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specific cardiovascular risk information and pri
a b s t r a c t

We propose a proof-of-concept machine-learning expert system that learned knowledge of lifestyle and
the associated 10-year cardiovascular disease (CVD) risks from individual-level data (i.e., Atherosclerosis
Risk in Communities Study, ARIC). The expert system prioritizes lifestyle options and identifies the one
that maximally reduce an individual’s 10-year CVD risk by (1) using the knowledge learned from the ARIC
data and (2) communicating for patient-specific cardiovascular risk information and personal limitations
and preferences (as defined by variables used in this study). As a result, the optimal lifestyle is not only
prioritized based on an individual’s characteristics but is also relevant to personal circumstances.

We also explored probable uses and tested the system in several examples using real-world scenarios
and patient preferences. For example, the system identifies the most effective lifestyle activities as the
starting point for an individual’s behavior change, shows different levels of BMI changes and the associ-
ated CVD risk reductions to encourage weight loss, identifies whether weight loss or smoking cessation is
the most urgent change for a diabetes patient, etc. Answers to the questions noted above vary based on an
individual’s characteristics. Our validation results from clinical trial simulations, which compared origi-
nal with the optimal lifestyle using an independent dataset, show that the optimal individualized patient-
centered lifestyle consistently reduced 10-year CVD risks.

� 2012 Published by Elsevier Inc.
1. Background

Diet patterns and healthy behaviors are important for disease
prevention, especially for cardiovascular health. What lifestyle
choices are healthy? The AHA Scientific Statement [19] recom-
mends aiming for a healthy body weight, desired lipid profile, nor-
mal blood pressure, physical activity, and not smoking, etc. It also
suggests specific thresholds for diet and lifestyle such as the limi-
tation of saturated fat intake to <7% of energy, cholesterol intake
<300 mg, and total fat intake between 25% and 35% of energy.

These are generalized recommendations optimized for the
whole population without considering individuals’ particular cir-
cumstances and characteristics. For behavior interventions, such
as lifestyle changes, an individual’s commitment and willingness
to change play an important role in the success of such interven-
tions. Tailoring individualized strategies in lifestyle changes has
been broadly discussed as a way to promote health because they
are more personally relevant. The personal relevance leads to the
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individual taking a more active role in their health, reading the lit-
erature more thoroughly, and discussing with others more often.
(e.g., [14,17,8,25,21]). Such a tailoring approach has been shown
to be an effective method for most studies of nutrition interven-
tions and partial studies of physical activity to promote health [14].

The basic idea of tailored interventions is to use communica-
tion, medication, or other types of treatments that are specific for
an individual or a group to improve health or change behaviors
[1]. The proposed decision support system provides four key func-
tions for tailored interventions (individualized lifestyles): (1) The
system predicts 10-year CVD risks based on an individual’s charac-
teristics. We consulted a preventive clinic doctor to identify a set of
variables that can be easily obtained and are often considered in
clinics (Table 1) for lifestyle recommendations. (2) The system pri-
oritizes lifestyle options and actively identifies the lifestyle that
would most reduce CVD risks, based on the individual’s character-
istics. (3) Through communication to collect personally relevant
limitations (such as personal food and time limitations) and prefer-
ences, the system actively identifies the most effective lifestyle
based on these parameters to produce effective and easily-com-
plied individualized lifestyle recommendations. (4) The system
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Table 1
Variables from ARIC data used for lifestyle recommendation.

# Types Variables [values]

Lifestyle
1 NUM Body mass index [23.35, 25.75, 28.06,31.38]
2 NUM Alcohol intake (g) per day [0, 9.43]
3 Nominal Smoking status [0, 1]
4 NUM Total activity hours per week [3, 5, 7, 10]
5 NUM Carbohydrate (g) [128.79, 166.19, 203.57, 258.52]
6 NUM Dietary cholesterol (mg) [147.5, 200.23, 256.84, 337.56]
7 NUM Dietary fiber (g) [10.52, 14.12, 17.82, 22.93]
8 NUM Protein (% kcal) [14.52, 16.68, 18.67, 21.08]
9 NUM Saturated fatty acid (% kcal) [9.55, 11.25, 12.68, 14.37]

10 NUM Total fat (% kcal) [27.32, 31.41, 34.71, 38.42]

Characteristics
11 NUM Cigarette years of smoking [0, 280, 660]
12 Nominal Cholesterol lowering medication use [0, 1]
13 Nominal Diabetes [0, 1]
14 Nominal Education level [(1) grade school or 0 years education, (2)

high school, but no degree, (3) high school graduate (4),
vocational school, (5) college (6) graduate school or
professional school]

15 Nominal sex [0, 1]
16 NUM HDL cholesterol in mg/dl [37.56, 45, 52.97, 64.52]
17 Nominal Hypertension [0, 1]
18 NUM LDL cholesterol in mg/dl [105, 126, 145, 168]
19 Nominal Menopausal status [(1) primary amenorrhea, (2)

premenopause, (3) perimenopause, (4) post, natural, (5) post,
surgical, (6) unknown ovarian status]

20 Nominal Race [B: black, N: non-black]
21 NUM Total cholesterol in mmol/L [4.65, 5.22, 5.74, 6.39]
22 NUM Total triglycerides in mmol/L [0.82, 1.08, 1.41, 1.94]
23 NUM age [48, 52, 56, 60]
24 Nominal High blood pressure medication in past 2 weeks [yes, no,

unknown]
25 NUM 2nd and 3rd Systolic blood pressure average [106, 115, 123,

135]
26 NUM 2nd and 3rd Diastolic blood pressure blood pressure average

[65, 70, 76, 82]
27 NUM Standing height to nearest CM [160, 165, 171, 177]
28 NUM Waist girth to nearest CM [85, 93, 99, 107]
29 NUM Hip girth to nearest CM [97, 101, 105, 111]
30 NUM Heart rate [58, 63, 68, 75]
31 NUM White blood count [4.6, 5.4, 6.3, 7.4]
32 NUM Apolipoprotein AI (MG-DL) [107, 122, 137, 157]
33 NUM Apolipoprotein B (MG-DL) [69, 83, 97, 116]
34 NUM APOLP (A) DATA (UG-ML) [19, 43, 86, 175]
35 NUM Creatinine (MG-DL) [0.9, 1, 1.1, 1.2]
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allows the individual to choose or prioritize what they want to do
first based on how much the change would benefit them as an indi-
vidual, rather than a one size fits all approach of general
recommendation.

