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Abstract 

A software routine to reconstruct individual spike trains from multi-neuron, single-channel extracellular recordings was 
designed. Using a neural network algorithm that automatically clusters and sorts the spikes, the only user input needed is the 
threshold level for spike detection and the number of unit types present in the recording. Adaptive features are included in the 
algorithm to allow for tracking of spike trains during periods of amplitude variation and also to identify noise spikes. The routine 
will operate on-line during extracellular studies of the cochlear nucleus in cats. 
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I. Introduction 

In most central nervous system (CNS) extracellular 
recording experiments, a microelectrode is advanced 
into neural tissues with the hope of recording the spike 
train of an isolated neuron, in order to study the cell's 
physiologic characteristics. However, often two or more 
neural spike trains are superimposed on the recording. 
Small interneurons may be nearly impossible to isolate 
completely from larger cells nearby. In order to study 
the physiology of each of the individual cells, as well as 
the simultaneous multi-neuronal intercellular interac- 
tions, it is important to be able to separate out each of 
the units' spike trains. This is done with a spike dis- 
criminator. 

Studies of the CNS using various spike discrimina- 
tion methods have been quite successful in furthering 
the understanding of CNS functioning. Voigt and 
Young (1980) used the principal-component method to 
show inhibitory interactions in the dorsal cochlear nu- 
cleus. Gochin et al. (1989, 1990) further described 
excitatory interactions as well as stimulus-modulated 
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variations in interneuronal connectivity in the dorsal 
cochlear nucleus, using the same technique. Epping 
and Eggermont (1987) used principal-component anal- 
ysis in recordings from the auditory midbrain of the 
grassfrog. Eggermont (1991) used template-matching 
software to study the intercellular interactions in the 
auditory midbrain of the leopard frog. Also using the 
template-matching technique, Reinis et al. (1992) dia- 
grammed tentative neural network interactions in the 
visual cortex, inferior coUiculus, rostral ventromedial 
medulla, and the ventrobasal complex of the thalamus. 
These studies demonstrate the usefulness of spike dis- 
crimination techniques in studying multiple neurons 
simultaneously. 

There have been many different techniques used for 
spike train separation, including both hardware- and 
software-driven methods. Wheeler and Heetderks 
(1982) and Schmidt (1984a,b) reviewed these, and dis- 
cussed the drawbacks of each technique. A frequent 
problem is the inability to separate spike trains on-line 
during an experiment. In addition, many spike separa- 
tion techniques require considerable user input to de- 
fine and track the different action potentials (although 
some work has been done to fully automate the spike 
separation process (Salganicoff et al., 1988; Sarna et 
al., 1988)). In some situations, there is a long set-up or 
'training' period between the time when neuronal units 
are first found and when collection of actual data 
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begins. We have noticed this to be a factor with both 
template-matching methods (Schmidt, 1984b; Salgani- 
coff et al., 1988; Sarna et al., 1988; Bergman and 
DeLong, 1992; Jansen and Maat, 1992) and traditional 
neural network methods (Jansen, 1990; Yamada et al., 
1992). 

A traditional neural network algorithmic approach 
to spike separation first involves training the network 
from a bank of wave forms which are already separated 
into correct groups. A neural network has the ability to 
learn what features of a spike wave form best distin- 
guish it apart from spikes in the other previously de- 
fined groups. Once the slower training phase is com- 
pleted, the algorithm can then quickly classify the rest 
of the incoming data based on those clusters. The 
traditional neural network technique is based on a 
supervised learning algorithm, using back-propagation 
(Rumelhart et al., 1986). 

An off-line, traditional neural network-based spike 
discrimination algorithm has been described, and was 
tested on multi-unit extracellular in vivo recordings 
from the snail Lymnaea stagnalis (Jansen, 1990). After 
first collecting all the raw data and storing it, a bank 
containing samples of all of the different spike types 
was defined. This was done manually via a user inter- 
face. These wave forms were then used to train the 
neural network. Then, all the raw data was processed 
using the trained neural network. 

Yamada et al. (1992) also used the traditional neural 
network spike discrimination routine for use in optical 
recordings (using a membrane voltage-sensitive dye) of 
multi-unit action potentials. In optical recordings, the 
shapes of different units are almost always the same, 
only varying in peak amplitude. This is much different 
than for extracellular recordings, and it allowed them 
to train the neural network only once, and then to use 
the same learning pattern for all their experiments. 
They did not have to implement a time-consuming 
training phase before each multi-unit recording was 
analyzed. Nevertheless, their algorithm required more 
user involvement than they wanted in order to sort the 
many unclassified spikes. 

For our application of recording from the cochlear 
nucleus in cats, several features were essential in the 
design of the spike discrimination routine. Most impor- 
tant, it had to have accuracy that was at least equal to 
currently developed spike discrimination techniques, 
even if the spike amplitudes were nearly the same. It 
also had to be able to handle noise spikes appropri- 
ately. Second, it had to be simple to use, with minimal 
set-up time by the user. This would be especially im- 
portant during situations of poor unit stability, which 
we commonly encounter in the cochlear nucleus. Third, 
it had to run in real-time, sorting the spikes as they 
were collected, so that plots of the individual spike 
time data could be displayed on-line. Fourth, the rou- 

tine needed to be able to track minor shape changes in 
a unit with time (corresponding to a slow drift of the 
cell body away from the electrode tip), and it should 
also be able to follow sudden amplitude shifts in a 
wave form (which is often due to breathing artifact). 
Finally, we wanted it to be flexible enough to work 
with as many simultaneous units as needed. 

