complete information.6 Siegel (2014) and Rentschler and Turocy (2016) rely on indifference conditions to solve for a 
behavioral equilibrium in asymmetric two-player all-pay auctions with discrete type spaces. Einy et al. (2015) describe a 
class of better-reply secure, generalized concave Tullock contests with at most countable sets of types to which Reny’s (1999)
equilibrium existence theorem can be applied. Ewerhart and Quartieri (2020) apply Nikaido and Isoda’s (1955) equilibrium 
existence theorem to the agent normal form of truncated continuous games and then provide sufficient conditions for the 
existence of a unique pure-strategy Bayesian-Nash equilibrium in imperfectly discriminating contests with finite type spaces 
and budget caps on the sets of admissible efforts.

Finite-action approximations of Bayesian games with continuous type and action spaces are often used in the studies 
of equilibrium existence in Bayesian games. If the action spaces are finite, the ex-post payoff functions are continuous 
in actions, which makes the equilibrium existence problem considerably more tractable. Athey (2001) employs Kakutani’s 
(1941) fixed point theorem to establish the existence of monotone pure-strategy equilibria in finite-action approximations 
of Bayesian games. McAdams (2003) extends Athey’s results to settings with multidimensional type and action spaces. 
After establishing the contractability of the players’ sets of monotone best replies in Bayesian games where the ex-post 
payoff functions are continuous in actions, Reny (2011) employs Eilenberg-Montgomery’s (1946) fixed-point theorem to 
study the existence of monotone pure-strategy equilibria in such games (see also Meneghel and Tourky, 2020). Another 
way to handle the possible emptiness of the values of best-reply correspondences in discontinuous games lies in making 
use of approximate best-reply correspondences. Under certain conditions, they contain a multi-valued selection consisting 
of interim approximate monotone best replies and possessing the local intersection property (Prokopovych and Yannelis, 
2019). Though the selections need not be contractible-valued, their values are H-convex; that is, they consist of families 
of contractible subsets. Then the existence of pure-strategy monotone approximate equilibria follows from Horvath’s (1987)
extension of Browder’s (1968) fixed-point theorem.

If the ex-ante normal-form game of a Bayesian game is aggregate upper semicontinuous and payoff secure in behavioral 
strategies and the sets of behavioral strategies are endowed with topologies in which they are compact, then Reny’s (1999)
equilibrium existence theorem implies that the game has a behavioral-strategy equilibrium. Identifying sufficient conditions 
on the primitives of a Bayesian game for applicability of the theorem might be quite challenging. He and Yannelis (2016)
and Carbonell-Nicolau and McLean (2018) extend Reny’s (1999) results to behavioral-strategy equilibria of Bayesian games 
and illustrate their findings on perfectly and imperfectly discriminating contests. He and Yannelis (2015) establish the ex-
istence of a pure-strategy Bayesian-Nash equilibrium in games with quasiconcave ex-ante payoff functions and countable 
sets of types and provide sufficient conditions for the purification of a behavioral-strategy equilibrium of a Bayesian game. 
Using results by He and Yannelis (2015) and Carbonell-Nicolau and McLean (2018), Brookins and Ryvkin (2016) establish 
the existence of a pure-strategy Bayesian-Nash equilibrium in all-pay group contests and contests with lottery contest suc-
cess functions. Haimanko (2021, 2022) studies the existence of behavioral- and pure-strategy Bayesian-Nash equilibria in 
a large class of imperfectly discriminating single-prize contests with the absolute continuity of information and without 
it. Olszewski and Siegel (2022a) provide a number of conditions to facilitate the application of Reny’s (1999) equilibrium 
existence theorem to Bayesian games with ties in distributional strategies, including first-price auctions, Hotelling models, 
and all-pay contests.

Complementarity conditions have found a number of applications in contest theory. Wasser (2013) applies Athey’s (2001)
equilibrium existence results to show the existence of a monotone pure-strategy Bayesian-Nash equilibrium in imperfectly 
discriminating contests with a continuous contest success function. Ewerhart (2014) extends Wasser’s (2013) results to 
discontinuous imperfectly discriminating contests, using the fact that they can be approximated by a sequence of trun-
cated continuous contests, each of which has a monotone pure-strategy equilibrium. By invoking the weak single-crossing 
property and Reny’s (2011) results on the existence of a monotone pure-strategy equilibrium in games with continuous 
payoff functions and multi-dimensional types, Brookins and Ryvkin (2016) establish the existence of a monotone pure-
strategy equilibrium in group-level private information contests. Olszewski and Siegel (2016) and Bodoh-Creed and Hickman 
(2018) approximate equilibria of large all-pay contests with many prizes and players whose ex-post payoffs satisfy the strict 
single-crossing property. Relaxing the property makes the notion of approximation weaker and the set of approximating 
mechanisms larger (Olszewski and Siegel, 2022b).

6 For some additional information about contests with complete information, see Tullock (1980); Hillman and Riley (1989); Baye et al. (1996); Kaplan et 
al. (2002); and Siegel (2009).
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The next section describes the contest model studied in this paper.

3. The model

We consider an n-player contest � = (Bi, Ti, f , ui)i∈I , where I = {1, . . . , n}, n ≥ 2, is the set of contestants (bidders); 
Bi = [0, b], b > 0, is the set of bids, or effort levels, available to contestant i; Ti = [0, 1] is contestant i’s set of types. The 
joint probability density function f of the contestants’ types is a continuous function from T to (0, +∞). The bid cap b is 
introduced in this model for technical reasons and is so high that no contestant has any incentive to bid it, irrespective of her 
type and the other contestants’ strategies. Denote I−i = I\{i}, B =

∏
i∈I

Bi , and T =
∏
i∈I

T i . Also denote the marginal density 

function of ti by f i(ti) =
∫

T−i
f (ti, t−i)dt−i and the conditional density function of t−i given ti by f−i(t−i |ti) = f (ti ,t−i)

f i(ti)
. 

Further on, the terms ‘increasing’ and ‘nondecreasing’ are considered synonymous.
Each contestant i’s ex-post payoff function ui : B × T →R is defined, for every (b, t) ∈ B × T , by

ui(b; t) = pi(b)W i(b; t) − Ci(b; t),

where the functions W i : B × T → [0, +∞), Ci : B × T →R and pi : B → [0, 1] have the following properties:
(i) pi is Borel measurable, increasing in bi , and, additionally, 

∑
j∈I p j(b) = 1 for every b ∈ B;

(ii) pi is continuous at every b ∈ B such that bi �= b j for all j ∈ I−i ; if pi is discontinuous at some b = (bi, b−i) ∈ B , then it 
is continuous at any (b′

i, b−i) with b′
i ∈ (bi, b];

(iii) W i and Ci are continuous on B × T ;
(iv) W i(b; t) > 0 for every b ∈ B and every t ∈ T with ti ∈ (0, 1];
(v) Condition WM: W̃ i(b; t) = W i(b; ti, t−i) f−i(t−i |ti) is increasing in ti for every (b, t−i) ∈ B × T−i ;
(vi) W̃ i has increasing differences in (bi, ti) for every (b−i, t−i) ∈ B−i × T−i ; that is, for every pair of bids bi and b′

i in Bi

with bi < b′
i and every (b−i, t−i) ∈ B−i × T−i , �W̃ i(b′

i, bi, b−i; ti, t−i) = W̃ i(b′
i, b−i; ti, t−i) − W̃ i(bi, b−i; ti, t−i) is increasing 

in ti ;
(vii) Ci(0; b−i; t) ≤ 0 for all (b−i, t) ∈ B−i × T ;
(viii) W i(b, b−i; t) − Ci(b, b−i; t) < 0 for all (b−i, t) ∈ B−i × T .

