
Collaborative Filtering via Euclidean Embedding

Mohammad Khoshneshin
Management Sciences Department

University of Iowa
Iowa City, IA 52242 USA

mohammad-khoshneshin@uiowa.edu

W. Nick Street
Management Sciences Department

University of Iowa
Iowa City, IA 52242 USA

nick-street@uiowa.edu

ABSTRACT
Recommendation systems suggest items based on user pref-
erences. Collaborative filtering is a popular approach in
which recommending is based on the rating history of the
system. One of the most accurate and scalable collabo-
rative filtering algorithms is matrix factorization, which is
based on a latent factor model. We propose a novel Eu-
clidean embedding method as an alternative latent factor
model to implement collaborative filtering. In this method,
users and items are embedded in a unified Euclidean space
where the distance between a user and an item is inversely
proportional to the rating. This model is comparable to
matrix factorization in terms of both scalability and accu-
racy while providing several advantages. First, the result of
Euclidean embedding is more intuitively understandable for
humans, allowing useful visualizations. Second, the neigh-
borhood structure of the unified Euclidean space allows very
efficient recommendation queries. Finally, the method facil-
itates online implementation requirements such as mapping
new users or items in an existing model. Our experimental
results confirm these advantages and show that collaborative
filtering via Euclidean embedding is a promising approach
for online recommender systems.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
algorithms, theory.

Keywords
Euclidean embedding, collaborative filtering, multidimen-
sional scaling, fast recommendation generation.

1. INTRODUCTION
Living in the information age, people use a large variety of

information. Unfortunately, the volume of information is so

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys2010, September 26–30, 2010, Barcelona, Spain.
Copyright 2010 ACM 978-1-60558-906-0/10/09 ...$10.00.

huge that no one can use all of it, even in a very specialized
area. For example, there are tons of movies that you have
not seen, but how can you decide which one is best to watch
in your limited time? Therefore, customization can play an
important role. The idea of a recommender system, an auto-
matic system that can recommend an appropriate item, has
emerged in response to this problem. There are two main
approaches in recommendation systems: content-based and
collaborative filtering [5]. In a content-based recommenda-
tion system, items are recommended based on a user profile
and product information. Collaborative filtering uses simi-
larity to recommend items that were liked by similar users.

Collaborative filtering is the subject of our work. Assume
that we have a number of users and items, and some users
have rated some items (e.g. based on a 1-to-5 scale). The
main task is recommending appropriate items to users based
on their previous ratings. One natural approach, which is
the goal of many collaborative filtering methods, is the pre-
diction of unknown ratings. The user can then be given
suggestions based on items with a high expected rating.

As the result of the Netflix Prize1 competition, much work
has been done in the collaborative filtering area recently. In
October 2006, Netflix released a large movie rating dataset
and offered a $1,000,000 prize for developing a system that
could beat the accuracy of Cinematch (its current collabo-
rative filtering package) by 10% [2]. In September 2009, a
union of three teams used an ensemble of several methods
to win the prize.

Although the prediction power gained via approaches used
in the Netflix completion is remarkable, the focus on pre-
diction means that some practical aspects of recommender
systems are ignored:

1. These approaches are more appropriate for static set-
tings; more precisely, incorporating new data to these
models may not be a trivial task.

2. Rating prediction is their main goal; predicting all un-
known ratings and then recommending based on the
best predicted ratings is very computationally expen-
sive in large datasets.

One of the most accurate and scalable collaborative filter-
ing algorithms is matrix factorization (MF), which is based
on a latent factor model [16]. Singular value decomposition
(SVD) and related methods using gradient descent are often
used in collaborative filtering [4]. In this paper, we propose
a Euclidean embedding method that is comparable to MF in

1http://www.netflixprize.com

terms of both scalability and accuracy while providing sev-
eral advantages. First, the result of Euclidean embedding
is more intuitively understandable for humans, especially
in a low-dimensional space. Second, using nearest neighbor
searches and range queries in metric space, recommendation
queries can be implemented very efficiently. Finally, it facil-
itates online implementation requirements such as mapping
new users or items in an existing model.