The algorithm we used in our software was based on 
a neural network recognition system using adaptive 
resonance theory, called ART-2, developed by Carpen- 
ter and Grossberg (1987, 1988). It has the capability to 
forego the training phase where clustering occurs, and 
to cluster and sort incoming spikes on-line, while data 
collection is occurring. It does this by tailoring its 
decision boundaries adaptively to the particular record- 
ing situation, weighting certain features over others. 
This algorithm has the flexibility to form new clusters 
to handle previously unseen wave forms, as well as to 
adaptively reformulate existing cluster definitions as 
spike wave shapes change. New clusters can be allo- 
cated as needed and processed simultaneously. Also, 
every spike is normalized before clustering occurs, so 
that any amplitude variability between spikes coming 
from the same neuron will not affect the results. This 
allows for excellent tracking of neural spikes in difficult 
recording environments. We feel that our spike dis- 
criminator software will allow us to confidently record 
multiple units simultaneously. 

2. Methods 

2.1. Spike discriminator 

2.1.1. Hardware 
The data used for testing the spike discriminator 

was recorded from the cochlear nucleus of cats. Acous- 
tical stimulation at the external auditory meatus was 
controlled by a VAXstation 3200 computer (Digital 
Equipment, Maynard, MA) and consisted of tone pips 
of variable frequency, volume, and duration. Extracel- 
lular multiple-unit recordings were made from glass 
micropipettes with impedances between 5 and 15 MO, 
when measured at 1 kHz. After 1000 x amplification, 
the signal was filtered with a second-order Butterworth 
high-pass filter set at 600 Hz, and a second-order 
Butterworth low-pass filter set at 5000 Hz (A-200 mul- 
tichannel amplifier, M. Walsh Electronics, 1322 W. 
Windsor Dr., San Dimas, CA 91773). The signal was 
then passed through a variable gain amplifier (Model 
113 Pre-Amp, Princeton Applied Research) to  achieve 
a full scale swing of + 10 V, before being digitized by a 
12-bit analog-to-digital ( A / D )  converter (DEC model 
ADQ-32) at a sampling rate of 40 kHz. We did not test 
our software using lower sampling rates. 
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2.1.2. Digital sampling 
The A / D  converter starts at the beginning of a 

stimulus and stops before the next stimulus starts. The 
digitized data collected during this period is stored in a 
memory buffer. A double buffered system allows one 
buffer to be processed while the next buffer is filling; 
this allows for nearly continuous sampling. Since the 
spikes are not sorted as soon as they occur, the soft- 
ware is running in 'pseudo real-time'. Ideally, one 
buffer has completed processing before the next buffer 
is collected and ready for processing, so the user is not 
aware of any decline in speed. The speed of the 
software is described in the Results section. 

2.1.3. ThreshoM level detection 
The first step in analyzing the digitized data is to set 

a threshold level above the baseline noise level where 
any rising voltage through the threshold triggers the 
detection of a spike. The reason threshold detection 
was implemented was to reduce the amount of noise 
that needed to be processed by the neural net, al- 
though there may still be a few noise spikes rising 
above the threshold level (Abeles and Goldstein, 1977). 
These are filtered out later. 

The time at which the rising voltage crosses the 
threshold level is recorded as the spike time. After this, 
the local maximum is found from the next 12 data 
points (0.3 ms); this point is the spike's peak ampli- 
tude. From this peak, the 10 previous data points and 
the next 30 data points are extracted out from the 
buffer and represent a picture of the spike (40 data 
points or 1 ms). Because each spike wave form is 
aligned at its maximum amplitude, the height of the 
threshold level will have no impact on what is used for 
processing. 

later). As an example, if the neural network created 10 
different clusters, but the user had entered that there 
were really only 2 different neural spike types present, 
the 2 clusters with the highest number of spikes would 
be kept, with the other 8 clusters being grouped to- 
gether and called the 'noise' cluster. 

2.1.6. Data storage 
The list of spike times and their corresponding 

cluster numbers is kept in a large array. Simple plots of 
spike time data, such as a post-stimulus-time (PST) 
histogram for each unit, are done on-line during the 
experiment, while more complex plots, such as cross- 
correlation histograms, are done at the end of the 
experiment. 