Conditions (i) and (ii) hold true in most models of perfectly and imperfectly discriminating contests.7 The continuity 
of the W i ’s and Ci ’s on B × T , assumed in (iii), can be replaced, if needed, by less demanding conditions. However, in 
applications, it is often possible to redefine discontinuous valuation and cost functions in order to meet the continuity 
conditions, taking advantage of the fact that the contest success function is discontinuous (see Example 2 below). Condition 
(iv) is satisfied naturally in most contest games and plays an important role for equilibrium existence. Without it, an 
asymmetric first-price all-pay auction with no behavioral equilibria can be constructed similar to the one described by 
Lebrun (1996, p. 422) for first-price sealed-bid auctions.

Condition (v) is borrowed from the literature on all-pay auctions (see, e.g., Krishna and Morgan, 1997, Theorem 2; Siegel, 
2014, Condition WM). Condition (vi) is added to the model since the contestants’ valuations might depend not only on 
types but also on bids.

Though (viii) is not burdensome, it excludes some related auction games from consideration, such as finite-horizon wars 
of attrition.

A useful feature of this paper’s model is that it contains neither conditions regarding the game’s aggregate upper semi-
continuity in bids nor conditions regarding the strict monotonicity of each contestant’s valuation and/or cost in her own 
type. Such conditions are often necessary in proofs establishing that the limit of a converging sequence of ε-equilibria of a 
game is an exact equilibrium of it.

In contests with type-dependent costs, it might be the case that each contestant’s cost function does not depend on the 
other contestants’ types and bids (see, e.g., Cohen et al., 2008; Fey, 2008; Ryvkin, 2010; Wasser, 2013; Ewerhart, 2014). If 
this is the case, our results are valid without assuming the logsupermodularity of the density function f or an analogue of 
Condition (vi) for the cost functions.

Assumption 1. Each Ci does not depend on the other contestants’ bids and types and has decreasing differences in (bi , ti).

If Ci depends only on bi and ti and is twice continuously differentiable, then the fact that Ci has decreasing differences in 
(bi, ti) is equivalent to ∂2C

∂bi∂ti
≤ 0 (see, e.g., Cohen et al., 2008). It is also worth noting that the cost function Ci : Bi × Ti →R

defined by Ci(bi, ti) = tibi does not possess this property.

7 Though the model considered in this paper is quite general, it does not cover contest games in which the contest success function also depends on 
types (see, e.g. Ewerhart and Quartieri, 2020).
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In general, the cost functions might depend on the other contestants’ types and/or bids. In this case, in order to show 
that each contestant’s interim payoff function has increasing differences in her own bid and type, we will employ either 
Assumption 2 or Assumption 3.

Denote by C̃i the contestant i’s fictitious cost function defined by C̃i(b, t) = Ci(b; t) f−i(t−i |ti) for every (b, t) ∈ B × T .

Assumption 2. Each fictitious cost function C̃i has decreasing differences in (bi, ti) for every (b−i, t−i) ∈ B−i × T−i .

Along with conditions concerning decreasing differences of the cost functions, Assumption 3 requires the log-
supermodularity of the density function f .

Assumption 3. Each Ci has decreasing differences in (bi, t) and decreasing differences in (bi, b−i) and the joint probability 
density function f of the contestants’ types satisfies the following affiliation condition: f (t ∧ t′) f (t ∨ t′) ≥ f (t) f (t′) for all t
and t′ in T , where ∧ and ∨ denote the componentwise minimum and maximum of t and t′ , respectively.

We now introduce some notation and definitions. Denote by Li (Si ) the set of equivalent classes of Lebesgue measurable 
functions (resp., nondecreasing functions) from Ti to Bi , equipped with the metric d1(si, s′

i) =
∫

Ti

∣∣si(ti) − s′
i(ti)

∣∣dti for all si , 
s′

i ∈ Li (resp., si , s′
i ∈ Si ). As is conventional, we treat the elements of the metric spaces as functions, not equivalence classes 

of functions. Denote L =
∏
i∈I

Li and L−i =
∏
j∈I−i

L j . The Cartesian products S and S−i are defined in a similar manner. The 

products are equipped with a product metric that induces the product topology on them.
Contestant i’s interim payoff and value functions, V i : Bi × L−i × Ti →R and V i : L−i × Ti →R, and her ex-ante payoff 

and value functions, V ∗
i : L →R and V

∗
i : L−i →R, are defined as usual:

V i(bi, s−i; ti) =
∫

T−i

ui(bi, s−i(t−i); ti, t−i) f−i(t−i|ti)dt−i,

V i(s−i; ti) = sup
bi∈Bi

V i(bi, s−i; ti),

V ∗
i (s) =

∫
Ti

V i(si(ti), s−i; ti) f i(ti)dti,

V
∗
i (s−i) = sup

si∈Li

V ∗
i (si, s−i).

A strategy profile s ∈ L constitutes an interim ε-equilibrium (ε > 0) of the game � if, for each i ∈ I and for almost all 
ti ∈ Ti ,

V i(si(ti), s−i; ti) > V i(s−i; ti) − ε.

A strategy profile s ∈ L constitutes a Bayesian-Nash equilibrium of the game � if V ∗
i (si, s−i) = V

∗
i (s−i) for each i ∈ I .

The existence of a monotone pure-strategy Bayesian-Nash equilibrium in the generalized contest will be shown in two 
steps. In the first step, we will show the existence of a monotone pure-strategy approximate equilibrium for every ε > 0, 
and, in the second step, we will prove that every convergent sequence of monotone pure-strategy 1

k -equilibria (k = 1, 2, . . .) 
tends to a pure-strategy Bayesian-Nash equilibrium of the game.

4. Motivating examples

In this section, three examples of contests illustrate that the numerous conditions made in the above contest model are 
not overly burdensome. All of the contests described are particular cases of the generalized contest.

Example 1. Consider the following endogeneous-prize contest model. Let Ti = [0, 1] and Bi = [0, 10] for all i ∈ I = {1, 2}. 
The bidders’ types are independently uniformly distributed on [0, 1]. The functions W i and Ci are defined as follows:

W i(b; t) = ti

√
1 + b1 + b2 and Ci(b; t) = bi

for every (b, t) ∈ B × T and each i ∈ {1, 2}.
Most contest success functions satisfy Conditions (i) and (ii). For example, the all-pay-auction success function is often 

used in endogeneous-prize contests. It is defined as follows:
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pi(b) =

⎧⎪⎨⎪⎩
1 if bi > b−i ,
1
2 if b1 = b2,

0 if bi < b−i

for each i ∈ I and every b ∈ B (see, e.g., Kaplan et al., 2002; Cohen et al., 2008). Another contest success function often used 
in endogeneous-prize contests is the Tullock contest success function (see, e.g., Chung, 1996; Shaffer, 2006). Let r > 0.8 For 
each i ∈ I and every b ∈ B , the function is defined as follows:

p̃r
i (b) =

⎧⎨⎩
br

i
br

1+br
2

if b1 + b2 > 0,

1
2 if b1 + b2 = 0.

The functions pi and p̃r
i have different sets of discontinuities on B . The function pi is discontinuous on the diagonal 

{b ∈ B : bi = b−i}, whereas p̃r
i has only one point of discontinuity, the zero vector.9 Consequently, in the latter case, it might 

be possible to approximate the contest by a sequence of truncated contests with continuous contest success functions (see, 
e.g., Ewerhart, 2014; Einy et al., 2015; Ewerhart and Quartieri, 2020; Haimanko, 2021, 2022).

The contest satisfies Condition (v) of the model since the bidders’ types are independently uniformly distributed on [0, 1]
and each W i is increasing in ti . Condition (vi) is satisfied for each contestant i since for every pair of bids bi and b′

i in Bi

satisfying the inequality bi < b′
i and every (b−i, ti) ∈ B−i × Ti ,

�W̃ i(b
′
i,bi,b−i; ti) = (

√
1 + b′

i + b−i − √
1 + bi + b−i)ti

is increasing in ti . The cost functions satisfy any of Assumptions 1-3. It is not difficult to verify that the rest of the model’s 
conditions are also satisfied.