In Section 2, the related literature of collaborative filter-
ing is discussed. In Section 3, collaborative filtering is in-
troduced more formally, and the well-known MF model is
described. In Section 4, collaborative filtering via Euclidean
embedding and its advantages are discussed. In Section 5,
experimental results are presented and finally in Section 6,
we discuss conclusions and future work.

2. RELATED WORK
Collaborative algorithms include two primary methods:

neighborhood-based and model-based. K-nearest neighbors
(KNN) associates to each user or item its set of nearest
neighbors, and then predicts a user’s rating on an item using
the ratings of its nearest neighbors [5]. These algorithms are
also known as memory-based algorithms because they uti-
lize the entire database of user preferences when computing
recommendations [22]. On the other hand, a model-based
algorithm computes a model of the preference data and uses
it to produce recommendations. Often, the model building
process is time consuming and is only done periodically [22].
A combination of memory-based and model-based methods
can be used as well [21]. A very successful model-based
method in collaborative filtering, especially in large-scale
applications, is matrix factorization [16, 18, 20] and non-
negative matrix factorization [24]

Our primary approach is based on Euclidean embedding.
One popular example of Euclidean embedding is multidi-
mensional scaling (MDS). MDS is a branch of multivariate
statistical analysis and often used to give a comprehensible
visual representation. MDS has been applied in a variety
of disciplines including psychology, marketing, and machine
learning [3, 7]. A narrow definition of multidimensional scal-
ing is the search for a low dimensional space, usually Eu-
clidean, in which points in the space represent the objects,
one point representing one object, and such that the dis-
tances between the points in the space match, as well as
possible, the original dissimilarities [7].

In the data mining and machine learning area, Euclidean
embedding has been frequently used as a visualization ap-
proach [1], a dimensionality reduction technique [11], and
in unsupervised learning [9]. Euclidean embedding is rarely
used as a core of a supervised learning approach. For ex-
ample, Trosset et al. [25] used MDS in the first step of
a two-step data mining approach where the second step is
training a classifier on the result of the MDS model. The
MDS step can be considered as an unsupervised learning
approach. In this paper, we propose a Euclidean embedding
method that can be seen as a supervised version of MDS
and uses the modeling results directly in prediction.

The traditional solution approaches for MDS often include
eigenvector analysis methods for the matrix of dissimilarity
between objects, resulting in a complexity of O(N3) where
N is the number of objects [19]. Besides the cubic com-
plexity, the computation must be repeated if data is slightly
changed [19]. As a result, iterative optimization methods

have been developed [6]. Numerical optimization techniques
like gradient descent have been widely used in MDS [17].

To the best of our knowledge, Euclidean embedding has
not been used as a direct optimization method to implement
collaborative filtering. There is a literature about visualiza-
tion for recommender systems. In [14], first a collaborative
filtering algorithm such as classical SVD is run and then
some recommendations will be proposed to a user in a vi-
sual manner. Note that items or users are not mapped on
a space. Users are able to use some metadata such as genre
or language to filter their result. In other work such as [10],
recommended items are visualized via MDS. However, users
are not mapped at the same time. Only items are scaled
using classical MDS where dissimilarities between them will
be computed via their correlation.

In contrast to the literature on collaborative filtering vi-
sualization, our method embeds both users and items in a
unified space. This will facilitate visualization of a target
user and items he likes where distance is strongly correlated
with his personal preferences.

3. COLLABORATIVE FILTERING
In a collaborative filtering (CF) problem, there are N

users and M items. Users have provided a number of ex-
plicit ratings for items; rui is the rating of user u for item i.
The goal of collaborative filtering approaches is predicting
unknown ratings given known ratings. In model-based ap-
proaches, a model is trained based on known ratings (train-
ing dataset) so that the prediction error is minimized. There
are two popular error functions; mean absolute error (MAE)
and root mean squared error (RMSE). Since the absolute
value function is not differentiable at all points, RMSE is
more desirable as an objective function. Therefore, the ob-
jective function of a model-based collaborative filtering ap-
proach can be defined as follows:

min
∑
u

∑
i

wui(rui − r̂ui)2 (1)

where r̂ui is the prediction of the model for the rating of
user u for item i. wui is 1 if the rating rui is known and 0
otherwise.