Typical expert systems contain a knowledge source and a mech-
anism for problem solving that returns a response based on a
query. The knowledge source of most expert systems, such as the
famous example of MYCIN [24], consists of rules derived from di-
rect input from domain experts and evidence from the literature.
However, acquiring and maintaining knowledge in this form is
time- and labor-intensive [29].

Other systems avoid the knowledge acquisition problem using
machine-learning methods for inference, and are thus based exclu-
sively on data. Supervised machine learning involves constructing
a mapping from independent variables, or features, to known out-
comes. The resulting decision function transfers values of indepen-
dent variables into a predicted value of the dependent variable.

Decision functions exist in several forms such as linear or non-
linear functions, tree, rules, and data. In this project, we used a lazy
learning approach k-Nearest Neighbor (k-NN) [13] as the super-
vised classifier. Lazy learning – also called instance-based, case-
based, or memory-based learning – builds a prediction model
specifically for the query case. For example, a k-NN classifier finds
Please cite this article in press as: Chi C-L et al. Individualized patient-centered
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the k closest training cases to decide the label for a query case. Lazy
learning algorithms show three types of properties [4]. First, the
classifiers defer processing of the output until a query case
appears. Second, their responses combine the training with the
query information. Third, they discard the constructed answer
and any intermediate results.

Eager learning algorithms, such as support vector machines
(SVMs), artificial neural networks (ANNs), and decision trees, com-
pile data in advance and use it to construct a predictive model.
They use this global model to give responses to all queries. Thus,
the compilation process is called training, which is unnecessary
in lazy learning methods. Instead of training, lazy learning algo-
rithms need to store all the training cases, and find the closest
training cases to the query case for prediction. Compared to black
box approaches such as SVMs and ANNs, lazy learning is more
interpretable. However, lazy learning is sensitive to irrelevant
attributes [3]. Feature weighting methods such as mutual informa-
tion [31], conceptually similar to feature selection methods, can
solve the problem.

We modified the prediction and optimization-based decision
support system (PODSS) algorithm [10] to build this expert system.
The PODSS algorithm allows the choice of any classification meth-
od that is deemed appropriate for a particular problem. We choose
k-NN as our classifier for both conceptual and clinical reasons. Con-
ceptually, CVD risks are computed from people with similar char-
acteristics. This transparency allows us to easily visualize and
understand how CVD risks are computed, and why the system con-
cluded that a particular change would result in a risk reduction.
Clinically, due to the nature of data storage for prediction, a patient
can visualize people’s (de-identified) lifestyle and outcomes. We
expect such a visualization mechanism will enable observational
learning and further help healthy lifestyle adoption. In fact, in so-
cial cognitive theory [6,12], observing other people’s behavior is
one important element in self-efficacy that improves an individ-
ual’s confidence in successfully carrying out a behavior.

Predictive performance is evaluated by comparing true with
predictive labels. This is a process called validation. In order to
implement this idea, one needs to separate a dataset into two sub-
sets, one for training and the other one for testing. Training set is
used to generate a predictive model, and the predictive perfor-
mance is evaluated on the testing set. Leave-one-out [27] is an ex-
treme example with low variance and bias but high computation
requirement. In leave-one-out, a dataset, which consists of n data
points, is separated into 1 testing data point and n � 1 training data
points. The same process is repeated for n times, each of which has
a different testing data point.

A variety of machine learning methods have been used to con-
struct the knowledge base for expert systems. As mentioned, in
nearest-neighbor or case-based prediction [28], the knowledge con-
sists solely of previous cases, including the problem, the solution,
and the outcome, stored in a central location, called the case library.
To obtain the solution for a new case, one simply identifies the stored
case(s) most similar to the problem, and the proposed solution can
be adapted from the retrieved case. More generally, machine learn-
ing (ML)-based expert systems are able to give recommendations
that are generated by non-linear forms of knowledge, and are easily
updated by simply adding new cases. However, the use of ML in ex-
pert systems has been limited (see, e.g., [5,30] typically involving
rule induction). Systems built on artificial neural networks include
Liau et al. [18] for oil distillation and Song and Kusiak [26] for boiler
control. Chi et al. [10] built a hospital-selection expert system that
combined support vector machines with optimization.

Generally, the types of solutions that can be structured by ex-
pert systems can be divided into selection and construction [11].
For selection, several action sets have been pre-determined, and
the solution is the most promising action set. On the other hand,
lifestyle recommendations: An expert system for communicating patient
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construction needs to construct a set of actions from scratch. In or-
der to avoid infeasible solutions, constraints can regulate the solu-
tion construction. In the hospital-selection problem [10], each
hospital has a unique set of characteristics (e.g. teaching status,
bed size, volume for surgeries, etc.) that make up a pre-determined
action set and one has to select the most promising action set that
represents a real hospital; we cannot construct an ideal hospital
using characteristics of different ones. Therefore, it is a selection
problem. On the other hand, the lifestyle problem in this project
was construction. There were no pre-determined lifestyle options,
so we needed to construct a set of lifestyle values (e.g.,
BMI 6 23:35, quit smoking, and physical activityP 10 h=week)
Then we determined the combination that maximally reduced an
individual’s cardiovascular disease risk. We note that both hospi-
tal-selection and lifestyle expert systems were built by the same
principle, prediction and optimization. Due to the requirement of
different solution types, we needed to choose a different optimiza-
tion tool to better suit the problem nature.
2. Method

We used the revised PODSS algorithm [10] to construct this ex-
pert system. The system learned the knowledge of lifestyle with
the associated CVD risks from the ARIC data (Section 2.1) using
k-NN prediction models (described in Section 2.2). Missing data
was imputed by the expected distance between a query and a
training case (Section 2.3). The individualized patient-centered
lifestyle was identified by optimization approaches (Section 2.4).
When complying with a recommended lifestyle, the lifestyle cou-
pled with biological changes interactively influenced CVD risks.
Section 2.5 discusses this issue and uses the combined changes
to predict an individual’s modified CVD risk. Finally, we discuss a
validation approach using clinical trial simulations (Section 2.6).
2.1. Data preparation

Knowledge for the system was extracted from the data of the
Atherosclerosis Risk in Communities (ARIC) study [15]. This study
contains a Cohort Component and a Community Surveillance Com-
ponent for four communities. The Cohort Component began in
1987 and subjects were examined every 3 years. ARIC recruited
around 4000 individuals aged 45–64 from each of the four commu-
nities. As a result, the total sample size is 15,792.

