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Selecting the Right Correlation Measure for Binary Data
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Finding the most interesting correlations among items is essential for problems in many commercial, medical,
and scientific domains. Although there are numerous measures available for evaluating correlations, differ-
ent correlation measures provide drastically different results. Piatetsky-Shapiro provided three mandatory
properties for any reasonable correlation measure, and Tan et al. proposed several properties to categorize
correlation measures; however, it is still hard for users to choose the desirable correlation measures according
to their needs. In order to solve this problem, we explore the effectiveness problem in three ways. First, we
propose two desirable properties and two optional properties for correlation measure selection and study the
property satisfaction for different correlation measures. Second, we study different techniques to adjust cor-
relation measures and propose two new correlation measures: the Simplified χ2 with Continuity Correction
and the Simplified χ2 with Support. Third, we analyze the upper and lower bounds of different measures
and categorize them by the bound differences. Combining these three directions, we provide guidelines for
users to choose the proper measure according to their needs.
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1. INTRODUCTION

With the development of scanning devices, the Internet, and computer storage tech-
nologies, companies in diverse sectors such as retailing, banking, and telecom compile
large databases on consumers’ past transactions. Each record in a typical market bas-
ket transaction dataset corresponds to a transaction, which contains a unique identifier
and a set of items bought by a given customer. The analysis of relationships between
items is fundamental in many data mining problems. For example, the central task
of association analysis [Agrawal et al. 1993] is to discover a set of items that co-occur
frequently in a transaction database. Regardless of how the relationships are defined,
such analysis requires a proper measure to evaluate the dependencies among items.
The stronger the dependence relationship is, the more interesting the pattern.

In this article, we only study the correlation for binary data. Numeric data can be
handled by canonical correlation analysis [Johnson and Wichern 2001], which won’t be
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discussed here. For binary data, although we are, in general, interested in correlated
sets of arbitrary size, most of the published work with regard to correlation is related
to finding correlated pairs [Tan et al. 2004; Geng and Hamilton 2006]. Related work
with association rules [Brin et al. 1997a, 1997b; Omiecinski 2003] is a special case of
correlation pairs since each rule has a left- and right-hand side. Given an association
rule X ⇒ Y where X and Y are itemsets, Support = P(X ∩ Y ) and Conf idence =
P(X ∩ Y )/P(X) [Agrawal et al. 1993; Omiecinski 2003] are often used to represent
its significance. However, these can produce misleading results because of the lack of
comparison to the expected probability under the assumption of independence. In order
to overcome the shortcoming, Lift [Brin et al. 1997a], Conviction [Brin et al. 1997b], and
Leverage [Piatetsky-Shapiro 1991] are proposed. Dunning [1993] introduced a more
statistically reliable measure, Likelihood Ratio, which outperforms other correlation
measures. Jermaine [2005] extended Dunning’s work and examined the computational
issue of Probability Ratio and Likelihood Ratio. Bate et al. [1998] proposed a correlation
measure called Bayesian Confidence Propagation Neural Network (BCPNN), which is
good at searching for correlated patterns occurring rarely in the whole dataset. These
correlation measures are intuitive; however, different correlation measures provide
drastically different results. Although Tan et al. [2004] proposed several properties to
categorize these correlation measures, there are no guidelines for users to choose the
desirable correlation measures according to their needs. In order to solve this problem,
we will propose several desirable properties for correlation measures and study the
property satisfaction for different correlation measures in this article.

By studying the literature related to correlation, we notice that different correlation
measures are favored in different domains. In the text mining area, people use Like-
lihood Ratio [Dunning 1993]. BCPNN is favored in the medical domain [Bate et al.
1998], while Leverage is used in the social network context [Clauset et al. 2004]. Our
research will answer this question of why different areas favor different measures.

Evaluating the performance of different correlation measures requires a ground
true ranking list matching human intuition and each measure will be evaluated by
checking how similar the retrieved ranking list is to the ground true ranking list.
However, when dealing with human intuition to get the ground true ranking list,
different people have different opinions. Take the pairs {A, B} and {C, D} for example.
When Event A happens, the probability of observing Event B will increase from 0.01%
to 10%. When Event C happens, the probability of observing Event D will increase
from 50% to 90%. Which correlation pattern is stronger between {A, B} and {C, D}?
Different people have different answers. Therefore, there is no ground true ranking
list to test the performance of each measure. Instead, people all agree that a good
correlation measure can at least tell correlated patterns from uncorrelated patterns,
and it is much easier to identify ground true correlated patterns, especially in simulated
datasets. Therefore, our evaluation emphasizes more the precision of each measure
by telling correlated patterns from uncorrelated patterns. Still, when using precision
to measure performance, two correlation measures can both perfectly tell correlated
patterns from uncorrelated patterns to achieve 100% precision but rank correlated
patterns differently. For example, one measure can rank {A, B} higher, while the other
can rank {C, D} higher. As a complement to precision, the preference differences among
measures will be studied when they achieve similar precision.

There are two very influential papers [Tan et al. 2004; Geng and Hamilton 2006] on
the correlation study in the data mining area. They both recognize the performance
differences among different measures. They categorized measures according to their
different property satisfaction. By categorizing measures, users only need to check
the performance of the typical measure in each category instead of all the possible
measures. However, two measures can rank patterns differently even if they satisfy
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the same set of properties. Instead, one recent paper [Tew et al. 2013] categorized
measures directly according to their ranking list similarity. No matter how measures
are categorized, two fundamental questions are still not answered. Which one can tell
correlated patterns from uncorrelated patterns better? If there is a ranking difference
between two measures, what is the difference? Some other studies focus on selecting
the best measure that can tell correlated patterns from uncorrelated patterns in a spe-
cific application. But they cannot explain why this measure can do better than others.
In addition, different measures are selected as the best in different domains [Dunning
1993; Bate et al. 1998]. Furthermore, different measures are selected as the best in
the same application but different datasets [Liu et al. 2013]. Therefore, the goal of
our research is trying to address these two fundamental questions better. In addition,
different from most of the previous research, we study the performance not only on
correlated pair search but also on correlated itemset search. Therefore, to the best of
our knowledge, we maintain a comprehensive list of correlation measures that have
an explicit comparison to the expectation from the assumption of independence and
test them against our proposed guidelines. In addition, we only focus on the selection
of correlation measures in this article. However, another related issue on correlation
search is the efficiency problem. Even if we successfully select the right correlation
measure, we might not be able to get the result for a large dataset if we cannot solve
the efficiency problem. Xiong et al. [2006a, 2006b] made some significant progress
on correlated pair search for φ Correlation Coefficient. Duan et al. [2013] proposed a
Token-ring algorithm on correlated pair search for more general correlation measures.
Zhang and Feigenbaum [2006] studied the distribution of the φ-coefficient and relaxed
the upper bound in TAPER in order to speed up the search. Duan and Street [2009]
proposed a fully correlated itemset framework to speed up the high-dimensional cor-
relation search for any good correlation measure that satisfies the three mandatory
properties in Section 2.1.

The remainder of this article is organized as follows. In Section 2, important corre-
lation properties and different correlation measures will be discussed. The correlation
properties are used to guide the choice of different correlation measures. Section 3
shows the experimental results. Finally, we draw a conclusion in Section 4.

2. CORRELATION MEASURES

Since some correlation measures can only be used for pairs, we categorize correlation
measures into the general and pair-only types. Both types can evaluate correlation for
pairs, but only the general type can evaluate correlation for itemsets. In this section,
we discuss correlation properties and measures for both types.

2.1. Correlation Properties

There are some general correlation properties that both types need to satisfy. However,
there are some additional properties for the pair-only measures.

2.1.1. General Correlation Properties. Given an itemset S = {I1, I2, . . . , Im} with mitems in
a dataset with sample size n, the true probability is tp = P(S), the expected probability
under the assumption of independence is ep = ∏m

i=1 P(Ii), and the occurrence is k =
P(S) · n. These parameters will be used in different correlation measures, and we use
“Support” and “true probability” interchangeably in this article. Correlation measures
can be generalized as M = f (tp, ep). For example, Leverage [Piatetsky-Shapiro 1991]
is tp − ep. The following seven properties provide guidelines for a good correlation
measure M according to users’ needs:

P1: M is equal to a certain constant number C when all the items in the itemset
are statistically independent.
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P2: M monotonically increases with the increase of P(S) when all the P(Ii) remain
the same.

P3: M monotonically decreases with the increase of any P(Ii) when the remaining
P(Ik) (where k �= i) and P(S) remain unchanged.

P4: The upper bound of M does not approach infinity when P(S) is closer to 0.
P5: M gets closer to C (including negative correlation cases whose M is smaller

than C) when an independent item is added to S.
P6: The lower bound of M gets closer to the lowest possible function value when

P(S) is closer to 0.
P7: M gets further away from C (including negative correlation cases) with in-

creased sample size when all the P(Ii) and P(S) remain unchanged.

The first three properties are proposed by Piatetsky-Shapiro [1991]. They regulate
the change between tp and ep and should be mandatory for any good correlation mea-
sure. The first property requires a constant C to indicate independency when the actual
probability is the same as the expected probability. It is positive correlation when above
C and negative correlation when below C. The second property requires the correla-
tion value to increase when the expected probability stays the same while the actual
probability goes up. In other words, the itemset deserves more credit when we have the
same expectation but the actual performance is better. Similarly, the correlation value
will decrease when the expected probability goes up while the actual probability stays
the same.