Memory based methods, such as k-nearest neighbors, do
not optimize a model based on a training dataset and instead
estimate a rating rui based on the most similar users (items)
to user u (item i). Therefore, the training phase is limited
to computing similarity measures such as cosine distance
or Pearson correlation. The rest of the computation will
be done to predict a rating. In memory-based approaches,
training is fast but prediction is computationally expensive
whereas in the model-based approaches, the reverse is true.

Since our work is similar to collaborative filtering via ma-
trix factorization, we briefly explain it in this section. Latent
factor models such as SVD transfer users and items to a low-
dimensional space to uncover the latent pattern of ratings.
To predict a rating via MF, the following formula can be
used [16]:

r̂ui = µ+ bu + bi + puq
′
i (2)

where µ is the total average of all ratings, bu is the deviation
of user u from average and bi is the deviation of item i from
average. bu and bi model the fact that some users tend to
rate higher and some items are more likable. pu and qi are
the user-factor vector and item-factor vector respectively in

a D-dimensional space. puq
′
i is the dot product between pu

and qi where a higher value means user u likes item i more
than average.

Since in collaborative filtering problems the data matrix
is highly sparse, classical SVD approaches have not been
successful [16]. Therefore, a gradient descent approach is
suggested to solve this problem by minimizing the following
objective function [24, 20]:

min
p,q,b

∑
u,i

wui[(rui−µ−bu−bi−puq′i)2+λ(‖pu‖2+‖qi‖2+b2u+b2i)]

(3)
where the λ(‖pu‖2+‖qi‖2+b2u+b2i) term avoids overfitting by
restricting the magnitude of parameters. λ is an algorithmic
parameter. Using formula (3), the gradient descent updates
for each known rating rui can be as follows [16]:

bu ← bu + γ(eui − λbu)
bi ← bi + γ(eui − λbi)
pu ← pu + γ(euiqi − λpu)
qi ← qi + γ(euipu − λqi)

where eui is the current error for rating rui and γ is the step
size of the algorithm. Therefore, in each iteration of the gra-
dient descent algorithm, there are T (number of known rat-
ings) steps to go through all ratings in the training dataset.

4. CF VIA EUCLIDEAN EMBEDDING
In this section we present collaborative filtering via Eu-

clidean embedding. Assume that all items and users are
embedded in a unified Euclidean space. Let the location
show the characteristics of each person. This is a legitimate
assumption since one of the early psychological applications
of MDS is related to embedding people on a low-dimensional
space based on their preferences [7]. A similar assumption
can be set for items where the location of each movie reflects
its characteristics, such as genre. Note that this is simply
the meaning of latent factor model in the framework of Eu-
clidean embedding. Therefore, if an item is close to the user
in the unified space, its characteristics are attractive for the
user. As a result, there will be a negative correlation be-
tween the distance and the likability. Figure 1 represents
this idea.

In the Euclidean embedding framework, equation (2) can
be re-written as

r̂ui = µ+ bu + bi − (xu − yi)(xu − yi)′ (4)

where xu and yi are point vectors of user u and item i in
a D-dimensional Euclidean space and (xu − yi)(xu − yi)′ is
the squared Euclidean distance. The reason we used squared
Euclidean distance instead of Euclidean distance is that the
former is computationally cheaper while the accuracy of the
method is empirically the same.

The main difference between the matrix factorization model
and the Euclidean embedding model lies in the latent factor
space characteristics. In the space of Euclidean embedding,
the interpretation of user points and item points are the
same, since the maximum rating can be reached when they
are at the same point. However in matrix factorization the
user and item space are not unified. As an example let a
user be at p = (.5, .5) in the matrix factorization model and
x = (.5, .5) in the Euclidean embedding model. The most
similar item to this user in Euclidean embedding is located
at y = (.5, .5). However for matrix factorization there is no

like

dislike

Figure 1: Users (circles) and items (triangles) are
embedded in a unified Euclidean space. A user is
expected to like an item which is close in the space.

ideal solution and q = (.5, .5) is worse than, for example,
q = (1, 1).

