
INFORMS Journal on Computing
Vol. 17, No. 1, Winter 2005, pp. 25–31
issn 0899-1499 �eissn 1526-5528 �05 �1701 �0025

informs ®

doi 10.1287/ijoc.1030.0047
©2005 INFORMS

Oblique Multicategory Decision Trees Using
Nonlinear Programming

W. Nick Street
Management Sciences Department, S232 Pappajohn Business Building, University of Iowa,

Iowa City, Iowa 52242, USA, nick-street@uiowa.edu

Induction of decision trees is a popular and effective method for solving classification problems in data-miningapplications. This paper presents a new algorithm for multi-category decision tree induction based on nonlin-
ear programming. This algorithm, termed OC-SEP (Oblique Category SEParation), combines the advantages of
several other methods and shows improved generalization performance on a collection of real-world data sets.

Key words : artificial intelligence; programming; nonlinear; applications; machine learning; decision trees
History : Accepted by Amit Basu, Area Editor; received July 2000; revised March 2001, August 2002, June 2003;
accepted June 2003.

1. Introduction
As our ability to collect massive amounts of data
increases, the fields of machine learning and data
mining take on greater importance. We define
data mining (Fayyad et al. 1996) as the process of
gleaning actionable knowledge and insight from these
large data sets. The algorithmic process of building
predictive models from the data is an important step
in data mining. This step is often performed using
techniques from machine learning that allow catego-
rization, prediction, and summarization of the data.
Many problems require classification of examples

into one of several categories. For example, we may
wish to determine which patients have cancer based
on the results of medical tests, which customers
are likely to purchase insurance based on demo-
graphic data, or which Web documents might inter-
est a certain user. The field of inductive machine
learning offers many choices for building these pre-
dictive models, such as decision trees, artificial neu-
ral networks, and support-vector machines. All of
these models generalize the information about cases
with known classifications (the training examples) to
predict the outcome of new cases.
The inductive learning step involves minimization

of some error metric to build a model that classifies all
or most of the known cases correctly. This underlying
optimization problem has lead to the application
of mathematical-programming methods in learning.
Examples include the use of linear programming in
building decision trees (Bennett 1992), quadratic pro-
gramming for support-vector machines (Vapnik 1995),
and conjugate gradient and quasi-Newton methods
for artificial neural networks (Hertz et al. 1991).

A comprehensive review of the role of mathematical
programming in data mining is given in Bradley et al.
(1999).
The focus of this work is on the popular decision-

tree model. Decision trees can be induced by con-
structing one or more separating surfaces (typically,
hyperplanes) in the feature space of the training
examples. This separation is represented as a deci-
sion node in the tree. The algorithm then recursively
partitions the subsets of data in the various regions
formed by the previous step, until all (or nearly all)
of the points in a region belong to the same class.
For example, the left of Figure 1 shows a simple clas-
sification problem with two classes in two dimen-
sions. On the right is the resulting decision tree, using
two separating planes. Note that the planes in this
example are oblique, that is, not parallel to a coordi-
nate axis. A decision-tree algorithm such as C4.5 that
uses only axis-parallel planes would require several
more planes, resulting in a larger tree. Decision trees
are widely used because of their simplicity, training
speed, and consistently good predictive accuracy on
a wide variety of problems. Further, the representa-
tion of the learned concept as a combination of simple
rules allows for relatively easy interpretation by the
human decision maker.
This paper presents a new method called OC-SEP

for the construction of decision trees based on non-
linear programming. The remainder of the paper is
organized as follows. Section 2 reviews the decision-
tree literature and presents a set of criteria for
our algorithm. Section 3 motivates and presents the
nonlinear-programming model. In §4 we present a
collection of computational results demonstrating the

25



Street: Oblique Multicategory Decision Trees Using Nonlinear Programming
26 INFORMS Journal on Computing 17(1), pp. 25–31, © 2005 INFORMS

P2

P1
P1

P2

Figure 1 Decision-Tree Example

effectiveness of OC-SEP on real-world data and com-
paring the run times of the various decision-tree algo-
rithms. Section 5 concludes the paper and discusses
future directions for this research.