Example 2. Consider the following innovation contest with spillovers, in which each firm i’s expenditure on R&D, bi , benefits 
the rival (see, e.g., Baye et al., 2005, 2012; Chowdhury and Sheremeta, 2011). Let I = {1, 2}, T1 = T2 = [0, 1], and B1 = B2 =
[0, 10]. The types are independently distributed according to the uniform distribution on [0, 1]. For every (b, t) ∈ B × T , firm 
i’s ex-post payoff is given by

ui(bi,b−i; t) =

⎧⎪⎨⎪⎩
ti − bi + 1

2 b−i if bi > b−i,

1
2 ti − bi + 3

8 b−i if bi = b−i,

−bi + 1
4 b−i if bi < b−i .

The contest success function of the game is the all-pay-auction success function pi . In order to formalize the contest in 
our model’s parlance, put W i(b; t) = ti + 1

4 b−i and Ci(b; t) = bi − 1
4 b−i for all (b, t) ∈ B × T and each i ∈ {1, 2}. In essence, 

each contestant’s cost function Ci represents the costs she incurs when she loses the contest. The cost functions satisfy 
Assumptions 2 and 3.

Since each W i is increasing in ti and does not depend on bi , the contest satisfies Conditions (v) and (vi). The rest of the 
model’s conditions can be easily verified.

Example 3. Contests in which bidders are uncertain about the other bidders’ costs constitute an important class of contests 
with incomplete information (see, e.g., Fey, 2008; Ryvkin, 2010; Wasser, 2013; Ewerhart, 2014). Let I = {1, . . . , n}, T1 = . . . =
Tn = [0, 1], and B1 = . . . = Bn = [0, 10]. The value of the prize to each contestant is normalized to unity; that is, W i(b; t) =
1 for all (b, t) ∈ B × T and all i ∈ I . The contestants’ types are drawn from independent probability distributions with 
continuous, strictly positive probability density functions f i defined on [0, 1]. Contestant i’s impact function, hi , converts 
her effort bi into her effective output. Each function hi is nonnegative, continuous, strictly increasing, with hi(0) = 0. The 
logit contest success function, ph

i : B → [0, 1], is defined by

ph
i (b) =

⎧⎨⎩
hi(bi)

�n
j=1hi(b j)

if �n
j=1hi(b j) > 0,

1
n , otherwise.

Each contestant i’s cost function Ci : Bi × Ti → R is defined by Ci(bi; ti) = (2 − ti)bi . Since it has decreasing differences in 
(bi, ti), Assumption 1 is satisfied.

8 In the case r = 1, this contest success function is also known as the lottery contest success function (see Tullock, 1980).
9 See, e.g., Levine and Mattozzi (2021) for a number of general results regarding contest success functions.
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Then, each contestant i’s ex-post expected payoff, ui : B × Ti →R, is given by

ui(b, ti) = h(bi)

�n
j=1h(b j)

− (2 − ti)bi .

It is not difficult to verify that this contest satisfies Conditions (i)-(viii).
We now modify this contest in three respects by assuming that: (i) types of the bidders are drawn not independently but 

from a joint probability distribution with a density function f : T → (0, +∞); (ii) the value of the prize to each contestant 
i is ti ; and (iii) each contestant i’s cost function, Ci : Bi × T → R, depends not only on her type but also on the other 
contestants’ types and is defined by Ci(bi; t) = (2 − �n

j=1t j

n )bi . Then, each contestant i’s ex-post expected payoff, ui : B × Ti →
R, is given by

ui(b, ti) = h(bi)

�n
j=1h(b j)

ti − (2 − �n
j=1t j

n
)bi .

Condition (v) is satisfied when each fictitious valuation W̃ i(t) = ti f−i(t−i |ti) is increasing in ti for each t−i ∈ T−i . If the 
joint probability density function f : T → (0, +∞) is log-supermodular, then Assumption 3 obtains. One can verify that the 
rest of the conditions of our model are also satisfied.

If f is not log-supermodular, then we need to verify whether each C̃i(bi; t) = Ci(bi; ti)i f−i(t−i |ti) has decreasing differ-
ences in (bi, ti) for every t−i ∈ T−i . For example, let I = {1, 2}, and let f (t1, t2) = t1+t2+2

3 for all (t1, t2) ∈ T1 × T2. Since 
f (t′1,t2)

f (t1,t2)
= t′1+t2+2

t1+t2+2 is strictly decreasing in t2 for every t′
1 and t1 in T1 with t′

1 > t1, f is not log-supermodular. For each i ∈ I

and every t ∈ T , we have f−i(t−i |ti) = ti+t−i+2
ti+2.5 . Though the conditional density function f−i is not increasing in ti for all 

t−i ∈ (0.5, 1], each fictitious valuation W̃ i(t) = ti f−i(t−i |ti) is increasing in ti for all t−i ∈ [0, 1]; that is, Condition WM is 
satisfied. To verify whether Assumption 2 is satisfied, fix i ∈ I and some b′

i and bi in Bi with b′
i > bi . It is not difficult to see 

that, for every t−i ∈ T−i ,

(Ci(b
′
i; ti) − Ci(bi; ti)) f−i(t−i|ti)

= (b′
i − bi)(2 − ti + t−i

2
)

ti + t−i + 2

ti + 2.5
,

is decreasing in ti . Verifying the rest of the model’s conditions is straightforward.

5. Interim payoff functions

Payoff security is one of the most important conditions of Reny’s (1999) seminal equilibrium existence theorem. In dis-
continuous normal-form games, payoff functions are rarely lower semicontinuous in the other players’ strategies. However, 
they are often transfer lower semicontinuous in them. Such games are called payoff secure by Reny (1999). Our approach 
to handling equilibrium existence in the generalized contest also relies on the fact that each contestant’s interim payoff 
function is payoff secure in the other contestants’ strategies and her own type.

Let μ denote the Lebesgue measure. The next property of the interim payoff functions is quite intuitive and usually holds 
in auction games.

Lemma 1. If, in the contest �, for some i ∈ I , bi ∈ Bi , and s−i ∈ L−i , μ(t j ∈ T j : bi = s j(t j)) = 0 for all j ∈ I−i , then the interim payoff 
function V i is jointly continuous at (bi, s−i, ti) for every ti ∈ Ti .

The proof of this property for the contest model is similar to the proof of Lemma 1 of Prokopovych and Yannelis (2019)
for first-price auctions, since each contestant i’s ex-post payoff function ui(b; t) is continuous at every (b, t) ∈ B × T such 
that bi �= b j for all j ∈ I−i in both of the classes of games. We will also need the following corollary (see Prokopovych and 
Yannelis, 2019, Corollary 2).

Corollary 1. If, in the contest �, for some i ∈ I , a strategy profile s ∈ L satisfies the following properties: (i) si is a step function; 
(ii) μ(t j ∈ T j : si(ti) = s j(t j)) = 0 for each j ∈ I−i and for every ti ∈ Ti , then, for every ε > 0, there exists an open neighborhood 
NL−i (s−i) of s−i in L−i such that V i(si(ti), s′

−i; ti) > V i(si(ti), s−i; ti) − ε for every s′
−i ∈NL−i (s−i) and every ti ∈ Ti .

In order to establish the interim payoff security of the contest �, we need to show that each interim payoff function V i
is transfer lower semicontinuous in (s−i, ti). By definition, the transfer lower semicontinuity of V i in (s−i, ti) means that for 
every ε > 0 and every (bi, s−i, ti) ∈ Bi × L−i × Ti , there exist a bid ̃bi ∈ Bi and an open neighborhood Nε(s−i, ti) of (s−i, ti)

in L−i × Ti such that V i (̃bi, s′ ; t′) > V i(bi, s−i; ti) − ε for every (s′ , t′) ∈Nε(s−i, ti).
−i i −i i
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Proposition 1. The contest � is interim payoff secure.

