
Overlapping Clustering with Sparseness Constraints

Haibing Lu
OMIS, Santa Clara University

hlu@scu.edu

Yuan Hong
MSIS, Rutgers University
yhong@cimic.rutgers.edu

W. Nick Street
MS, The University of Iowa

nick-street@uiowa.edu

Fei Wang
IBM T.J. Watson Research Center

fwang@us.ibm.com

Hanghang Tong
IBM T.J. Watson Research Center

htong@us.ibm.com

I. ABSTRACT

Overlapping clustering allows a data point to be a member
of multiple clusters, which is more appropriate for modeling
many real data semantics. However, much of the existing
work on overlapping clustering simply assume that a data
point can be assigned to any number of clusters with-
out any constraint. This assumption is not supported by
many real contexts. In an attempt to reveal true data clus-
ter structure, we propose sparsity constrained overlapping
clustering by incorporating sparseness constraints into an
overlapping clustering process. To solve the derived sparsity
constrained overlapping clustering problems, efficient and
effective algorithms are proposed. Experiments demonstrate
the advantages of our overlapping clustering model.

II. INTRODUCTION

Overlapping clustering is a type of clustering technique
that allows a data point to be a member of multiple clusters.
Compared to partitional clustering techniques, which par-
tition data into non-overlapping regions, overlapping clus-
tering is more appropriate in modeling data relationships
for many real applications. In biology, clustering techniques
are common approaches to identifying functional groups
in gene expression data by clustering genes with similar
expression profiles into the same group. It has been known
that many genes are multi-functional and they should belong
to more than one functional group [1]. Therefore partitional
clustering techniques have the limitation in their ability
to discover the true cluster structure in gene expression
data. Apart from biology, many other domains, including
role-based access control and movie recommender systems,
also motivate overlapping clustering. Due to its importance,
overlapping clustering has received much attention recently.

However, much of the existing work go to the opposite
extreme of partitional clustering. They simply allow a data
point to belong to as many clusters as needed without
considering any contextual information, which may result
in too many cluster assignments. To illustrate, consider the
biology application. It is true that a gene can participate in

multiple processes. However, according to current biological
understanding, it is unlikely a gene would participate in
many processes. So when an overlapping clustering result
assigns many gene to over 20 processes, its correctness
would be highly doubted.

In an attempt to discover true overlapping cluster struc-
tures, we propose overlapping clustering with sparseness
constraints. The basic idea is to incorporate available back-
ground knowledge of the dataset to be studied, such as
the maximum clusters a data point can belong to, into an
overlapping clustering process. Therefore clustering results
would not only provide good descriptions on the input data,
but also match the prior knowledge on the data.

In this paper, we specifically look at the overlapping
clustering technique proposed by Cleuziou [2], which we
call the k-extended technique because its solution is derived
from the well known k-means algorithm. The k-extended
technique can be described as the following: Given a set
of data points, group them into overlapping clusters, while
minimizing the sum of the distances between each point and
the mean of the representatives of clusters to which the point
belongs.

Apart from the k-extended technique, there are many other
overlapping clustering models, including the plaid model [3],
the fuzzy c-means clustering technique [4], and the proba-
bilistic model [1]. We chose k-extended for two reasons.
The first reason is that the k-extended technique is a hard
overlapping clustering technique, in which a data point is
either a member of a cluster or not, while many overlapping
clustering techniques are soft (probabilistic) such as fuzzy
c-means clustering [4] in which a data point belongs to a
cluster with some probability. For many real applications,
hard overlapping clustering results carry more interpretabil-
ity. For example, overlapping clustering techniques have
been employed to discover roles to implement a role based
access control mechanism [5]. In the setting of role based
access control, a user either assumes a role, or not. The
second reason is that the k-extended technique represents a
data point by the mean of the cluster representatives to which



the data point belongs. While some overlapping clustering
techniques, e.g. [1], [6], represent a data point by the sum of
the cluster representatives to which the data point belongs,
we think the mean is more appropriate in representing the
relationship between a data point and its associated cluster
representatives.

Like many other overlapping clustering techniques, the
k-extended technique simply assumes that a data point can
belong to any number of clusters without imposing any
constraint on cluster assignments. This way of modeling
might be able to obtain an overlapping clustering result,
which describes the dataset very well. However, the clus-
tering result could be far away from the ground truth.

To overcome the limitation, we propose sparsity con-
strained overlapping clustering, which is able to incor-
porate prior knowledge on cluster memberships into the
overlapping clustering process. Technically, our overlapping
clustering technique is to decompose a data matrix into two
matrices, where one matrix consists of cluster representa-
tives and the other is a binary coefficient matrix showing
cluster memberships, while the form of the binary coefficient
matrix is regulated according to available prior knowledge.
Mathematically our problem can boil down to a constrained
optimization problem. As the decomposed coefficient matrix
is binary, due to the combinatorial nature, this problem is
very difficult to solve. So we propose an alternating min-
imization solution, which minimizes the objective function
by fixing one of the decomposed matrices and proceeds in an
alternative fashion. The derived subproblem of minimizing
the objective function while fixing the cluster representative
matrix is proven to be NP-hard. To solve it, we propose
a branch-and-bound exact algorithm, which is suited for
small size problems, and a simulated annealing algorithm,
which is applicable to large size problems. To evaluate
our technique of overlapping clustering with sparseness
constraints, extensive experiments on both synthetic and real
datasets are conducted.

