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Abstract

This paper presents a unified image analysis approach for automated detection, segmentation, and clas-
sification of breast cancer nuclei using a neural network, which learns to cluster shapes and to classify
nuclei. The proposed neural network is incrementally grown by creating a new cluster whenever a pre-
viously unseen shape is presented. Each hidden node represents a cluster used as a template to provide
faster and more accurate nuclei detection and segmentation. On-line learning gives the system improved
performance with continued use. The effectiveness of the resulting system is demonstrated on a task
of cytological image analysis, with classification of individual nuclei used to diagnose the sample. This
demonstrates the potential effectiveness of such a system on diagnostic tasks that require the classification

of individual cells.
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image analysis, on-line learning, adaptive resource-allocating network

I. INTRODUCTION

Object detection, segmentation, and classification are the key building blocks of a computer
vision system for image analysis. The goal of detection and segmentation is to locate and extract
meaningful objects from the image. In cytological and histological images, this detection and
segmentation play important roles in breast cancer classification between malignant and benign.

These three problems have been addressed with artificial neural networks (ANNs) as a means
for gathering knowledge used in the imaging process and thus for producing more robust image
analysis systems. For detection, most neural network approaches were focused on examining
pixel intensities of image blocks. For example, both supervised and unsupervised learning in
neural networks [1] have been used to determine which image blocks contain a cell nuclei. By
testing the orientation of the gray value gradient, a neural network can segment detected nuclei
body from background [2]. While most neural network approaches in image analysis were focused
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on examining pixel intensities, a current trend in automatic image analysis is the use of model-
based methods. It is usually desirable for a model to describe an expected shape and to contain
information about shape variation within the training set [3]. In this paper, we use shape features
to represent objects, nuclei, and supervised learning based on those features for classification.
The internal representation formed by the hidden layer of the proposed network can be used as
prototypes to aid nuclei detection and segmentation.

Furthermore, those ANNs are useful only when the network architecture is chosen correctly
and when the goal is one or two of the three problems. In this paper, we propose an adaptive
on-line neural network which is incrementally grown and based on a shape-based approach.
Section II describes the shape model for a single shape and a clustered shape and Section III
reviews the RBF network and sequential learning. The neural network for on-line modeling is
proposed in Section IV. Section V presents the object-based image analysis system using the
proposed network. Experimental results and conclusions are presented in Section VI and VII,

respectively.

II. MODELING SHAPES

In order to utilize or to extract the shape information of objects in an image, a suitable
method for representing shapes is needed. In order to use the shapes as input data of a learning
system, points on the shape must be positioned consistently on each of the training examples.
In this paper, we adopt the centroid-radii model by a set of points in polar coordinates [4], [5].
Assume that OA is an arbitrary radius of the shape. The algorithm starts from OA and, moving
clockwise, divides the circle into I equal arcs to place points around the boundary (Fig. 1). So
the shape can be represented as x = (z;);=1..1, where z; is the ith radius at the angle (@) 1.

The model is invariant to translation and can be reflected by reversing the order of the points.
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Since each representation can be rotated and scaled, only one model is needed for similar shapes
with different orientation and scale.

A given set of N shapes, x'V

, is partitioned into clusters. Each of these clusters can be
represented by the center of the cluster, defined to be a clustered shape, (u]-) j=1.7, Wwhere J is

the number of clusters. To measure the spread of a set of data around the center of the data in

the cluster, the standard deviation (o) is stored for each component of the clustered shape [6].

III. RBF NETWORK AND SEQUENTIAL LEARNING

The three-layer RBF network has a feedforward architecture with an input layer, x, a hidden
layer, u, and an output layer, z. The layers contain sets of I, J, and K nodes, respectively. Each

hidden node represents a single RBF and computes a Gaussian function of x:

T — )2
$i(x) = $(lx — ;) = exp (—2%), J=12,00 (1)

o3
where p; and o; are the center and the width of the jth hidden node, respectively. Each output
layer node is given by the sigmoid function (s) of the weighted sums (zj) of the outputs from

the hidden nodes,

1

s(z) = 1T+

2k = Zwkj¢j(x)’ k= 1’23"' aKa (2)
J

where wy; is the weight between the jth hidden node and the kth output node.

In 1991, Platt proposed a sequential learning technique for RBF networks [7]. The resulting
architecture was called the resource allocating network (RAN) and found to be suitable for on-
line modeling of non-stationary processes. Initially, the network contains no hidden nodes. On
incoming training examples, the RAN is either grown or the existing network parameters (the

centers and weights) are adjusted using a least mean square gradient descent, based on two
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criteria: prediction error (zp — tx), where t; is desired output, and the novelty criterion which is
based on the distance between the observation and the winning center. If both the criteria are

greater than thresholds, then a new hidden node is added to the network.