The proof of Proposition 1 can be found in the Appendix.
The transfer lower semicontinuity of a contestant’s interim payoff function in the other contestants’ strategies and own 

type implies the lower semicontinuity of her interim value function since it is the value function of the interim payoff 
function (see, e.g., Prokopovych, 2011, Lemma 4). In the next proposition, we show that each interim value function V i is 
also upper semicontinuous on its domain.

Proposition 2. In the contest �, each interim value function V i : L−i × T →R is continuous.

The proof of Proposition 2 is provided in the Appendix.
In order to be able to confine attention to the compact sets of nondecreasing strategies, we show, in the next proposition, 

that each contestant’s interim payoff function has increasing differences in her own bid and type if, additionally, one of 
Assumptions 1 or 2 holds.10

Proposition 3. Consider, in the contest �, some i ∈ I and some s−i ∈ L−i . If one of Assumptions 1 or 2 holds, holds, then the interim 
payoff function V i has increasing differences in (bi, ti).

Proof. Let bi and b′
i be two bids in Bi such that bi < b′

i , and suppose that Assumption 2 holds. Define �V i : Ti → R by 
�V i(ti) = V i(b′

i, s−i; ti) − V i(bi, s−i; ti). We need to show that �V i is an increasing function.
For every ti ∈ Ti , we have

�V i(ti) =
∫

T−i

(p(b′
i, s−i(t−i)) − p(bi, s−i(t−i)))W̃ i(b

′
i, s−i(t−i); ti, t−i)dt−i

+
∫

T−i

p(bi, s−i(t−i))�W̃ i(b
′
i,bi, s−i(t−i); ti, t−i)dt−i+

∫
T−i

(̃Ci(bi, s−i(t−i); ti, t−i) − C̃i(b
′
i, s−i(t−i); ti, t−i))dt−i

Since W̃ i is increasing in ti for every (b, t−i) ∈ B × T−i , W̃ i has increasing differences and C̃i has decreasing differences in 
(bi, ti) for every (b−i, t−i) ∈ B−i × T−i , each of the three terms in the sum above is increasing in ti , which completes the 
proof of this case.

If, instead of Assumption 2, each Ci satisfies Assumption 1, then the third term of the sum above is increasing in ti since 
it is equal to Ci(bi; ti) − Ci(b′

i; ti), which completes the proof. �
Since Assumption 3 also implies that the third term of the sum in the proof of Proposition 3 is increasing in ti when the 

other contestants use nondecreasing strategies, we have the following proposition.

Proposition 4. Consider, in the contest �, some i ∈ I and some s−i ∈ S−i . If Assumption 3 holds, then the interim payoff function V i
has increasing differences in (bi, ti).

Remark. The condition that each fictitious valuation W̃ i is increasing in ti (Condition WM) is often employed in the litera-
ture on all-pay auctions. Its importance is due to the fact that it implies that each contestant’s interim value function has 
increasing differences in her own bid and type when her valuation does not depend on bids and her cost function depends 
only on her own bid.

6. Approximate best-reply correspondences

Before studying properties of the ex-ante approximate best-reply correspondences, first we need to take a look at the 
interim approximate best-reply correspondences. For each contestant i and ε > 0, her truncated interim ε-best-reply corre-
spondence, Mε

i : S−i × Ti � Bi , is defined as follows:

Mε
i (s−i; ti) = {bi ∈ Bi : V i(bi, s−i; ti) > V i(s−i; ti) − ε},

10 In many other games, the easy-to-handle property of increasing differences needs to be relaxed to the single-crossing property (see, e.g., Milgrom and 
Shannon, 1994; Amir, 1996; Athey, 2001; Reny and Zamir, 2004; and Quah and Strulovici, 2012).
355



P. Prokopovych and N.C. Yannelis Games and Economic Behavior 140 (2023) 348–362
where the word ‘truncated’ reflects the fact that each Mε
i is defined on S−i × Ti , not on L−i × T .

The next proposition shows that the truncated interim approximate best-reply correspondences have single-valued se-
lections possessing a number of favorable properties. In it, the part of the single-crossing property called by Reny (2011)
the weak single-crossing property – not the stronger property of increasing differences – is used.11

Proposition 5. Consider, in the contest �, some i ∈ I , some ε > 0, and some strategy subprofile s−i ∈ S−i . If one of Assumptions 1, 2, 
or 3 holds, then the correspondence Mε

i (s−i; ·) has a single-valued selection ̃si ∈ Si possessing the following properties: (i) ̃si is a step 
function; (ii) μ(t j ∈ T j : s̃i(ti) = s j(t j)) = 0 for each j ∈ I−i and every ti ∈ Ti .

The proof of Proposition 5 is provided in the Appendix.
A number of important properties of the ex-ante value functions follow from Proposition 5.

Corollary 2. If one of Assumptions 1, 2, or 3 holds in the contest �, then

V
∗
i (s−i) =

∫
Ti

V i(s−i; ti) f i(ti)dti = sup
si∈Si

V ∗
i (si, s−i)

for every s−i ∈ S−i . Therefore, V ∗
i is continuous on S−i .

Proof. It follows from Proposition 5 that V
∗
i (s−i) = supsi∈Si

V ∗
i (si, s−i) for every s−i ∈ S−i . Assume, by contraction, that, for 

some ε > 0 and some s−i ∈ S−i , 
∫

Ti
V i(s−i; ti) f i(ti)dti > V

∗
i (s−i) + ε. Then, for any single-valued nondecreasing selection ̃si

of M
ε
2
i (s−i; ·), we have

V ∗
i (̃si, s−i) >

∫
Ti

V i(s−i; ti) f i(ti)dti − ε

2
> V

∗
i (s−i) + ε

2
,

a contradiction. Then, the continuity of V ∗
i on S−i follows from the fact that V i is continuous on Si ×Ti by Proposition 2. �

Proposition 5 also implies that the ex-ante approximate best-reply correspondences are nonempty-valued.
Now we introduce truncated multi-valued selections of the ex-ante approximate best-reply correspondences that possess 

two desirable properties, namely they have the local intersection property and their values are H-convex sets.
For each i ∈ I and every ε > 0, define the correspondence M̃ε

i : S−i � Si as follows:

M̃ε
i (s−i) = {si ∈ Si : V i(si(ti), s−i; ti) > V i(s−i; ti) − ε for almost all ti ∈ Ti}.

The following proposition states that each M̃ε
i has the local intersection property; that is, for every s−i ∈ S−i , there exist 

a strategy ̃si ∈ Si and an open neighborhood NS−i (s−i) of s−i in S−i such that ̃si ∈ M̃ε
i (s′

−i) for every s′
−i ∈NS−i (s−i).

Proposition 6. If one of Assumptions 1, 2, or 3 holds in the contest �, then each correspondence M̃ε
i : S−i � Si defined above has the 

local intersection property.

The proof of Proposition 6 is similar to the proof of Proposition 7 of Prokopovych and Yannelis (2019). It is provided in 
the Appendix for the reader’s convenience.