III. PRIOR WORK

Overlapping clustering has recently attracted much atten-
tion from both the data mining and computational biology
fields. However, little awareness of sparsity constraints in
overlapping clustering has been observed. The modified
nonnegative sparse coding model proposed by [7] is closely
related to our work. Mathematically, it is formulated as the
problem of minimizing 1

2 ||A−XC||2F +λ
∑

ij Xij , where A
and λ are given, C is restricted to be nonnegative, and rows
of X are forced to unit norm. The main difference in our
work is that X is converted from the binary memberships of
S, such that Xij = Sij/

∑
j Sij . Therefore, in addition to

the constraint of unit norm for rows of X , positive elements
in each row must be the same, which coincides with most of
the existing overlapping clustering models including [3], [8],
[2], [6]. Note that some of them are stated as probabilistic

clustering approaches. However they boil down to matrix
decomposition problems eventually. Another work closely
related to our work is the model proposed by Zhu [9]. It
is based on the plaid model, which is a co-clustering model
and attempts to approximate a data matrix with the sum of k
submatrices. On the basis of the plaid model, Zhu’s model
minimizes the approximation error along with the size of
submatrices in hope to find some cohesive submatrices.

Imposing sparseness constraints in data analysis tasks
in attempt to discover real data patterns or relationships
is not a new idea. One of the most important works is
the Lasso model, a shrinkage and selection method for
linear regression, proposed by Tibshrani [10], which has
been widely used in many fields. The power of sparseness
constraints has also been well-appreciated by the machine
learning community. One important work is the model
proposed by Hoyer [11], which incorporates spareness con-
straints in non-negative matrix factorization. Heiler et al.
[12] even proposed a sequential cone programming approach
to this sparsity constrained non-negative matrix factorization
problem.

IV. PROBLEM DEFINITIONS

In this section, we will present the formal definition of our
sparsity constrained overlapping clustering model. Before
doing that, we would like to first introduce the k-extended
overlapping clustering technique, as our model is built on it.

Definition 1 (k-Extended [2]): Given m observations
{A1, ..., Am} ∈ Rn, discover k clusters {S1, ...,Sk} with
respective representatives {C1, ..., Ck} ∈ Rn such that

• An observation can belong to multiple clusters;
• The sum of distances between each observation and

the mean of its assigned cluster representatives is
minimized.

Like many other overlapping clustering models, the k-
extended technique can be described as a matrix decompo-
sition problem: Decompose a matrix Am×n into a binary
matrix Sm×k, where Sij = 1 means data point i belongs
to cluster j, and a real matrix Ck×n, where row i is the
representative of cluster i. As the goal is to discover the
decomposition solution which can best describe the observed
data, so the k-extended technique can be formulated as the
following optimization problem.

min ||Am×n −Xm×k × Ck×n||22

s.t.

{
Xij =

Sij∑
j Sij

Sij ∈ {0, 1}
(1)

If we include the constraints into the objective function,
the above optimization problem can be reformatted as the
following unconstrained programming problem.

min f0 =
∑
i

||Ai −
∑

j SijCj∑
j Sij

||2, s.t. Sij ∈ {0, 1}. (2)



The k-extended technique is essentially an extension of
the well known k-means clustering technique, which assigns
each observation to only one cluster, which can be enforced
by adding a constraint of

∑
j Sij = 1 to Equation 2.

By allowing a data point to belong to multiple clusters,
the data description accuracy can be significantly improved
indeed. However, this might cause the problem of overfitting
the data. To address it, one straightforward solution is
to take advantage of available prior knowledge on cluster
memberships and regulate the form of the coefficient matrix
S.

In reality, some applications may have explicit prior
knowledge about the maximum clusters a point can be-
long to, while others may not. To reflect real situations,
we present two overlapping clustering techniques. They
are explicit sparsity constrained overlapping clustering and
implicit sparsity constrained overlapping clustering.

Problem 1: (Explicit Sparsity Constrained Overlapping
Clustering)

min f1 =
∑
i

||Ai −
∑

j SijCj∑
j Sij

||22

s.t.

{∑
j Sij ≤ δ∗

Sij ∈ {0, 1}
.

(3)

In explicit sparsity constrained overlapping clustering,
there is an explicit constraint on the maximum clusters that
a point can belong to, which is enforced by

∑
j Sij ≤ δ∗.

It is possible that different data points may have different
limits on the maximum clusters that they can be assigned
to. However, given the optimization model as Equation 3, it
is not difficult to extend to the personalized case. So in this
paper we only consider the case that all data points have the
same limit.