2.2. Neural network algorithm 

The clustering was performed using the continuous 
version of Carpenter and Grossberg's (1987, 1988) 
ART-2. There  are several different versions of the 
A RT algorithm, including ART-2, ART-2A, and Fuzzy 
A RT (Carpenter et al., 1991; personal communica- 
tions) (Note: the ART-2 algorithm that we used is 
available by anonymous ftp to the machine cns.bu.edu, 
in the file pub/art2.shar) .  No separate training phase 
is needed for this algorithm, since it forms clusters 
automatically as spikes are collected. Each neural unit 
represents a cluster of spikes, and can be viewed as a 
prototype or average of the wave forms that were used 
to construct it (see Fig. 1). An incoming digitized, 
40-point spike is first normalized to a unit vector and 
then compared to each already existing cluster. If a 
close match is found, the spike is added to that cluster 

2.1.4. Spike analysis 
The 40-point spike picture array is then sent to the 

neural network algorithm for analysis (described later), 
and a cluster number is returned. Then, the time of the 
last spike in that same dus ter  is compared with the 
current spike time. If the difference is less than 0.4 ms, 
the current spike is thrown out. This process is done to 
eliminate noise spikes which can cause 'spike doubling'; 
the explanation for this is in the Discussion section. 
There  is no way physiologically for the same cell to 
discharge twice in this time period, due to the neuronal 
refractory period of approximately 1 ms in the cochlear 
nucleus. 

2.1.5. Cluster reduction 
After parsing through the entire data buffer and 

processing all the detected spikes into clusters, the 
total number of clusters formed by the neural network 
is reduced to the number of different spike types in the 
recording, selected previously by the user (described 
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Fig. 1. The ART-2 algorithm applied to wave form classification. The 
scaled incoming spike is compared to each existing cluster. In this 
case, the wave form might be classified as belonging to cluster 3, and 
the prototype of unit 3 would be adjusted to more closely resemble 
the input. If no close match is found, a new unit (from a potentially 
infinite supply) is allocated. 
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Fig. 2. Method of clustering for ART-2 verses traditional neural 
networks. This figure shows a 2-dimensional representation of how 
clustering occurs. In both of these examples, there are 3 different 
clusters. The dots indicate individual action potentials. In our pro- 
gram, these are really 40-dimensional vectors (since each spike wave 
form consists of 40 data points). Part (a) shows how the ART-2 
algorithm places a boundary around action potentials that are close 
together. Any new point that falls outside of each of the 3 existing 
clusters, would cause a fourth boundary to be formed to accommo- 
date it. This is how ART-2 handles noise. Part (b) shows how 
traditional neural networks divide up the space by placing hyper- 
planes between clusters. Once trained to this pattern, every point in 
space will be classified to 1 of 4 regions: either 1 of the 3 clusters or 
the indeterminate area. 

and the prototype is modified, moving closer to the 
shape of the new spike. This is analogous to the 
learning phase of traditional neural networks. Other 
clusters are not affected; hence, this procedure is a 
type of 'competitive' learning, in which only the win- 
ning cluster is modified by a particular wave form. This 
allows the algorithm to track slow changes in spike 
shapes. 

If the spike is not sufficiently close to any of the 
existing clusters, it forms a new cluster. The cluster 
boundaries are regulated by a vigilance parameter, rho. 
The value of rho needs to be modified to handle 
different spike train characteristics. For instance, a 
particularly noisy set of spikes would indicate the need 
for a lower vigilance (hence, a larger boundary around 
the cluster), since signals from the same neuron might 
vary significantly. 

ART-2 differs from traditional neural networks in 
the way that it partitions the input space for classifica- 
tion. The prototypes constructed by ART-2 represent a 
group of input vectors which are 'close' to one another 
in 40-dimensional space, as shown in Fig. 2a. The 
boundaries of the clusters are shown as circles in the 
figure; the extent of the boundary is controlled by the 

vigilance parameter, rho. Traditional neural networks 
divide the input space by placing separating hyper- 
planes between the various classes, as shown by the 
lines in Fig. 2b. The number of these planes must be 
fixed before training and, once trained, the orientation 
of these planes cannot be changed. The ART-2 algo- 
rithm permits the addition of new boundaries as 
needed. Hence, wave forms never seen previously can 
be categorized by ART-2. Conversely, the traditional 
approach can only categorize wave forms based on the 
previously defined hyperplanes. 

In order to make the selection of rho automatic in 
our algorithm, two different rho values are tried on the 
very first data buffer processed, to decide which one 
works better for the situation. One value tends to work 
better in low-noise environments, while the other works 
better with higher noise levels. The rho value that 
forms the most clusters with a significant number of 
spikes (at least 5% of the total number of spikes) is 
used for the remainder of the data collection. The 
setting of the vigilance parameter could be considered 
'training'. It does not, however, involve collecting sev- 
eral hundred spikes and iterating through them to form 
cluster templates, before any actual data begins to be 
collected. Selection of the vigilance parameter happens 
without any user input. 

The second controlling parameter on the neural 
network is a noise threshold, theta. After the individual 
spike has been normalized, the algorithm disregards all 
activity beneath this threshold. So, this low-amplitude 
variation is considered to be noise, and is not used in 
the classification and learning steps. We always use the 
same noise threshold, set at a low level, so as to use 
almost all of the 40-point wave form in classification. 
Note that both neural network parameters, rho and 
theta, are set without user input. 

2.3. User-set parameters  

Before the spike discriminator can begin to collect 
data during an experiment, there are 2 parameters that 
do need to be set by the user. The first is the amplitude 
trigger level. This is set by collecting one trial buffer of 
data, plotting the recording trace on the computer 
screen, and allowing the user to set the trigger level by 
moving a superimposed cursor. 