Since the values of each M̃ε
i need not be convex, we will employ a kind of generalized convexity. For this purpose, 

we interpret the sets of nondecreasing strategies as H-spaces (see, e.g., Horvath, 1987; Tarafdar, 1992; and Prokopovych 
and Yannelis, 2019). By definition, the strategy set Si , i ∈ I , being an H-space means that for every finite number of 
nondecreasing strategies, A = {s1i, . . . , ski} in Si , there exists a contractible subset of Si , F A , such that F A ⊂ F A′ whenever 
A is contained in another finite subset A′ of Si . More specifically, in our contest model, the set F A is the minimal set in 
Si containing A and satisfying the following two conditions: If si and s′

i are in F A , then the function si ∨ s′
i defined by 

(si ∨ s′
i)(ti) = max{si(ti), s′

i(ti)} for all ti ∈ Ti is also in F A ; and for every τ ∈ (0, 1), siX[0,1−τ ] + (si ∨ s′
i)X(1−τ ,1] also belongs 

to F A , where XD is the indicator function of the set D . A homotopy h : [0, 1] × F A → F A that continuously shrinks F A to 
the strategy si ∈ Si defined by si(ti) = max{s1i(ti), . . . , ski(ti)} for all ti ∈ Ti is proposed and studied by Reny (2011):

h(τ , si)(ti) =
{

si(ti), if ti ≤ 1 − τ and τ < 1,
si(ti), otherwise

11 The property employed in the proof is even slightly weaker that the weak single-crossing property. See, e.g., the definition of the quasimonotonicity of 
a function in Lizzeri and Persico (2000).
356



P. Prokopovych and N.C. Yannelis Games and Economic Behavior 140 (2023) 348–362
for any τ ∈ Ti and si ∈ F A . The function h acts continuously from [0, 1] × F A to F A , h(0, si) = si , and h(1, si) = si .12

Since every piecewise combination of two interim ε-best replies is also an interim ε-best reply, the values of each M̃ε
i are 

H-convex; that is, for every s−i ∈ S−i and each finite set A in M̃ε
i (s−i), F A ⊂ M̃ε

i (s−i). Consequently, a Browder-type (1968) 
fixed-point theorem can be employed to establish the existence of approximate pure-strategy equilibria in the contest.

7. Approximate and exact Bayesian-Nash equilibria

This section contains two equilibrium existence results, the first one studying the existence of monotone pure-strategy 
approximate Bayesian-Nash equilibria and the second one studying the existence of monotone pure-strategy Bayesian-Nash 
equilibria in the generalized contest. The existence of a monotone approximate pure-strategy Bayesian-Nash equilibrium in 
the generalized contest follows from the following variant of Horvath’s (1987) extension of Browder’s (1968) fixed-point 
theorem for a family of correspondences: If each Si is a compact H-space, and for every ε > 0 and each i ∈ I , M̃ε

i has the 
local intersection property and its values are H-convex and nonempty, then there exists a strategy profile s ∈ S such that 
si ∈ M̃ε

i (s−i) for each i ∈ I (see, e.g., Tarafdar, 1992, Theorem 2.3; and Prokopovych and Yannelis, 2019, Corollary 1).

Theorem 1. If one of Assumptions 1, 2, or 3 holds in the contest �, then it has a monotone interim ε-equilibrium in pure strategies for 
every ε > 0.

Another important question to be answered is whether a convergent sequence of nondecreasing 1
k -equilibria of the 

contest �, as k tends to infinity, tends to a pure-strategy Bayesian equilibrium of the contest. It turns out that this is so 
without any additional assumptions.

Theorem 2. If one of Assumptions 1, 2, or 3 holds in the contest �, then it has a monotone pure-strategy Bayesian-Nash equilibrium.

Proof. By Theorem 1, for each k ∈ {1, 2, . . .}, there exists a nondecreasing interim 1
k -equilibrium sk = (sk

1, . . . , s
k
n) of � such 

that V i(sk
i (ti), sk

−i; ti) > V i(sk
−i; ti) − 1

k for almost all ti ∈ Ti and each i ∈ I . Assume, without loss of generality, that for each 
i ∈ I , the sequence {sk

i }∞k=1 converges pointwise on Ti to a nondecreasing strategy si and si(1) < b for all i ∈ I (see Condition 
(viii)). Since, by Proposition 2, V i is continuous on L−i × Ti , we have limk V i(sk

−i; ti) = V i(s−i; ti) for all ti ∈ Ti and each 
i ∈ I and, therefore, limk V i(sk

i (ti), sk
−i; ti) = V i(s−i; ti) for almost all ti ∈ Ti and all i ∈ I . Then, by the dominated convergence 

theorem,

lim
k

∫
Ti

V i(sk
i (ti), sk

−i; ti) f i(ti)dti =
∫
Ti

V i(s−i; ti) f i(ti)dti

Since, by Corollary 2, V
∗
i (s−i) =

∫
Ti

V i(s−i; ti) f i(ti)dti , we have

lim
k

V ∗
i (sk

i , sk
−i) = V

∗
i (s−i).

For each i ∈ I , denote by Ṽ ∗
i (s) the expected payoff contestant i would get at s if the contest success function pi is 

replaced with its upper-semicontinuous envelope p̃i , defined by p̃i(b) = lim supb′→b pi(b′) for all b ∈ B . Since

lim
k

V ∗
i (sk

i , sk
−i) ≤

∫
T−i

(lim sup k pi(sk(t))W i(s(t); t) − Ci(s(t); t)) f (t)dt

and

lim sup k p(sk(t)) ≤ lim sup
b→s(t)

p(b) = p̃i(s(t)) for all t ∈ T ,

we have limk V ∗
i (sk

i , s
k
−i) ≤ Ṽ ∗

i (s).

In order to show that Ṽ ∗
i (s) = limk V ∗

i (sk
i , s

k
−i) for all i ∈ I , fix some i ∈ I and some ε ∈ (0, 1). Define Hi : B ×T → [0, +∞)

by Hi(b; t) = W i(b; t) + |Ci(b; t)|. It follows from the uniform continuity of Hi on B × T that there exists δ ∈ (0, b − si(1))

such that 
∣∣Hi(b′

i,b−i; t) − Hi(b; t)
∣∣ < ε for every (b, t) ∈ B × T and every b′

i ∈ Bi such that 
∣∣b′

i − bi
∣∣ < 2δ. Denote by sδ

i con-
testant i’s strategy defined by sδ

i (ti) = si(ti) + δ for all ti ∈ Ti . We need to show that pi(sδ
i (ti), s−i(t−i)) ≥ p̃i(si(ti), s−i(t−i))

for every t = (ti, t−i) ∈ T . If pi is continuous at (si(ti), s−i(t−i)) for some t ∈ T , then the inequality holds trivially. Con-
sider the case when p̃i(si(ti), s−i(t−i)) > pi(si(ti), s−i(t−i)) for some t ∈ T . Then, pick any sequence {bm}∞m=1 in {b′

i ∈

12 A new, related type of generalized convexity with a number of applications to auction games with discrete bid sets is proposed by Meneghel and 
Tourky (2020).
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Bi : ∣∣b′
i − si(ti)

∣∣ < δ} × B−i that converges to (si(ti), s−i(t−i)) and satisfies the inequality limm pi(bm) > pi(si(ti), s−i(t−i)). 
By Condition (ii), pi is continuous at (sδ

i (ti), s−i(t−i)) and limm pi(bm) ≤ limm pi(sδ
i (ti), bm

−i) = pi(sδ
i (ti), s−i(t−i)). There-

fore, p̃i(s(t)) ≤ pi(sδ
i (ti), s−i(t−i)) for every t ∈ T . Since W i(b; t) > 0 for every (b, t) ∈ B × T with ti ∈ (0, 1], we have 

Ṽ ∗
i (s) − ε < V ∗

i (sδ
i , s−i) ≤ V

∗
i (s−i). Since it is true for every ε > 0, we conclude that Ṽ ∗

i (s) = limk V ∗
i (sk

i , s
k
−i) = V

∗
i (s−i).