These three mandatory properties screen out some bad correlation measures, but
there are still some other poor correlation measures that satisfy all three mandatory
properties. In order to solve the problem, we proposed another two desired properties,
which are the fourth and fifth properties. The fourth property is that it is impossible to
find any strong positive correlation from itemsets occurring rarely. In other words, it
at least has to happen several times in order to be statistically validated. We want to
find significant patterns rather than coincidences. This property helps to rule out mea-
sures that cannot tell correlated patterns from uncorrelated patterns well. For the fifth
property, we give some penalty for adding independent items in order to make highly
correlated itemsets stand out. In the extreme case, when a lot of independent items are
added, the final itemset is dominated by the independence and the correlation value
should be very close to the constant C. The fifth property is related to an agreement of
how to rank differently.

In addition, we proposed two optional properties, which are the sixth and seventh
properties. The sixth property expects the strongest negatively correlated itemsets
coming from the low Support region. It is quite intuitive since the stronger negative
correlation means a lower chance of them happening together. The fourth property
checks whether correlation measures can correctly evaluate positive correlation, while
the sixth property checks the correct evaluation for negative correlation. Therefore,
if users are only interested in positive correlation, it doesn’t matter if the correlation
measure cannot satisfy the sixth property. Similarly, if users are only interested in neg-
ative correlation, it doesn’t matter if the correlation measure cannot satisfy the fourth
property. However, we treat the fourth property as desired and the sixth property as
optional for the following reason. If we consider the absence of an item I as the presence
of the absence, we can find a positive correlation like {A, B̄, C} and we understand how
A, B, and C are correlated with each other. From the negative correlation {A, B, C},
we don’t know how A, B, and C are correlated with each other. The seventh property
indicates that the correlation measure should increase our confidence about the posi-
tive or negative correlation of the given itemset S when we get more sample data from
the same population. However, we prefer it to be optional for two reasons. First, we
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Table I. A Two-Way Contingency Table for Variables A and B

B B̄
∑

Row
A f11 f10 f1+
Ā f01 f00 f0+∑

Column f+1 f+0 N

Table II. The Grade–Gender Example from 1993

Male Female
∑

Row
High 30 20 50
Low 40 10 50∑

Column 70 30 100

Table III. The Grade–Gender Example from 2004

Male Female
∑

Row
High 60 60 120
Low 80 30 110∑

Column 140 90 230

can always make our correlation measures a function of the sample size isolated from
other parameters. In that way, we can either keep the sample size parameter to satisfy
the last property or drop the sample size parameter. Second, we might want to com-
pare the correlation from different sources that have different sample sizes. In order
to conduct a fair comparison, we might not want the correlation measure to satisfy the
last property.

2.1.2. Additional Properties for Pair-Only Measures. In addition to the previous seven prop-
erties for both general and pair-only measures, Tan et al. [2005] proposed three ad-
ditional properties for the pair-only-type measures based on operations for 2 × 2 con-
tingency tables. Table I shows a typical 2 × 2 contingency table for a pair of binary
variables, A and B. Each entry fij in this 2 × 2 tables denotes a frequency count.

The three proposed properties on a two contingency table are as follows:

AP1: M remains the same when exchanging the frequency count f11 with f00 and
f10 with f01.

AP2: M remains the same by only increasing f00.
AP3: M remains the same under the row/column scaling operation from Table T to

T ′, where T is a contingency table with frequency counts [ f11; f10; f01; f00], T ′ is a
contingency table with scaled frequency counts [k1k3 f11; k2k3 f10; k1k4 f01; k2k4 f00],
and k1, k2, k3, k4 are positive constants.

The first property is the inversion property, which argues that the correlation of
A and B should be the same as that of Ā and B̄. The second property is the null
addition property. Tan et al. argued that the correlation between two items should not
be affected by adding unrelated data to a given dataset. For example, we are interested
in analyzing the relationship between a pair of words, such as data and mining, in a
set of computer science papers. The association between data and mining should not
be affected by adding a collection of articles about ice fishing. The third property is
the scaling property. Mosteller [1968] presented the following example to illustrate
the scaling property. Tables II and III show the contingency tables for gender and
the grades achieved by students enrolled in a particular course in 1993 and 2004,
respectively. The data in these tables showed that the number of male students has
doubled since 1993, while the number of female students has increased by a factor of
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Table IV. The Original Table

B B̄
∑

Row
A 5 4 9
Ā 11 80 91∑

Column 16 84 100

Table V. The Modified Table

B B̄
∑

Row
A 5 7 12
Ā 7 81 88∑

Column 12 88 100

3. However, the male students in 2004 are not performing any better than those in
1993 because the ratio of male students who achieve a high grade to those who achieve
a low grade is still the same, that is, 3:4. Similarly, the female students in 2004 are
performing the same as those in 1993.

However, the purpose of these three properties proposed by Tan et al. is to catego-
rize correlation measures. They don’t provide any guideline for choosing the proper
correlation measure according to users’ situations. In fact, we argue that these three
properties are not desirable correlation properties.

For the first inversion property, we argue that the correlation of Aand B is determined
by f11 or the other three occurrences f01, f10, and f00 instead of f00 alone. In Table IV,
we can fix the true probability and the expected probability of A∩ B, but alternate the
values of f01, f10, and f00 to generate another table, Table V. Since the true probability
and the expected probability of Aand Bare the same in these two tables, the correlation
of A and B in these two tables is the same. If the inversion property stands, we can
conclude that the correlation of Ā and B̄ in Table IV is equal to the correlation of Ā and
B̄ in Table V, which is controversial.

For the second null addition property, the correlation of A and B should be the same
if only we fix the values of f11, f01, and f10. Given the extreme example that we add a
huge number of ice fishing documents into the set of computer science papers, the ice
fishing documents start to dominate the corpus and the set of computer science papers
becomes the background noise. Although the co-occurrence of the pair of words “data”
and “mining” is not changed, intuitively, we don’t want the correlation between “data”
and “mining” to be as strong as that in the initial setting since it is the background
noise now. We can also analyze this case in another way. The actual probability of A
and B is f11/( f11 + f01 + f10 + f00) and the expected probability of A and B is ( f11 +
f10)/( f11 + f01 + f10 + f00) · ( f11 + f01)/( f11 + f01 + f10 + f00). For the pair A and B, both
the actual probability and the expected probability decrease when f00 increases. The
decrease of the actual probability lowers the correlation according to Property 2, and the
decrease of the expected probability increases the correlation according to Property 3.
The final change of correlation is due to the tradeoff between the effect from the actual
probability and that from the expected probability, and it is unnecessary for these to
be the same. When we add a huge number of ice fishing documents into the set of
computer science papers, the Support of the pair of words “data” and “mining” is close
to 0. The correlation of the pair of words “data” and “mining” should also be close to the
constant number C according to Property 4, which also contradicts the null addition
property.

For the third scaling property, let’s reconsider the gender–grade example shown in
Tables II and III. Though the ratio of male students who achieved a high grade to those
who achieved a low grade in 1993 is still the same as that of 2004, the ratio of male
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students who achieved a high grade to those who achieved a low grade is different from
that of females. Since the portion of the male students has changed from 1993 to 2004,
we are expecting that the high-grade students are less likely to be male in 2004. The
correlation between grade and gender should be changed.

Though we doubt the three addition properties qualify as desirable properties and
the experimental results in this article support our arguments, it is still up to users’
choice.

2.2. Formulas and Property Satisfaction

In this section, we study the correlation measures for both the general and the pair-only
types and their property satisfaction.

2.2.1. General Correlation Measures.

Support. Support of the itemset S is the proportion of transactions that contain
S. Using Support, the level of correlation is simply the fraction of times that the
items co-occur. As a metric, Support facilitates fast search, but it has drawbacks [Brin
et al. 1997a, 1997b]. For example, the finding that A and B occur together in 81% of
the transactions is not interesting if A and B both occur in 90% of the transactions.
This would be expected since P(A) = P(A|B) and P(B) = P(B|A). A and B are not
correlated, even though they together have very high Support. Among all the seven
properties mentioned previously, Support only satisfies Properties 2 and 6.1 Since even
two mandatory properties are violated by Support, it is a poor correlation measure.

Any-confidence. Any-confidence [Omiecinski 2003] of the itemset S is the ratio
of its probability to the probability of the item with the lowest probability in S:
AnyConf idence(S) = P(S)/min(P(I1), P(I2), . . . , P(Im)). The value of Any-confidence
is the upper bound of the confidence of all association rules that can be generated from
the itemset S. It helps us to determine whether we can find at least one rule that has
a confidence greater than the specified threshold. However, it is not designed as a cor-
relation measure and does not have a downward closure property to facilitate search.