The second parameter is the number of neuronal 
spike types present in the recording. Before requesting 
this information, the routine analyzes the first data 
buffer and prints out both the number of clusters the 
neural network formed and the number of spikes in 
each cluster. This data is helpful to the user in deciding 
how many spike types are present because, in most 
cases, there will only be a few clusters with many spikes 
in them, usually 2-3, that probably represent different 
units. Also, there will be several more clusters with 
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only a few spikes in each, usually 2-15 depending on 
the noise margin, that probably represent noise spikes. 
Since noise spike shapes tend to vary more than neu- 
ronal spike shapes, the neural network 'spreads out' 
the noise into many small clusters. So, both the num- 
ber of clusters with a significant number of spikes and 
visual inspection of the data tracing can be used to 
estimate the number of neuronal units that are repre- 
sented in the recording. 

Once the user has selected the trigger level and 
entered the number of units, the program is fully 
automated. This user-interface is designed to take 
about 30 s to set up once a signal is found. 

2.4. Data simulation routine 

A routine was written to randomly generate simu- 
lated data for use in testing the spike discriminator 
objectively against different variable factors (spike 
shape, spike amplitude, and noise level). In order to do 
this, several representative spike wave forms were ex- 
tracted from in vivo recordings that had been sampled 
at 40 kHz and stored on disk. Each extracted spike 
shape consisted of 40 points (1 ms). The spike peak 
amplitudes were then adjusted to user specification by 
scalar multiplication of the entire 40-point shape file. 

The data simulation routine, using the extracted 
spikes, positioned copies of the wave forms randomly 
within a blank 500 ms buffer, making sure that none of 

the spikes overlapped each other. Simultaneous spikes 
were not considered during initial testing since we 
wanted to concentrate on our main objective, shape 
discrimination. The spike rates were set at 200 spikes 
per second for each spike type. Randomly generated 
gaussian noise, filtered from 600 to 5000 Hz with a 
second-order digital band-pass filter, with a user se- 
lected root-mean-squared (RMS) value was added to 
the entire 500 ms buffer equally. 

The buffer was then used by the spike discriminator 
program in place of actual data, for testing purposes. 
This method allowed us to compare the results of the 
spike discriminator using different spike shapes, spike 
amplitudes, and noise levels. 

2.6. Calculation of accuracy 

The output file of spike times with their correspond- 
ing cluster numbers from the spike discriminator was 
compared with the 'answers' (known spike times) from 
the data simulation routine. If the difference between 
any discriminator output spike time and any answer 
spike time was less than 0.3 ms, a match was made. 
Any spikes found in the discriminator output file, but 
not in the answer file, were called noise spikes. Noise 
spikes occurred randomly based on the noise level 
added to the generated data. 

Table 1 demonstrates how the accuracy of the spike 
discriminator was calculated, using the generated 2-unit 
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Fig. 3. Randomly generated 2-unit data. This is an example of a 500 ms data buffer generated in software. Two different spike types are present.  
The  noise level is 0.75 V RMS. This data is analyzed in Table 1. 
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Table 1 
Spike discriminator accuracy calculation 

Cluster 1 Cluster 2 Noise Answer totals 

Spike type A 73 22 5 100 
Spike type B 0 93 7 100 
Unmatched spikes 0 0 2 2 
Cluster totals 73 115 17 

This is the output from our spike discrimination software after 
comparing its results (cluster totals) with the answer file (answer 
totals) for the data in Fig. 3. There are 2 different spike types (A and 
B); there are 100 of each in the data. The cluster 1, cluster 2, and 
noise columns show the breakdown of what types of spikes are in 
each cluster. There were 2 spikes picked up by the discriminator that 
were not neural spikes, and so they were called unmatched spikes. 
These are true noise spikes. Please see the text for a complete 
explanation of the breakdown. 

data shown in Fig. 3. This was a particularly tough case 
with many noise spikes and poor spike discriminability. 
Cluster 1 represents type-A spikes, and cluster 2 repre- 
sents type-B spikes. Our  goal was to formulate a single, 
overall value that represented the accuracy of the spike 
train separation. The accuracy must take into account 
the true positives, true negatives, false positives, and 
false negatives. 

A true positive is a correctly clustered spike; in the 
example, there were 73 in cluster 1, and 93 in cluster 2. 
A true negative is a noise spike that was correctly 
sorted into the noise cluster. There were 2 in the 
example. A false positive is a spike put into a group 
that it did not belong to. In the example, the 22 type-A 
spikes sorted into cluster 2 were false positives. A false 
negative includes spikes that were missed; for example, 
the 5 type-A spikes missed by cluster 1 and the 7 
type-B spikes missed by cluster 2 that were put into the 
noise cluster. 

One way to calculate an overall number  that repre- 
sents accuracy is to sum up the correct number  of 
spikes in each of the dusters  including the noise dus-  
ter, and divide the total by the actual number  of spikes 
that were supposed to be present, according to the 
answer file. X is the number  of clusters selected by the 
user; Y is the number  of spike types actually present  in 
the data according to the answer file. Ideally, these 
should be the same. 

Accuracy = n correct in cluster 1 + n correct in cluster 2 

+ . . .  + n correct in cluster X 

+ n correct noise spikes 

/ t o ta l  n o f  type A + total n o f  type B 

+ . . .  + total n o f  type Y 

+ n unmatched spikes. 