Problem 2: (Implicit Sparsity Constrained Overlapping
Clustering)

min f2 =
∑
i

||Ai −
∑

j SijCj∑
j Sij

||22 + λ||S||1

s.t. Sij ∈ {0, 1}.
(4)

As its name implies, the implicit sparsity constrained
overlapping clustering has no explicit restriction on the
maximum number of clusters that a point can belong to.
Instead, there is a penalty on the L1 norm of the coefficient
matrix λ

∑
ij Sij , where λ is a tuning parameter controlling

the penalty level. In cases where no explicit prior knowledge
is available, one can repeatedly adjust the tuning parameter
λ and choose the one which gives a satisfactory clustering
result. Both enforcing the constraint of

∑
j Sij ≤ δ∗ and

adding a penalty of λ||S||1 in the objective function would
limit the number of 1’s elements in S. Therefore our tech-
nique is called sparsity constrained overlapping clustering.

V. ALTERNATING MINIMIZATION ALGORITHMS

In this section, we will present alternating minimization
algorithms for our sparsity constrained overlapping cluster-
ing problems. Alternating minimization is a method widely
used to solve difficult problems in data mining and machine
learning.

The sparsity constrained overlapping clustering problems
consist of two groups of variables, Sij and Cj . It is difficult
to optimize over all variables, while it is not difficult to
optimize the problem when either Sij or Cj is fixed. So we
present an alternating minimization algorithm, which starts
with a set of initial cluster representatives {C1, ..., Ck} and
then repeats the following two-step procedure:

• Assignment Step: Minimize the objective function
f1/f2 by fixing {C1, ..., Ck} and obtain cluster mem-
berships Sij ;

• Update step: Minimize the objective function f1/f2 by
fixing Sij and obtain updated {C1, ..., Ck}.

VI. UPDATE STEP

In terms of the update step, the explicit and implicit
sparsity constrained overlapping clustering problems are the
same. The update step is given cluster memberships to
update cluster representatives. The explicit sparsity con-
strained overlapping clustering problem has a constraint of∑

j Sij ≤ δ∗. When cluster memberships Sij are fixed,

the problems reduces to minimizing
∑

i ||Ai −
∑

j SijCj∑
j Sij

||2.
For the implicit sparsity constrained overlapping clustering
problem, when Sij is fixed, a part of its objective function
(Equation 4) becomes a constant and the problem reduces
to minimizing

∑
i ||Ai −

∑
j SijCj∑
j Sij

||2 as well.
For the update step, we only need to look at the problem

of minimizing
∑

i ||Ai −
∑

j SijCj∑
j Sij

||2, which can be solved
through linear least squares. To do that, we first replace Sij

by Xij , such that Xij =
Sij∑
j Sij

. Thus the problem becomes
to minimize ||A − X × C||22, which is equal to

∑
i ||Ai −

X × Ci||22.
Minimizing ||Ai−X×Ci||22 is a typical linear regression

problem, where (X,Ai) can be viewed as observations and
Ci are unknown parameters to be determined. ||Ai − X ×
Ci||22 can be expanded as the following:

AT
i X

TXAi − 2CT
i XAi + CT

i Ci.

Since this is a quadratic expression, the global minimum
can be found by differentiating it with respect to Ci. Thus
we have

Ci = (XTX)−1XAi.

Therefore, at each update step, we need to update each
cluster representative to be (XTX)−1XAi given new cluster
memberships.



VII. ASSIGNMENT STEP

The assignment step is to assign observations to given
cluster representatives while minimizing errors. In this sec-
tion, we will study the complexity of the cluster assignment
problems and propose both exact and heuristic algorithms.

A. Complexity Analysis

The assignment step in both explicit and implicit sparsity
constraint overlapping clustering is NP-hard, which can be
proved by a reduction to a known NP-hard problem, the
subset sum problem. [13], which is described as the follows.

Definition 2 (Subset Sum Problem [13]): Given a set of
integers {I1, ..., In}, does the sum of some non-empty subset
equal exactly zero?

Theorem 1: The cluster assignment problem in explicit
sparsity constrained overlapping clustering is NP-hard.
Proof. The cluster assignment problem is a minimization
problem. Its decision instance can be described as: Given
a vector set {C1, ..., Ck ∈ Rm, a point x ∈ Rm, a cluster
assignment threshold δ, and a real number b, is there some
vector subset S, such that ||x−

∑
Ci∈S Ci

|S| ||22 ≤ b, where |S|
is the number of vectors in S?

The cluster assignment problem belongs to P, because
for any instance, it is easy to check if a solution is true.
Next we will show that every cluster assignment instance
is polynomially reducible to a subset sum instance. For
any subset sum instance of {n1, ..., nt}, we can construct
a corresponding cluster assignment instance such that:

• All data points are 1-dimensional;
• Cluster representatives are {n1, ..., nt};
• δ is t;
• b is 0.

Such a constructed cluster assignment instance is equivalent
to finding a subset of {n1, ..., nt}, such that the sum of
contained numbers is equal to zero. Clearly the constructed
cluster assignment instance is true if and only if the subset
sum instance is true. So the theorem is proven.