2. Decision Trees
The seminal work in automatic induction of decision
trees comes from two sources. In the artificial intelli-
gence community, the original and still most popular
system is Quinlan’s ID3 (Quinlan 1986) and its suc-
cessor C4.5 (Quinlan 1993). In the statistics literature,
the CART system (Breiman et al. 1984) is similarly
prevalent. Since these systems are very similar in their
inductive biases, we discuss the C4.5 approach as rep-
resentative of their capabilities.
C4.5 examines one feature at each decision node,

thereby partitioning the feature space using axis-
parallel separating planes. The feature on which to
split is chosen by maximizing the information gained
in the split. Information gain is an entropy measure
designed to increase the average class purity of the
resulting subsets. Once a feature is chosen, a split is
made between all possible values of a features, or
at discretization boundaries for continuous features.
Therefore, a decision node can have many children.
This tends to bias the resulting tree in favor of fea-
tures with a large number of possible values.
C4.5 and CART are computationally efficient and

have proven very successful in practice, comparing
favorably to other inductive-learning techniques such
as artificial neural networks (Mooney et al. 1989).
However, the fact that (as a default) they are limited
to constructing axis-parallel separating planes limits
their effectiveness in domains where some combi-
nation of features is highly predictive of the target
concept.
A number of later algorithms address this short-

coming. Representative of these is the OC1 family of

classifiers (Murthy et al. 1994), which uses a random-
ized greedy optimization scheme to construct poten-
tially oblique separating planes. The OC1 system
allows a number of different separation objectives, all
based on some measure of class purity in the resulting
child nodes.
Limitations of purity-based optimization criteria

were addressed by Fayyad and Irani (1992). They
noted that purity criteria such as information gain are
not sensitive to class separation because they mea-
sure it only indirectly, often resulting in trees with
more nodes and worse generalization performance.
They introduced a new class of measures based on
the orthogonality of the class vectors in the child
nodes. The class vector of a set � of examples is
defined as �c1/�� �� c2/�� �� � � � � ck/�� ��, where ci is the
number of examples of class i in � . Intuitively, we
would like a decision-tree node to separate some of
the classes from the others, while keeping the exam-
ples of like classes together. In other words, the class
vectors of sibling nodes should be as nearly orthog-
onal as possible. Based on this observation Fayyad
and Irani defined a family of measures called C-SEP
(Class SEParation) and demonstrated the effectiveness
of one such measure, the cosine of the angle between
the two vectors. (In a slight abuse of their terminol-
ogy, we use the name OC-SEP for a particular objec-
tive and the resulting tree-induction algorithm.) The
search method used in their algorithm was similar to
that of C4.5, limiting concept representations to axis-
parallel decision boundaries.
Fayyad (1991) also proved that limiting decision

trees to binary splits results in no loss of generality,
and showed empirically that such a constraint usu-
ally creates trees with fewer leaves and better gener-
alization. We adopt this heuristic for oblique planes as
well, since n-ary splits for n> 2 may tend to produce
unnecessary tree nodes.
The optimal construction of decision boundaries

has a long history in the mathematical-optimization



Street: Oblique Multicategory Decision Trees Using Nonlinear Programming
INFORMS Journal on Computing 17(1), pp. 25–31, © 2005 INFORMS 27

community. Since the 1960s, linear programming has
been used to construct piecewise-linear and piecewise-
nonlinear surfaces that separate two classes of points
(Mangasarian 1965, 1968; Glover 1990). Typically, these
systems minimize some measure of the distance of
the misclassified points from the separating plane,
although more recent techniques (Mangasarian 1994,
Chen and Mangasarian 1996, Bennett and Breden-
steiner 1997) directly minimize the number of such
points. A natural extension of these techniques to
decision-tree construction, known as MSM-T, was
introduced by Bennett (1992). Direct application of
these methods is limited to two-class problems.
The preceding discussion identified a number of di-

mensions along which the various decision-tree algo-
rithms differ. They can be summarized as follows.
• Oblique vs. axis-parallel planes: Oblique deci-