In the example, 

Accuracy = 73 + 93 + 2 /100  + 100 + 2 

= 168/202 = 83% 

This method of calculating accuracy includes both 
the number  of spikes that are supposed to be picked 
up (the answer totals) as well as the actual number  of 
spikes that the discriminator found (the cluster totals). 
Note that as the number  of correctly sorted noise 
spikes (the true negatives) goes up, the accuracy goes 
up as well, even though the discrimination of the 
neural spikes (the true positives) might be unchanged. 
This effect is minimized by keeping the threshold well 
above the noise margin so that the number  of triggered 
noise spikes is small. 

2. 7. Technical note 

All the software was compiled and run on both a 
VAXstation 3200 computer  and a VAXstation 4000-60 
computer,  using the VMS operating system. The main 
body of the software is written in F O R T R A N ,  while 
the neural network algorithm is written in C. 

3. Results 

3.1. Accuracy in sorting two spike types 

The spike discriminator was first tested using gener- 
ated data containing 2 different spike shapes (see Fig. 
4). The first spike shape, A, was scaled to 3 different 
peak amplitudes: 10 V, 7.5 V, and 5 V. Each of these 3 
amplitude shapes was distributed randomly into three 
500 ms data buffers together with an equal number  of 
a different spike shape, B, forming 3 different spike 
trains. Spike type B was always used at a peak ampli- 
tude of 7.5 V. Finally, noise (of varying amplitude) was 
added equally to each of the buffers. This created the 3 
different data tracings shown in Figs. 4a-c.  The 2 
different spike shapes, A and B, are in the same 
positions in all 3 tracings; spike type A is slightly wider 
than spike type B. These recordings each show the 
same 10 ms segment of the entire 500 ms generated 
data buffer, and only show the data using a 0.125 V 
RMS noise level. 

Fig. 4d is a graph of the accuracy results of sorting 
each of these 3 spike trains as the noise level added to 
the signal was varied. When the noise level was in- 
creased to 0.75 V RMS, the performance of the spike 
discriminator began to decline. This was the same for 
all 3 tracings. The plot shows that the amplitude of 
spike shape A had little effect on the ability of the 
spike discriminator to accurately sort the spikes. 

In this example, the neural spikes were seen to be 
higher than most noise spikes (even in the worst case, 
the 5.0 V spike at the 1.25 V RMS noise level), so 
noise spike detections by the threshold detector were 
not the reason for lower performance.  A signal-to-noise 
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Fig. 4. Example of generated 2-unit data. Ten millisecond extractions of the 3 data tracings are shown in parts (a), (b), and (c). Spike type B was 
kept at a constant amplitude, while spike type A was scaled to 3 different amplitudes: 10 V, 7.5 V, and 5 V. The noise level was 0.125 V RMS in 
these figures. Part (d) shows the accuracy of the spike discriminator while separating the units for each of the 3 recordings, with increasing noise 
levels. Note that the accuracy is quite good until the decline beginning at a noise level of 0.75 V RMS. There is no difference in discriminability 
between the 3 different amplitudes of spike type A, at any noise level. 
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Fig. 5. Another  example of generated 2-unit data. This time, the 3 different amplitude type-A spikes were mixed with a different spike wave 
form, labeled type-C spikes. The noise level was 0.125 V RMS in parts (a), (b), and (c). Part (d) shows the accuracy results as the noise level was 
increased. Again, note the similar decline in accuracy for all 3 tracings, in this instance beginning at a noise level of 0.25 V RMS. 
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ratio (SNR) can be calculated for this data by dividing 
the spike's peak amplitude by the RMS value of the 
noise. This is not a true SNR, for which the RMS value 
of the signal would need to be used; but, for neuronal 
spike detection and discrimination, this is a more use- 
ful value, since the first step in the spike identification 
process is threshold detection. Once spike amplitudes 
rise above the noise margin, they can start to become 
identified and sorted. In this and the other examples 
where there are different spike peak amplitudes, the 
7.5 V spike was always used in the calculation of the 
SNR, although as shown in results section, the 5.0 V 
spike gave identical results, and would calculate out to 
a lower SNR. 

The drop-off in accuracy in Fig. 4d occurred at a 
SNR of 10 (noise level of 0.75 V RMS). This would be 
a high SNR for a decline in accuracy in a single-unit 
recording, but not in a multi-unit recording. The cause 
of the drop was because the noise margin became 
larger than the difference between the 2 spike shapes, 
so the discriminator had difficulty distinguishing be- 
tween the 2 different spike types. 

In another example of neural spike discriminability, 
the same spike shape, A, was again used at each of the 
3 peak amplitudes verses a different spike shape, C, 
used only at 7.5 V. Fig. 5a -c  show 10 ms segments 
from each of the 3 generated data tracings. Spike C 

appears to be about the same width as spike A, but has 
a much deeper  trough. Again, these tracings are dis- 
played using a noise level of 0.125 V RMS added to the 
data. 

Fig. 5d, like Fig. 4d, is a graph of the accuracy 
results from the spike discriminator after sorting each 
of these 3 tracings. All 3 tracings have nearly equiva- 
lent results as the noise level is increased, showing that 
spike amplitude is not a factor in the ability of the 
software to cluster effectively. In this example, the 
noise has an effect on accuracy at a lower level (about 
0.25 V RMS, or a SNR of 30, compared with a SNR of 
10 in the previous example). Therefore,  at a lower 
noise level, spike types A and C were undifferentiable, 
while types A and B were still quite separable. 