All-confidence. All-confidence [Omiecinski 2003] of the itemset S is the ratio of
its probability to the probability of the item with the highest probability in S:
AllConf idence(S) = P(S)/max(P(I1), P(I2), . . . , P(Im)). The value of All-confidence is
the lower bound of the confidence of all association rules that can be generated from
the itemset S. Although All-confidence itself possesses the downward closure prop-
erty to facilitate search, it is not designed as a correlation measure and suffers the
same problems as Support. Theoretically, All-confidence lacks comparison to the ex-
pected probability under the independence assumption. Like Support, it satisfies only
the second and sixth of the seven desired correlation measure properties. Practically,
All-confidence shares three problems with Support. First, it is biased toward itemsets
with high Support items. If an itemset S consists of independent, high Support items,
Support(S) will be high (despite the independence), and AllConf idence(S) will also be
high. This problem is exaggerated if we extend our search to include the presence of
some items and the absence of others, since absence of a rare item is itself a high
Support item. This is typically not relevant in marketing but could be in, for example,
genetic data. Second, intuitively, we want exact-length correlation patterns. However,
All-confidence is biased to short itemsets as its value decreases monotonically with
increasing itemset size. More maximal All-confidence sets are likely to be 2-itemsets
like maximal frequent itemsets. Third, the antimonotone property makes it difficult to
compare correlation among itemsets of different sizes.

1The property satisfaction proofs related to each correlation measure are in the appendix.
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Bond/Jaccard. Bond [Omiecinski 2003] of the itemset S is the ratio of its probability
to the probability of the union of all the items in S: Bond(S) = P(S)/P(I1 ∪ I2 ∪
· · · ∪ Im). Usually, Jaccard is used for pairs and Bond is used for itemsets, but they
share the same idea. Bond is similar to Support but with respect to a related subset
of the data rather than the entire dataset. Like Support and All-confidence, Bond
possesses the downward closure property. Given a set of strongly related rare items,
both Bond and All-confidence can assign a high score for this itemset, which can relieve
the disadvantage of Support. However, worse than All-confidence, Bond satisfies only
the sixth of the seven correlation measure properties and measures correlation in a
suboptimal way.

The Simplified χ2-statistic. The χ2 is calculated as χ2 = ∑
i
∑

j (rij − E(rij))2/E(rij).
If an itemset contains n items, 2n cells in the contingency table must be considered
for the previous Pearson χ2 statistic. The computation of the statistic itself is in-
tractable for high-dimensional data. However, we can still use the basic idea behind the
χ2-statistic to create the Simplified χ2-statistic: χ ′2 = (r − E(r))2/E(r), that is,
n · (tp − ep)2/ep, where the cell r corresponds to the exact itemset S. Since the Simplified
χ2-statistic is more computationally desirable, in the rest of the article we only discuss
the properties and experimental results of the Simplified χ2-statistic. The value of the
Simplified χ2-statistic is always larger than 0 and cannot differentiate positive from
negative correlation. Therefore, we take advantage of the comparison between tp and
ep. If tp > ep, it is a positive correlation. Then the Simplified χ2-statistic is equal to
n · (tp − ep)2/ep. If tp < ep, it is a negative correlation. Then the Simplified χ2-statistic
is equal to −n· (tp−ep)2/ep. This transformed Simplified χ2-statistic is mathematically
favorable. Larger positive numbers indicate stronger positive correlation, 0 indicates
no correlation, and larger (in magnitude) negative numbers indicate stronger negative
correlation.

Probability Ratio/Lift/Interest Factor. Probability Ratio [Brin et al. 1997b] is the
ratio of its actual probability to its expected probability under the assumption of in-
dependence. It is calculated as follows: ProbabilityRatio(S) = tp/ep. This measure is
straightforward and means how many times the itemset S happens more than ex-
pected. In some cases, we also use the log value of Probability Ratio. In that way, we
make the constant number C in the first mandatory property 0, which is consistent
with other measures. However, this measure might not still be a reasonable correlation
measure to use. The problem is that it favors the itemsets containing a large number of
items rather than significant trends in the data. For example, given a common trans-
action containing 30 items and each item in this transaction has a 50% chance to be
bought individually, the expected probability for this transaction is 9.31 ∗ 10−10 if all
the items are independent. Even if this transaction coincidentally happened once out of
1 million transactions, its Probability Ratio is 1,073, which is still very high. However,
a single transaction is hardly something that we are interested in.

Leverage. An itemset S with higher Support and low Probability Ratio may be more
interesting than an alternative itemset S′ with low Support and high Probability Ratio.
Introduced by Piatesky-Shapiro [1991], Leverage(S) = tp − ep. It measures the differ-
ence between the actual probability of an itemset S and its expected probability if all
the items in S are independent from each other. Since

∏m
i=1 P(Ii) is always no less than

0, Leverage(S) can never be bigger than P(S). Therefore, Leverage is biased to high
Support itemsets.

Likelihood Ratio. Likelihood Ratio is similar to a statistical test based on the log-
likelihood ratio described by Dunning [1993]. The concept of a likelihood measure can
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be used to statistically test a given hypothesis by applying the Likelihood Ratio test.
Essentially, we take the ratio of the highest likelihood possible given our hypothesis
to the likelihood of the best “explanation” overall. The greater the value of the ratio is,
the stronger our hypothesis will be.

To apply the Likelihood Ratio test as a correlation measure, it is useful to consider the
binomial distribution. This is a function of three variables: Pr(p, k, n) → [0 : 1]. Given
our assumption of independence of all items in the itemset S, we predict that each trial
has a probability of success ep. Then the binomial likelihood of observing k out of n
transactions containing S is Pr(ep, k, n). However, the best possible explanation of the
probability of containing S is tp instead of ep. Therefore, we perform the Likelihood
Ratio test, comparing the binomial likelihood of observing k transactions under the
assumption of independence with the best possible binomial explanation. Formally,
the Likelihood Ratio in this case is LikelihoodRatio(S) = Pr(tp, k, n)/Pr(ep, k, n).

In the rest of the article, we use a transformed Likelihood Ratio to measure cor-
relation for two reasons. First, since the actual Likelihood Ratio could be extremely
large, we use the ln value instead of its original value. Second, the numerator of the
Likelihood Ratio is the maximal likelihood of the real situation, so the Likelihood Ra-
tio is always larger than 1 and cannot differentiate positive from negative correlation.
When calculating the transformed Likelihood Ratio, we take advantage of the compar-
ison between tp and ep. If tp > ep, it is a positive correlation. Then the transformed
Likelihood Ratio is equal to ln(LikelihoodRatio(S)). If tp < ep, it is a negative cor-
relation. Then the transformed Likelihood Ratio is equal to −ln(LikelihoodRatio(S)).
This transformed Likelihood Ratio is mathematically favorable. Larger positive num-
bers indicate stronger positive correlation, 0 indicates no correlation, and larger (in
magnitude) negative numbers indicate stronger negative correlation.

BCPNN. Probability Ratio is straightforward and means how many times the com-
bination happens more than expected. However, the Probability Ratio is very volatile
when the expected value is small, which makes it favor coincidences rather than sig-
nificant trends in the data. In order to solve the problem, we use shrinkage [Bate et al.
1998; Dumouchel 1999; Norén et al. 2008] to regularize and reduce the volatility of a
measure by trading a bias to no correlation for decreased variance. For an itemset S, the
calculated tp is 0 if S is not observed in the dataset. However, we might get some trans-
actions containing S if we get more samples. In order to make the conservative estima-
tion to the ground tp and ep, we add a continuity correction number here. Suppose the
continuity correction is cc; the formula of BCPNN is BCPNN = ln(tp + cc)/(ep + cc).
Normally, we set cc = 0.5/n when the dataset is relatively clean; however, it could
be any positive number theoretically. Especially when the dataset contains a lot of
noisy data, we might use a larger number to make a more conservative estimate. This
shrinkage strength has been successfully applied to pattern discovery in the analysis
of large collections of individual case safety reports. Norén et al. [2008] claimed that
it precludes highlighting any pattern based on less than three events but is still able
to find strongly correlated rare patterns. In general, the strength and direction of the
shrinkage can be adjusted by altering the magnitude and ratio of the constants added
to the nominator and denominator, which will be fully discussed in Section 2.3. From a
frequency perspective, BCPNN is a conservative version of Probability Ratio, tending
toward 0 for rare events and with better variance properties. As tp and ep increase, the
impact of the shrinkage diminishes.

LEMMA 1. Given the ground true probability p for an itemset S in the dataset with
n transactions, the variance of Probability Ratio approaches to ∞ and the variance of
BCPNN approaches to 0 when p → 0.
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PROOF. Since the occurrence of S, denoted by X, follows the binomial distribution,
we get E(X) = n · p and Var(X) = n · p · (1 − p).

(1) ProbabilityRatio = X/(n· p). Therefore, Var(ProbabilityRatio) = Var(X)/(n2 · p2) =
(1 − p)/(n · p). According to the formula, we can see that Var(ProbabilityRatio) → ∞
when p → 0.

(2) BCPNN = (X+cc)/(n·p+cc). Therefore, Var(BCPNN) = V ar(X+ cc)/(n·p + cc)2 =
(n · p − n · p2)/(n2 · p2 + 2 · cc · n · p + cc2). As p → 0, Var(BCPNN) → 0/cc2 = 0.