The baseline period is 1987–89, and the follow-up periods are
1990–92, 1993–95, and 1996–98. The Community Surveillance
Component is the investigation of the community-wide occurrence
of hospitalized myocardial infarction and coronary heart disease
(CHD) deaths in men and women aged 35–84 years. Patients with
any cardiovascular disease (CVD) event before the baseline (1987–
89) are excluded. The sample size in this study is 13,006. 10-year
CVD outcomes (including both CHD and stroke) are defined using
the Community Surveillance Component.

We asked a preventive clinic doctor (one of the co-authors) to
decide variables that can be obtained from usual care. The data
was obtained from patient self-report on questionnaires or exami-
nation by study protocol. We discretized all variables based on an
equal population (i.e., similar population size in each discrete value)
in order to simplify the problem. Variables are classified into patient
characteristics and lifestyle. Patient characteristics describe a
patient and are fixed. On the other hand, lifestyle variables are
changeable and can be changed to improve health. Table 1 summa-
rizes both types of variables and their cutpoints for discretization.
For example, there are five discrete values for body mass index, less
than 23.35, between 23.35 and 25.75, between 25.75 and 28.06, be-
tween 28.06 and 31.38, more than 31.38 based on quantiles. The
Please cite this article in press as: Chi C-L et al. Individualized patient-centered
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ARIC survey asked participants the four most common activities
and hours per week they perform, and total activity hours is the
sum of all activity time. The outcome is binary, whether a patient
has any CVD event (CHD event and stroke) over the 10 years of fol-
low-up. CHD is defined as any of the following diagnoses: probable
myocardial infarction (MI), definite MI, suspect MI, definite fatal
CHD, definite MI, and possible fatal CHD. Stroke is defined as defi-
nite Thrombotic (TIB) (brain infarction, Thrombotic), probable TIB,
possible stroke of undetermined type, undocumented fatal cases
with stroke codes, and out-of-hospital deaths with stroke codes.

2.2. k-Nearest neighbor

k-Nearest Neighbor (k-NN) does not compile a universal predic-
tive model in advance. It postpones induction until classification.
In other words, it stores all the training data and predicts by utiliz-
ing the distance-weighted true classes of the query’s k nearest
neighbors [31]. The choice of the k influences the system’s perfor-
mance on CVD risk prediction. A small k causes overfitting and,
more importantly, in many cases, the expert system cannot find
lifestyle recommendation because of the difficulty to find similar
persons with both good and bad outcomes. On the other hand, a
large k may underfit, but the probability transition and CVD risk
estimation are much smoother. Since we are focused on producing
high-quality recommendations, we use data size as the k for this
pilot project.

The model is described as

pðcjjqÞ ¼
P

X2Kq
1ðxc ¼ cjÞ � Kðdðx; qÞÞP

X2Kq
Kðdðx; qÞÞ ; ð1Þ

where cj 2 1; . . . ; J is one of the J possible classes and xc is the class
membership of query q. 1() is 1 iff the argument is true, and
1ðxc ¼ cjÞ defines the specific class to which a query q belongs. K
is the distance weight function, and Kq is the set of q’s k nearest
neighbors among the training data. The distance function between
q and x is defined as

dðx; qÞ ¼
X
f2F

wðf Þ � dðxf ; qf Þ
r

 !1
r

; ð2Þ

where F is the feature set. In this project, we define r = 2 (i.e., Euclid-
ean distance). d() is defined as follows.

dðxf ; qf Þ ¼
jxf � qf j; f is numeric
0; f is categorical and xf ¼ qf

1; f is categorical and xf – qf

8><
>: ð3Þ

w (f) is the feature weighting function which is defined as Eq. (4).
We use mutual information between the feature and the class var-
iable as the weight of feature f. v is a value of a feature and Vf is the
value set of f. The purpose of providing such weights to features is
similar to feature selection, in which the aim is to identify a set of
features that contribute most information to the class prediction.
k-NN is particularly vulnerable to useless or misleading features,
so some form of feature selection is necessary. In our case, we apply
higher weights (w (f)) to features that give more information about
the class, instead of simply selecting them or not.

wðf Þ ¼
X
v2Vf

X
cj2J

pðcj; xf ¼ vÞ � log
pðcj; xf ¼ vÞ

pðcjÞ � pðxf ¼ vÞ ð4Þ
2.3. Handling missing values

Missing values are very common in medical data. They may re-
sult from unwillingness to answer questions, the non-inclusion of
lifestyle recommendations: An expert system for communicating patient
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Fig. 1. Optimizing confidence of prediction.
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tests, or other reasons. Missing value imputation (e.g., compute the
mean or mode) is a common approach. In this project, we impute
distance measures instead of missing values. We use expected dis-
tance to impute the distance between a query and a training case.

There are two possible scenarios: either a query or a training
case has a value missing, or both are missing. For the first scenario,
the value of either a query or a training case is known, and we com-
pute the expected distance measure of matching this known value.
For example, a feature has three categorical values [r, g, b] whose
probabilities are [0.4, 0.25, 0.35], respectively. When the known
value of either a query or a training case is b, and the other is
missing, the expected distance is 0:4� ð1Þ þ 0:25� ð1Þ þ 0:35�
ð0Þ ¼ 0:6. On the other hand, if the three values are numeric, [�1,
0, 1], and the known value is 1, the expected distance is
0:4� ðj1� ð�1ÞjÞ þ 0:25� ðj1� 0jÞ þ 0:35� ðj1� 1jÞ ¼ 1:05.