Similar to matrix factorization, the goal of the Euclidean
embedding model is embedding users and movies in a low-
dimensional Euclidean space based on the known ratings
and then predict the unknown ratings based on the trained
model. Therefore, Euclidean embedding is a supervised
learning approach in which the training phase includes find-
ing the location of each item and user to minimize a loss
function. Modifying equation (3) to Euclidean embedding,
we have:

minx,y,b

∑
u,i wui[(rui − µ− bu − bi + (xu − yi)(xu − yi)′)2+

λ(‖xu − yi‖2 + b2u + b2i)]. (5)

We control the magnitude of the (xu − yi) instead of in-
dividual points since the distance does not depend on the
absolute value of the points but the relative position of xu
to yi.

This optimization problem is different from typical MDS
problems in several respects. First, here we are embedding
two different kinds of objects (items and users) in a low-
dimensional space, while in standard MDS there is only
one object type. Second, the rating matrices are always
extremely sparse, which makes the matrix operations less
trustable. Finally, in addition to coordinates of points, the
b parameters are also being optimized, while in MDS, only
the object locations are of interest. Therefore, conventional
MDS techniques cannot be applied directly in our Euclidean
embedding problem.

Using gradient descent to minimize the Euclidean embed-
ding objective function (equation 5), updates in each step
can be defined as

bu ← bu + γ(eui − λbu)
bi ← bi + γ(eui − λbi)
xu ← xu − γ(xu − yi)(eui + λ)
yu ← yu + γ(xu − yi)(eui + λ)

where γ is the step size.

4.1 Time complexity

For comparing the time complexity of Euclidean embed-
ding and matrix factorization models, three tasks are im-
portant:

1. Training

2. Prediction

3. Recommendation

We address the first two tasks in this section and the third
in Section 4.3.

For training, if we pre-compute the (x− y) terms in each
step, the other operations will be almost the same as matrix
factorization. Therefore, Euclidean embedding needs D (the
dimension of space) more operations than matrix factoriza-
tion. The time complexity of both methods for a step of an
iteration is O(D).

The total number of iterations to converge depends on the
algorithmic parameters.

For the prediction of a rating, with a similar approach
as the training task, we need only D more operations and
the time complexity of prediction for both models is O(D).
However, we can decompose (x−y)(x−y)′ to xx′+yy′−2xy′.
xx′ and yy′ can be pre-computed when the system is offline
and then the number of operations for both models in the
online phase will be exactly the same.

4.2 Visualization
Another advantage of Euclidean embedding is its repre-

sentation. However, to represent items to users, Euclidean
embedding must be implemented only using 2 or 3 dimen-
sions. This can deteriorate the accuracy of recommenda-
tions. To avoid this problem, we use the following strategy:

1. Implement CF via Euclidean embedding in a high-
dimensional space;

2. Select the top k items for an active user;

3. Embed user, selected items, and some favorite items in
a 2-dimensional space via classic MDS, using distances
from the high-dimensional space in step 1.

Note that in the third step, MDS can be run very fast be-
cause there are only a few objects to embed, all distances
are known (from the high-dimensional space solution), and
all distances satisfy the triangle inequality (they are real
distances in the high-dimensional space).

While classic MDS has been used to visualize items in a
CF setting, existing methods use correlation between items
as a similarity measure. Using this approach it is not pos-
sible to embed a user in the same space because correlation
is not defined between an item and a user. Therefore, the
picture only shows what items are similar to each other, but
it does not indicate how much a user might like each movie.
Also sparseness may cause the distance based on correlation
to be unknown, and correlation does not satisfy the triangle
inequality which makes implementing MDS harder.

Using this low-dimensional unified user-item space, we can
represent items to users via a graphical interface such as
Figure 2. Highly-rated items can be presented to give an
idea about movies. For example a user might be in a mood
to watch a romance movie so he can check the movies near
to his favorite romance movies.

Titanic

The dark

Knight

Figure 2: Representing close items (triangles) to a
user (circle) besides the movies he has already liked
(bold triangles) to assist him in selection.

4.3 Fast recommendation generation
Although both matrix factorization and Euclidean em-

bedding algorithms are fast in predicting a rating, the main
task of a recommendation system is finding desirable items
for a query user. This problem is rarely addressed in the
literature. Das et al. [8] proposed some strategies to select
candidate items in the context of a news recommendation
system in which news items are selected based on a content-
based criteria. Also, they proposed to select items that are
chosen by a cluster of users. However, these approaches are
not applicable to our problem since we are not using any
extra information about items, and we choose to use highly
accurate latent factor models’ features in the selection task.