Now we need to show that the sequence {sk}∞k=1 has a subsequence {̂sk}∞k=1 such that limk pi (̂sk(t)) = p̃i(s(t)) for almost 
all t ∈ T and each i ∈ I . With this end in mind, let us show that the sequence {pi(sk(·))} converges to p̃i(s(·)) in measure 
for each i ∈ I . Fix some i ∈ I and some ε > 0. Denote

T (i, ε,k) = {t ∈ T :
∣∣∣̃pi(s(t)) − pi(sk(t))

∣∣∣ > ε}.
In order to show that limkμ(T (i, ε, k)) = 0, assume, by contradiction, that there is a subsequence of {sk}, again denoted 
by {sk}, for which limkμ(T (i, ε, k)) = γ > 0. Since p̃i(b) = lim supb′→b pi(b′) for all b ∈ B and each sequence {sk

j}, j ∈ I , 
converges to s j pointwise, we have

limkμ{t ∈ T : pi(sk(t)) − p̃i(s(t)) > ε} = 0

and, therefore,

limkμ{t ∈ T : p̃i(s(t)) − pi(sk(t)) > ε} = γ .

Since W i(b; t) > 0 for every (b, t) ∈ B × T with ti ∈ (0, 1], Ṽ ∗
i (s) is strictly larger than V ∗

i (sk
i , s

k
−i), a contradiction. The 

convergence of each sequence {pi(sk(·))} to p̃i(s(·)) in measure implies that the sequence {sk} has a subsequence ̂sk such 
that each sequence {pi (̂sk(·))} converges to p̃i(s(·)) almost everywhere on T ; that is, lim k pi (̂sk(t)) = p̃i(s(t)) for almost all 
t ∈ T and each i ∈ I .

Then, for almost all t ∈ T ,∑
i∈I

p̃i(s(t)) =
∑
i∈I

lim
k

pi (̂sk(t)) = lim
k

∑
i∈I

pi (̂sk(t)) = 1.

Since 1 = ∑
i∈I pi(s(t)) ≤ ∑

i∈I p̃i(s(t)) = 1 for almost all t ∈ T and pi(s(t)) ≤ p̃i(s(t)) for every t ∈ T and each i ∈ I , we have 
pi(s(t)) = p̃i(s(t)) for almost all t ∈ T and each i ∈ I . Therefore, V ∗

i (s) = Ṽ ∗
i (s) = V

∗
i (s−i) for each i ∈ I , which completes the 

proof. �
8. Some remarks on the better-reply security of the ex-ante normal form of the generalized contest

Reny’s (1999) equilibrium existence theorem is an important tool for establishing equilibrium existence in normal-form 
games. It is applicable to the better-reply secure games in which each player’s set of strategies is a compact convex subset 
of a topological vector space and each player’s payoff function is quasiconcave in her own strategy. In this section, the 
better-reply security of the ex-ante normal form of the generalized contest is established. Then, an example of an all-pay 
auction illustrates that, in general, the contestants’ ex-ante payoff functions are neither quasiconcave nor H-quasiconcave in 
own strategies.

We begin with showing that the generalized contest is ex-ante payoff secure in nondecreasing pure strategies, which is 
closely related to the fact that each M̃ε

i has the local intersection property.

Proposition 7. If one of Assumptions 1, 2, or 3 holds in the contest �, then it is ex-ante payoff secure in nondecreasing pure strategies.

Proof. We need to prove the normal-form game (Si, V ∗
i )i∈I is payoff secure. Fix some ε > 0, some i ∈ I , and some s ∈ S . To 

prove the payoff security of the ex-ante game, it suffices to find ̃si ∈ Si such that V ∗
i (̃si, s′

−i) > V ∗
i (si, s−i) − ε for all s′

−i in 
some open neighborhood NS−i (s−i) in S−i .

By Proposition 5, the correspondence M
ε
2
i (s−i; ·) has a single-valued selection ̃si ∈ Si possessing the following properties: 

(i) ̃si is a step function; (ii) μ(t j ∈ T j : s̃i(ti) = s j(t j)) = 0 for each j ∈ I−i and every ti ∈ Ti . Since ̃si(ti) ∈ M
ε
2
i (s−i; ti) for every 

ti ∈ Ti , we have V ∗
i (̃si, s−i) > V ∗

i (si, s−i) − ε
2 . On the other hand, by Corollary 1, there exists an open neighborhood NS−i (s−i)

of s−i in S−i such that V i (̃si(ti), s′
−i; ti) > V i (̃si(ti), s−i; ti) − ε

2 for all s′
−i ∈ NS−i (s−i) and all ti ∈ Ti . Then V ∗

i (̃si, s′
−i) >

V ∗
i (̃si, s−i) − ε

2 for all s′
−i ∈NS−i (s−i) and, therefore, V ∗

i (̃si, s′
−i) > V ∗

i (si, s−i) − ε for all s′
−i ∈NS−i (s−i). �

The next proposition establishes the better-reply security of the generalized contest in nondecreasing pure strategies.

Proposition 8. If one of Assumptions 1, 2, or 3 holds in the contest �, then it is ex-ante better-reply secure in nondecreasing pure 
strategies.
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Proof. Since, by Proposition 7, the game is ex-ante payoff secure in nondecreasing pure strategies, the contest � is better-
reply secure if the following property holds: For every sequence {sk}∞k=1, sk ∈ S , converging to some nonequilibrium strategy 
profile s ∈ S such that limk V ∗

i (sk) exists for each i ∈ I , there exists j ∈ I for which V
∗
j (s−̂ j) > limk V ∗

j (sk).

Assume, by contradiction, that there exists a sequence {sk}∞k=1, sk ∈ S , converging to some nonequilibrium strategy profile 
s ∈ S such that V

∗
i (s− j) ≤ limk V ∗

i (sk) for each i ∈ I . Without loss of generality, each sequence {sk
i }∞k=1 converges point-

wise on Ti to si . Since limk V ∗
i (sk) ≤ limk V

∗
i (sk

−i) and V
∗
i is continuous on S−i for each i ∈ I by Corollary 2, we have 

V
∗
i (s−i) = limk V

∗
i (sk

−i) = limk V ∗
i (sk) for each i ∈ I . By repeating the argument provided in the proof of Theorem 2, one 

can establish that V ∗
i (s) = Ṽ ∗

i (s) = V
∗
i (s−i) for each i ∈ I; that is, s is a Bayesian-Nash equilibrium of the contest game, a 

contradiction. �
According to Reny (1999, Remark 3.1), the better-reply security of the generalized contest implies that the limit strategy 

profile of any convergent sequence of nondecreasing pure-strategy 1
k -equilibria of a game, as k tends to ∞, is a pure-strategy 

Bayesian-Nash equilibrium of it. Consequently, the proofs of Theorem 2 and Proposition 8 are closely related to each other.
An important condition for the application of Reny’s (1999) equilibrium existence theorem to normal-form games is the 

quasiconcavity of each player’s payoff function in her own strategy. Since quasiconcavity might not be preserved under in-
tegration, the condition is rather demanding in the context of Bayesian games. It is satisfied, for example, if each player’s 
ex-post payoff function is concave in her own action, which is not the case in many auction games, since concave functions 
are continuous in the interior of their domains.13 However, in Tullock-type contests, ex-post payoff functions are discon-
tinuous only at the zero vector of bids, which makes the quasiconcavity condition usable and Reny’s (1999) equilibrium 
existence theorem applicable to generalized concave contests (see Einy et al., 2015). In the framework of our contest model, 
the concavity of contestant i’s payoff function ui in bi follows, for example, if W i depends only on types, Ci is convex in bi , 
and pi is concave in bi .

Usually, in all-pay auctions, ex-post payoff functions are neither concave nor quasiconcave in own actions. So it is reason-
able to attempt to use H-quasiconcavity instead of quasiconcavity. The contest game � is H-quasiconcave in nondecreasing 
strategies if for each i ∈ I , every finite set of nondecreasing strategies A = {s1

i , . . . , s
m
i }, every si ∈ F A , and every s−i ∈ S−i , 

we have

V ∗
i (si, s−i) ≥ min{V ∗

i (s1
i , s−i), . . . , V ∗

i (sm
i , s−i)}.