Theorem 2: The assignment step in implicit sparsity con-
strained overlapping clustering is NP-hard.
Proof. It is not difficult to see that the assignment step
belongs to P. A decision cluster assignment instance in
implicit sparsity constrained overlapping coursing is as:
Given a vector set {C1, ..., Ck}, a data point x, a penalty
parameter λ, and a real number b, is there some vector subset
S, such that ||x−

∑
Ci∈S Ci

|S| ||22 + λ|S| ≤ b, where |S| is the
number of vectors in S?

For each subset sum instance {I1, ..., In}, we can find an
assignment step instance such that:

• All data points are 1-dimensional;
• Cluster representatives are {n1, ..., nt};
• λ=0;
• b is 0.

Clearly the constructed cluster assignment instance is true if
and only if the subset sum instance is true. So the theorem
is proven.

B. Exact Algorithm

Although the assignment step in both explicit and implicit
sparsity constrained overlapping clustering are NP-hard, it is
still possible to apply an exact search algorithm in many real
applications, because unlike the number of data points, the
number of clusters usually is not too large. But an exhaustive
search algorithm is too computationally expensive in any
case. In this section, we will propose an efficient branch-
and-bound (B&B) exact algorithm. B&B algorithms have
been widely used in finding optimal solutions of various
optimization problems, especially in discrete and combina-
torial optimization. It consists of a systematic enumeration
of all candidate solutions, where large subsets of candidate
solutions are discarded by using upper and lower estimated
bounds of the quantity being optimized.

1) Explicit Sparsity Constrained Overlapping Clustering:
The cluster assignment subproblem in explicit sparsity con-
strained overlapping clustering can be formulated as an
optimization problem as the follows.

min f1 = ||A−
∑

i SiCi∑
i Si

||2

s.t.

{∑
i Si ≤ δ∗

Si ∈ {0, 1}.

(5)

For simplicity, we consider A to be a vector. In other
words, we want to assign a data point A to given cluster
representatives {C1, ..., Ck} appropriately. A straightforward
approach for such a combinatorial problem is to search
through the whole solution space S ∈ {0, 1}m. The compu-
tational time would be O(2m), which is inhibitive for large
values of m. B&B is a strategy that reduces computational
time by avoiding the search in some solution subspaces
where the optimal solution is guaranteed not to exist.

The outline of the B&B algorithms proposed for the
cluster assignment problem in explicit sparsity constrained
overlapping clustering is given in the Algorithm 1.

The explicit explanation of Algorithm 1 is given as
follows:

• Lines 1-3 indicate that the recursive algorithm ter-
minates when the all variables have been branched;
in other words, the whole solution space has been
searched.

• In lines 4-6 if the currently visited solution {s1 =
s′1, ..., sℓ−1 = s′ℓ−1, sℓ = 0, ..., sk = 0} is better
than all previously visited solutions, update the best
visited solution S∗ and the lowest objective value z
accordingly.

• Line 8 gives an estimate for the lower bound of
minimum(f1) in the solution subspace of sj ∈ {0, 1}



Algorithm 1 Branch-and-Bound (ℓ) for Explicit Sparsity
Constrained Overlapping Clustering
Input: (i) ℓ is the index of the next variable to branch at.

(ii) The current solution is sj = s′j for j = 1, ..., ℓ− 1.
(iii) The current solution subspace is sj ∈ {0, 1} for j =
ℓ, ..., k.
(iv) The best solution visited so far is S∗ and the current lowest
objective value is z.

1: if ℓ > n then
2: Return;
3: else
4: if f1(s1 = s′1, ..., sℓ−1 = s′ℓ−1, sℓ = 0, ..., sk = 0) < z

then
5: z = f1(s1 = s′1, ..., sj = s′ℓ−1, sℓ = 0, ..., sk = 0);
6: S∗ = {s1 = s′1, ..., sj = s′ℓ−1, sℓ = 0, ..., sk = 0};
7: end if
8: Estimate a lower bound LB for the minimum of f1 given

sj = s′j for j = 1, ..., ℓ− 1.
9: if LB < z and

∑ℓ−1
i=1 s

′
j < δ∗ then

10: Sℓ = 1, Branch-and-Bound(ℓ+ 1);
11: Sℓ = 0, Branch-and-Bound(ℓ+ 1);
12: end if
13: end if

for j = ℓ, ..., k with sj = s′j for j = 1, ..., ℓ − 1,
which will be searched later. We defer our discussion
of how to obtain the estimated lower bound until after
the explanation of the algorithm.

• Lines 9-12 are the essence of this branch-and-bound al-
gorithm. Without them, the algorithm is just an ordinary
brute force algorithm. There are two conditions used to
determine whether or not keeping searching along the
current branch. LB < z means there might be some
solution in this branch that outperforms the current
best solution.

∑ℓ−1
i=1 s

′
j < δ∗ means the current solution

does not violate the cluster assignment constraint. So if
both constraints are satisfied, there might be a feasible
solution outperforming the current best solution and the
algorithm should proceed.