A key advantage of Euclidean embedding over matrix fac-
torization is that the nature of the mapped space allows
candidate retrieval via neighborhood search. Consider an
example with user v as the query user, and D = 2. Also
let pv = [.5 .5]′ in the matrix factorization model and xv =
[.5 .5]′ in the Euclidean embedding model. In the Euclidean
embedding model, the smaller the distance, the more de-
sirable an item will be. Therefore, we need only search for
movies near the point [.5 .5]′. On the other hand, for the
matrix factorization model, the larger the value of the term
.5(qi1)+.5(qi2) (where qi1 and qi2 are movie coordinates), the
more desirable the item will be. Therefore, a large area of
space may be possible. Figure 3 illustrates the difference be-
tween matrix factorization and Euclidean embedding search
space for a query user.

Therefore, using Euclidean embedding, the top k closest
items to an active user can be found via K-nearest neighbors
search. Then, ratings for these top k selected items can be
estimated and the ranked list can be presented to the user.
There is a highly developed literature on spatial indexing
and searching for nearest neighbors, using structures such
as R-trees [13] which can be used to find recommendation
candidates efficiently.

4.4 Incorporating new users and items
One drawback of model-based approaches is that if a new

user or item arrives, it is hard to incorporate them into the
model. However, in practice there are always new users
and items which must be considered in the recommendation
system. This problem has been addressed as incremental
collaborative filtering in the literature. George and Merugu

a) EE model b) MF model

Figure 3: The search space for a query user (the circle). For Euclidean embedding (EE), we need to search
for nearest neighbors while in matrix factorization (MF) a large space must be explored.

[12] used co-clustering as a very scalable incremental col-
laborative filtering approach. They showed the result of in-
cremental co-clustering is comparable to incremental SVD
while co-clustering is more scalable. However, they did not
address the problem of incorporating new users and items
in their model and only updated relevant parameters for old
users and items. Sarwar et al. [23] and Brand [4] proposed
using singular value decomposition as an online collabora-
tive filtering strategy. In this work, the original version of
SVD is optimized using eigenvalue-vector operations. Fur-
thermore, since it is hard to apply classical SVD on sparse
data, Sarwar et al. and Brand used imputation to fill in un-
known ratings which results in very poor accuracy. Then
they used algebraic manipulation to map new users/items
in the existing space. However, their approach is not appli-
cable to the MF algorithms which use gradient descent since
the user and item factor vectors are not orthogonal.

Generally, for a new user or item, there are D + 1 un-
known values (D for the vector p or q and one for the scalar
b). So if there are K ratings for the new object, then we
have a (D + 1)×K system of equations (for Euclidean em-
bedding these equations are non-linear). To have a unique
estimation, at least D + 1 ratings are required. However,
with fewer than D + 1 ratings, it is still possible to have an
estimation via a ridge regression approach where the accu-
racy might compensate. The values used for dimension in
the literature are always very high (more than 50 factors).
For new items, this number of ratings can be gained easily
since the number of users usually is more than the number
of items. However, gathering this number of ratings might
be very tedious for a new user.

In practice many users tend to rate favorite movies first.
Also, a recommender system may employ an active learning
strategy by asking new users to provide their favorite items.
This way, since we know the point vector of the items in the
space, and it is very probable that the new user is very close
to her favorite items in the Euclidean embedding space, we

can estimate the user vector by

xu =

∑
j yj

n
(6)

where j indexes the items that the new user u has selected
as her favorites and n is the number of selected items.

In the matrix factorization model, knowing the favorite
items for a new user may not be as helpful as in Euclidean
embedding, since closeness is not related to likability. How-
ever, we can argue that the items similar to the favorites are
probably interesting as well. As a result, a similar function
to equation (6) can be used in the MF model. We address
the power of both methods in the next section.

5. EXPERIMENTAL RESULTS
In this section, we present the results of experiments per-

formed to evaluate the effectiveness of the presented meth-
ods. All of the experiments are implemented via MATLAB
on a 3.2 GHz PC with 4 GB RAM.