Also of interest in this plot is the slight rise in 
accuracy around noise levels of 0.375 V RMS; the 
reason for this is unknown. The neural network soft- 
ware builds a new learning pathway with each different 
data tracing used, and it is possible that at noise levels 
just below this point, the neural network formed stricter 
clustering requirements than at noise levels just above 
it. This could cause some neural spike wave forms with 
a particularly bad noise spike superimposed on it to get 
mistakenly clustered into the noise group. Since the 
neural network 'self-learns' by using repetitive algo- 
rithms without programmer input, it is extremely diffi- 
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Fig. 6. Example of generated 3-unit data. Three different spike wave forms, A, B, and C, all at 7.5 V amplitudes, were equally distributed within 
the 500 ms data buffer. Part (a) shows a 10 ms segment of the buffer at a noise level of 0.125 V RMS. Part (b) shows the accuracy results as the 
noise level was increased. 



J.S. Oghalai et al. /Journal of Neuroscience Methods 54 (1994) 9-22 17 

cult to analyze what features of the neural spike wave 
forms it considers important, so the cause for this rise 
in performance is not known. 

3.2. Accuracy in sorting three spike types 

Fig. 6a is a generated data tracing of the 3 different 
spike shapes, A, B, and C, all with similar amplitudes 
(7.5 V), and at a low noise level (0.125 V RMS). Fig. 6b 
shows the performance of the spike discriminator while 
clustering the 3 spikes as the noise level increases. 
Similar to the previous example, there was a rise in 
accuracy at 0.375 V RMS noise. Presumably, these 
rises occurred for the same reason. 

3.3. Amplitude Tracking 

An important feature of this spike discriminator is 
the ability of the algorithm to track a spike shape as its 
amplitude changes, especially if it changes rapidly. To 
test this, a single spike shape, A, was scaled to ampli- 
tudes of 5 V to 10 V in steps of 0.5 V. Then, eleven 
generated data tracings were created, using the 7.5 V 
spike and each of the scaled versions of the same spike. 
Each of the spike trains was then run on the spike 
discriminator; this was done at 3 different noise levels: 

0.125, 0.500, and 0.750 V RMS. Fig. 7a-c show 3 of the 
11 tracings of the generated data buffers, with the 5, 
7.5, and 10 V spikes mixed with the 7.5 V spike, using 
the 0.125 V RMS noise level. Obviously, in Fig. 7b both 
spikes are exactly the same and could never be distin- 
guished. 

In Fig. 7d, the performance of the spike discrimina- 
tor is shown, comparing the 7.5 V spike with each of 
the different amplitude spikes. It is important to re- 
member that while the spike amplitudes are different, 
the spike shapes are the same, so the point of this plot 
is to show that different amplitude spikes with the 
same shape get clustered into the same group. The 
number of spike types present in the data was entered 
as 2, so that the algorithm would try to separate the 2 
different amplitude spikes into 2 different clusters. 
When the algorithm sorted both spikes to the same 
cluster, the accuracy result was 50%, since it could only 
classify the spikes into 1 cluster, not 2 as had been 
requested. When sorted into different clusters, the 
accuracy was 100%. 

This plot shows that a wide range of amplitude 
variability can be present without causing separation of 
the different amplitude spikes into different clusters 
(i.e., a calculated accuracy of 50%, but actually the 
result was as desired). A spike could vary anywhere 
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Fig. 7. Discriminability of the same wave form, scaled to different amplitudes.  One  neural  spike wave form, type A, was scaled from an amplitude 
of 5 V to 10 V in steps of  0.5 V, and each of them randomly distributed in a buffer with the 7.5 V type-A spike to prove that no mat ter  what the 
ampli tude difference, both spikes would be put  into the same cluster. This was done at 3 different noise levels: 0.125, 0.5, and 0.75 V RMS. Parts 
(a), (b), and (c) show 3 of the buffers using the 5, 7.5, and 10 V spikes verses the 7.5 V spike, all at the 0.125 V RMS noise level. Part (d) displays 
the accuracy results at each of the 3 noise levels. Note that from 6.0 to 9.5 V, the accuracy was 50%, meaning that both spike types were sorted to 
the same cluster. 
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from 73 to 127% of its peak amplitude without any 
misclassification. This test is more difficult than a test 
of tracking slow changes in spike amplitude (i.e., over 
minutes) because, in that situation, both the cluster 
learning process and the spike normalization process 
are occurring (as opposed to only the normalization 
process, as in this case). 

At both the low and high extremes, the spike dis- 
criminator did sort the different amplitude spikes into 
their own clusters. Small differences between the 
spikes, possibly formed during the normalization pro- 
cess, could cause fractionation of the spikes into 2 
different clusters. 

3.4. Discrimination of  real data recordings 

Next, 2 in vivo recordings were analyzed. The first 
tracing is shown in Fig. 8. The noise level is relatively 
low at 0.09 V RMS. The threshold level was user-set to 
midway between the noise margin and the peak of the 
small spike. Accuracy was determined by comparing 
the spike times from the discriminator output with the 
actual data tracing. The spike discriminator sorted the 
spikes with 100% accuracy forming 2 clusters with 16 
and 9 spikes correspondingly. This was a relatively easy 
example. 