For the second scenario, both values are missing, The probabil-
ity for values r to r, r to g, r to b, g to r, g to g, g to b, b to r, b to g, and
b to b are 0.16, 0.1, 0.14, 0.1, 0.0625, 0.0875, 0.14, 0.0875, and
0.1225, respectively. The expected distance for a categorical
variable is 0:16� ð0Þ þ 0:1� ð1Þ þ 0:14� ð1Þ þ 0:1� ð1Þ þ 0:0625
�ð0Þ þ 0:0875� ð1Þ þ 0:14 � ð1Þ þ 0:0875� ð1Þ þ 0:1225� ð0Þ ¼
0:655. The expected distance for a numeric variable is 0:16�
ðj � 1� ð�1ÞjÞ þ 0:1� ðj � 1� 0jÞ þ 0:14 � ðj � 1� 1jÞ þ 0:1�ðj0
�ð�1ÞjÞ þ 0:0625�ðj0� 0jÞþ0:0875�ðj0� 1jÞþ0:14�ðj1� ð�1ÞjÞ
þ0:0875� ðj1� 0jÞ þ 0:1225� ðj1� 1jÞ ¼ 0:935.

2.4. Optimization: the healthiest plan

The key idea of PODSS is generate a recommendation with pre-
dicted result close to the desired result. In other words, we want to
optimize the confidence of a good outcome. Fig. 1 shows a stylized
classification problem with predictions of a patient with three dif-
ferent lifestyle choices. ‘‘+’’ stands for free from CVD event and ‘‘�’’
stands for CVD event. The lifestyle with the prediction ‘‘A�’’ is not a
good choice. Although lifestyle with prediction ‘‘A+’’ is better, the
predicted score (confidence) is low. ‘‘A*’’ is the best choice because
we predict no CVD with high confidence. A high-confidence life-
style recommendation (with the lowest expected CVD probability)
is generated by comparing various patient-lifestyle pairs (Fig. 2).

We note that the number of combinations of all lifestyle values
is a huge number (e.g., 5 BMI values � 3 alcohol values � 5 choles-
terol levels � . . .). For practical reasons, the system should return a
fast lifestyle recommendation after receiving a query patient’s
information. Thus, a heuristic optimization method is chosen for
this project. There are many discrete optimization techniques, such
as genetic algorithms, tabu search, and simulated annealing. [9]
Among these, hill climbing can quickly find an good answer (local
optimum), but usually not the best (global optimum).

There are two types of optimization in this project. The first one
finds the best value for a single lifestyle component (e.g., each life-
style variable in Table 1) that can minimize one’s CVD risk. The for-
mulation is described as

minimize pðx1 [ x2ijÞ
subject to i ¼ 1; . . . ; jx2j

j ¼ 1; . . . ; jSij
ð5Þ

where x2ij represents one lifestyle component i with the value
j. S represents the set of possible values for i. The objective is
to find the best value j of the single lifestyle choice i for a patient
with characteristic vector x1. p is the decision function as de-
scribed in (1). We can simply use exhaustive search to try all pos-
sible values of each lifestyle variable since all variables have been
discretized.

The second scenario finds the combination of several lifestyle
components (e.g., quit smoking, 3 h physical activity/week, etc.)
Please cite this article in press as: Chi C-L et al. Individualized patient-centered
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that minimize one’s CVD risk. The formulation is described as
follows:

minimize pðx1 [ x2Þ
subject to x2i 2 S; i ¼ 1; . . . ; jx2j

ð6Þ

where x2 represents one’s lifestyle vector, and the returned x2 is the
best lifestyle vector for an individual. In order to return x2 immedi-
ately, we use forward selection [16] to solve the problem. We start
with an empty lifestyle vector, and then include a lifestyle compo-
nent in each iteration given x1 and the previously included lifestyle
components. Finally, we can construct the entire x2 vector.

Patients may not want to comply with lifestyle recommenda-
tions or may ignore certain recommendations for many personal
reasons. One possible way to improve adherence is to involve a pa-
tient’s participation. As a result, a lifestyle recommendation can
satisfy one’s preferences and real-world limitations. For example,
a patient is too busy to do physical activities more than 5 h/week.
In another example, a patient wants to compare CVD reductions for
losing 2 and 5 body mass index (BMI) points and decide on the best
choice (based on effects and efforts). Optimization based on prefer-
ence can generate healthy lifestyle recommendations subject to an
individual’s personal tendencies. In Eq. (6), we use constraints or
change certain x2 to x1 (e.g., exercise no more than 3 h/week) to
incorporate patient preferences into the optimization process.
One can also provide several sets of personal preferences, compare
the effects and convenience of each resulting lifestyle recommen-
dation, and then decide the best one (see Fig. 3).

2.5. Updating patient characteristics

Variables are interrelated. Certain patient characteristics should
change with new lifestyles, e.g., cholesterol level changes with the
change of saturated fat and dietary cholesterol intake. If these
changes are not made, the change of CVD probability resulting
from a lifestyle change is unrealistically small. To solve these prob-
lems, we revise a patient’s characteristics by replacing them with
predicted values. In other words, we predict a patient’s biological
changes due to the new lifestyle.

We asked a preventive clinic medical doctor (one of our
authors) to identify characteristics that would change with life-
style. High density lipoprotein (HDL), hypertension, low density
lipoprotein (LDL), total cholesterol, total triglycerides, 2nd and
3rd systolic blood pressure, 2nd and 3rd diastolic blood pressure,
waist girth, hip girth, apolipoprotein AI, and apolipoprotein B were
identified.

The implementation of this idea is very intuitive. As described
previously, a set of new lifestyle values is created based on all pa-
tient characteristics. Then, we use distance-weighted k-NN with
mutual information to predict the above nine variables given the
lifestyle recommendations: An expert system for communicating patient
med Inform (2012), http://dx.doi.org/10.1016/j.jbi.2012.07.011
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new lifestyle values and the patient characteristics that cannot
change with the new lifestyle (e.g., education level). We use the
notation x̂1 to represent predicted values of these variables.
2.6. Validation method

Validation is difficult for the proposed problem. In our dataset,
no real patients ever used the expert system, so there are no com-
parison targets. We designed a clinical trial simulation algorithm
to validate the system using the concept of comparison against
other models [22] coupled with experimental designs[2,23]. The
aim is to compare CVD risks, which are estimated using holdout
data (data independent of the data used for training the system),
between the original lifestyle and the recommended lifestyle.