Simplified χ2 with Continuity Correction Inspired by the shrinkage technique ap-
plied to BCPNN, we propose a new correlation measure, Simplified χ2 with Continuity
Correction (SCWCC). Suppose the continuity correction is cc; we add cc additional oc-
currence to both the actual events and the expected events. The formula of SCWCC is
SCWCC = n · (tp − ep)2/(ep + cc). As tp gets closer to 0, the upper bound of Likelihood
Ratio, Leverage, BCPNN, and SCWCC gets closer to the constant number C. However,
different measures have different biases toward different Support regions, which will
be discussed in Section 2.3.

IS measure. Since interest factor (Probability Ratio) favors rare combinations rather
than significant trends in the data and Support favors frequent combinations rather
than strong correlation, Tan et al. [2000] proposed Interest factor with Support (IS),
which is the square root of the product of Interest factor and Support, that is, IS(S) =√

ProbabilityRatio(S) · Support(S) = tp/
√

ep. When measuring pairs for binary data,
IS is exactly cosine similarity, which is n · P(A ∩ B)/

√
n · P(A) · n · P(B) = tp/

√
ep.

Therefore, we treat the cosine similarity as a special case of IS when measuring binary
data. Intuitively, IS is large when both Probability Ratio and Support are large enough.
In fact, the IS value of a rare large combination is still very large, which is not that
much better than Probability Ratio. In addition, when all the items in the itemset S
are independent of each other, that is, tp = ep, IS = √

ep, which is not constant. It
violates the first mandatory property.

Two-way Support/the Simplified Mutual Information. Sharing the same idea with
IS, Zhong et al. [2001] proposed the Two-way Support measure, which is the prod-
uct of Support and the log value of Probability Ratio, that is, TwoWaySupport(S) =
tp · ln(tp/ep). It adopts the exact idea of Mutual Information [Everett 1957] to measure
the correlation for the target cell. The relationship between Two-way Support and Mu-
tual Information is very similar to that between Simplified χ2-statistic and χ2-statistic
mentioned earlier. The computation of the Mutual Information itself is intractable for
high-dimensional data. Therefore, Two-way Support, a more computational desirable
version, is selected for evaluation. Better than IS, Two-way Support satisfies the first
mandatory property and uses the log value of Probability Ratio to suppress the increase
of Probability Ratio. As Support approaches 0, the decrease from Support dominates
the increase from the log value of Probability Ratio; that is, its upper bound is close
to 0. However, the side effect is that its lower bound also approaches 0 when Support
is close to 0. In other words, there are no significant negatively correlated patterns for
low Support itemsets, which is wrong.

Simplified χ2 with Support. Both Simplified χ2 and Probability Ratio favor rare com-
binations rather than significant trends in the data. Inspired by the IS measure, we
propose a new correlation measure called Simplified χ2 with Support (SCWS), which
is the product of Simplified χ2 and Support. The formula of SCWS is SCWS(S) =
tp · (tp− ep)2/ep. Better than the IS measure, SCWS satisfies the first mandatory prop-
erty. However, the same as the IS measure, the SCWS value of a rare large combination
is still very large. In addition, the same as Two-way Support, the SCWS value of the
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Table VI. The Conditional Probability Table
for Variables A and B

B B̄
A f11/ f1+ f10/ f1+
Ā f01/ f0+ f00/ f0+

negatively correlated itemset gets closer to the constant number C when the Support of
this itemset gets closer to 0, which is not qualified for the negative correlation search.

2.2.2. Pair-Only Correlation Measures. Given the typical 2×2 contingency table for a pair
of binary variables in Table I, the commonly used pair-only-type correlation measures
are calculated as follows.

φ Correlation Coefficient. The φ Correlation Coefficient [Reynold 1977] is derived
from Pearson’s Correlation Coefficient for binary variables. The formula of the φ Corre-
lation Coefficient is as follows: ( f00 f11 − f01 f10)/

√
f0+ f1+ f+0 f+1. It measures the linear

relationship between two binary variables.

Relative Risk. Relative Risk [Sistrom and Garvan 2004] is the ratio of the probability
of the event occurring in the exposed group versus a nonexposed group. It is often used
to compare the risk of developing a side effect in people receiving a drug versus people
not receiving the treatment. Given Table I, the Relative Risk for the event B within
the two situations defined by A and Ā is f11/ f1+

f01/ f0+
.

Odds Ratio. The Odds Ratio [Mosteller 1968] is a measure of effect size, describing
the strength of nonindependence between two binary variables and comparing them
symmetrically. It plays an important role in logistic regression. The Odds Ratio is the
ratio of the odds of an event occurring in one group to the odds of it occurring in another
group. In Table I, the odds for B within the two subpopulations defined by A and Ā
are defined in terms of the conditional probabilities in Table VI. Thus, the Odds Ratio
is ( f11/ f1+

f10/ f1+
)/( f01/ f0+

f00/ f0+
) = f11∗ f00

f10∗ f01
. The final expression is easy to remember as the product of

the concordant cells (A = B) divided by the product of the discord cells (A �= B). Since
Relative Risk is a more intuitive measure of effectiveness, the distinction is important
especially in cases of medium to high probabilities. If action A carries a risk of 99.9%
and action B a risk of 99.0% then the Relative Risk is just over 1, while the odds
associated with action A are almost 10 times higher than the odds with B. In medical
research, the Odds Ratio is favored for case-control studies and retrospective studies.
Relative Risk is used in randomized controlled trials and cohort studies.

Conviction. Conviction [Brin et al. 1997b] is calculated as f1+ ∗ f+0/ f10. Logically,
A → B can be rewritten as ¬(A ∧ ¬B). Similar to Lift, f11/( f1+ ∗ f+1), which seeks
the deviation from independence between A and B, Conviction examines how far A∧
¬B deviates from independence. In other words, Conviction looks for the correlation
underlying the rule A → B instead of the pair A and B.

Added Value. Similar to Conviction, Added Value [Zhong et al. 1999] is a measure
for rules instead of pairs. Given the rule A → B, Added Value measures the difference
between Support(B) in the whole population and that in the population A. Specif-
ically, AddedValue(A → B) = P(B|A) − P(B). If we transform the formula, we get
AddedValue(A → B) = (P(A∧ B) − P(A) · P(B))/P(A) = Leverage(A, B)/P(A). It is the
Leverage tuned by P(A). When P(A) is small, Leverage(A, B) will also be small. The
Added Value tries to divide the Leverage by P(A) to prompt the correlated pattern in
the small population.
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Table VII. Formulas of Correlation Measures

Correlation Measure Formula
Support tp

Any-confidence tp
min(P(I1),P(I2),...,P(Im))

All-confidence tp
max(P(I1),P(I2),...,P(Im))

Bond tp
P(I1∪I2∪···∪Im)

Simplified χ2-statistic n· (tp−ep)2
ep

Probability Ratio ln tp
ep

Leverage tp − ep

Likelihood Ratio n · [tp · ln tp
ep +(1 − tp) · ln 1−tp

1−ep ]

BCPNN ln tp+cc
ep+cc

SCWCC n· (tp−ep)2
ep+cc

IS tp√
ep

Two-way Support tp · ln tp
ep

SCWS n · tp· (tp−ep)2
ep

φ-coefficient f00· f11− f10· f01√
f1+· f0+· f+1· f+0

Relative Risk f11/ f1+
f01/ f0+

Odds Ratio f11· f00
f10· f01

Conviction f1+· f+0
n· f10

Added Value n· f11− f1+· f+1
n· f1+

2.2.3. Summary of Correlation Measures. We have categorized both general and pair-
only correlation measures. The general type can be further divided into three sub-
categories: suboptimal measures, basic measures, and adjusted measures. Support,
Any-confidence, All-confidence, and Bond are the suboptimal measures. All of them
have no direct comparison with the expected probability and violate more than one
mandatory correlation property. The basic correlation measures, derived from simple
statistical theories, include Simplified χ2, Probability Ratio, Leverage, and Likelihood
Ratio. They satisfy all three mandatory properties, but they might violate some desir-
able correlation properties. The measures adjusted by continuity correction are BCPNN
and Simplified χ2 with Continuity Correction. They use the shrinkage technique to
reduce the volatility of a measure by trading a bias to no correlation for decreased
variance. In this way, we modify the basic correlation measures to satisfy all the de-
sirable properties. The measures adjusted by Support include IS, Two-way Support,
and SCWS. They try to adjust the basic measures by multiplying Support to suppress
the increase from correlation measures when Support is close to 0. Table VII shows
the original formulas of measures, and Table VIII is a summary of the original version
measures with regard to all 10 properties.

2.3. The Upper and Lower Bounds of Measures

Among 18 correlation measures we study, the three mandatory properties proposed by
Piatetsky-Shapiro only screen out five measures. The two desired properties proposed
by us together with the three mandatory properties can successfully narrow down the
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Table VIII. Properties of Correlation Measures

Correlation Measure P1 P2 P3 P4 P5 P6 P7 AP1 AP2 AP3
Support X X X
Any-confidence X X X X
All-confidence X X X X
Bond X X X
Simplified χ2-statistic X X X X X X
Probability Ratio X X X X
Leverage X X X X X X X
Likelihood Ratio X X X X X X X
BCPNN X X X X X X
SCWCC X X X X X X X
IS X X X X
Two-way Support X X X X X
SCWS X X X X X
φ-coefficient X X X X X X
Relative Risk X X X X
Odds Ratio X X X X X X
Conviction X X X X
Added Value X X X X X

candidate list to five measures: Leverage, Likelihood Ratio, BCPNN, Two-way Support,
and SCWCC. Since the candidate list still has five measures, the natural question is,
“Do they retrieve the same results? If not, what are the differences?” In order to check
the difference, we study the upper and lower bounds of different measures when tp is
fixed and discuss the tradeoff between Support and itemset size in this section.