sion boundaries offer greater flexibility, resulting in
smaller trees, and remove the need for discretization
of continuous features.
• Binary vs. n-ary trees: Binary trees provide equal

representational power and do not suffer from the
preference for splitting on many-valued features.
• Two-category vs. multicategory classification: A tech-

nique designed specifically for binary classification
requires some form of ad-hoc extension for a problem
with k classes, such as a collection of k two-class trees,
each of which separates one class from all the others.
• Optimization objective: Using orthogonality as the

criterion in the optimization step holds several advan-
tages over purity-based measures for multiclass prob-
lems, as described above. In turn, purity tends to
construct smaller trees than does direct misclassifica-
tion minimization, at least when used at nodes near
the root (Brodley 1995).
• Optimization method: When constructing oblique

trees, powerful and computationally efficient tech-
niques of linear and nonlinear programming reduce
the problem of local minima.
Table 1 summarizes the above systems along these

dimensions but is not meant to be a complete list
of the design criteria for decision-tree algorithms.
For example, once a full decision tree is built, some
of the nodes are usually removed or “pruned” to
reduce the possibility of overfitting. Several different

Table 1 Classification of Decision-Tree Methods Along Relevant
Dimensions

C4.5 OC1 C-SEP MSM-T

Oblique planes No Yes No Yes
Binary trees No Yes Yes Yes
Multicategory Yes Yes Yes No
Orthogonality objective No No Yes No
LP or NLP-based optimization n/a No n/a Yes

methods, such as cost-complexity pruning (Breiman
et al. 1984) and pessimistic-error pruning (Quinlan
1993), have been proposed for this task. Further, any
algorithm must choose the single feature or sub-
set of features used to split the data at a particu-
lar node; see for example (Bradley et al. 1998) for a
mathematical-programming formulation that reduces
the dimensionality of a hyperplane separator. While
important, we consider these issues to be secondary
to the basic structure of the separating surface, and
the optimization method and objective used to create
the surface. Therefore, the goal of the work presented
here is to create multicategory binary decision trees
with oblique planes, using a nonlinear-programming
approach to the optimization of an orthogonality-
based objective function.

3. Oblique Category Separation
(OC-SEP)

3.1. Motivation: Separation via Mathematical
Programming

Our new approach to multicategory separation is
built on the foundation of previous methods based on
mathematical programming. In particular, the Robust
Linear Program (RLP) (Bennett and Mangasarian
1992, Mangasarian 1993) for two-class separation is
summarized here, both as a groundwork for our
method and as an introduction to the terminology
used.
Consider two disjoint sets �1 and �2 that we wish

to discriminate. The available training points from �1
and �2 can be collected as matrices A1 and A2, with
each of the n1 rows of A1 containing the feature values
for one training example from set �1, and A2 likewise
containing the n2 points of �2. The goal is to construct
a separating plane xTw = � in the feature space of
these examples such that all the points of A1 lie on
one side of the plane (say, A1w > e�, where e is a
vector of ones of appropriate dimension) and all the
points of A2 lie on the other (A2w < e�). This will
be possible only if A1 and A2 are linearly separable,
which in general is not the case. We therefore choose
to minimize the average distance between the plane
and the misclassified points. This is achieved with the
following normalized minimization problem:

minimize
w��

1
n1

��−A1w+ e��+ 1��+�1

+ 1
n2

��A2w− e��− 1��+�1� (1)

where �·�1 denotes the 1-norm and �z�+ denotes
��z�+�i =max�zi�0�� i= 1� � � � �m, for z ∈Rm.