In these experiments, two datasets were used. The first
dataset is the popular Netflix dataset which consists of 17770
movies, around 480,000 users, and around 100,000,000 rat-
ings, which we only used for comparing accuracy (RMSE).
We set step size γ = .005, dimension D = 50, and the regu-
larization parameter λ = .005 for Euclidean embedding and
λ = .01 for matrix factorization (for MF we used the val-
ues from literature). The RMSE on the probe dataset for
MF is .9097 (after 23 iterations) and for EE is .9124 (after
27 iterations). The results are similar despite the fact that
fine-tuning was not performed on the Euclidean embedding
model.

For exploring the ideas presented in this paper, we used
the Movielens dataset2 consisting of 100,000 ratings (1-5
scale) by 943 users on 1682 movies. We employed a 5-fold
cross-validation strategy, and all of the values presented in
this section (including time, accuracy, etc.) are the average

2http://www.grouplens.org/data/

a) EE

b) MF

Figure 4: Test RMSE of EE (a) and MF (b) in each
iteration of the gradient descent algorithm for five
different folds.

values of the five folds. We set step size γ = .005 and dimen-
sion D = 50 (unless otherwise is noted), the regularization
parameter λ = .03 for Euclidean embedding and λ = .04 for
matrix factorization. As a stopping criteria for the gradient
descent algorithm, we used a tuning set with a size of 5% of
the whole training dataset.

Learning curve: Figure 4 shows the values of RMSE in
the test dataset as the gradient descent algorithm proceeds.
Note that the shapes of these curves are very similar. The
only difference is that MF is more prone to overfitting; as it
passes the optimal point, the error increases faster.

Dimension, accuracy, time: Table 1 shows the result
of implementing EE and MF in 5, 25, and 50 dimensions.
Again, both methods give similar results in the sense that
increasing the dimension adds little to time requirements,
and the accuracy gain from larger dimensionality is small
beyond 25-50 dimensions.

Besides RMSE, another set of measurements that are pop-
ular in retrieval problems is precision and recall. Since the
main goal of recommender systems is suggesting some items
of interest, it is important to measure what percent of rec-
ommendations are desirable (precision) and what percent
of interesting items are retrieved (recall). Here, ratings of
4 and 5 are considered as desirable. Figure 5 shows the
precision and recall curve for different dimensions and dif-
ferent methods. The values are the precision and recall for
the top-k recommendation scenario for different values of k.
As k increases, recall will increase while precision decreases.
Again, it seems the overall accuracy of both EE and MF are

EE 50

EE 25

EE 5

MF 50

MF 25

MF 5

Figure 5: Precision/recall curve for different dimen-
sion size

not very sensitive to the size of dimension. In general, EE
performs better than MF.

Visualization: Figure 6 shows user visualizations con-
structed in the following manner. For a typical user, the
top 50 movies were selected based on Euclidean embedding
with D = 50 dimensions. Then, the active user, the top
selected items whose ratings were known in the test dataset,
and items which were rated as 5 by the active user in the
training dataset were embedded in a 2-dimensional space.
As a distance we used the Euclidean distance from the pri-
mary high-dimensional space. For the sake of comparison,
we scaled the same items via MDS using 1−correlation as the
distance. Note that in the comparison method, the active
user cannot be embedded. In visualization based on Eu-
clidean embedding, movies that are closer to the active user
are more probable to be liked. However, using classic MDS,
the picture is harder to interpret since movies can only be
compared to each other. For example, disliked movies “Ju-
nior,” “IQ,” and “A Pyromaniac’s Love Story” are close to
each other and far away from the active user in the first pic-
ture, but scattered in the second. The main reason is that,
in the first picture items are embedded based on the taste
of the active user while in the second picture it is based on
the taste of all users.

Generating fast recommendations: As mentioned ear-
lier, finding new recommendations for a user in the EE prob-
lem can be treated as a k-nearest neighbors search problem
in a Euclidean space. Table 2 summarizes the result of top-
10 recommendation to all users. In MF and EE we simply
used exhaustive search to find best recommendations. For
EE-KNN, first 100 movies for each user were selected as
candidates using a brute search K-nearest neighbor search
algorithm. Also we found it useful to filter out movies with
parameter bi less than the average of parameter bi for all
items. Then ratings were estimated for all candidates and
the top 10 were selected.