Support. Since Support(S) = tp, both the upper bound and the lower bound of
Support(S) is tp.

Any-confidence. Since tp ≤ P(Ii) ≤ 1 for each item Ii in S, the minimal value of
min(P({Ii|Ii ∈ S})) is tp. Suppose the maximal value of min(P({Ii|Ii ∈ S})) is x; then we
need to find the maximal x that satisfies P(I1) ≥ x, P(I2) ≥ x, . . . , and P(Im) ≥ x. In
order to maintain the value of tp, x is the maximal value that all the P(Ii) can reach
simultaneously. According to Theorem 1, we get x = (m−1+tp)/m. Therefore, the upper
bound of Any-confidence(S) is tp/tp = 1 and the lower bound is tp/((m− 1 + tp)/m) =
m · tp/(m− 1 + tp).

All-confidence. Since tp ≤ P(Ii) ≤ 1 for each item Ii in S and P(I1 ∩ I2 ∩ . . . ∩ Im) = tp
holds when each P(Ii) = tp, the minimal value of max(P({Ii|Ii ∈ S})) is tp when each
P(Ii) = tp. When a certain P(Ii) = 1, it is still possible for P(I1 ∩ I2 ∩ . . . ∩ Im) = tp.
Therefore, the maximal value of max(P({Ii|Ii ∈ S})) is 1. Then, the upper bound of
All-confidence(S) is tp/tp = 1 and the lower bound is tp/1 = tp.

Bond. Since tp ≤ P(Ii) ≤ 1 for each item Ii in S and P(I1 ∩ I2 ∩ . . . ∩ Im) = tp holds
when each P(Ii) = tp, the minimal value of P(I1 ∪ I2 ∪· · ·∪ Im) is tp when each P(Ii) = tp.
When a certain P(Ii) = 1, it is still possible for P(I1 ∩ I2 ∩ . . . ∩ Im) = tp. Therefore, the
maximal value of P(I1 ∪ I2 ∪· · ·∪ Im) is 1. Then, the upper bound of Bond(S) is tp/tp = 1
and the lower bound is tp/1 = tp.

Correlation measures satisfying Property 3. In the following, we study the upper and
lower bounds of the correlation measure satisfying Property 3.

THEOREM 1. Given an itemset S = {I1, I2, . . . , Im} with the actual probability tp, its
expected probability ep is no less than tpm and no more than ((m− 1 + tp)/m)m.
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PROOF. (1) According to definition, ep = ∏m
i=1 P(Ii = 1). For each item Ii in S, tp ≤

P(Ii = 1) ≤ 1. When the actual probability of each item Ii reaches the lower bound tp
and all the items occur together, the expected probability ep reaches its lower bound
tpm.

(2) Given the itemset {I1, I2, . . . , Im}, we have

I1=1∑

I1=0

I2=1∑

I2=0

. . .

Im=1∑

Im=0

P(I1, I2, . . . , Im) = 1, (1)

and the Support P(I1 = 1) for each item I1 is

I2=1∑

I2=0

I3=1∑

I3=0

. . .

Im=1∑

Im=0

P(I1 = 1, I2, . . . , Im).

Given the cell {I1 = 1, I2, . . . , Ip = 0, . . . , Iq = 0, . . . , Im} with more than two items
having value 0, if its probability is greater than 0, we can decrease its probability
to 0 and increase the probability of the cell {I1 = 1, I2, . . . , Ip = 1, . . . , Iq = 0, . . . , Im}
(or {I1 = 1, I2, . . . , Ip = 0, . . . , Iq = 1, . . . , Im}). By doing that, we keep P(I1 = 1) the
same but increase P(Ip = 1) (or P(Iq = 1)).

Since ep = ∏m
i=1 P(Ii = 1), ep can be increased by adjusting the probability of the cell

with more than two absent items to 0. Therefore, in order to get the maximal ep, we
can simplify Equation (1) to

P(I1 = 1, I2 = 1, . . . , Im = 1) +
m∑

i=1

P(I1 = 1, I2 = 1, . . . , Ii = 0, . . . , Im = 1) = 1.

Since we know P(I1 = 1, I2 = 1, . . . , Im = 1) = tp, then
m∑

i=1

P(I1 = 1, I2 = 1, . . . , Ii−1 = 1, Ii = 0, Ii+1 = 1 . . . , Im = 1) = 1 − tp.

Therefore, we have

P(Ii = 1) = 1 − P(I1 = 1, I2 = 1, . . . , Ii−1 = 1, Ii = 0, Ii+1 = 1 . . . , Im = 1)

and
m∑

i=1

P(Ii = 1) = m−
m∑

i=1

P(I1 = 1, . . . , Ii−1 = 1, Ii = 0, Ii+1 = 1 . . . , Im = 1)

= m− 1 + tp.

In order to get the maximal ep = ∏m
i=1 P(Ii = 1) when

∑m
i=1 P(Ii = 1) = m− 1 + tp,

we have P(I1 = 1) = P(I2 = 1) = · · · = P(Im = 1) = (m−1+ tp)/m. Therefore, the upper
bound of ep is ((m− 1 + tp)/m)m.

THEOREM 2. The lower bound of ep, tpm, is no more than tp and its upper bound
( m−1+tp

m )m is no less than tp.

PROOF. (a) Since 0 ≤ tp ≤ 1 and m is a positive integer larger than 1, tpm ≤ tp.
(b) Let f (tp) = ( m−1+tp

m )m−tpbe a function of tp; then we have f ′(tp) = ( m−1+tp
m )(m−1)−1.

Since 0 ≤ tp ≤ 1, we have m−1
m ≤ m−1+tp

m ≤ m
m. Therefore, ( m−1+tp

m )(m−1) ≤ 1 and f ′(tp) ≤ 0.
Thus, f (tp) ≥ f (1) = 0. We get ( m−1+tp

m )m − tp ≥ 0, that is, ( m−1+tp
m )m ≥ tp.
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Table IX. Bounds of Correlation Measures

Correlation Measure Upper Bound Lower Bound
Support tp tp
Any-confidence 1 m·tp

m−1+tp
All-confidence 1 tp
Bond 1 tp

Simplified χ2-statistic (tp−tpm)2
tpm −(tp − ( m−1+tp

m )m)2 · ( m
m−1+tp )m

Probability Ratio tp
tpm tp· ( m

m−1+tp )m

Leverage tp − tpm tp− ( m−1+tp
m )m

Likelihood Ratio tp · ln tp
tpm +(1 − tp) · ln 1−tp

1−tpm −tp · ln tp·mm

(m−1+tp)m −(1 − tp) · ln (1−tp)·mm

mm−(m−1+tp)m

BCPNN tp+cc
tpm+cc

(tp+cc)·m
m−1+tp+cc·m

SCWCC (tp−tpm)2
tpm+cc − (tp·mm−(m−1+tp)m)2

mm·(m−1+tp)m+cc·m2m

IS tp(1−m/2) tp · ( m
m−1+tp )m/2

Two-way Support (1 − m) · tp · ln(tp) tp · ln(tp) − m · tp · ln m−1+tp
m

SCWS tp·(tp−tpm)2
tpm − tp·(tp−((m−1+tp)/m)m)2

((m−1+tp)/m)m

φ-coefficient 1 − 1−tp
1+tp

Relative Risk ∞ tp
Odds Ratio ∞ 0
Conviction ∞ tp

Added Value 1 − tp − (1−tp)2
2(1+tp)

THEOREM 3. Given any correlation measure that satisfies Property 3 and an itemset
S = {I1, I2, . . . , Im} with fixed tp, the correlation measure reaches its upper bound when
ep = tpm and reaches its lower bound when ep = ((m− 1 + tp)/m)m.

PROOF. Given any correlation measure that satisfies Property 3, its correlation value
should monotonically decrease with the increase of ep when tp is fixed. In other words,
this measure reaches its upper bound when ep reaches the lower bound tpm, given the
itemset size m and the actual probability tp. Similarly, any correlation measure that
satisfies Property 3 reaches its lower bound when ep reaches the upper bound.