IV. AN ADAPTIVE RESOURCE-ALLOCATING NETWORK

In this section, we propose a neural network based on RAN for on-line modeling with incre-
mental growth (see Fig. 2). The hidden layer of the network clusters objects based on shapes and
assigns a node to each cluster. To aid the classification of heterogeneous shape-based clusters,
additional features f are directly connected to the output layer. So the output node (Eq. (2)) is

given by the sigmoid function of the combined sum:

S(Zk) :s(mekmfm‘l'Z] wkj¢j+wk0)a m = 1a2a"'7Ma
where M is the number of nuclear features and wgy, is a weight between the kth output and the
mth nuclear feature, and wyg is a bias.
A. Initializing the hidden layer

The network can initialize the hidden layer in one of two ways, depending on whether a priori
knowledge about the shapes is available. In the breast cancer application, the objects in question
are human cell nuclei, which are more or less elliptical in shape. Therefore we can define initial

templates, T, as a set of ellipses with different shapes (Fig. 3).
Nj:Tj’ o;j=0, Jg=1-Jy, (3)

where Jj is the number of initial templates. If we assume no knowledge of the shapes, then the

network includes no hidden nodes, as in the original RAN.
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B. On-line learning rate

Selection of a value of the learning rate parameter, 7, has a significant effect on the network
performance since it is related to the rate of convergence. It was discovered that the appropriate
manipulation of n during the training process can lead to very good results. Eaton and Olivier
stated that the range of 7 depends on the number and types of input and suggested a calculation

of the learning rate for backpropagation using batched updates [8]:

n= i
VNE+NE+ -+ N2

where 3 is a constant which is chosen empirically and N; is the number of data in the jth cluster.
In contrast to Eaton and Olivier’s assignment before training, since the proposed network updates
clusters in on-line learning, we can calculate the adaptive learning rate based on the size of the

training data during sequential training.

C. Training the network

Training data are supplied to the neural network in the form of pairs (x™,t") of input and target
vectors. If a new input x" is not similar to any clusters and the prediction error is significantly

large, a new cluster is created by Platt’s method:

Njp =1, By = x", o4 = H(xn - “‘nearest)2a J=J+1,

where & is a constant for an overlap factor and p,,qre5: 1 the existing nearest hidden node from

n

x™. This makes new shapes more likely to match the newly-created hidden node. Thus, after

training on a set of shapes, each hidden node represents a cluster of shapes in the shape space.
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If the input shape x" is most similar to the cluster p; or the prediction error is small, the

winning cluster p; and o are updated by adding x™ with stepwise gradient descent.

N; =N;+1,

Awg; = 20nd;(x™) (27 — 1) zp (1 — 23),

Apji = 20‘1‘”@%@")%(%’3 — k), @
ji

Boye = 20 ey 7 - ),

Je

where «; is the parameter indicating the similarity between p; and x™ and is set to 1 if p; is the
winning cluster. Note that this update is performed only once for each new shape, in contrast
to a standard backpropagation, which uses each point repeatedly during training.

In the adaptation process, hard competitive learning (winner-take-all) comprises methods
where each input only determines the adaptation of one node, the winner. Due to the smaller
steps in the adaptation process, hard competitive learning will have more possibilities to get
stuck into well-separated local optima. One way to cope with this problem is to change to the
soft competitive learning (winner-take-most) which adapts not only the winner but also some
other nodes. So, soft competitive learning will lead quickly to a nearby optimum. The proposed
network updates clusters depending on their similarity with x":

. ”xn Il I*l‘jH B ”xn B l"’nearest”

T ||xn - l-l‘farthest“ - ||xn - I-"’nearestH’

where p ¢4, ¢pe5¢ 18 the farthest hidden node from x". Since nuclear features are connected directly

to the output node, their relationships to the outputs are the same as the hidden layer.

V. DESCRIPTION OF THE IMAGE ANALYSIS SYSTEM

Fig. 4 shows a flowchart of the proposed object-based image analysis system for object de-

tection, segmentation and classification. The proposed network uses hidden nodes as templates
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for detection (using a template-matching algorithm) and segmentation (via initialization of the
snakes). While these three steps are performed repeatedly, the system learns and gathers knowl-
edge of shapes that the user would like to find. The following two sections describe the image

analysis techniques that we used for detection and segmentation.