The second in vivo example was more difficult, as 
seen in Fig. 9, since the noise floor was higher (0.343 V 
RMS). Once again, the trigger level was set about 
midway between the noise margin and the peak of the 
small spike. The results of the clustering showed 53 
total spikes, with 2 clusters of 32 and 11 spikes, and a 
noise cluster of 10 spikes. The accuracy, calculated by 
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Fig. 8. Actual 2-unit data recorded from cat cochlear nucleus. The 
noise level was measured to be 0.09 V RMS. The accuracy of the 
spike discriminator on this data was 100%. 
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Fig. 9. Another example of actual 2-unit data recorded from cat 
cochlear nucleus. The noise level was measured to be 0.343 V RMS. 
The accuracy of the spike discriminator on this data was 86%. 

comparing the discriminator output spike times with 
the actual data tracing, was determined manually to be 
86%. The spike discriminator mistakenly classified 
some of the small neuronal spikes and large neuronal 
spikes as noise spikes, causing the mild loss of perfor- 
mance. 

3.5. Performance testing 

Finally, the speed of the spike discriminator algo- 
rithm was determined by finding the time it took from 
when a 500 ms data buffer was ready to be processed, 
until the time all the spikes were clustered and the 
number  of clusters was reduced (as explained in the 
Methods section). The buffer was made up of gener- 
ated data, containing 400 spikes, one-half type A, and 
one-half type B. Both had amplitudes of 7.5 V. Two 
different noise levels were used: 0.05 V RMS and 0.625 
V RMS. Also, both of these trials were run on two 
different computers, a VAXstation 4000-60 and a 
VAXstation 3200. 

On the VAXstation 4000-60, the low-noise data was 
processed in 9.16 s, and the high-noise data in 14.14 s. 
This was calculated to give a processing time of 44 
sp ikes /s  and 28 sp ikes /s  correspondingly. On the 
VAXstation 3200, the low-noise data was processed in 
38.38 s, and the high-noise data in 58.46 s. This was 
calculated to give processing times of 10 sp ikes /s  and 7 
spikes/s .  As seen, the older VAXstation 3200 was 
about a fourth as fast as the newer model. The data 
shows that as noise levels increase, the performance 
decreases. 
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Fig. 10. Typical spike wave forms sent to the neural  network for 
classification. This plot shows several overlapping 1 ms spike wave 
forms, all triggered at the same point. There  are 2 spike types 
present, D and E. Each of these spike wave forms are classified by 
the neural  network algorithm, and are easily sorted to their correct 
clusters. 

4. Discussion 

4.1. Errors in spike discrimination 

Before a discussion of the results, it is important to 
understand the theory of where errors in spike discrim- 

ination originate. In all the following examples, the 
errors come from actual recordings and were discov- 
ered during testing. Fig. 10 shows several 1 ms spikes 
seen by the spike discriminator after threshold detec- 
tion at the trigger level. In this data, two obviously 
different shapes were present, D and E, and all of 
these spikes could be discriminated easily. 

Fig. 11 shows what happened to 1 type-D spike with 
a small downgoing noise spike superimposed upon it. 
The spike was first detected at trigger I and sorted into 
the correct cluster containing all the other type-D 
spikes. Then, the negative noise spike dip caused the 
signal to go below the threshold and then back above it 
again, causing a second detection to occur at trigger 2. 
A second 40 point extraction of the spike was taken 
and was close enough in shape, although shifted in 
time slightly, so that it was sorted into the same cluster, 
causing a false positive (i.e., a noise spike being sorted 
into a neuronal spike cluster). We call this source of 
error 'spike doubling'; it was eliminated in our current 
algorithm by not allowing 2 detected spikes within 0.4 
ms of each other into the same group. 

In spike doubling, often the second triggering caused 
by a noise spike is delayed in time enough so that the 
neural network decides to form a new cluster to ac- 
commodate the new spike. This is how many noise 
clusters with very few spikes in each are formed. When 
this happens, a noise spike is correctly sorted into a 
noise cluster, and a true negative occurs. 

A similar situation can occur, especially in higher 
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Fig. 11. Example of spike doubling. This tracing shows a type-D spike that was detected twice, with both the original spike wave form and a 
shifted version of the same spike wave form sent to the neural  network for classification. The  first detection occurred when the wave form rose 
above the threshold level at trigger 1. The second detection occurred at trigger 2, just  after a small downgoing noise spike on top of the neural 
spike had caused dip in the signal below the threshold level. 
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noise environments, where a neural spike is detected 
only once, but the wave form is not similar enough in 
shape to what the neural network considers correct for 
that cluster, so a new noise cluster is formed for it. 
This means the neural spike is misclassified as a noise 
spike, causing a false negative. 

Fig. 12 shows 2 near simultaneous spikes: a type D 
and a type E. The type-D spike was detected at trigger 
2, and the type-E spike was detected at trigger 1. Both 
spikes were correctly sorted into 2 different clusters in 
this example. 