Street: Oblique Multicategory Decision Trees Using Nonlinear Programming
28 INFORMS Journal on Computing 17(1), pp. 25–31, © 2005 INFORMS

This objective can be shown to be equivalent to the
following linear program:

minimize
w���y�z

ey

n1
+ ez

n2

subject to A1w− e�+ y ≥ e

−A2w+ e�+ z≥ e

y�z≥ 0�

(2)

This “robust linear program” has a number of
favorable properties, including:
• If A1 and A2 are linearly separable, a separating

plane is found.
• The null solution w = 0, � = 0 is never unique,

and is obtained only when the centroids of the two
point sets are equal.
• Use of the 1-norm error, rather than the more

traditional 2-norm error, makes (2) more resistant to
the effects of outliers.
We note that this approach closely resembles

the popular support-vector machine method (Vapnik
1995). This relationship is explored by Bennett and
Bredensteiner (2000) and Bradley et al. (1999).
The linear program (2) can be recursively solved

on subsets of the original training set to construct a
decision tree, as was done in Bennett (1992). How-
ever, there is no clear extension of this approach to
the multicategory case, since we do not know a priori
which classes should be separated by each plane, and
on which side of the plane each class should lie.

3.2. Multicategory Separation
As mentioned, mathematical-programming-based
separation methods typically specify in the objective
which class should be on each side of the separating
plane. A direct extension of this idea to the mul-
ticategory case uncovers a combinatorial problem:
Which subset of the k classes should be on the “left”
of the plane? Clearly it is computationally infeasible
to try all possible subsets. Instead, we move from
a misclassification-minimization approach to the
orthogonality measure.
The foundation of the orthogonality-based separa-

tion criterion used in C-SEP is the class vector, which
contains the count of elements of each class in the
given subset of examples. As in C-SEP, we attempt
to maximize the orthogonality of the class vectors
induced by a separating plane at a particular node.
However, since we wish to use continuous optimiza-
tion methods, an explicit count of the elements to
produce the class vectors will not be available. There-
fore, as in previous MP methods, we will approximate
these counts with a distance measurement. The value
eT ��A1w − e��+� is proportional to the total distance
from the plane of all points in A1 that are on the right

(greater-than) side of the plane; similarly, eT ��−A1w+
e��+� gives a distance measure for the points on the
left. We can therefore obtain a suitable substitute for
class vectors by applying this equation to each Ai. To
simplify the following objectives, we use the term v1
to represent this vector, which has k components
v1� i = eT ��Aiw− e��+�. The other class vector is simi-
larly denoted v2.
Our first attempt at an orthogonality objective is

therefore the inner product of the two class vectors
formed with these approximations:

minimize
w��

vT
1 v2

subject to eT ��Aiw− e��+�= v1� i� i= 1� � � � � k
eT ��−Aiw+ e��+�= v2� i� i= 1� � � � � k�

(3)

The above objective will obtain a minimum value
of zero whenever the two class vectors v1 and v2 are
orthogonal; this occurs when the points of each class
are either entirely on the right or entirely on the left of
the plane xTw= �. This is the desired effect. Unfortu-
nately, this minimum is also obtained by a plane that
lies entirely on one side of all the points; for instance,
v1� i > 0, v2� i = 0. We therefore need to modify the
mathematical program (3) in some way to ensure that
this result is not obtained, and that the resulting plane
accomplishes some degree of pattern separation.
This is accomplished by modifying the objective

function. Ideally, we would like to have at least one
class with a majority of its points on the left side of
the plane, and at least one class with a majority on
the right. In other words, we would like to have one
of the elements of v1 be large, and one element of v2
be large. This is equivalent to saying that one ele-
ment of both v1 and v2 should be small. This can be
enforced by minimizing the product of the elements
of both vectors. These terms prevent the placement of
all points on one side of the plane. The new MP is
therefore

minimize
w��

vT
1 v2+

k∏

i=1
v1� i +

k∏

i=1
v2� i

subject to eT �Aiw− e��+ = v1� i� i= 1� � � � � k
eT �−Aiw+ e��+ = v2� i� i= 1� � � � � k�

(4)

The class vectors v1 and v2 tend to contain larger
values for classes with many points, which leads the
mathematical program (4) to favor these large classes
when performing the optimization. To overcome this
problem, the class vectors are normalized so that each
v1� i + v2� i = 1. The element v1�1 is thus interpreted as
the percentage of the total distance of points in class 1
from the plane that lie on the left of the plane.
One final change is necessary to make the MP com-

putationally reliable. Since we are performing con-
tinuous optimization, the objective function needs to