Fig. 4 illustrates this clinical trial simulation method. We strat-
ify and randomly assign 50% of the cases to train the expert system,
and the remaining 50% as holdout data to validate recommenda-
tions. A query patient obtains a lifestyle recommendation from
the expert system. CVD risks (Risk0 and Risk1) of the patient (x1)
with the original lifestyle (x2) and the recommended lifestyle ðx�2Þ
are estimated using k-NN on the holdout data. The patient with
two different lifestyles and CVD risks will then be assigned to Q
and Q0.

We repeat the same process for every query patient. As a result,
Q includes a set of CVD risks of the original lifestyle, and Q0 includes
a set of CVD risks of the recommended lifestyle. Finally, we com-
pare CVD risks between Q and Q0 groups and examine whether
the risk reduction (from the original to recommended lifestyle) is
significantly greater than 0.

We note that in this clinical trial simulation setting, we are
comparing two sets of CVD risks for the same set of patients.
Except for different lifestyle, all conditions and parameters of
Fig. 3. Optimization based on preference. Optimal lifestyle recommendation is

Please cite this article in press as: Chi C-L et al. Individualized patient-centered
specific cardiovascular risk information and prioritizing lifestyle options. J Bio
patients are identical between Q and Q0 groups. Clinical trial de-
signs aim to minimize differences between groups and seek for
unbiased comparison. Comparison between inequivalent groups
poses difficulty to understand true influence of the target of
interest such as a treatment approach. For example, in a clinical
trial, the treatment group is 10-year younger than the placebo
group. Although outcome of the treatment group is significantly
better than the placebo group, we are not sure whether the
’improvement’ is the result of treatment or age. Thus, the clinical
trial simulation mechanism proposed above naturally rules out
biases and allows understand the CVD risk reduction due to life-
style change.

2.7. The PODSS algorithm

We modified the PODSS algorithm from Chi et al. [10] for the
lifestyle problem as summarized in Fig. 5. This algorithm recom-

mends customized lifestyle changes x�2�j

� �
to a query patient

x1 [ x̂1 [ x2�j, and then estimates the changes of the patient charac-

teristics x1 [ x̂�1
� �

. Finally, the algorithm predicts and compares
CVD probabilities before and after lifestyle changes.

Each iteration of leave-one-out defines a query patient
x1 [ x̂1 [ x2�j and two subsets (training and validation) (Steps 1
and 2). A k-NN classifier (Step 4) with mutual information (ob-
tained by Eq. (4), Step 3) identifies the best lifestyle by Eq. (5) or
(6). After identification of the best lifestyle, a set of k-NN classifiers
(Step 5) using the features x1 [ x2�j predict the new patient’s charac-
teristics x̂1

� based on the query patient’s characteristics set that
cannot change with lifestyle and the patient’s new lifestyle
x1 [ x�2�j

. Step 6 uses a k-NN classifier from the validation set and

predicts CVD probabilities for the original query patient
chosen from considering both the preference and effect of each lifestyle.

lifestyle recommendations: An expert system for communicating patient
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6 C.-L. Chi et al. / Journal of Biomedical Informatics xxx (2012) xxx–xxx
x1 [ x̂1 [ x2�j

� �
and the new query patient x1 [ x̂�1 [ x�2�j

� �
. Finally,

the system returns the best lifestyle and new characteristics of
the query patient (Step 7), along with the optimized CVD
probability.
3. Results

Table 2 compares the original and recommended lifestyles. The
‘‘Original’’ column shows the average CVD risk of patients with
their original lifestyles, and ‘‘Recommended’’ shows the average
CVD risk of patients with recommended lifestyle changes. The
Fig. 5. The modified P
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number in each cell is estimated by the hold-out validation set.
Each subject receives two type of recommendations, the best single
lifestyle changes (‘‘Predict-Single’’ column) and multiple lifestyle
changes (‘‘Predict-Multiple’’ column). In the first scenario, the sys-
tem recommends the best single lifestyle component change (the
change with the maximum CVD-risk reduction) to each user. In
the second scenario, each user receives a recommendation of mul-
tiple lifestyle component changes (more than one components in
most cases). It does not make sense to incorporate a lifestyle with
little reduction on CVD risk. Thus, we set a very small threshold
(CVD probability 6 0:0000000001%) to decide whether to include
a further lifestyle component. The number of lifestyle components
ODSS algorithm.

lifestyle recommendations: An expert system for communicating patient
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varies based on patients. In general, query patients with many bad
behaviors (e.g., smoking, too much total fat) need more changes
than the ones with fewer bad behaviors. The row ‘‘Avg relative
CVD reduction’’ show the average CVD probability reduction
Pðx1[x̂1[x2�jÞ�Pðx1[x̂�1[x�

2�j
Þ

Pðx1[x̂1[x2�jÞ
of all query patients. The number indicates rela-

tive risk reduction of the new lifestyle, and the number in paren-
thesis shows standard deviation. The row ‘‘P-value improvement’’
examines whether each recommendation is better than ‘‘Pre-
dicted-Ori’’. P-values in both cases are very small. There are two
reasons for the small p-value. First, the data size is big (13,006 data
points). Second, CVD risks of individuals are consistently reduced.

Fig. 6 summarizes the single best lifestyle changes for all
subjects. In these figures, we allow each subject to receive only
one best lifestyle change in order to examine the system. The x-axis
represents interval values and the y-axis represents number of
times the single lifestyle change was recommended. The top three
recommended lifestyles are reduce cholesterol intake, quit
smoking, and lose weight. We note that we did not set constraints
to force recommendations (e.g. we did not tell the system that a
smoker has to quit smoking); instead, the automatically-captured
knowledge tells the system what to recommend. All recommenda-
tions come from the system’s predictions based directly on the data.

There is no single best lifestyle change for carbohydrates, and
very few recommendations involving protein. The effect of activity
hours is under-estimated because an activity level of 0 h is not re-
corded, although there are lots of blank values. Thus, we are unable
to distinguish 0 h of activity from a missing value in the dataset,
and we treat all of them as missing values, which comprises 1/3
of the dataset. Recorded values start from 1 h of activity per week.
In other words, subjects with values did at least 1 h activity per
week, and the algorithm cannot recognize the difference of CVD
risks between doing activity and without activity. Thus, the nega-
tive effect of less activity was underestimated.