A. Object detection: GHT

The proposed system uses the generalized Hough transform (GHT) [9], a standard template
matching algorithm, to detect the boundaries of objects by making use of gradient direction
information at edge pixels in an image. GHT requires template shapes to be predefined. Further,
when the scale and orientation of an input shape are variant and unknown in advance, brute
force is usually employed to enumerate all possible scales and rotations of the input shape in the
GHT process.

In this work, the system uses an iterative version of GHT (IGHT) which incorporates a clus-
tered shape [6]. An important aspect of the this method is the use of intelligent search to guide
the order in which template matches are attempted. As the images are processed, the program
records the number of times each template has matched an object. This allows us to search first
for the object shapes that were most common in previous images. By searching first for the
objects that we are most likely to find, we significantly reduce the expected time required, since

not all templates will appear in every image.

B. Object segmentation: Snake

To segment the exact boundaries of objects, the proposed system uses an energy-minimizing
contour, called a “snake” [10], which is guided by external constraint forces and influenced by
image forces that pull it toward features such as lines and edges. While snake provides a powerful
interactive tool for image segmentation, it is vulnerable to its initial position.
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In the breast cancer nuclei application, the model is a closed curve that is attracted to strong
edges in the image, and forms an arc in the absence of such edge information. The snakes are
initialized using the results of the IGHT that searches for learned shapes of various sizes. Since
the templates for IGHT are created for unanticipated shapes, they may give better initializa-
tion, resulting improved quality of segmentation. The user can then edit the resulting outline,
remove an incorrect boundary, or draw a boundary on an undetected object by hand. From the
perspective of the learning method, this process creates a collection of positive examples of the

shapes that this user would like to find and outline.

VI. EXPERIMENTAL RESULTS
A. Data images and experimental setup

The algorithm was tested on 640x480 gray-scaled cytological images from fine-needle biopsies
of breast masses. These images are classified as benign or malignant on a per-sample basis (K=2).
Since no classification is available for individual cell nuclei, we assume all nuclei in benign images
to be benign and all nuclei in malignant images to be malignant. This assumption is reasonable
but not entirely accurate, resulting in an undetermined amount of classification noise.

The system was trained on a sequence of 90 training images (N=3423 nuclei), alternating
between benign and malignant. After each 18 training images (at 18, 36, 54, 72, and 90), ten
test images (5 benign and 5 malignant) were automatically segmented and classified using all
trained templates. Fig. 5 shows one of the test images.

During the IGHT, the system computes a global accumulator of the same size as the image
which contains, in each cell, a detection value representing a match score for the best-matching
template. Then the system runs snakes in order of the detection value and uses 24 radii (I) for

each nucleus as the input of the neural network. Then the system computes 5 nuclear features
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(M): size, radius, perimeter, smoothness, and concavity of each nucleus [11]. Size means the
amount of scaling based on the maximal radius. Radius is the average length of the 24 radial
line segments from the centroid of the nucleus and each boundary point. Perimeter is calculated
by summing distances between consecutive points on the boundary. Smoothness is the total
difference between the length of a radius and the mean length of two neighbor radii surrounding
it. Concavity means the severity of any concavities on the boundary. So, the network for
cytological image analysis initially consists of 29 input nodes (I + M), 5 hidden nodes (Jp), and

2 output nodes (K). The parameter values used for this experiment are: f=1.2 and k=0.5.

B. Number of hidden nodes

Fig. 6 shows the number of hidden nodes/templates that had to be searched on a logarithmic
scale. The original IGHT algorithm was performed with a constant, predefined set of elliptical
templates. These vary significantly in size and shape in an attempt to capture the basic shape of
all nuclei that might be encountered. The neural system builds a set of templates as it is used.
After an initial ramping up period, the number of templates is very stable at a level more than
an order of magnitude smaller than the original set. The curves labelled “Hard competitive”
and “Soft competitive” show the number of hidden nodes using hard competitive learning and
soft competitive learning, respectively. These reflect the number of templates searched in order
of their frequency in previous images. The soft competitive learning used in the neural network
results in a 95.84% reduction in the number of necessary templates from IGHT and a 52.94%

reduction from hard competitive learning.