Street: Oblique Multicategory Decision Trees Using Nonlinear Programming
INFORMS Journal on Computing 17(1), pp. 25–31, © 2005 INFORMS 29

be differentiable everywhere. This is clearly not the
case because of the use of the plus function, which is
not differentiable at zero. We therefore substitute the
p-function (Chen and Mangasarian 1995), the integral
of the sigmoid function, for the plus function:

p�x�= x+ 1
�
log�1+ ��−�x��� (5)

where � is the base of the natural logarithm and � is
some predefined constant. This differentiable function
approximates the plus function arbitrarily well, with
the approximation improving for larger values of �.
An � value of 10,000 was used in our experiments.
This large value makes the approximation virtually
indistinguishable from the plus function. The maxi-
mum difference occurs at x = 0, with a difference of
0.000069. At x =±0�001, the approximation is correct
to eight decimal places.
The final version of the OC-SEP MP therefore

becomes

minimize
w��

vT
1 v2+

k∏

i=1
v1� i +

k∏

i=1
v2� i

subject to p�eT �Aiw− e���= u1� i� i= 1� � � � � k
p�eT �−Aiw+ e���= u2� i� i= 1� � � � � k

u1� i
�u1� i +u2� i�

= v1� i� i= 1� � � � � k
u2� i

�u1� i +u2� i�
= v2� i� i= 1� � � � � k� (6)

The MP (6) is solved using the sequential quadratic
programming method (Biggs 1975) as implemented in
the optimization toolbox of the Matlab software pack-
age (Coleman et al. 1999).

4. Computational Results
4.1. Classification Accuracy
The OC-SEP method was tested by estimating its pre-
dictive accuracy on a collection of data sets from
the UCI Machine Learning Repository (Blake and
Merz 1998). These results were compared to estimates
obtained using C4.5, OC1, and MSM-T. The chosen
data sets contain various numbers of numerical
attributes, and contain from two to ten classes. The
characteristics of the different data sets are shown in
Table 2.
All performance estimates were obtained using ten-

fold cross-validation (Stone 1974). In this procedure,
the data set is partitioned randomly into ten subsets,
each maintaining the approximate class distribution
of the original set. A classifier is built using nine of
the subsets, and tested on the tenth. This is repeated
ten times, using each of the subsets in turn as the test

Table 2 Characteristics of Data Sets Used in Computational
Comparisons

Data Set Examples Features Classes

Pima Indians Diabetes 768 8 2
Wisconsin Breast Cancer (WBC) 699 9 2
Wisconsin Diagnostic Breast 569 30 2

Cancer (WDBC)
Wisconsin Prognostic Breast 188 32 2

Cancer (WPBC)
Ionosphere 351 34 2
Sonar 208 60 2
Iris 150 4 3
New thyroid 215 5 3
Wine 178 13 3
Glass 214 9 6
Image segmentation 2�310 19 7
Vowel 900 10 10

set. The average accuracy of these tests is an unbiased
estimate of out-of-sample generalization performance.
We performed five cross-validation tests for each data
set and each classifier. The resulting averages are
compared using a difference-of-means test for sta-
tistical significance. Note that MSM-T is a two-class
decision-tree system, so it was tested only on the
two-class problems. Tests were performed using the
default tree-pruning settings of each algorithm, and
with no pruning. Both MSM-T and OC-SEP use the
C4.5 pruning algorithm.
Table 3 shows the accuracy of each method on the

12 data sets using the default tree-pruning settings
for each method. Entries are mean results of five ten-
fold cross-validation runs plus or minus one standard
deviation. Superscript 1 indicates performance statis-
tically significantly worse than OC-SEP; superscript 2
indicates significantly better. The best performance on
each data set is in boldface type. OC-SEP showed
the best performance on six of the 12 data sets, and
the worst performance on only one. In head-to-head

Table 3 Accuracy of Decision-Tree Methods with Default Pruning

Data set OC-SEP C4.5 OC1 MSM-T

Pima 70.05± 1.70 71�48± 1�43 72�14±0�912 69�13± 0�85
WBC 96.40± 0.08 95�04±0�321 95�56±0�481 95�20±0�521