The next example of an all-pay auction illustrates that, in general, the generalized contest is neither quasiconcave nor 
H-quasiconcave in nondecreasing pure strategies.

Example 4. Consider the following two-bidder all-pay auction. Let Ti = [0, 1] and Bi = [0, 3] for all i ∈ I = {1, 2}. The bidders’ 
types are independently uniformly distributed on [0, 1]. Bidder i’s probability of winning the item is given by the all-pay-
auction success function pi . The functions W i and Ci are defined as follows:

W i(b; t) = 2 and Ci(b; t) = bi

for every (b, t) ∈ B × T and each i ∈ {1, 2}. The existence of a monotone pure-strategy Bayesian-Nash equilibrium in this 
all-pay auction follows from Theorem 2.

In order to verify that the ex-ante normal form of the all-pay auction is not quasiconcave in monotone pure strategies, 
consider the following strategies:

s1
1(t1) =

⎧⎪⎨⎪⎩
0 for all t1 ∈ [0, 1

3 ],
7

20 for all t1 ∈ ( 1
3 , 2

3 ],
3
4 for all t1 ∈ ( 2

3 ,1];
and

s1
2(t2) =

{
1
5 for all t2 ∈ [0, 1

2 ],
4
5 for all t2 ∈ ( 1

2 ,1];

s2
2(t2) =

{
2
5 for all t2 ∈ [0, 1

2 ],
3
5 for all t2 ∈ ( 1

2 ,1].
Contestant 2’s strategy 1

2 s2
1 + 1

2 s2
2 is as follows:

13 See Example 1 of He and Yannelis (2015) explaining the importance of the concavity condition for equilibrium existence results extending Reny’s (1999)
theorem to Bayesian games.
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(
1

2
s2

1 + 1

2
s2

2)(t2) =
{

3
10 for all t2 ∈ [0, 1

2 ],
7

10 for all t2 ∈ ( 1
2 ,1].

Then V ∗
2 (s1

2, s
1
1) = 1

2 ( 1
3 2 − 1

5 ) + 1
2 (2 − 4

5 ) = 5
6 , V ∗

2 (s2
2, s

1
1) = 1

2 ( 2
3 2 − 2

5 ) + 1
2 ( 2

3 2 − 3
5 ) = 5

6 , and V ∗
2 ( 1

2 s2
1 + 1

2 s2
2, s

1
1) = 1

2 ( 1
3 2 − 3

10 ) +
1
2 ( 2

3 2 − 7
10 ) = 1

2 . Therefore, the ex-ante normal form (Si, V ∗
i )i∈I of the all-pay auction is not quasiconcave.

The game (Si, V ∗
i )i∈I is also not H-quasiconcave. For the sake of simplicity, define s2

1 ∈ S1 as follows: s2
1(t1) = 0 for all 

t1 ∈ [0, 1]. The join of bidder 2’s strategies s1
2 and s2

2 is equal to

(s1
2 ∨ s2

2)(t2) =
{

2
5 for all t2 ∈ [0, 1

2 ],
4
5 for all t2 ∈ ( 1

2 ,1].

Then bidder 2’s corresponding ex-ante payoffs are the following: V ∗
2 (s1

2, s
2
1) = 1

2 (2 − 1
5 ) + 1

2 (2 − 4
5 ) = 3

2 ; V ∗
2 (s2

2, s
2
1) = 1

2 (2 −
2
5 ) + 1

2 (2 − 3
5 ) = 3

2 ; and V ∗
2 (s1

2 ∨ s2
2, s

2
1) = 1

2 (2 − 2
5 ) + 1

2 (2 − 4
5 ) = 7

5 . Since V ∗
2 (s1

2 ∨ s2
2, s

2
1) < min{V ∗

2 (s1
2, s

1
1), V

∗
2 (s2

2, s
1
1)}, bidder 

2’s ex-ante payoff function is not H-quasiconcave in her own strategy.
Therefore, the quasiconcavity condition is a major obstacle to a direct application of Reny’s (1999) equilibrium existence 

theorem to the generalized contest.

9. Conclusions

This paper introduces a generalized model of perfectly and imperfectly discriminating contests that possesses a mono-
tone pure-strategy Bayesian-Nash equilibrium under quite mild conditions. In the generalized contest, the contestants have 
continua of possible types and bids, atomless type distributions, their valuations and costs might depend not only on her 
own bid and/or type but also on other contestants’ bids and types, and the conditions imposed on the contest success 
function are applicable to both the all-pay-auction success function and the Tullock-type contest success functions.

The proof proceeds via studying a number of continuity-related properties of the contestants’ interim payoff and value 
functions. A Browder-type fixed-point theorem is employed to establish the existence of a monotone pure-strategy ap-
proximate interim Bayesian-Nash equilibrium. Then it is shown that every converging sequence of monotone pure-strategy 
1
k -equilibria tends to a pure-strategy Bayesian-Nash equilibrium as k tends to infinity.
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Appendix A

The Appendix contains the proofs of several auxiliary results.

A.1. Proof of Proposition 1

Proof. Fix some ε > 0, some i ∈ I , and some (bi, s−i, ti) ∈ Bi × L−i × Ti . We need to show that there exist a bid b̃i ∈ Bi

and an open neighborhood Nε(s−i, ti) of (s−i, ti) in L−i × Ti such that V i (̃bi, s′
−i; t′

i) > V i(bi, s−i; ti) − ε for every (s′
−i, t

′
i) ∈

Nε(s−i, ti).
If V i(bi, s−i; ti) ≤ 0, then put ̃bi equal to 0 and pick any open neighborhood of (s−i, ti) in L−i × Ti . Then V i(0, s′

−i; t′
i) >

V i(bi, s−i; ti) − ε for every (s′
−i, t

′
i) in the neighborhood, since W i(0, b−i; t) ≥ 0 and Ci(0, b−i; t) ≤ 0 for every (b−i, t) ∈

B−i ×T . Consider the case V i(bi, s−i; ti) > 0. Since W i(b, b−i; t) −Ci(b, b−i; t) < 0 for all (b−i, t) ∈ B−i ×T , we have bi ∈ [r, b). 
If μ(t j ∈ T j : bi = s j(t j)) = 0 for all j ∈ I−i , then put ̃bi = bi . By Lemma 1, there exists an open neighborhood Nε(s−i, ti) of 
(s−i, ti) in L−i × Ti such that V i (̃bi, s′

−i; t′
i) > V i(bi, s−i; ti) −ε for every (s′

−i, t
′
i) ∈Nε(s−i, ti). If μ(t j ∈ T j : bi = s j(t j)) > 0 for 

some j ∈ I−i , then choose ̃bi ∈ (bi, b) satisfying the following conditions: (a) μ(t j ∈ T j : b̃i = s j(t j)) = 0 for all j ∈ I−i ; and (b) 
V i (̃bi, s−i; ti) > V i(bi, s−i; ti) − ε

2 , which is possible since pi is increasing in bi , W i and Ci are uniformly continuous on B × T , 
and the values of W i are nonnegative. Then, by Lemma 1, there exists a neighborhood Nε(s−i, ti) of (s−i, ti) in L−i × Ti

such that V i (̃bi, s′
−i; t′

i) > V i (̃bi, s−i; ti) − ε
2 for every (s′

−i, t
′
i) ∈ Nε(s−i, ti), and, therefore, V i (̃bi, s′

−i; t′
i) > V i(bi, s−i; ti) − ε

for every (s′ , t′) ∈Nε(s−i, ti). �
−i i
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A.2. Proof of Proposition 2

Proof. Fix some i ∈ I . To show the upper semicontinuity of V i on L−i × Ti , consider some (s0
−i, t