When 2 spikes were closer together in time, as the 
questionable spike in Fig. 13, only one triggering oc- 
curred since the signal did not drop below threshold 
between the 2 spikes. In this case, the single detected 
spike could have been sorted into either one of the 
neural spike clusters, or its own noise cluster. So, at a 
minimum 1 spike is missed, either the type D or the 
type E; in the worst scenario, a new noise cluster is 
formed for this spike, causing both spikes to be missed. 
One way to control this is to remember that the higher 
the threshold level, the closer 2 near-simultaneous 
spikes can become and yet still be detected as 2 indi- 
vidual spikes (of course, if the threshold level is set too 
high, the risk of missing a spike increases). 

Once 2 spikes run together and are only sensed 
once by the threshold detector, it is very difficult to do 
anything further to separate them. Our spike discrimi- 
nator does not have a way to deal with this problem. 
One possible technique that could be used for separat- 
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Fig. 12. Example of near simultaneous spikes. In this tracing, a 
type-E spike closely followed a type-D spike. Both were triggered 
independently and clustered correctly because the signal fell below 
the threshold level between the spikes. Both 1 ms wave shapes are 
shown, shifted in time, as seen by the neural network processing 
algorithm. 
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Fig. 13. Example of superimposed spikes. Here, the type-E spike 
overlapped with the type-D spike, creating a new wave form. Normal 
type-D and -E spikes are overlaid for comparison. This questionable 
spike was detected only once, but contained 2 spikes within it. 
Depending on which cluster this spike is sorted into, at least 1 of the 
overlapping spikes will be lost, and possibly both if it is put into a 
noise cluster. 

ing overlapped spikes would be to subtract out known 
40-point spike wave forms from the 40-point overlap- 
ping spike wave form. The differences could then be 
run through the neural network to see if it was close 
enough to any existing cluster. This would involve a 
large amount of calculation, since the peak of an 
overlapping spike could occur at any time in the sam- 
pled wave form, meaning that the known wave form to 
be removed would have to be shifted through the 40 
points, and tried individually at each step. 

4.2. Accuracy 

The accuracy of the spike discriminator was shown 
using 2-unit generated data, 3-unit generated data, and 
2-unit actual data. The neural spike shapes were quite 
similar in shape, yet the spike discriminator was very 
good in separating them. This suggests that even though 
spike amplitude is an important feature often used to 
distinguish between different spikes, it is very possible 
throw out this variable and still get excellent sensitivity 
based solely on spike shape. The noise did have an 
effect at lower levels than if only 1 spike shape were 
present in the tracing, in which case only simple 
threshold detection would be needed, and not spike 
discrimination as well. In other words, during multi-unit 
spike discrimination it is usually the difference be- 
tween the spike wave forms that predicts accuracy, and 
not so much the difference between the spikes and the 
noise level (i.e., the SNR). 
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4.3. Ampl i tude  tracking 

Amplitude changes had basically no effect on the 
accuracy of clustering spikes. This is useful for circum- 
stances of either slow or rapid drift of spike amplitude. 

standing the simultaneous multi-unit data made avail- 
able by the advancing spike discrimination techniques. 

Our software, including the ART-2 subroutine, is 
available upon request to the authors. 

4.4. Performance 

The performance goal of a spike discrimination sys- 
tem is real-time operation. Right now, using the 
VAXstation 4000-60 system, we notice a slight delay 
between sequential stimuli while spikes are being pro- 
cessed (depending on data conditions); this slows down 
on-line data collection a little bit. Using an A L P H A  
workstation (Digital Equipment, Maynard, MA), there 
should be no delay, since it should be at least ten times 
faster than our current computer. 

4.5. Conclusion 
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Overall, our neural network-based spike discrimina- 
tor met the criteria that we set. Its accuracy is good, 
even while sorting nearly similar spikes shapes. It has 
the ability to work in noisy environments and to elimi- 
nate triggered noise spikes. Also, the software tracks 
changes in spike shape and amplitude, both slow and 
fast variations. Its speed is adequate so that it can be 
used in real-time. Since there is very little user set-up 
and no training phase required, using the spike dis- 
criminator should not interfere with data collection 
under circumstances of sub-optimal unit stability, when 
there is not much time to record from the cell before it 
is lost. This software could easily be run by anyone 
familiar with single-unit neural recording techniques. 

Our neural network algorithm is limited by the 
speed of the latest computer system in our lab right 
now, and when more advanced algorithms are devel- 
oped, the hardware will need to be updated. We feel 
that on-line spike train separation is a necessity in 
order to see the physiological response of the cells to 
different stimuli, as we record from them. The use of 
spike discrimination in multiple-site electrode record- 
ings will also be important in the future, as the push to 
record from as many neurons as possible simultane- 
ously continues. 

Of course, the mathematical theory needed to ana- 
lyze all of this data, once separated into different 
clusters, has barely been developed. Most of the tech- 
niques used today were developed by Perkel et al. 
(1967a,b, 1975). These include cross-correlation his- 
tograms, 2-dimensional scatter plots, and 3-dimen- 
sional scatter plots. More recently, the joint-peristimu- 
lus-time histogram has been introduced (Aertsen et al., 
1989). Reinis et al. (1992) has also been developing 
techniques for creating block diagrams of neuronal 
interactions. Furthering this work is critical to under- 
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