To further explain the branch-and-bound algorithm, con-
sider the illustration in Figure 1. The figure gives a tree-
like representation for the whole solution space. Assume
that at the beginning we have an initial solution S∗ and
its corresponding objective value z. The algorithm first
proceeds to {1, ...}, which is the solution subspace with S1

fixed to be 1 and the other components in S to be binary. The
algorithm will estimate a lower bound of f1 in that solution
subspace. If we ascertain that there is no solution better
than S∗, the current best solution, it is clearly unnecessary
to proceed any further in that branch. The branch is then
discarded and the algorithm moves to other branches.

The essence of a branch-and-bound algorithm is to save
computational time by avoiding searching some unnecessary
branches by intelligently employing a upper bound ( the
best objective value visited so far) and a lower bound (
the estimated best objective value in the current solution

subspace to be searched). In the B&B algorithm, at each

{1, {0, 

{1, 1, {1, 0, {0, 1, {0,0, 

{1,1, 1, {1, 1, 0, 

{1, 1, 1, 1,  

S1

S2

S3

S4

Figure 1: Branch and Bound Illustration

branching point, we need to estimate a lower bound of the
objective value in the current solution subspace. An accurate
estimated lower bound would improve the algorithm perfor-
mance significantly.

Consider Equation 5 of the cluster assignment problem.
Suppose that the value of a portion of S, {S1, ..., Sℓ−1},
has been determined. For notational convenience, we as-
sume that among {S1, ..., Sℓ−1}, {S1, ..., Sℓ′} are 1 and the
remaining {Sℓ′+1, ..., Sℓ−1} are 0. To obtain the exact lower
bound of f1, we need to solve the minimization function of
f1: min f1 = ||

∑
i Sici∑
i Si

− x||2, s.t. Si ∈ {0, 1} where
{S1, ..., Sℓ−1} have been determined.

This problem could be as hard as the original cluster
assignment problem. Let us take a deeper look at f1. As
a part of S has been determined, so f1 can be reorganized
as follows:

f1 = ||
∑

i SiCi∑
i Si

− x||2

= ||
ℓ′∑

i=1

1

ℓ′ +
∑k

i=ℓ Si

Ci +

k∑
i=ℓ

Si

ℓ′ +
∑k

i=ℓ Si

Ci − x||2

= ||
k∑

i=ℓ

Si

ℓ′ +
∑k

i=ℓ Si

Ci − (x−
ℓ′∑

i=1

1

ℓ′ +
∑k

i=ℓ Si

Ci)||2

The function f1 can then be viewed as discovering
a linear combination of vectors (Cℓ, ..., Ck) with coef-
ficients of {

∑k
i=ℓ

Si

ℓ′+
∑k

i=ℓ Si
} to approximate the target

(x−
∑ℓ′

i=1
1

ℓ′+
∑k

i=ℓ Si
Ci) . For convenience, in the following

we denote (x−
∑ℓ′

i=1
1

ℓ′+
∑k

i=ℓ Si
Ci) by x∗.

Si being binary makes the problem difficult to solve. To
estimate the lower bound of f1, we relax the binary Si to
be the real value yi and then solve the following problem:

min ||
k∑

i=ℓ

yiCi − x∗||22

where yi are real variables. Certainly, the optimal objective
value of such a relaxed problem gives a lower bound to the
minimum of f1.

The above relaxation problem is also a typical lin-
ear least squares problem. For notational convenience, we



rewrite the problem as min ||CY − x∗||22, where the
matrix C is {Cℓ, ..., Ck}, Y is (yℓ, ..., yk)

T , and x∗ is
(x −

∑ℓ′

i=1
1

ℓ′+
∑k

i=ℓ Si
Ci). Then the optimal solution of Y

is (CTC)−1CTx∗. So the estimated lower bound for f1 is:

||C(CTC)−1CTx∗ − x∗||22. (6)

At step 8 in the Algorithm 1, we derive the estimated
lower bound ||C(CTC)−1CTx∗ − x∗||22 and use it to de-
termine whether or not to continue searching the current
branching space.

2) Implicit Sparsity Constrained Overlapping Clustering:
Now we look at the cluster assignment problem in implicit
sparsity constrained overlapping clustering. Unlike the clus-
ter assignment in the explicit case, the objective function
in the implicit case minimizes both approximation error and
the L1-norm of the assignments. For simplicity, we consider
one data point A. The problem of assigning A to given
cluster representatives {C1, ..., Ck} in the implicit case can
be formulated as the following optimization problem:

min f2 = ||A−
∑

j SjCj∑
j Sj

||22 + λ||S||1 (7)

where λ is given, and Sj , which denotes cluster membership,
is to be determined.

A B&B algorithm for the cluster assignment subproblem
of the implicit sparsity constrainedly overlapping clustering,
is provided in Algorithm 2.

Algorithm 2 Branch-and-Bound (ℓ) for Implicit Sparsity
Constrained Overlapping Clustering
Input: (i) ℓ is the index of the next variable to branch at.