We use patient P48 as a case study to show patient-centered
lifestyle recommendations in Tables 3 and 4. In Table 3, the ‘‘Origi-
nal’’ column shows P48’s original lifestyle. P48’s CVD probability is
9.55%, which is higher than the average of 8% (Table 2). There are
two recommendations, ‘‘Whole plan’’ and ‘‘Modified whole plan’’.
In both columns, cells with a number indicate the recommendation
of a change. An empty cell indicates no recommendation of change,
e.g., carbohydrate.

The first recommendation, ‘‘Whole plan’’, is identified by the
system based on the lowest CVD probability. A small threshold
(1e–12) was set to determine whether a lifestyle component
should be included. The system does not include carbohydrate in
this plan because of very small CVD-risk reduction.

Relative CVD probability reduction (19.9%) of the ‘‘Whole plan’’
is high, but it is hard to follow. One may want to modify a lifestyle
plan based on personal preferences and real-world constraints. The
‘‘Modified whole plan’’ shows such an example. Losing 8 BMI
points (from >31.38 to 23.35) is very difficult for P48, as is fiber
consumption. In addition, P48 does not have much time for activ-
ity, but is willing to make some lifestyle changes for good health. A
new plan (‘‘Modified whole plan’’) is generated based on P48’s
preferences and constraints. The relative CVD probability reduction
of the new plan is still high (18.53% relative CVD reduction), and
Table 2
Comparison between true and predicted outcomes.

Original Recommended

Predict-single Predict-multiple

Avg probability 8% 7.27% 7.17%
Avg relative CVD reduction – 8.65% (5.49%) 9.9% (5.45%)
P-value improvement – � 0:0005 � 0:0005
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the new plan is easier for the patient to follow. We note that
healthcare providers do not recommend increasing alcohol intake
due to the lack of randomized trials and also potential for addic-
tion. However, from observational data, moderate drinkers are
healthier than non-drinkers or those who drink >2 drinks/day.
Therefore, AHA Scientific Statement [19] suggests if alcoholic bev-
erages are consumed, they should be limited to no more than two
drinks for men and one drink for women per day. Since the purpose
of this manuscript is proof of concept, one important goal is, with-
out providing any knowledge, the machine should be able to learn
the healthy lifestyle knowledge by itself. However, when using this
system in a clinical setting, we may need to integrate additional
clinical concerns with the learned knowledge. In both whole-plan
scenarios, the influences of protein and alcohol are extremely
small. In order to use a consistent threshold as described in Sec-
tion 3, we still keep these recommendations in this table.

In another scenario (Table 4), P48 may only want simple and
effective lifestyle changes instead of the whole plan. The system
generates ‘‘package of three’’ lifestyle changes for P48 including
weight loss, total fat reduction, and smoking cessation. P48’s CVD
probability will be 7.66% (i.e., 99.47% of total possible reduction
of the whole plan). P48 wants to find out if CVD risks differ by
BMI level and then decide a reasonable one to follow. Columns
‘‘lower BMI 1–3’’ shows risks in different BMI levels.

Losing weight is difficult for P48, so the patient wants to see the
compensatory plan for not losing enough BMI (in the range of
28.06–31.38). Unfortunately, many lifestyle changes cannot com-
pete with losing more weight (‘‘BMI 3 compensation’’). BMI loss,
smoking cessation, and total fat reduction are the most important
changes for P48, and losing weight is more effective than other life-
style changes. For other individuals, the story may be different.

Table 5 shows the proportions of six poor lifestyle habits, smok-
ing, obesity, over-intake of cholesterol, over-intake of saturated fat,
over-intake of total fat, and insufficient activity, for hypertension
patients, diabetes patients, and smokers. The proportions of the
three type of subjects in the entire sample are 31.9%, 8.2%, and
43.6%, respectively. Obesity is determined by whether a subject’s
BMI is greater than 30 [7]. Too much cholesterol, saturated fat,
and total fat are determined by cutpoints 300 mg, 7% energy, and
35% energy as suggested by current dietary recommendations
[19]. There is no suggested cutpoint to decide insufficient activity.
In this project, the cutpoint is 5 h, which is the median activity
value.

Table 6 summarizes three most frequent single lifestyle recom-
mendations, quit smoking, cholesterol control, and weight control,
for smokers. The proportions of the three groups of smokers are
54.4%, 37.2%, and 4.8%, respectively. For this examination, all
smokers received only one lifestyle change recommendation. In
other words, this lifestyle change can reduce the most CVD risk
for an individual. Although the single lifestyle recommendation is
not practical, we use it to examine how the system reasons. Each
column represents a recommendation. The majority (54.4%) of
smokers are recommended to quit smoking, 37.2% should control
their cholesterol, and 4.8% should control their weight (BMI). The
result is very surprising because 100% smoking cessation would
be expected. For the group of cholesterol control, the possible
explanation is smoking exacerbates the effect of total cholesterol
and high-density lipoprotein cholesterol [20]. For the group that
receives the recommendation of control weight prior to smoking
cessation, 89% of this group has BMI >31.38 (the top BMI value),
and the rest have BMI ranged from 28.06 to 31.38. Obesity has
worse health consequences than simply being overweight, and
weight loss is very important in this group. This might be a surpris-
ing finding that bears future investigation – it implies that obesity
is worse than smoking for cardiovascular health in middle-aged
people.
lifestyle recommendations: An expert system for communicating patient
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Table 4
Package of three lifestyles with different levels of BMI and the compensatory plan for not losing enough BMI.

Lifestyle components A package of three Lower BMI 1 Lower BMI 2 Lower BMI 3 BMI 3 compensation

BMI <23.35 23.35–25.75 25.75–28.06 28.06–31.38 28.06–31.38
Alcohol (g/day) >9.4
Smoking No No No No No
Sport (h/week) > 10

Carbohydrate (g)
Cholesterol (mg) < 147:5
Fiber (g) > 22:93
Protein (% kcal) < 14:52
Saturated fat (% kcal) < 9:55
Total fat (% kcal) < 27:32 < 27:32 < 27:32 < 27:32 < 27:32
CVD risk 7.66% (99.47% of total

possible reduction)
7.71% (96.84% of total
possible reduction)

7.75% (94.74% of total
possible reduction)

7.8% (92.1% of total
possible reduction)

7.78% (93.16% of total
possible reduction)

Table 3
Customized lifestyle recommendation for case P48.