WDBC 96.10± 0.40 95�66± 0�63 95�61± 0�54 94�55±0�281

WPBC 68.62± 2.08 68�94± 3�37 75�32±2�632 65�53± 4�52
Ionosphere 85.93± 1.15 90�38±0�842 87�63± 1�88 84�62± 2�37
Sonar 76.92± 1.23 67�82±3�021 68�27±3�741 74�81± 1�88
Iris 95.60± 0.76 94�92± 1�01 96�53± 0�73
New thyroid 99.16± 0.21 93�18±1�131 91�56±2�871

Wine 94.66± 1.48 91�76± 3�13 90�34±1�881

Glass 60.28± 2.66 69�52±2�062 67�57±3�482

Segmentation 95.05± 0.31 88�30±0�981 84�57±1�801

Vowel 79.69± 0.83 78�88± 1�04 79�72± 1�11

Notes. Superscript 1 indicates performance statistically significantly worse
than OC-SEP; superscript 2 indicates significantly better. The best perform-
ance on each data set is in boldface type.



Street: Oblique Multicategory Decision Trees Using Nonlinear Programming
30 INFORMS Journal on Computing 17(1), pp. 25–31, © 2005 INFORMS

Table 4 Accuracy of Decision-Tree Methods with No Pruning

Data set OC-SEP C4.5 OC1 MSM-T

Pima 70.28± 1.68 69�82± 0�90 68�70± 1�29 68�15±0�561

WBC 95.37± 0.73 94�22±0�691 94�08±0�311 93�88±0�671

WDBC 95.47± 0.50 94�62±0�541 94�94± 0�70 95�15± 0�77
WPBC 68.83± 3.62 67�70± 2�90 67�66± 1�89 65�02± 4�55
Ionosphere 86.26± 0.54 91�60±2�512 88�72±1�642 84�61±1�471

Sonar 77.83± 1.83 68�46±2�191 71�73±3�811 72�50±2�321

Iris 95.47± 1.59 95�16± 0�31 94�93± 1�01
New thyroid 99.26± 0.25 93�00±0�731 95�35±0�801

Wine 94.77± 0.48 92�76±1�071 92�25±1�341

Glass 60.28± 1.72 68�08±1�362 68�32±1�382

Segmentation 95.10± 0.34 88�02±0�711 85�43±1�091

Vowel 79.13± 0.66 79�84± 0�89 83�47±0�702

Notes. Superscript 1 indicates performance statistically significantly worse
than OC-SEP; superscript 2 indicates significantly better. The best perform-
ance on each data set is in boldface type.

comparisons based only on those results with a sig-
nificant difference, OC-SEP outperformed C4.5 4-2,
OC1 5-3, and MSM-T 2-0. The OC-SEP results on
the two-class problems were consistently better than
those of MSM-T, supporting the expected superior-
ity of the orthogonality-based objective. Comparisons
with OC1 and C4.5 were mixed on the two-class prob-
lems but show an advantage for OC-SEP on the mul-
ticategory problems.
Table 4 shows the experimental results with prun-

ing turned off, that is, the leaves of all trees con-
tained only one class. Here, OC-SEP performed best
on nine of the 12 problems. Looking at head-to-head
comparisons, OC-SEP outperformed the three other
algorithms: C4.5 6-2, OC1 5-3, and MSM-T 4-0. Sur-
prisingly, pruning appears to offer little advantage
for the MP-based algorithms, indicating that the opti-
mization method itself provides some degree of over-
fitting avoidance.
In summary, OC-SEP appears to offer an advan-

tage over C4.5 based on oblique separating planes
and the optimization procedure, and over MSM-T
based on the orthogonality-based objective. Further,
the optimization method and objective appear to give
OC-SEP a more qualified advantage over OC1.

4.2. Computation Time
Table 5 shows the average run-time in seconds for
the various algorithms for the ten folds of a single
cross-validation run. Tests were run on a 240 MHz
Linux workstation.
As expected, the Matlab implementation of OC-SEP

was significantly slower than the C implementations
of the other multicategory algorithms, by about one
(two) order(s) of magnitude compared to OC1 (C4.5).
To get some feel for how much of this difference was
due to the solver, we compared two different versions
of MSM-T: one implemented in C using the MINOS
LP solver (MSM-T C), and one in Matlab (MSM-T M).