(ii) The current solution is sj = s′j for j = 1, ..., ℓ− 1.
(iii) The current solution subspace is sj ∈ {0, 1} for j =
ℓ, ..., k.
(iv) The best solution visited so far is S∗ and the current lowest
objective value is z.

1: if ℓ > n then
2: Return;
3: else
4: if f2(s1 = s′1, ..., sℓ−1 = s′ℓ−1, sℓ = 0, ..., sk = 0) < z

then
5: z = f2(s1 = s′1, ..., sj = s′ℓ−1, sℓ = 0, ..., sk = 0);
6: S∗ = {s1 = s′1, ..., sj = s′ℓ−1, sℓ = 0, ..., sk = 0};
7: end if
8: Estimate a lower bound LB for the minimum of f2 given

sj = s′j for j = 1, ..., ℓ− 1.
9: if LB < z then

10: Sℓ = 1, Branch-and-Bound(ℓ+ 1);
11: Sℓ = 0, Branch-and-Bound(ℓ+ 1);
12: end if
13: end if

Since Algorithm 2 is similar to Algorithm 1, we will skip
the explanation of the main body of the algorithm. Instead,
we point out the differences in Algorithm 2:

• In lines 4 and 5, the objective function is f2, which is
||A−

∑
j SjCj∑
j Sj

||22 + λ||S||1;
• In line 8, the way of estimating the lower bound of f2

is different, since the objective function is different;
• In line 9, the condition is LB ≤ z only, since there is no

explicit constraint on the maximum cluster assignments
in this case.

At step 8, we need to estimate the lower bound of f2 at
each branching point. Here we will present an estimation
method.

The objective function f2 consists of two parts, ||A −∑
j SjCj∑
j Sj

||22, which is f1, and λ||S||1. Suppose that at
the branching pint of ℓ, where {S1, ..., Sℓ−1} have
been determined, {S1, ..., Sℓ′} are 1 and the remaining
{Sℓ′+1, ..., Sℓ−1} are 0. According to the estimated lower
bound for f1 in Equation 6, we clearly have ||A −∑

j SjCj∑
j Sj

||22 ≤ ||C(CTC)−1CTx∗ − x∗||22, where C is

{Cℓ, ..., Ck} and x∗ is (x −
∑ℓ′

i=1
1

ℓ′+
∑k

i=ℓ Si
Ci). We also

have λ||S||1 ≤ λ
∑ℓ′

i=1 Si. Therefore an estimated lower
bound for f2 is

||C(CTC)−1CTx∗ − x∗||22 + λ
ℓ′∑
i=1

Si. (8)

C. Heuristic

As the cluster assignment problem in both explicit and
implicit cases are NP-hard, exact search algorithms are not
appropriate when the number of clusters is large. So in this
section, we will present efficient simulated annealing (SA)
heuristics, which usually run fast and produce satisfactory
results.

Let us look at the cluster assignment problem in ex-
plicit sparseness constrained overlapping clustering first.
It is given an input vector X and cluster representatives
C1, ..., Ck to assign X to clusters appropriately such that the
mean of the assigned cluster representatives is the closest to
x. The solution space of the cluster assignment S is {0, 1}m.
Our simulated annealing heuristic designed for the cluster
assignment problem is described as follows:

• Firstly, we find the cluster representative Ci closest
to X and initialize the value of S by letting its ith
component be 1 and the others be 0.

• A next candidate solution is found by randomly se-
lecting one component of the current solution S and
flipping its value from 0 to 1 or from 1 to 0. Repeat it,
if there are more than δ∗ elements with the value of 1
in S.

• If the new solution is closer to the target X , update
the current solution to be the new solution. Even if the
new solution is not better, with a certain probability
less than 1, the current solution is still updated to be



Algorithm 3 Simulated Annealing for Explicit Sparseness
Constrained Overlapping Clustering
Input: x, {C1, ..., Ck} ∈ {0, 1}m×1, and count∗;
Output: S ∈ {0, 1}k×1;

1: i = arg : minj ||Cj − x||2;
2: S(i) = 1 and S(j) = 0, ∀j ̸= i;
3: count = 1;
4: while count ≤ count∗ do
5: Generate a random number t in {1, ..., k};
6: S′ = S and S′(t) = 1− S′(t);
7: if f1(S′) < f1(S) and

∑
i S

′(i) ≤ δ∗ then
8: S = S′;
9: else

10: Generate a random number r in [0, 1];
11: if r < exp[−log(count+ 1)(f1(S

′)− f1(S))] then
12: S′ = S;
13: end if
14: count = count+ 1;
15: end if
16: end while

the new solution. This property reduces the chance of
being stuck at a local optimum.

• Repeat the previous two steps until some terminating
condition is satisfied, such as the maximum iteration
steps are reached or the objective value is not improved
for a certain number of iterations. At the end, choose
the best solution that has been visited to be the final
solution.