C. Cluster separation

Fig. 7 shows the set of templates constructed after training 90 images. The number next
to each template name is the number (N;) of trained shapes. To estimate how compact and
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well-separated the clusters are, we calculated two distances [12]: intra-cluster distance(Table I),
which is the averaged distance between a template j and objects in the corresponding cluster,
Xej, and inter-cluster distance (Table II), which is the distance between templates a and b,

> ||#j - Xej”z

intra-cluster distance; = N
J

and inter-cluster distanceq = ||p, — tpll2,

where |[v1 —va||2 is the Euclidean distance between two vectors v; and v and Nj is the number
of objects in the cluster xc;. Most templates are well clustered, having a larger inter-cluster
distance from any other template than the intra-cluster distance. There are two exceptions: one
is between T2 and T3, and the other between T4 and T5. Since the inter-cluster distance (20)
between T2 and T3 is smaller than the intra-distance T3 (20.36), T3 is clustered so loosely that
some objects in T3 are difficult to separate from T2. A similar case happens in between T4 and
T5. We note that the network is initialized with some close templates, however, it never creates

overlapping templates.

D. Segmentation

To evaluate the segmentation performance of the algorithm, we used two measures, segmen-
tation sensitivity and segmentation accuracy. Segmentation sensitivity is the likelihood that a
nucleus will be detected by a expert. Segmentation was performed until approximately 80% of
the nuclei in the image were correctly outlined, up to a maximum of 50 nuclei, since only a few
dozen cells are typically required for successful diagnosis. Segmentation accuracy is the likelihood
that a segmented object is an actual nucleus. An expert then judges correctly outlines nuclei
as well-segmented nuclei. The well-segmented nuclei are classified as described in Sec VI-E and
used for training the system. Fig. 8 illustrates the average accuracy of the 10 test images using
templates generated by the neural network. The new system has better segmentation accuracy
than the original IGHT algorithm with predefined elliptical templates after training or 36 images,
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and achieves this performance in an order of magnitude less time per image (see Fig. 6). Fig. 8
shows that as the system trains with more images, both prediction accuracy and segmentation

sensitivity increase, although gains are modest after around 50 images.

E. Classification

Table IIT shows the classification counts for well-segmented nuclei with soft-competitive learn-
ing. After only the first training set (18 images), nuclei were correctly classified at 65.02%. As
the number of training sets reached five, the average classification rate achieved 94.13%. For
well-segmented cells in the 10 test images, we achieved 94.61% accuracy on the benign cells and
93.51% on the malignant cells after training 90 images. We also tested on hard-competitive
learning and observed nearly identical. So, the proposed network uses soft-competitive learning
for fast detection with fewer templates (Fig. 6), instead of for better classification. Table IIT also
shows the neural network without 5 nuclear features achieved 58.92 % accuracy in average, and
that with the only size feature 86.15 % accuracy in average, respectively. For cross validation, we
repeated this classification procedure 9 times more, with each image serving as a test image once,
and achieved 94.13% averaged result of 10 test sets. The values in Table IV are the averaged
values and the standard errors of classification rate of 10 test sets. As training continues, the
standard errors of 10 test sets at each training set are decreasing from 2.36 to 0.01.

Another measurement of classification performance is the ROC curves with classification sen-
sitivity and specificity. Classification sensitivity is the probability that a nucleus will be correctly
classified as malignant. Specificity is probability that a nucleus without the disease will be cor-
rectly identified as benign. After training, the system provides classification outputs of each
nucleus through the neural network. At each classification level, the system counts true positive

cases and computes the rates on the total number of nuclei. The area under the curve (AUC) is
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the average sensitivity over all possible specificities for evaluating diagnostic procedures. Fig. 9
shows that the AUC of the proposed neural network (0.9315) is larger than that (0.7801) of the
instance-based learning scheme, which classify new objects based on the majority class of the
matching template [5], [6].

Table V shows an experimental result on classification rate depending on the learning rate.
We tested the same 426 well-segmented nuclei after training the network on 90 images using
different values of . Using n = 0.5, the algorithm oscillated, moved very slowly towards the
real descent direction, and caused the lowest classification rate. The value 0.05 of 7 is too small
to allow a fast learning process. Since the proposed adaptation is based on the characteristics
of the training data, it is able to quickly adapt the learning rate to a particular situation and
find a better local optimum. In terms of reducing the error as much as possible, the automatic
adaptation of n outperforms several reasonable constant values for 7.

In addition to classification of individual nuclei, we tested the classification of images. In our
application, the diagnosis of breast cancer is based on an image corresponding to each patient.