Table 5 Comparative Run Times (in Seconds) of Decision-Tree
Algorithms

Data set OC-SEP C4.5 OC1 MSM-T C MSM-T M

Pima 814 44 5�9 6.1 5,119
WBC 126 29 1�7 1.0 3,493
WDBC 456 45 3�4 1.5 7,341
WPBC 2�331 17 1�8 2.2 1,379
Ionosphere 924 38 3�1 2.6 1,393
Sonar 1�149 13 3�0 1.9 1,447
Iris 13 2�0 0�1
New thyroid 3�0 3�0 0�2
Wine 22 4�0 0�3
Glass 455 10 1�0
Segmentation 2�832 12 0�9
Vowel 1�318 138 46�7

The difference between these two was consistently
around two orders of magnitude, and in fact, the
MSM-T runs took longer than OC-SEP in five of the
six cases. We conclude that the constrained nonlin-
ear optimization search method employed by OC-SEP
makes it inherently more computationally demand-
ing than decision-tree builders based on, say, greedy
search or linear programming. Still, while the current
implementation of OC-SEP is not feasible for large-
scale problems, there is reason to believe that a more
efficient version using compiled code and a better
solver might be.
We also examined the trends in run time against

various characteristics of the problem: size (number
of features×number of examples), number of classes,
and predictive accuracy. The Matlab-based programs
showed a strong positive correlation between run
time and problem size, while the others did not, again
indicating that the speed is largely dependent on
the solver. OC-SEP showed the least dependence of
the three multicategory algorithms on the number of
classes. Finally, all algorithms except for MSM-T M
were slightly faster on easier problems.

5. Conclusions and Future Work
This paper presented OC-SEP, a new method for the
construction of oblique decision trees based on a
mathematical-programming formulation. The method
combines the advantages of several well-known
decision-tree-induction programs and achieves gen-
erally superior classification accuracy, particularly on
multicategory problems.
Further refinement of the OC-SEP method will

improve its utility as a general tool for classification.
Certainly the objective function is not as immedi-
ately intuitive as the simpler formulations based on
misclassification distance or entropy. We are exper-
imenting with ways to simplify the objective with-
out sacrificing the generalization accuracy. Moreover,
the optimization procedure is relatively slow when



Street: Oblique Multicategory Decision Trees Using Nonlinear Programming
INFORMS Journal on Computing 17(1), pp. 25–31, © 2005 INFORMS 31

compared to the other methods. Future work will
focus on the search for specialized optimization meth-
ods that take advantage of the particular objective
structure, making the induction procedure feasible for
larger data sets. The method might also benefit from
some heuristic technique for determining a starting
point for the optimization problem. Further analysis
is also needed to specify the types of problems on
which OC-SEP performs particularly well (such as the
New thyroid problem) or particularly poorly (such as
Glass). Finally, both the generalization accuracy and
the interpretability of the learned models could be
enhanced by reducing the number of predictive fea-
tures used at each decision node. We will incorporate
a feature-selection term into the objective function to
achieve this improvement.

Acknowledgments
This work was funded in part by NSF Grant IIS-99-96044.
The author wishes to thank Mark Hanson, Danni Jiao, and
Zhang Yi for their assistance with the computational exper-
iments.

References
Bennett, K. P. 1992. Decision tree construction via linear

programming. M. Evans, ed. Proc. 4th Midwest Artificial
Intelligence and Cognitive Sci. Soc. Conf., Midwest Artifi-
cial Intelligence and Cognitive Science Society, Utica, IL,
97–101.

Bennett, K. P., E. J. Bredensteiner. 1997. A parametric optimiza-
tion method for machine learning. INFORMS J. Comput. 9
311–318.

Bennett, K. P., E. J. Bredensteiner. 2000. Geometry in learning.
C. Gorini, ed. Geometry at Work, Mathematical Association of
America, Washington, DC, 132–145.