Lifestyle components Original Whole plan Modified whole plan

BMI >31.38 <23.35 28.06–31.38
Alcohol (g/day) 0 >9.43 >9.43
Smoking Yes No No
Sport (h/week) <3 >10 3–5
Carbohydrate (g) <128.79
Cholesterol (mg) 147.5–200.23 <147.5 <147.5
Fiber (g) <10.52 >22.93 10.52–14.12
Protein (% kcal) >21.08 <14.52 <14.52
Saturated fat (% kcal) >14.37 <9.55 <9.55
Total fat (% kcal) >38.42 <27.32 <27.32
CVD risk 9.55% 7.65% (19.9% relative CVD risk reduction) 7.78% (18.53% relative CVD risk reduction)

Table 5
Distribution of smoking, cholesterol intake, obesity, saturated fat, total fat, and
insufficient activity in those with hypertension, diabetes, or smokers.

Poor lifestyle habits of the three
types of subjects

Hypertension
(%)

Diabetes
(%)

Smokers
(%)

Smoking 22.6 22.4 100
Obese 39.6 51.9 19.4
Over cholesterol 28.5 33.3 32.2
Over saturated fat 94.8 95 95.8
Over total fat 36.3 43.5 41.5
Insufficient activity 28.1 28.2 25.2

Table 6
Poor lifestyle habits of smokers for the three most frequently recommended single
lifestyle changes (quit smoking, cholesterol control, and weight control).

Poor lifestyle habits of
the three groups of
smokers

Quit smoking
(54.4%
smokers) (%)

Cholesterol
control (37.2%
smokers) (%)

Weight
control (4.8%
smokers) (%)

Smoking 100 100 100
Obese 11.8 20.8 94.2
Over cholesterol 5.5 77.2 8.4
Over saturated fat 93.4 98.9 94.8
Over total fat 28.1 56.3 35.7
Insufficient activity 25.9 23.7 24

Table 7
Poor lifestyle habits of individuals with diabetes for the three most frequently
recommended single lifestyle changes (weight control, cholesterol control, and total
fat control).

Poor lifestyle habits
of the three groups of
diabetes

Weight control
(42.8%
diabetes) (%)

Cholesterol
control (39.7%
diabetes) (%)

Total fat
control (9.8%
diabetes) (%)

Smoking 29.4 42.8 34
Obese 78.7 40.5 11.5
Over cholesterol 10.5 70.9 4.8
Over saturated fat 91.4 99.1 100
Over total fat 32.1 50 86.5
Insufficient activity 32.3 24.9 26.9
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In order to understand how the system reasons, we analyze
characteristics of subjects in each different group in Table 6. Com-
pared with ‘‘Smokers’’ in Table 5, we can see the first group of sub-
jects are less obese (11.8%), and consume less cholesterol (5.5%),
saturated fat (93.4%), and total fat (28.1%), so quit smoking is cer-
tainly the first recommendation. The second group of subjects are
slightly more obese (20.8%), consumes more cholesterol (77.2%),
saturated fat (98.9%), and total fat (56.3%), especially many sub-
jects have a cholesterol intake problem, and they receive recom-
mendations to control cholesterol. The third group of subjects are
very obese (94.2%), but they have less cholesterol (8.4%), saturated
fat (94.8%), and total fat (35.7%) intake. Thus, they are recom-
mended to control their weight.

Clinically, weight control is usually recommended for diabetes
and hypertension patients, and weight control is indeed the first
recommendation for diabetes patients (Table 7) and and the sec-
ond recommendation for hypertension patients (Table 8). In addi-
tion, the system shows that lowering cholesterol is among the top
two recommendations for both diseases.

Because the recommendation is individualized, the results can
also be viewed from the opposite direction. The individualized
Please cite this article in press as: Chi C-L et al. Individualized patient-centered
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property identifies which subjects benefit the most from certain
lifestyle changes. Table 9 shows observed CVD probabilities for pa-
tients who receive a single recommendation to reduce BMI. Each
patient’s BMI loss recommendation varies. Some receive the rec-
ommendation to lose 1 BMI interval, and others are recommended
to lose more. (There are five intervals for BMI (see Table 1), and
lifestyle recommendations: An expert system for communicating patient
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Table 9
CVD probabilities.

Recommendation Frequency Baseline CVD
probability (%)

Lose 1 BMI interval 66 4.55
Lose 2 BMI intervals 359 8.36
Lose 3 BMI intervals 838 6.32
Lose 4 BMI intervals 1479 10.62

Table 8
Poor lifestyle habits of individuals with hypertension for the three most frequently recommended single lifestyle changes (cholesterol control, weight control, and quit smoking).

Poor lifestyle habits of the three
groups of hypertension

Cholesterol
control (44.1% hypertension) (%)

Weight control
(33.2% hypertension) (%)

Quit smoking
(13.4% hypertension) (%)

Smoking 38.9 18.8 100
Obese 30.6 71.6 8
Over cholesterol 58.7 6.6 2.5
Over saturated fat 98.4 92.1 86.6
Over total fat 43.4 24.1 15.6
Insufficient activity 26.3 30.5 24.8
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lose 1 BMI interval means reduce BMI to the next interval.) On
average, patients who receive the recommendation to lose more
BMI intervals have higher BMI values. We expect that subjects with
smaller BMI value have smaller CVD risk, and, again, we use this
knowledge to examine the system.

Table 9 summarizes the fraction of CVD events for subjects in
the four BMI interval recommendations. As expected, patients
who are recommended to lose more BMI points tend to have high-
er CVD risk except for patients who are recommended to lose two
BMI levels. LDL for this group is very high although they do not
consume much cholesterol and fat.