As mentioned in the above steps, when the candidate
solution is worse than the current solution, there is a certain
probability of moving to that inferior solution anyway. We
adopt the transition probability formula proposed by Besag
[14], which is

exp[−log(n+ 1)×max(0, f1(S
′)− f1(S))] (9)

where S is the current solution, S′ is the candidate solution,
and n is the number of current iterations.

The complete pseudocode of the simulated annealing
algorithm is provided in Algorithm 3.

A simulated annealing algorithm for the cluster assign-
ment problem in implicit sparseness constrained overlapping
clustering can be easily obtained by making a few changes
to Algorithm 3:

• At line 7, the terminating condition is changed to
f2(S

′) < f2(S);
• At line 11, the condition is changed to

r < exp[−log(count+ 1)(f2(S
′)− f2(S))].

VIII. EXPERIMENTAL STUDY

In this section, three experiments are designed to study
our proposed explicit and implicit sparsity constrained over-
lapping clustering models. All experiments are implemented
in Matlab and run on a Dell desktop with Intel Core 2 Duo
CPU E8400 @ 3.00GHz and 2.96 GB of RAM.

Experiment 1. The first experiment is to evaluate the
proposed exact B&B algorithm and SA heuristic. For sim-
plicity, we consider explicit sparsity constrained overlapping
clustering. So we study Algorithm 1 and Algorithm 3.

As both of these algorithms are designed for the cluster
assignment step instead of the whole overlapping clustering
problem, we compare the alternating minimization algorithm
coupled with the exact B&B algorithm, and the same
alternating minimization algorithm coupled with the SA
heuristic.

Notice that although the B&B algorithm gives an optimal
solution for the cluster assignment problem, the alternating
minimization algorithm coupled with the exact B&B algo-
rithm is not guaranteed to produce an optimal solution for an
explicit sparsity constrained overlapping clustering problem.

The experiment is conducted on seven synthetic datasets
including a large size dataset. The detailed data generation
procedure is: (i) First, randomly generate k representative
vectors of d attributes with element values ranging from
1 to 50; (ii) Second, randomly generate a binary cluster
membership matrix S with each row consisting of no more
than δ∗ elements with the value of 1; (iii) Finally, construct
a data matrix based on the representative vectors and the
cluster membership matrix S. Those seven datasets are
generated in different parameter settings. Dataset 1: n = 20,
d = 5, k = 4, and δ∗ = 2; Dataset 2: n = 40, d = 10,
k = 6, and δ∗ = 3; Dataset 3: n = 60, d = 15, k = 8,
and δ∗ = 4; Dataset 4: n = 80, d = 20, k = 10, and
δ∗ = 5; Dataset 5: n = 100, d = 25, k = 12, and δ∗ = 6;
Dataset 6: n = 120, d = 30, k = 14, and δ∗ = 7; Dataset
7: n = 10, 000, d = 100, k = 20, and δ∗ = 10. Dataset 7
is of large size, which is used to test the scalability of our
proposed algorithms.

We compare the alternating minimization algorithm cou-
pled with the B&B algorithm and the same algorithm cou-
pled with the SA heuristic in terms of approximation error
and computational time. For both algorithms, we assume
δ∗ is known and use it to regulate the form of the binary
coefficient decomposed matrix. For the SA heuristic, the
maximum number of iterations is k2.

The measure of approximation error is defined as the
following: error = ||A−A′||2

||A||2 where A is the original data
matrix and A′ is the reconstructed data matrix.

Results are plotted in Figures 2 and 4. As the alternating
minimization algorithm coupled with the B&B algorithm
cannot return a result for Dataset 6 in a limited time, in
Figure 2 only the comparison on Datasets 1-6 is provided.

We observe that the alternating minimization algorithm
coupled with the B&B algorithm does outperform the alter-
nating minimization algorithm coupled with the SA heuris-
tic. However, the performance of the alternating minimiza-
tion algorithm coupled with the SA heuristic is satisfactory.
In many cases, the approximation error is even less than
0.05.
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Figure 2: Comparison w.r.t. Approximation Error

��

��

��

��

��

��

��

�
��

�
��
�
�
�	


�
�

	
	

��

�

��

� � � � 

�
��

�
��
�
�
�	


�
�

�������

��

Figure 3: Comparison w.r.t. Computational Time

Figure 3 provides the comparison result on computational
time for all datasets except for Dataset 7. The alternat-
ing minimization algorithm coupled with the SA heuristic
Dataset 7 takes 1,849 seconds to cluster Dataset 7 of 10,000
records and the resulting approximation error is only 0.0214.
The result validates the scalbility of our proposed alternating
minimization algorithm coupled with the SA heuristic. We
also observe that when the data size is small, two algorithms
are comparable. However, the required computational time
for the alternating minimization algorithm coupled with the
B&B algorithm grows exponentially with the data size. For a
data matrix with 120 records and 30 attributes, it takes about
60 seconds. When the alternating minimization algorithm
coupled with the SA heuristic, the required computational
time grows slowly with the data size. The underlying reason
is that the SA heuristic runs in polynomial time, while the
B&B algorithm is an exact algorithm. In the worst case, it
can take as much as an exhaustive search algorithm. The
Figure 2 and Figure 3 suggest that the B&B algorithm is
suited for small scale problems and the SA heuristic is good
for large scale problems.