In these experiments we used dimension D = 50. Note
that since we used exhaustive search, the time complexity is
a linear function of the number of movies for each user.

As Table 2 shows, the search time can be decreased dras-
tically using KNN-search, while the accuracy is competitive.

New users: As discussed in earlier, if we ask a new user
to provide a list of favorite movies, we could quickly map
the user in the existing space. To simulate this setting, we

MF EE
Dimension 5 25 50 5 25 50

RMSE 0.9175 0.9107 0.9097 0.9157 0.9104 0.9086
Iteration 105.6 95.0 96.6 93.2 100.4 98.2

Time (sec) 0.4810 0.5221 0.6068 0.4811 0.5226 0.6074

Table 1: RMSE, average number of iterations, and average time per iteration for MF and EE in 5, 25, and
50 dimensions

a) Euclidean embedding

B) Classical MDS using correlation as a similarity measurement

Figure 6: Visualization of movies using Euclidean
embedding and classic MDS. The values in paren-
thesis in front of recommendations are ratings of
the user in the test dataset.

Prec. Recall Time (Sec)
MF 0.9065 0.0521 18.2455
EE 0.9063 0.0525 19.5189

EE-KNN 0.9012 0.0423 0.5396

Table 2: Precision and recall for simple MF, EE, and
EE with candidate generation using KNN-search
(D = 50 for all runs).

 EEa
EEp
MFa

Figure 7: Precision and recall for EEa and MFa. The
suffix “a” refers to mapping points via averaging.
EEp represents the curve from simple EE.

selected 224 of the 943 users in the Movielens dataset, and 3
movies with ratings of 5 for each user were randomly selected
to simulate the list of favorite movies. Then the space was
learned via the ratings of the rest of the users. Afterwards,
we estimated the point vector of a user by simple averaging
for both EE and MF. The result is shown in Figure 7. MFa
and EEa (a for mapping points via averaging) implement
averaging for new users. EEp represents the precision/recall
values for the regular settings when users are not new to the
system and we included it for the sake of comparison.

As Figure 7 shows, EEa performs extremely well. Es-
pecially its top-5 recommendation precision (on the high-
precision end of the plot) is remarkable. When retrieving
a small number of recommendations, the precision of Eu-
clidean embedding is much larger than MF, while the recall
is about the same.

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed a novel collaborative filtering

algorithm based on multidimensional scaling, a latent fac-
tor model. We showed that CF via Euclidean embedding is
comparable to one of the most accurate MF-based algorithm
in both accuracy and scalability, while it provides some ad-
vantages.

First, using Euclidean embedding, finding recommenda-
tions is equivalent to a k-nearest neighbor search in a metric
space which can be performed very fast. Second, using the
fact that closeness in the transformed space corresponds to
higher ratings, we proposed a very simple and fast approach
to incorporate new users by asking them to provide their
favorite items. Note that in our experiments we chose ran-
dom movies with a rating of 5. It is likely that performance
would improve in actual use, since users would be choosing
actual favorites.

A similar approach can be applied to items. Although we
cannot ask items to give the most favorite users, in practice
when a new item arrives, it is likely that users who like the
item most will tend to rate it faster.

A recent research topic in the context of recommenda-
tion systems is recommendation to groups [15]. In this con-
text, the goal is finding a group of items that can satisfy
a group of users simultaneously. Due to its representation,
Euclidean embedding can be used as an effective approach
for this problem. In this context we can replace the group of
users with their centroid as a single user. Then, if we find a
recommendation for the artificial user, the users will should
be expected to, on average, like the movie.

7. REFERENCES
[1] W. Basalaj. Incremental multidimensional scaling

method for database visualization. In Proc. Visual
Data Exploration and Analysis VI, SPIE, volume
3643, pages 149–158, 1999.

[2] J. Bennett and S. Lanning. The Netflix Prize. In KDD
2007, Netflix Competition Workshop, 2007.

[3] I. Borg and P. Groenen. Modern multidimensional
scaling. Springer New York, 1997.

[4] M. Brand. Fast online SVD revisions for lightweight
recommender systems. In SIAM International
Conference on Data Mining, pages 37–46, 2003.