0
i ) ∈ L−i × Ti and 

a sequence {(sk
−i, t

k
i )}, (sk

−i, t
k
i ) ∈ L−i × Ti , k = 1, 2, . . ., converging to it. Without loss of generality, the corresponding 

sequence {V i(sk
−i; tk

i )} is also convergent. Assume, by contradiction, that K = limk V i(sk
−i; tk

i ) − V i(s0
−i; t0

i ) > 0. Pick a se-

quence {bk
i } in Bi such that V i(bk

i , s
k
−i; tk

i ) > V i(sk
−i; tk

i ) − 1
k for k = 1, 2, . . .. Without loss of generality, the sequence 

{bk
i } tends to some b0

i . Clearly, b0
i < b. Since limk V i(bk

i , s
k
−i; tk

i ) > V i(s0
−i; t0

i ) ≥ V i(b0
i , s

0
−i; t0

i ), it must be the case that 
μ(t j ∈ T j : b0

i = s0
j (t j)) > 0 for some j ∈ I−i . Pick δ > 0 satisfying the following: (a) b0

i + δ < b; (b) μ(t j ∈ T j : b0
i + δ =

s0
j (t j)) = 0 for each j ∈ I−i ; (c) W i(b0

i + δ, b−i; t) > W i(bi, b−i; t) − K
4 and Ci(b0

i + δ, b−i; t) > Ci(bi, b−i; t) − K
4 for every 

(bi, b−i, t) ∈ (Bi ∩ (b0
i − δ, b0

i + δ)) × B−i × T . It is possible to satisfy (c) since both W i and Ci are uniformly continuous 
on B × T . Assume also, without loss of generality, that 

∣∣b0
i − bk

i

∣∣ < δ for each k ∈ {1, 2, . . .}. Since W i(b; t) ≥ 0 for every 
(b, t) ∈ B × T and pi is increasing in bi , we have V i(b0

i + δ, sk
−i; tk

i ) > V i(bk
i , s

k
−i; tk

i ) − K
2 for each k ∈ {1, 2, . . .}. Finally, by 

sending k to infinity, we get V i(b0
i + δ, s0

−i; t0
i ) > limk V i(sk

−i; tk
i ) − K = V i(s0

−i; t0
i ), which is impossible. �

A.3. Proof of Proposition 5

Proof. For every ti ∈ Ti , choose a bid bi(ti) ∈ Bi satisfying the following two conditions: (a) μ(t j ∈ T j : bi(ti) = s j(t j)) = 0
for each j ∈ I−i ; and (b) V i(bi(ti), s−i; ti) > V i(s−i; ti) − ε. Since V i(bi(ti), s−i; ·) and V i(s−i; ·) are continuous, there exists 
an open ball B(ti; δi(ti)) in Ti with center ti and radius δi(ti) such that V i(bi(ti), s−i; t′

i) > V i(s−i; t′
i) − ε for every t′

i ∈
B(ti; δi(ti)). Pick a finite minimal subcover {B(til; δi(til)

2 )}l∈{1,...,m} of the open cover {B(ti; δi(ti)
2 )}ti∈[0,1] of Ti = [0, 1]. Without 

loss of generality, ti1 < . . . < tim . If m = 1, then define ̃si by ̃si(ti) = bi(ti1) for all ti ∈ Ti . Consider the case m > 1. Denote 
Ti1 = [0, ti1 + δi(ti1)

2 ), Til = [ti(l−1) + δi(ti(l−1))

2 , til + δi(til)
2 ) for l = 2, . . . , m − 1, and Tim = [ti(m−1) + δi(ti(m−1))

2 , 1]. Denote by s1
i

the strategy defined as follows: s1
i (ti) = bi(til) for every ti ∈ Til and each l ∈ {1, . . . , m}. If the strategy s1

i is nondecreasing, 
then it is a single-valued selection from Mε

i (s−i, ·) satisfying (i) and (ii); that is, ̃si can be defined by ̃si(ti) = s1
i (ti) for all 

ti ∈ Ti . If s1
i is not increasing, then it can be modified as follows.

Let l1, . . . , lk be all the indices in {1, . . . , m}, in increasing order, such that for each j ∈ {1, . . . , k}, bi(til j ) =
min{bi(ti1), . . . , bi(tim)}; that is, the same minimal bid is initially chosen on the intervals Tl1 , . . . , Tlk . If l1 = 1, then de-
fine the strategy s21

i by s21
i (ti) = s1

i (ti) for all ti ∈ Ti . Assume that l1 > 1. If for each l ∈ {1, . . . , l1 − 1} and every ti ∈ Til , 
V i(s1

i (ti), s−i; ti) ≤ V i(bi(til1 ), s−i; ti), then put s21
i (ti) = bi(til1 ) for all ti ∈ T1 ∪ . . . ∪ Tl1 and s21

i (ti) = s1
i (ti) for the other ti ’s 

in Ti . If there exist l ∈ {1, . . . , l1 − 1} and t′
i ∈ Til such that V i(s1

i (t
′
i), s−i; t′

i) > V i(bi(til1 ), s−i; t′
i), then, by the property of 

increasing differences of V i in (bi, ti), we can put s21
i (ti) = s1

i (t
′
i) for all ti ∈ Til1 and s21

i (ti) = s1
i (ti) for the other ti ’s in Ti ; 

thereby replacing the bid bi(til1 ) on Tl1 with a higher bid. Then repeat the procedure for interval l2 and the strategy s21
i , 

with the resulting strategy denoted by s22
i . In k steps, an ε-best-reply strategy s2

i = s2k
i will be constructed in which either 

the bid bi(til1 ) is not made at all by any of contestant i’s types or the following holds true: if s2
i (t′

i) = bi(til1 ) for some t′
i ∈ Ti , 

then s2
i (ti) = bi(til1 ) for every ti ∈ [0, t′

i]. If s2
i is a nondecreasing strategy, then we have constructed a single-valued selection 

from Mε
i (s−i, ·) satisfying (i) and (ii). Otherwise, denote t1

i = min{ti ∈ Ti : s2
i (ti) �= bi(til1 )}. We need to repeat this procedure 

for the smallest bid recommended by s2
i on the segment [t1

i , 1], with contestant i’s types in [0, t1
i ), when t1

i > 0, bidding 
bi(til1 ). In a finite number of steps, a nondecreasing ε-best-reply of contestant i to the strategy subprofile s−i satisfying (i) 
and (ii) will be constructed. �
A.4. Proof of Proposition 6

Proof. Consider some correspondence M̃ε
i . Fix a strategy subprofile s−i ∈ S−i . By Proposition 5, the correspondence 

M
ε
3
i (s−i; ·) has a single-valued selection s̃i ∈ Si possessing the following properties: (i) s̃i is a step function; (ii) μ(t j ∈

T j : s̃i(ti) = s0
j (t j)) = 0 for each j ∈ I−i and every ti ∈ Ti . Then, by Corollary 1, there exists an open neighborhood 

N 1
S−i

(s−i) of s−i in S−i such that V i (̃si(ti), s′
−i; ti) > V i (̃si(ti), s−i; ti) − ε

3 for all s′
−i ∈ N 1

S−i
(s−i) and all ti ∈ Ti . Therefore, 

V i (̃si(ti), s′
−i; ti) > V i(s−i; ti) − 2ε

3 for all s′
−i ∈N 1

S−i
(s−i) and all ti ∈ Ti .

Since, by Proposition 2, V i is continuous on S−i × Ti and the set S−i × Ti is compact in L−i × Ti , V i is uniformly 
continuous on S−i × Ti . Pick an open neighborhood N 2

S−i
(s−i) of s−i in S−i such that V i(s−i; ti) > V i(s′

−i; ti) − ε
3 for all 

s′
−i ∈N 2

S−i
(s−i) of s−i in S−i and all ti ∈ Ti . Then ̃si ∈ M̃ε

i (s′
−i) for all s′

−i ∈N 1
S−i

(s−i) ∩N 2
S−i

(s−i). �
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