Pair-only correlation measures. All the pair-only correlation measures in this article
satisfy Property 3. Given tp and m = 2, tp2 ≤ ep ≤ ((1 + tp)/2)2. They reach their upper
bound when ep = tp2. When ep = tp2, we have f10 = 0, f01 = 0, and f00 = n − f11.
According to the formulas shown in Table VII, it is easy to get φub = 1, RelativeRiskub =
∞, OddsRatioub = ∞, Convictionub = ∞, and AddedValueub = 1 − tp. In order to get
their lower bounds, there are three promising situations: (1) f11 = tp, f10 = 1 − tp − ε,
f01 = ε, and f00 = 0, where ε is a very small positive number; (2) f11 = tp, f10 = ε,
f01 = 1 − tp − ε, and f00 = 0, where ε is a very small positive number; (3) f11 = tp,
f10 = (1− tp)/2, f01 = (1− tp)/2, and f00 = 0. φ reaches its lower bound − 1−tp

1+tp in Case 3.
Relative Risk reaches its lower bound tp in Case 1. Odds Ratio reaches its lower bound
0 when f00 = 0. Conviction reaches its lower bound tp in Case 2. Added Value reaches
its lower bound − (1−tp)2

2·(1+tp) in Case 3.
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Fig. 1. Upper and lower bounds of subcategory 1.

2.3.1. Upper and Lower Bound Summary. Table IX shows the upper and lower bounds of
all the measures given tp. Figures 1, 2, 3, 4, and 5 show the upper and lower bounds of
the various measures with respect to different Support and itemset sizes. It is easy to
see that different measures favor itemsets within different Support ranges.

Suboptimal measures. Since both the upper bound and lower bound of Support
are Support itself, Support strictly favors a high Support itemset. In Figure 1, Any-
confidence has the fixed upper bound 1, but the lower bound of Any-confidence increases
with the increase of tp. Given an itemset with the fixed Support tp and the fixed itemset
size m, we assume its Any-confidence follows a certain distribution between its upper
bound 1 and the lower bound m · tp/(m − 1 + tp). The expected Any-confidence in-
creases with the increase of tp when m is fixed, and the expected Any-confidence
decreases with the increase of m when tp is fixed. Any-confidence favors high Sup-
port and small-size itemsets. Similar to Any-confidence, All-confidence and Bond favor
high Support itemsets. Though the lower bounds of All-confidence and Bond have
nothing to do with the itemset size m, Support favors small-size itemsets by its na-
ture. Therefore, All-confidence and Bond favor small-size itemsets indirectly. In ad-
dition, the lower bounds of All-confidence and Bond are lower than that of Any-
confidence. Therefore, All-confidence and Bond favor higher Support itemsets than
Any-confidence.
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Fig. 2. Upper and lower bounds of subcategory 2.

Other general measures. The upper bounds of the Simplified χ2-statistic and Prob-
ability Ratio increase to infinity when Support is close to 0, which means they favor
coincidences rather than significant patterns. The only special situation is that the
upper bound of the Simplified χ2-statistic is equal to 1 instead of ∞ when the itemset
size is 2. That explains why χ2 works well for pairs but poorly for larger itemsets. As we
increase the itemset size, the upper bounds of the Simplified χ2-statistic and Probabil-
ity Ratio get higher as Support approaches 0. Compared to the Simplified χ2-statistic,
Probability Ratio is more biased to low Support itemsets with large size.

Leverage, Likelihood Ratio, BCPNN, Two-way Support, and SCWCC reach their
highest upper bound when tp is between 0 and 1. For Leverage, the maximal value is
reached when tp is between 0.5 and 0.8. In other words, the itemset with tp between
0.5 and 0.8 has a better chance to get a higher value. As we can see, different measures
favor different tp regions. According to Figures 2 and 3, BCPNN favors lowest Support
itemsets, followed by SCWCC, Likelihood Ratio, Two-way Support, and Leverage. The
favored Support range of BCPNN and SCWCC can be adjusted by different continuity
correction numbers according to Figure 3. Normally, we recommend cc = 0.5/n for
clean datasets. If the dataset is noisy, we might use a larger value to favor a relatively
high Support region to suppress false-positive correlations from the noisy data in the
low Support region, but the large value will also suppress true positive correlations
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Fig. 3. Upper and lower bounds of subcategory 3.

in the low Support region at the same time. Therefore, improper cc adjustment will
degrade the effectiveness of BCPNN and SCWCC.

Tan et al. [2000] purposed IS by hoping the additional Support can suppress the
increase of Probability Ratio when Support is close to 0. It works for 2-itemsets but
fails for large-size itemsets. Better than IS, Two-way Support successfully decreases the
upper bound when Support is close to 0. However, the lower bound trend is also reversed
when the Support is close to 0, which is not what we want. We expect the highest
negatively correlated itemsets to come from the low Support region. The Simplified
χ2 with Support has both the disadvantage of IS and the disadvantage of Two-way
Support. It successfully suppresses the upper bound of 2-itemsets and 3-itemsets, but
not for itemsets with size greater than 3. In addition, the trend of lower bound is
reversed when the Support is close to 0.

Pair-only measures. The upper bound of φ-coefficient, Relative Risk, Odds Ratio,
and Conviction is a fixed number; they don’t favor any region. The highest value can
come from anywhere. The upper bound of Added Value decreases with the increase of
Support, and it favors the low Support region.
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Fig. 4. Upper and lower bounds of subcategory 4.

Fig. 5. Upper and lower bounds of pair-only measures.
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3. EXPERIMENTS

There is no ground truth for us to compare with for real-life datasets as correlation
search is an unsupervised learning procedure. Therefore, we will make use of the
characteristics of different datasets to evaluate the performance of different measures.
Although correlated pairs are a special case of correlated itemsets, we will check the
performance on correlated pair search and correlated itemset search separately because
some correlation functions can only measure pairs.

3.1. Experiments on Correlated Pair Search

3.1.1. OMOP Dataset. The Observational Medical Outcomes Partnership (OMOP2) is a
public–private partnership to help monitor drug safety. For observational analysis, we
want to find a correlation between drugs and conditions from a population. To facilitate
the methodological research, it typically requires some “gold standard” to measure per-
formance. However, the ground truth may not be absolutely determined because most
observational data sources are poorly characterized, and clinical observations may be
insufficiently recorded or poorly validated. Because of these issues, OMOP developed
a simulation procedure to supplement the methods evaluation.

The simulated dataset has predefined associations between drugs and conditions. For
each condition, each synthetic patient has a prevalent probability of having it. When
the patient takes the related drugs for a certain condition, the probability of having
it will increase. The dataset contains 10 million persons, more than 90 million drug
exposures from 5,000 unique drugs, and more than 300 million condition occurrences
from 4,500 unique conditions over a span of 10 years. In order to simulate reality, most
drugs and conditions only happen a few times. Therefore, only 1/3 of the predefined
associations are observed in the simulated dataset. In addition, among those predefined
associations being observed, most of them only occur a small number of times.

A key step in the application of our correlation measure is the mapping of the data
into drug–condition two-by-two tables, and then we can calculate the correlation be-
tween drugs and conditions. Among different ways of constructing two-by-two tables
for longitudinal data (such as claims databases or electronic health records), we only
use the “Modified SRS” method [OMOP 2010] to construct the two-by-two contingency
table, which is the benchmark proposed by OMOP.

We check the bias and performance for each measure. First, we calculated the average
Support of the top-K pairs retrieved by each measure. If the value is large, the measure
favors frequent correlation patterns. Second, the mean average precision (MAP), a
commonly used metric in the field of information retrieval, is used to evaluate each
method. It measures how well a system ranks items and emphasizes ranking true
positive items higher. Let ydc be equal to 1 if the dth drug causes the cth condition, and
0 otherwise. Let M = ∑

d,c ydc denote the number of causal combinations and N = D×C
the total number of combinations. Let zdc denote the correlation value for the dth drug
and the cth condition. For a given set of correlation values −→z = (z11, . . . , zDC), we define
“precision-at-J” denoted P J(−→z ) as the fraction of causal combinations among the J
largest predicted values in −→z . Specifically, let z1 > · · · > zN denote the ordered value of−→z . Then, P J(−→z ) = 1

J

∑J
i=1 yi, where yi is the true status of combination corresponding

to zi. The MAP is calculated as 1
M

∑N
J=1(P J(−→z ) · yJ). The MAP is very similar to the

area under the precision-recall curve, which penalizes both types of misclassification:
identifying a correlation when no relationship exists (false positive) and failing to
identify true correlations (false negative). Table X shows the average Support of the
top 1,000 pairs and the MAP for each measure.