[5] L. Candillier, F. Meyer, and M. Boulle. Comparing
state-of-the-art collaborative filtering systems.
Lectures Notes in Computer Science, 4571:548, 2007.

[6] M. Chalmers. A linear iteration time layout algorithm
for visualising high-dimensional data. In VIS ’96:
Proceedings of the 7th conference on Visualization ’96,
pages 127–ff., Los Alamitos, CA, USA, 1996. IEEE
Computer Society Press.

[7] T. Cox and M. Cox. Multidimensional Scaling. CRC
Press, 2001.

[8] A. Das, M. Datar, A. Garg, and S. Rajaram. Google
news personalization: Scalable online collaborative
filtering. In Proceedings of the 16th International
Conference on World Wide Web, pages 271–280. ACM
New York, NY, USA, 2007.

[9] W. DeSarbo, D. Howard, and K. Jedidi. Multiclus: A
new method for simultaneously performing
multidimensional scaling and cluster analysis.
Psychometrika, 56(1):121–136, 1991.

[10] D. Fisher, K. Hildrum, J. Hong, M. Newman,
M. Thomas, and R. Vuduc. Swami: A framework for
collaborative filtering algorithm development and
evaluation. In SIGIR 2000. Citeseer, 2000.

[11] I. Fodor. A survey of dimension reduction techniques.
https://computation.llnl.gov/casc/sapphire/pubs
/148494.pdf, 2002.

[12] T. George and S. Merugu. A scalable collaborative
filtering framework based on co-clustering. In
Proceedings of the IEEE Conference on Data Mining,
pages 625–628, 2005.

[13] A. Guttman. R-trees: a dynamic index structure for
spatial searching. In SIGMOD ’84: Proceedings of the
1984 ACM SIGMOD international conference on
Management of data, pages 47–57, New York, NY,
USA, 1984. ACM.

[14] F. Igo Jr, M. Brand, K. Wittenburg, D. Wong, and
S. Azuma. Multidimensional visualization for
collaborative filtering recommender systems. Technical
Report TR20003-39, Mitsubishi Electric Research
Laboratories, 2002.

[15] A. Jameson and B. Smyth. Recommendation to
groups. Lecture Notes in Computer Science,
4321:596–627, 2007.

[16] Y. Koren. Factorization meets the neighborhood: A
multifaceted collaborative filtering model. In KDD ’08:
Proceeding of the 14th ACM SIGKDD International
Conference on Knowledge discovery and Data Mining,
pages 426–434, New York, NY, USA, 2008. ACM.

[17] J. Kruskal. Nonmetric multidimensional scaling: A
numerical method. Psychometrika, 29(2):115–129,
1964.

[18] M. Kurucz, A. Benczúr, and K. Csalogány. Methods
for large scale SVD with missing values. In KDD
2007: Netflix Competition Workshop.

[19] A. Morrison, G. Ross, and M. Chalmers. Fast
multidimensional scaling through sampling, springs
and interpolation. Information Visualization,
2(1):68–77, 2003.

[20] A. Paterek. Improving regularized singular value
decomposition for collaborative filtering. In KDD
2007: Netflix Competition Workshop.

[21] D. Pennock, E. Horvitz, S. Lawrence, and C. Giles.
Collaborative filtering by personality diagnosis: A
hybrid memory-and model-based approach. In
Proceedings of the 16th Conference on Uncertainty in
Artificial Intelligence, pages 473–480. Stanford,
California, 2000.

[22] A. Rashid, S. Lam, G. Karypis, and J. Riedl.
ClustKNN: A highly scalable hybrid model &
memory-based CF algorithm. In Procedings of
WebKDD 2006 - Knowledge Discovery on the Web.

[23] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Incremental singular value decomposition algorithms
for highly scalable recommender systems. In Fifth
International Conference on Computer and
Information Science, pages 27–28, 2002.

[24] G. Takacs, I. Pilaszy, B. Nemeth, and D. Tikk. On the
Gravity recommendation system. In KDD 2007:
Netflix Competition Workshop.

[25] M. W. Trosset, C. E. Priebe, Y. Park, and M. I.
Miller. Semisupervised learning from dissimilarity
data. Computational Statistics and Data Analysis,
52(10):4643 – 4657, 2008.