We calculate the malignancy of each image as

number of malignant cells in an image

li = '
malignancy number of well segmented cells in an image

Fig. 10 shows classification accuracy on the 10 test images after every 18 training images. The
5 benign images have good results from the beginning of training. Since the characteristics of
malignant nuclei (i.e. size and shape) are various, some of the malignant images were more
difficult to classify well early in the training. However, after training on 54 images, the network
started to find patterns to consistently differentiate malignant nuclei from benign nuclei. We
tested additional 100 images after training on 90 images and achieved 94% and 96% accuracy at

malignancy thresholds of 0.5 and 0.42, respectively.
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VII. CONCLUSION

We proposed an incrementally grown network, specially designed for image analysis tasks. This
paper demonstrates how the proposed neural network is used to aid the detection, segmentation
and classification of the nuclei being outlined. Using centers and widths of the hidden nodes
as templates for detection and segmentation provides a guide for an intelligent search through
the space of possible nuclei. This approach improves object detection, by gathering a collection
of desired objects specific to the application; it improves segmentation by generating higher
quality initial outlines with different classes of objects. The centers and widths are updated
proportionally using soft competitive learning, creating a set of tight, well-separated clusters.
The system supports the visual display of hidden nodes as templates. We demonstrated that our
learning rate in better classification.

Further directions of this work shall include a pruning technique and different learning rates
for different nodes. We are also interested in comparing these results with the previously imple-
mented Xcyt system, currently used in clinical practice [13]. We also planning to use the system

in a large-scale image analysis task, detecting and classifying cells from heterogeneous tissues.
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Fig. 1. Shape representation using the centroid-radii model
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Fig. 2. Architecture of the proposed neural network
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Fig. 3. Examples of initial templates for cell nuclei
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Fig. 4. Flowchart of the automatic object-based image analysis system
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Fig. 5. Test image reduced by 50% where white boundaries are results of IGHT and snake and are input

to the neural network.
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Fig. 7. Set of cell templates after training 90 images where the first five templates are initial template in

Fig. 3 and the following 7 templates are created during training
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Fig. 8. Segmentation accuracy on test images. For each image, as more nuclei are outlined, the seg-

mentation accuracy is measured at various sensitivity levels. Curves are computed every 18 training

images, and averaged over the ten test images.
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Fig. 9. Classification performance compared of the proposed neural network and instance-based learning
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Fig. 10. Classification of images where B means a benign test image and M a malignant test image
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TABLE I. Intra-cluster distance between a template and shapes in its corresponding cluster

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

6.38 16.85 20.36 16.00 23.52 26.26 20.95 33.79 23.14 31.65 27.09 37.52
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TABLE II. Inter-cluster distance between templates

T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12
T1 17.66 34.60 55.76 70.07 3798 42.68 60.8 43.57 49.97 41.57 49.06
T2 0 20.00 39.67 54.27 53.12 49.99 65.2  52.27 54.75 49.59 48.12
T3 0 22.60 35.92 68.80 65.16 72.08 66.95 65.00 65.26 56.46
T4 0 21.21 90.37 86.62 &7.67 88.57 85.13 85.34 77.82
T5 0 104.44 99.22 98.65 101.20 95.96 96.00 91.52
T6 0 37.67 67.62 35.14 60.00 51.18 77.37
T7 0 45.00 29.00 37.25 41.04 67.96
T8 0 56.39 45.56 51.53 59.38
T9 0 44.01 38.44 74.40
T10 0 33.47 43.97
T11 0 56.33
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TABLE III. Confusion matrix and classification rate (%) on 10 test images with soft-competitive learning

CLASS TRAINED WITH IMAGES

TRUE PREDICTED 18 36 54 72 90
BENIGN BENIGN 161 176 201 219 228

BENIGN MALIGNANT 58 52 35 18 13

MALIGNANT BENIGN 72 51 31 16 12
MALIGNANT MALIGNANT 84 121 147 164 173
WELL SEGMENTED NUCLEI 375 400 414 417 426
CLASSIFICATION | WITH NUCLEAR FEATURES 65.33 | 74.25 | 84.06 | 91.85 | 94.13
RATE (%) WITH ONLY THE SIZE FEATURE || 64.27 | 72.25 | 80.43 | 84.89 | 86.15
WITHOUT NUCLEAR FEATURES | 56.53 | 57.00 | 57.49 | 58.03 | 58.92
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TABLE IV.

Cross-validation on 10 sets of 10 test images with soft-competitive learning
Cross TRAINED WITH IMAGES
VALIDATION 18 36 54 72 90
AVERAGE 65.02 | 74.25 | 84.01 | 91.96 | 94.13
STANDARD ERROR || 2.36 1.07 | 0.35 | 0.12 | 0.01
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TABLE V. Learning rate (n) vs. classification rate (%)

n FIXED ADAPTIVE
0.5 0.1 | 0.05
CLASSIFICATION RATE || 67.37 | 89.2 73 94.13
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