Experiment 2. The second experiment is to investigate
the relation between explicit and implicit sparsity con-
strained overlapping clustering models. The experiment is
conducted on a synthetic dataset, generated in the same way
as employed in the first experiment. The parameter setting is
n = 120, d = 30, k = 3, and δ∗ = 7. We run the alternating
minimization algorithm for the implicit clustering, coupled
with the SA heuristic for each value of λ ranging from 0
to 1.8. The maximum number of iterations is set to be k2.
For each λ value, we find the maximum number of cluster
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Figure 4: Relation Between λ and δ

assignments, δ, which is not the real cluster assignment limit
δ∗, in the clustering result. The results are plotted in the
Figure 4. There are two observations. First, δ decreases when
the value of λ increases. The reason is that more penalty are
imposed on the total number of cluster assignments when
the value of λ increases. The second observation is that for
most values of λ ranging from 0.2 to 0.5, δ is 3, which is the
true cluster assignment limit. δ goes to 4 when λ is 0.3 since
the alternating minimization algorithm does not necessarily
find the global optimum.

Experiment 3. The third experiment is to evaluate the
soundness of our sparsity constrained overlapping clustering
approach. Specifically we compare our alternating minimiza-
tion algorithm coupled with the SA heuristic for the explicit
sparsity constrained overlapping clustering model with the
k-extended algorithm for the conventional overlapping clus-
tering model. We assume the true cluster assignment limit is
known to our algorithm. In the SA heuristic, the maximum
number of iterations is set to be the square of the cluster
assignment limit.

The experiment is conducted on both synthetic datasets
and a real dataset, the MovieLens dataset1. The synthetic
dataset generation procedure is the same as before. The spe-
cific parameter settings are as follows. (1) small-synthetic:
a dataset with n = 75, d = 30, k = 10, and δ∗ = 3;
(2) medium-synthetic: a dataset with n = 200, d = 50,
k = 10, and δ∗ = 5, (3) large-synthetic: a dataset with
n = 1000, d = 150, k = 30, and δ∗ = 10. The MovieLens
dataset consists of ratings and tags for movies by users. We
generate three rating matrices. (1) small-real: 100 movies
and 38 users; (2) medium-real: 150 movies and 12 users;
(3) large-real: 200 movies and 7 users. Because most of
users rate a small portion of movies, when many movies are
considered, we can only find a very few users, who rate all
of the selected movies. The tags list genres of every movie.
According to the real data, a movie can belong to up to six
genres. We use six as the cluster assignment limit for our
explicit sparsity constrained overlapping clustering model.

We adopt the comparison measure employed in [6]. To
evaluate the clustering results, precision, recall, and F-

1http://www.grouplens.org



Data F-measure Precision Recall
Sparse OC K-Extended Sparse OC K-Extended Sparse OC K-Extended

small-synthetic 0.4804 0.4684 0.3562 0.3536 0.7377 0.6933
medium-synthetic 0.6587 0.6424 0.5556 0.5514 0.8088 0.7692

large-synthetic 0.6703 0.5732 0.5783 0.5538 0.7972 0.5941
small-real 0.4345 0.2889 0.6668 0.6655 0.3220 0.1845

medium-real 0.5255 0.3503 0.5921 0.5982 0.4724 0.2477
large-real 0.5446 0.4082 0.5867 0.6014 0.5082 0.3089

Figure 5: Comparison of results on all datasets

measure were calculated over pairs of points. For each pair
of points that share at least one cluster in the overlapping
clustering results, these measures try to estimate whether
the prediction of this pair as being in the same cluster was
correct with respect to the underlying true categories in the
data. Precision is calculated as the fraction of pairs correctly
put in the same cluster, recall is the fraction of actual pairs
that were identified, and F-measure is the harmonic mean of
precision and recall.

Comparison of results is provided in Figure 5. For syn-
thetic datasets, the explicit sparsity constrained overlapping
clustering model outperforms the k-extended model with
respect to any clustering comparison measure. For the real
datasets, the performance of our model is significantly better
than the k-extended model with respect to the measures of
F-measure and recall and is comparable to the k-extended
model with respect to precision. The experimental results
validates the soundness of our sparsity constrained overlap-
ping clustering model.

IX. CONCLUSION

This paper studies the problem of overlapping clustering
with sparseness constraints. Specifically, this paper proposes
two new methods, explicit sparsity constrained overlap-
ping clustering and implicit sparsity constrained overlap-
ping clustering, which respectively incorporate explicit and
implicit sparseness constraints into overlapping clustering.
In addition, we propose alternating minimization algorithms
to solve these two problems. Furthermore, as the cluster
assignment step in both of these algorithms is NP-hard,
we propose an efficient branch-and-bound exact algorithm
and a simulated annealing heuristic. Experimental results
show that our methods perform better than the existing
overlapping clustering method.
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