4. Conclusion

This paper applies a revised PODSS algorithm to learn patterns
from patient-level data (ARIC) and generate customized lifestyle
recommendations that lead to the lowest predicted CVD risk based
on one’s preferences. The central idea of the PODSS aims to identify
the best match between an intervention and a patient. To imple-
ment this idea, we used a predictive model to capture the relation-
ship between interventions, patients, and CVD outcomes, and then
used optimization techniques to identify the intervention-patient
pair that results in the lowest CVD probability under the constraint
of patient preference. To build a realistic expert system, we had
extensive discussions with a prevention clinical doctor and used
real-world scenarios to test the system (e.g., Table 4 shows the
relationship between BMI and CVD to promote weight loss and
identify the ‘‘package of three’’ lifestyle changes to help efficiently
reduce CVD risk). However, the most relevant parameters for a gi-
ven individual were, in all cases, learned by the system, based on
the outcomes of similar individuals in the training set.

To be more realistic, we may need to include variables such as
socio-economic factors: a glut of fast food options, a dearth of gro-
cery stores with fresh produce, restricted access to recreational
facilities, etc. In this proof-of-concept project, we determined a
set of variables that are easily obtained and often considered for
lifestyle recommendation in clinics. The ARIC study is a reasonable
choice of dataset since it has a fairly extensive set of measured
variables from which to choose. In general, if we had more infor-
mation available, we could make use of it easily without causing
overfitting (see discussion of feature weighting in Section 2.2).
We also note that features which are not directly measured, such
as the socio-economic factors may in fact be implicitly included
in our analysis. Measurement of features such as diet and exercise.
Please cite this article in press as: Chi C-L et al. Individualized patient-centered
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means that one’s ‘‘neighbors’’ in our feature space might in fact
also be neighbors in the broader geographic sense, i.e., people from
similar backgrounds living in similar conditions. Hence we are at
least giving our system the opportunity to learn what is important
to risk prediction, even in some cases where it is not directly
measured.

CVD events from ARIC data are coded as dichotomous outcomes
(0, 1), and we use a function to learn and smooth out these events
based on the event distribution. An example is the prediction of a
logistic regression model, which learns from dichotomous out-
comes and produces a probability estimate of a CVD event. A sim-
ilar principle can be used to our prediction model, k-NN, which
provides a probability estimate based on similar individuals. As a
simplified example, an individual that has 2 CVD cases among their
100 nearest neighbors would have a risk prediction of 2%. The com-
putation in our model is more complicated, applying weights for
both the nearness of the neighbors and the importance of the var-
ious features in order to obtain more accurate risk estimation.

Because of the different philosophy in computational ap-
proaches, lifestyle studies using statistical methods such as ARIC
or Framingham Risk models have several properties significantly
different from the proposed machine learning approach. The for-
mer focus on variable interpretation and causal relationships;
therefore, identifying confounding variables for unbiased interpre-
tation is crucial. Significant risk factors identified in the ARIC and
Framingham Risk models are variables that explain the most CVD
risk for the population. On the other hand, machine learning fo-
cuses on prediction, and our machine learning model uses this fo-
cus to guide the selection of the lifestyle that minimizes an
individual’s CVD risk. To improve predictive performance, includ-
ing more variables that contribute information for prediction of
the class is a common strategy, and therefore, our model incorpo-
rates more variables (including those considered confounders in
statistical models) than ARIC and Framingham Risk models. Be-
cause of the difference between interpretation and prediction,
including confounding variables is less important in a machine
learning model. Since the k-NN model is highly nonlinear and
can learn interactions among variables, including a feature whose
effect is dependent on another, or one that has an effect only on
a small number of patients, can still improve the overall predictive
performance.

In addition, the difference in computational approaches also re-
sults in very different applications. The variables that the ARIC and
Framingham Risk models identified are the lifestyle variables opti-
mized for most people, which may be dramatically different from
particular individuals or subgroups. For example, lifestyle recom-
mendations for a 200-lb athlete and a 200-lb couch potato should
differ. Instead of identifying the lifestyle optimized for most peo-
ple, our approach optimized the lifestyle for each individual based
on CVD risk prediction that is estimated by similar individuals’
CVD outcomes.

We anticipate the proposed system will serve as an interactive
system to collect an individual’s characteristics, limitations, and
preferences. The system uses these data to predict CVD risks of var-
ious lifestyle scenarios to help physicians and patients to decide
lifestyle recommendations: An expert system for communicating patient
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the most effective and easily-complied lifestyle choice. We antici-
pate such an interactive decision process (among patients, physi-
cians, and the system) will increase patients’ involvement and
participation, and subsequently may improve a person’s commit-
ment to healthy lifestyle and influence them to actually change
behaviors.

PODSS uses k-NN classifiers to capture nonlinear knowledge di-
rectly from a dataset and then automatically applies the knowl-
edge to the decision support system. Complex interactions
among variables can be recorded in a non-linear function, and then
the function is used to generate recommendations based on one’s
characteristics. In other words, the recommended lifestyle is the
best output (lowest CVD) of the function that records complex
interactions among variables. Such a lazy learning approach stores
all data and predicts a query case by using the outcomes of similar
cases. For the problem with a large dataset, e.g., GWAS study
(thousands of individuals and millions of SNPs), we need to pay
special attention to large data size handling and computational
speed. Possible solutions include reducing the number of features,
sophisticated data structures for faster query processing, or a
change in classifiers. The data size in this study is much smaller,
so we did not experience such computational issues. In our experi-
ence, a lifestyle recommendation is generated in a few seconds.

Performing optimization requires comparing the effects of mul-
tiple lifestyle combinations for each individual. In order to provide
quick recommendation, we choose hill climbing as the optimiza-
tion approach. Although the recommended lifestyle is a local opti-
mum (a good lifestyle but not necessarily the global best among all
combinations) for a patient, for practical reasons, this optimization
approach is the best choice.

Our proof-of-concept approach is a potential machine learning
method for use in the domains of behavior changes, patient-cen-
tered medicine, personalized medicine, and comparative effective-
ness research for individuals or patient subgroups. In future work,
we will apply this approach to patient-centered comparative effec-
tiveness research studies. Genetic variation data can be incorpo-
rated into PODSS as a part of the patient characteristics.
Identifying the best treatment option by comparing effects and
harms for individuals is an interesting direction. We also plan to
identify individuals and subgroups that most benefit from a certain
treatment option. This approach can be applied to identify the best
lifestyle and drug combinations to reduce risk factor levels and
CVD risks for individuals. We will further extend our approach to
identify the best strategy to prevent multiple diseases (e.g., CVD,
hypertension, and diabetes).
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