Bennett, K. P., O. L. Mangasarian. 1992. Robust linear programming
discrimination of two linearly inseparable sets. Optim. Methods
Software 1 23–34.

Biggs, M. C. 1975. Constrained minimization using recursive
quadratic programming. L. C. W. Dixon, G. P. Szergo, eds.
Toward Global Optimization. North-Holland, Amsterdam, The
Netherlands, 341–349.

Blake, C. L., C. J. Merz. 1998. UCI repository of machine learning
databases. Department of Information and Computer Sciences.
University of California, Irvine, CA. http://www.ics.uci.edu/˜
mlearn/MLRepository.html.

Bradley, P. S., U. M. Fayyad, O. L. Mangasarian. 1999. Mathematical
programming for data mining: Formulations and challenges.
INFORMS J. Comput. 11 217–238.

Bradley, P. S., O. L. Mangasarian, W. N. Street. 1998. Feature
selection via mathematical programming. INFORMS J. Comput.
10 209–217.

Breiman, L., J. Friedman, R. Olshen, C. Stone. 1984. Classification
and Regression Trees. Wadsworth, Inc., Pacific Grove, CA.

Brodley, C. E. 1995. Automatic selection of split criterion during tree
growing based on node location. A. Prieditis, S. Russell, eds.
Proc. 12th Internat. Conf. Machine Learning, Morgan Kaufmann,
San Francisco, CA, 73–80.

Chen, C., O. L. Mangasarian. 1995. Smoothing methods for con-
vex inequalities and linear complementarity problems. Math.
Programming 71 51–69.

Chen, C., O. L. Mangasarian. 1996. Hybrid misclassification mini-
mization. Adv. Comput. Math. 5 127–136.

Coleman, T., M. A. Branch, A. Grace. 1999. Optimization Toolbox for
Use with MATLAB. The MathWorks, Inc., Natick, MA.

Fayyad, U. M. 1991. On the induction of decision trees for multi-
ple concept learning. Ph.D. thesis, Electrical Engineering and
Computer Science Department, The University of Michigan,
Ann Arbor, MI.

Fayyad, U. M., K. Irani. 1992. The attribute selection problem in
decision tree generation. Proc. 11th National Conf. Artificial Intel-
ligence, MIT Press, San Jose, CA, 322–327.

Fayyad, U. M., G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy, eds.
1996. Adv. Knowledge Discovery Data Mining. AAAI Press/The
MIT Press, Cambridge, MA.

Glover, F. 1990. Improved linear programming models for discrim-
inant analysis. Decision Sci. 21 771–785.

Hertz, J., A. Krogh, R. G. Palmer. 1991. Introduction to the Theory
of Neural Computation. The Advanced Book Program, Addison-
Wesley, Redwood City, CA.

Mangasarian, O. L. 1965. Linear and nonlinear separation of pat-
terns by linear programming. Oper. Res. 13 444–452.

Mangasarian, O. L. 1968. Multi-surface method of pattern separa-
tion. IEEE Trans. Inform. Theory IT-14 801–807.

Mangasarian, O. L. 1993. Mathematical programming in neural net-
works. ORSA J. Comput. 5 349–360.

Mangasarian, O. L. 1994. Misclassification minimization. J. Global
Optim. 5 309–323.

Mooney, R., J. Shavlik, G. Towell, A. Gove. 1989. An experimental
comparison of symbolic and connectionist learning algorithms.
Proc. 11th Internat. Joint Conf. Artificial Intelligence, Detroit, MI,
775–780.

Murthy, S. K., S. Kasif, S. Salzberg. 1994. A system for induction of
oblique decision trees. J. Artificial Intelligence Res. 2 1–33.

Quinlan, J. R. 1986. Induction of decision trees. Machine Learning
1 81–106.

Quinlan, J. R. 1993. C4.5: Programs for Machine Learning. Morgan
Kaufmann, San Mateo, CA.

Stone, M. 1974. Cross-validatory choice and assessment of statistical
predictions. J. Roy. Statist. Soc. Ser. B 36 111–147.

Vapnik, V. N. 1995. The Nature of Statistical Learning Theory.
Springer-Verlag, New York.