2http://omop.fnih.org/.
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Table X. Evaluation Result for OMOP Data

Average Support of
Type Measures the Top 1000 Pairs Mean Average Precision

Support 55,849.62 0.0344
Suboptimal Any-confidence 9,377.08 0.0925
measures All-confidence 32,425.03 0.0668

Bond 33,330.55 0.0694
Simplified χ2-statistic 31,838.57 0.2258

Basic Probability Ratio 71.19 0.1102
measures Leverage 44,955.40 0.1472

Likelihood Ratio 42,298.72 0.2505
BCPNN 2,984.61 0.2440

Adjusted SCWCC 35,370.45 0.2415
measures IS 32,531.93 0.0961

Two-way Support 43,695.10 0.1876
SCWS 41,345.57 0.1983

φ-coefficient 31,855.09 0.2256
Pair-only Relative Risk 89.62 0.1070
measures Odds Ratio 6,928.90 0.0482

Conviction 4,344.26 0.1020
Added Value 4,344.00 0.1016

Since only 1/3 of the predefined associations are observed in the dataset, no method
can achieve MAP beyond 0.33 unless it can infer unobserved drug–condition correla-
tions. In Section 2.1, correlation properties are categorized into four groups: mandatory,
desired, optional, and pair-only. Here, we study the effectiveness of these properties
in terms of selecting good correlation measures. First, Support, Any-confidence, All-
confidence, Bond, and IS violate some mandatory properties, and all their MAPs are
below 0.1. If the correlation measures satisfy all the mandatory properties, all their
MAPs are above 0.1 except Odds Ratio, which is frequently used for case-control studies
and retrospective studies. Second, among all the measures satisfying all the three
mandatory properties, if they satisfy two desired properties proposed in this article,
their MAPs are generally better. In order to simulate reality, most drugs and condi-
tions only happen a few times; therefore, the Support of most predefined associations
is small. However, Leverage favors the high Support region, and that is why Leverage
doesn’t work well in this dataset. According to the average Support of the top 1,000
pairs, Leverage favors the highest Support pairs, followed by Two-way Support, Like-
lihood Ratio, SCWCC, and BCPNN, which is consistent with Figures 2, 3, and 4. Here,
we are measuring the performance of pair search. If we only consider the upper bound
for pairs, SCWS and Simplified χ2-statistic also satisfy two desired properties and
their MAPs are good. This also explains why statisticians usually use χ2-statistic for
pairs but doubt the performance of χ2-statistic for large-size itemsets. When searching
for correlated pairs, satisfying Property 5 is unnecessary since it regulates the pattern
for itemsets. Therefore, the performance of φ-coefficient is good as long as it satisfies
Property 4. The upper bound of Probability Ratio increases to infinity when P(S) is
close to 0. It favors coincidences rather than significant correlations in the data, which
is verified by its small average Support of the top 1,000 pairs. Third, Simplified χ2-
statistic, Likelihood Ratio, and SCWCC satisfy all the optional properties. Here, we
are not interested in negative correlations and search only for positive correlations
in one centered dataset. Therefore, the optional properties won’t help us to identify
good correlation measures in this experiment. Fourth, satisfying the first and third
additional properties cannot help us to identity good correlation measures. In addition,
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Table XI. Evaluation Result for Facebook Data

Measures Mean Average Precision Mean Personal MAP
Support 0.4415 0.7084
Any-confidence 0.3657 0.6106
All-confidence 0.4865 0.5920
Bond 0.5062 0.6302
Simplified χ2-statistic 0.5029 0.6563
Probability Ratio 0.1800 0.4312
Leverage 0.4579 0.7278
Likelihood Ratio 0.5287 0.7363
BCPNN 0.5168 0.7342
SCWCC 0.4970 0.7327
IS 0.5067 0.6582
Two-way Support 0.5177 0.7360
SCWS 0.5540 0.7104
φ-coefficient 0.5033 0.6564
Relative Risk 0.1275 0.1977
Odds Ratio 0.1609 0.3278
Conviction 0.2420 0.5874
Added Value 0.3224 0.7278

only bad correlation measures satisfy the second additional properties. Therefore, we
doubt that the three additional properties qualify as desired properties.

3.1.2. Facebook Dataset. We crawled Facebook for the University of Iowa community.
The resulting dataset contains 41,073 people and their friend information within this
community. If we consider each friend list as a transaction and people as items in the
transaction, we can calculate the correlation between any two people in this community
and get a ranking list of how strongly people are correlated with each other. However,
we don’t have the ground truth of whether two given people are correlated or not in this
real-life dataset. Therefore, we can only naively assume two given people are correlated
with each other if they are friends of each other. Since the ground truth is not perfect,
the experimental result is only complementary to the OMOP result. By using the friend
relationships within this community, we can calculate the MAP to evaluate the friend
ranking list as we do in the OMOP dataset. Another interesting question related to this
dataset is how other people are correlated to a particular person. The ranking list of
this type is useful for friend recommendations in Facebook. Similarly, we can calculate
the MAP for each ranking list related to a particular person and then average all the
personal MAP values. All the evaluation values are shown in Table XI.

Surprisingly, suboptimal measures work pretty well in this application. The result
supports why the Facebook friend recommender system recommends the person with
the most common friends. The reason that suboptimal measures work well in this
application is as follows. If two people know 90% of the people in this community
and have a lot of common friends, the chance for them to know each other is high.
Knowing each other doesn’t mean a high correlation with each other. We use friendship
as an indicator for correlation because there is no better indicator for this dataset.
Although friendship biases to Support, measures like Simplified χ2-statistic, Leverage,
Likelihood Ratio, BCPNN, SCWCC, Two-way Support, and SCWS, which satisfy all the
mandatory and relaxed desired properties, can still do slightly better than Support.
Another interesting measure that works well for mean personal MAP in this application
is Added Value. The formula, P(B|A)− P(B), indicates that B can achieve a high score if
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Fig. 6. An example of simulated datasets with nine items.

B knows most of the people Aknows. In social activity, B usually has a tight connection
with A first in order to know most of the people A knows.

3.2. Experiments on Correlated Itemset Search

3.2.1. Simulated Dataset. Since the exact ground truth for real-life datasets is impossi-
ble to get, we will use simulated datasets to test the performance of different measures
for correlated itemset search. Our simulation procedure is as follows:

(1) A set of occurrence probabilities pi for each item following a power law distribution
is generated.

(2) A set of cause–effect pairs is randomly selected one by one from all the possible
pairs, and each cause–effect pair is associated with a randomly assigned probability.
If the current pair generates a chain cycle with previous pairs, we will discard the
current pair instead of selecting it as a cause–effect pair. For example, if A → B
and B → C have been selected previously and we currently select C → A, the
pair C → A will be discarded. We don’t allow a circle because it might magnify
correlation.

(3) In the beginning, each item is generated independently according to its occurrence
probability pi for each transaction.

(4) For each cause–effect pair Icause → Ieffect, we search for the transactions in which
Icause occurs but Ieffect does not. For each of the related transactions, the status
of Ieffect might be changed to occurrence with the probability associated with this
cause–effect pair in Step 2.

Figure 6 shows an example of a simulated dataset with nine items. It has six cause–
effect pairs: B → E, C → D, D → E, E → F, E → H, and H → I. For the two pairs
Icause1 → Ieffect1 and Icause2 → Ieffect2, we can connect them to form a chain Icause1 →
Ieffect1 → Ieffect2 if Ieffect1 and Icause2 are the same item. If a chain I1 → I2 → · · · → Im
cannot be expanded by adding any item in the beginning or the end according to the
cause–effect pairs, we call it a maximal chain. In this example, there are four maximal
chains: B → E → F, B → E → H → I, C → D → E → F, and C → D → E → H → I.
For any itemset S that is a subset of any maximal chain, S is a correlated itemset
according to the way we simulate. For example, {C, D, H} is a subset of C → D → E →
H → I. It is a correlated itemset in this example.

We use this simulation procedure to simulate datasets with 100 items and 100,000
transactions. In the simulated dataset, 50 pairs are randomly selected as cause–effect
pairs. The simulated dataset has 2100 − 1 − 100 itemsets that contain no less than
two items, and we can calculate their correlation and rank them. Since the dataset
is simulated by us, we know all the correlated itemsets in it. Suppose the number
of correlated itemsets is k; we can check what percentage of the top-k itemsets in the
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Table XII. Evaluation Result for Simulated Data

Average Support of Average Size of
Measures the Top-k Itemsets the Top-k Itemsets Precision at k
Support 3,860.66 2.33 0.2131
Simplified χ2-statistic 1.00 14.56 0.0000
Probability Ratio 1.00 14.56 0.0000
IS 1.00 14.56 0.0000
SCWS 1.00 14.56 0.0000
Leverage 2,663.55 2.84 0.3572
Two-way Support 2,276.69 3.25 0.3311
Likelihood Ratio 1,773.80 3.42 0.3074
SCWCC 725.39 4.02 0.1914
BCPNN 369.25 4.56 0.0810

ranking list for each correlation measure correspond to actual correlated itemsets. This
percentage is called precision at k. If one correlation measure can perfectly rank all
the correlated itemsets in the top-k list, it achieves the perfect score of 1. In addition,
we check the average occurrence and size of the top-k itemsets in the ranking list for
each correlation measure in order to check their bias on the Support region and the
itemset size. Table XII shows the experimental result. First, Simplified χ2-statistic,
Probability Ratio, IS, and SCWS, which violate the desirable Property 4, all get the
precision at k of 0 and the top-k itemsets that all are large size and occur once only.
According to their upper bound graph, their upper bound increases when tp is close to
0. Their upper bound also increases with the size of the itemset. Both experimental
results and theoretical analysis indicate that Simplified χ2-statistic, Probability Ratio,
IS, and SCWS favor the large-size itemsets that rarely occur. Second, the precision
at k of the correlation measures that satisfy all the three mandatory and the two
desirable properties are generally good. However, the performance of each measure in
this dataset is totally different from that in the OMOP dataset. For example, Leverage
achieves the best score among Leverage, Two-way Support, Likelihood Ratio, SCWCC,
and BCPNN in this dataset, but the worst score among the five measures in the OMOP
dataset. It is because many correlated itemsets frequently occur in this dataset, while
most correlated pairs in OMOP occur few times. Therefore, we need to understand the
dataset in order to select the best measure for it. According to the average Support of
the top 1,000 pairs, Leverage favors the highest Support itemsets, followed by Two-way
Support, Likelihood Ratio, SCWCC, and BCPNN, which is consistent with our upper
bound analysis.

3.2.2. Netflix Dataset. Here, we will make use of the characteristics of the Netflix
dataset3 to evaluate the effectiveness of different correlated itemset search methods.
Since the Netflix dataset contains 17,770 movies and has around 480,000 transactions,
it is impossible to find the top-k correlated itemsets due to the computational cost.
Therefore, we create a subset of Netflix that only contains the first 100 movies (accord-
ing to the code sequence in the Netflix dataset) and use the brute-force search method
to find the top-k correlated itemsets in this subset.

We show the top-3 correlated itemsets of typical measures and the Support for each
itemset in Table XIII. First, all three patterns retrieved by Support contain the movie
Something’s Gotta Give. It is the most popular movie in the subset. Considering that the
probability of liking Dragonheart conditioned on liking Something’s Gotta Give is lower
than the probability of liking Dragonheart, Support is a bad measure for correlation

3http://www.netflixprize.com/.
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Table XIII. Top-3 Correlated Itemsets for Netflix Data

Measures Top-3 correlated itemsets Support
Lilo and Stitch (2002), Something’s Gotta Give (2003) 9,574

Support Something’s Gotta Give (2003), Silkwood (1983) 5,248
Something’s Gotta Give (2003), Dragonheart (1996) 3,736

Simplified χ2-statistic, A set with 18 movies 1
Probability Ratio, A set with 17 movies 1
IS, and SCWS A set with 17 movies 1

Lilo and Stitch (2002), Dragonheart (1996) 3,108
Leverage Dragonheart (1996), Congo (1995) 1,091

Spitfire Grill (1996), Silkwood (1983) 1,207
Lilo and Stitch (2002), Dragonheart (1996) 3,108

Two-way Support Dragonheart (1996), Congo (1995) 1,091
Spitfire Grill (1996), Silkwood (1983) 1,207

Dragonheart (1996), Congo (1995) 1,091
Likelihood Ratio Lilo and Stitch (2002), Dragonheart (1996), Congo (1995) 501

The Rise and Fall of ECW (2004), WWE: Royal Rumble (2005) 153
My Favorite Brunette (1947), The Lemon Drop Kid (1951) 103

SCWCC The Rise and Fall of ECW (2004), WWE: Royal Rumble (2005) 153
Screamers (1996), Dragonheart (1996), Congo (1995) 120

My Favorite Brunette (1947), The Lemon Drop Kid (1951) 103
BCPNN The Rise and Fall of ECW (2004), WWE: Royal

Rumble (2005), ECW: Cyberslam ’99 (2002) 41
WWE: Armageddon (2003), WWE: Royal Rumble (2005) 47

search. Second, Simplified χ2-statistic, Probability Ratio, IS, and SCWS violate the
desired Property 4, and they retrieve the same three long patterns that only happen
once. The upper bounds of these four measures become steeper when the itemset size
increases from 2 to 3 to 5, and their upper bounds increase to infinity when Support
is close to 0. In other words, they favor rare itemsets with large size. The upper-bound
graphs are consistent with the experimental result. If the measure violates the desired
properties proposed by us, the performance might be good for pair search, but they are
all bad for itemset search. Third, for the measures satisfying all the mandatory and
desired properties, Leverage favors frequent correlation patterns followed by Two-way
Support, Likelihood Ratio, SCWCC, and BCPNN according to the Support of retrieved
itemsets.

In the Netflix data, we can assume movies in the same series are strongly correlated.
Since this subset only contains a few movies in the same series, most retrieved patterns
are not movies in the same series, which is hard to justify. It would be better if we could
find the top-k patterns in the whole Netflix dataset. Therefore, we make use of the
maximal fully correlated itemset framework [Duan and Street 2009] to find the top-5
patterns in the whole Netflix dataset for four typical measures in Table XIV. Only one
of the five patterns retrieved by Support contains movies in the same series. All the
five patterns retrieved by Leverage, Likelihood Ratio, and BCPNN are movies in the
same series. Leverage and Likelihood Ratio find popular movie series, while BCPNN
retrieves unpopular movie series, which is consistent with our correlation analysis.

4. CONCLUSION

In this article, we did a comprehensive study on effective correlation search for binary
data. First, we studied 18 different correlation measures and proposed two desirable
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Table XIV. Top 5 Patterns for Netflix Data

Measure Maximal Fully Correlated Itemsets
The Lord of the Rings: The Fellowship of the Ring (2001),

The Lord of the Rings: The Two Towers (2002),
The Lord of the Rings: The Return of the King (2003)

Forrest Gump (1994),
The Green Mile (1999)

Support The Lord of the Rings: The Two Towers (2002),
Pirates of the Caribbean: The Curse of the Black Pearl (2003)

The Lord of the Rings: The Fellowship of the Ring (2001),
Pirates of the Caribbean: The Curse of the Black Pearl (2003)

Forrest Gump (1994),
The Shawshank Redemption: Special Edition (1994)

The Lord of the Rings: The Fellowship of the Ring (2001),
The Lord of the Rings: The Two Towers (2002),

The Lord of the Rings: The Return of the King (2003)
Raiders of the Lost Ark (1981),

Indiana Jones and the Last Crusade (1989)
Leverage Star Wars: Episode V: The Empire Strikes Back (1980),

Star Wars: Episode VI: Return of the Jedi (1983)
The Lord of the Rings: The Fellowship of the Ring: Extended Edition (2001),

The Lord of the Rings: The Two Towers: Extended Edition (2002)
Star Wars: Episode IV: A New Hope (1977),

Star Wars: Episode V: The Empire Strikes Back (1980)
The Lord of the Rings: The Fellowship of the Ring: Extended Edition (2001),

The Lord of the Rings: The Two Towers: Extended Edition (2002),
The Lord of the Rings: The Return of the King: Extended Edition (2003)

Star Wars: Episode IV: A New Hope (1977),
Star Wars: Episode V: The Empire Strikes Back (1980),

Star Wars: Episode VI: Return of the Jedi (1983)
Likelihood Ratio The Lord of the Rings: The Fellowship of the Ring (2001),

The Lord of the Rings: The Two Towers (2002),
The Lord of the Rings: The Return of the King (2003)

Harry Potter and the Sorcerer’s Stone (2001),
Harry Potter and the Chamber of Secrets (2002)

Kill Bill: Vol. 1 (2003),
Kill Bill: Vol. 2 (2004)

Roughnecks: The Starship Troopers Chronicles: The Homefront Campaign (2000),
Roughnecks: The Starship Troopers Chronicles: The Klendathu Campaign (2000)

Now and Then, Here and There: Vol. 1: Discord and Doom (1999),
Now and Then, Here and There: Vol. 2: Flight and Fall (2002),

Now and Then, Here and There: Vol. 3: Conflict and Chaos (1999)
BCPNN Dragon Ball: King Piccolo Saga: Part 1 (1986),

Dragon Ball: King Piccolo Saga: Part 2 (1986)
Dragon Ball: Piccolo Jr. Saga: Part 1 (1995),
Dragon Ball: Piccolo Jr. Saga: Part 2 (1995)
Dragon Ball: Red Ribbon Army Saga (2002),
Dragon Ball: Commander Red Saga (2002)

Dragon Ball: Piccolo Jr. Saga: Part 1 (1995),
Dragon Ball: Piccolo Jr. Saga: Part 2 (1995)
Dragon Ball: Red Ribbon Army Saga (2002)
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properties to help us select good correlation measures. The experiments with both sim-
ulated and real-life datasets show that the two desirable properties are very successful
for selecting good correlation measures to tell correlated patterns from uncorrelated
patterns. Second, we studied different techniques to adjust original correlation mea-
sures and used them to propose two new correlation measures: the Simplified χ2 with
Continuity Correction and the Simplified χ2 with Support. Third, we studied the upper
and lower bounds of different measures to find their different favorable Support region.
Although the region favor itself is not a good or bad property, the user can choose the
measure that favors his or her preference. Last, we made use of the characteristics of
different datasets to validate our conclusions. In Section 1, we mentioned that differ-
ent correlation measures are favored in different domains by studying the literature
related to correlation, and it can be explained by our correlation analysis now. First
of all, all of them satisfy our two desirable properties. In text mining, too frequent or
rare words don’t have too much discriminative power for classification. Therefore, they
favor Likelihood Ratio to find the pattern that is not too rare or too frequent [Dunning
1993]. In medical domains, the associations between frequent diseases and frequent
symptoms have already been observed in the clinical trials. The big issue is how to
find the correlation between rare diseases and rare symptoms. That is why they use
BCPNN [Bate et al. 1998]. In social networks, people are more interested in the pat-
terns affecting a larger population. Therefore, they favor Leverage [Clauset et al. 2004;
Duan et al. 2014]. In all, we recommend Leverage for searching obvious patterns in the
dataset that we know nothing about; Likelihood Ratio, Simplified χ2 with Continuity
Correction, and Two-way Support for searching typical patterns in the dataset that we
know something of; and BCPNN for searching rare patterns in the dataset that we
know well.
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