Dynamic Ensemble Construction via Heuristic Optimization

Senay Yasar Saglam and W. Nick Street
Department of Management Sciences
The University of lowa

Abstract

Classifier ensembles, in which multiple predictive models are combined to produce predictions
for new cases, generally perform better than a single classifier. Most existing methods construct static
ensembles, in which one collection is used for all test cases. Recently, some researchers have pro-
posed dynamic ensemble construction algorithms, which choose an ensemble specifically for each
point from a large pool of classifiers. Ensemble performance is generally seen as having two factors:
the accuracy of the individual classifiers and the diversity of the ensemble. In this study we employ
heuristic optimization to examine the role of a third factor: the confidence of each classifier’s pre-
diction on the specific data point. We experiment with genetic algorithms and various hill climbing
algorithms, in both single- and multi-objective scenarios, to choose locally-optimal sets of 25 classi-
fiers from a large pool to classify each new example. We focus on dynamic ensemble construction
by analyzing how diversity, accuracy and confidence interact with each other and how they affect the
performance of the ensemble on new examples.

1 Introduction

An ensemble of classifiers consists of a set of trained classifiers whose individual decisions are com-
bined to classify new examples. Ensembles have received great attention over the past decade because
averaging errors of multiple predictors increases overall accuracy. Well-known algorithms for creating
ensembles include Bagging [1], Boosting [3], and Random Subspace [5].

Several factors contribute to the generalization ability of an ensemble. The first is the accuracy of
the base classifiers. It is clear that constructing an ensemble with the most accurate classifiers will result
in good generalization error. However, since the classifiers need to make different errors in order for
the ensemble to be effective, diversity among the members of an ensemble is also important. Measuring
diversity is not straightforward because there is no accepted formal definition. The confidence of the
prediction - that is, the closeness of one of the posterior class probability estimates to one - has also been
considered. For example, Dos Santos et al. [10] used confidence measures based on the ensembles’ vote
margin to improve the quality of their solutions.

Most existing methods construct static ensembles, in which one collection is used for all test cases.
Recently, there have been studies in which each test point is treated individually. These studies used
an overproduce-and-choose strategy, in which we produce a large initial pool of candidate classifiers,
and select a classifier or subset of classifiers for each new example based on some criteria. In dynamic
classifier selection, a single predictor is chosen based on its likelihood to correctly predict the test pattern
[2]. For example, Giacinto and Roli [4] proposed dynamic classifier selection approaches based on
estimating local competence in selection regions defined by k-nearest neighbors (k-NN).

Dynamic ensemble selection is a relatively new area. Dynamic overproduce and choose strategy
(DOCS) uses different ensembles for different test instances, using confidence as an evaluation method
[10]. They defined confidence as a measure of the ensemble, based on vote margin, and used it as a
second-level objective after optimizing on accuracy and diversity. Woods et al. [12] used feature subset

selection to create a set of diverse classifiers and dynamically chose an ensemble for each test point
based on the estimated accuracy of the predictors in the local region of the test point. Another study
which used class prediction confidence as a criteria to create the dynamic ensemble is [6]. However, this
method only applies to the test instances with low confidence values.

In this study, we employ heuristic optimization to examine the role of the confidence of each classi-
fier’s prediction on the specific data point. Unlike [10], we considered all test instances instead of only
with low confidence value. It is important to have a fast searching method which produces high quality
solutions for dynamic ensemble selection since running time will increase with the size of test set. So,
we experimented with several heuristic search methods to see which of them will perform better for this

purpose.

2 Dynamic Ensemble Construction

Given a set of classifiers C = {Cy|a = 1,..M } which have been already trained in the overproduction
phase, search algorithms are used to search for the best subset of classifiers in the selection phase. When
dealing with such an optimization problem, two important aspects should be analyzed: the search crite-
rion and the search algorithm. The combined error rate, diversity measures and ensemble size are search
criteria traditionally employed [9].

Rather than combining objective functions, we approach classifier selection as a Pareto or multi-
objective optimization problem (MOQOP), an optimization problem for which the objective function is not
a singleton. It is uncommon that a single solution is is optimal for all objectives of a MOOP. Therefore,
our aim is to find the tradeoffs among multiple, usually conflicting objective functions. A solution s(1)
is said to dominate solution s(2), if s(1) is no worse than s(2) on all the objective functions, and s(1) is
better than s(2) in at least one objective function. The non-dominated solutions that represent different
tradeoffs between the multiple objective functions are referred to as the Pareto front.

The Ensemble construction problem can be formulates as follows: given an existing pool of com-
ponent classifiers C' = {C,la = 1,..M} find the best subset of classifiers to create an ensemble of
classifiers E with size n. We can formulate this problem as follows:

max {Acc(E),Conf(E), Div(E)}
1
s.t. IE|| =n W

In this formulation we are attempting to simultaneously optimize three separate objectives. The accuracy
Acc(E) calculates the average of individual accuracies of the classifiers in the ensemble. Each C,’s
performance is evaluated on a validation set. Acc(C,) is basically the percentage how many times C,
correctly classified data points in the validation set. This simple objective may sometimes work well
by itself. However, theoretically it is weak because an ensemble of three identical classifiers with 85%
accuracy may be worse than an ensemble of three classifiers with three 65% accuracy.

Confidence Con f(E) calculates the average of individual confidences of the classifiers in the ensem-
ble based on each test point. In our experiments, base classifiers are RBF kernel support vector machines
(SVMs) [11] which are generated using LIBSVM. LIBSVM uses Platt’s formula [8] to calculate the class
conditional probabilities. The confidence of a classifier on a point is defined as the distance from 1.0 of
the probability of the most likely class.

Div(E) calculates the diversity of the ensemble on the validation data set using the method proposed
in [13]. The pairwise diversity between classifier a and b is defined to be the average probabilities of

classifier a misclassifying a point given that classifier b misclassifies it, and vice versa. Pairwise diversity
between C, and (, is defined as

P{Oia = 1|Oib = 1} + P{Ozb = 1|Oia = 1}
2)
0 if at? classifier is correct on data point 7,

dab:]-_

where O;, =)
1 otherwise.

We experimented with all combinations of the three objectives described above. The values for the ob-
jective functions were linearly scaled to the interval [0, 1], by converting the minimum and the maximum
values to zero and one, respectively. To find the minimum and maximum values of Div(FE), we used the
results of the single-objective heuristic search.

3 Heuristic Search Methods

It is important to have a searching method that provides high quality solutions at a reasonable time
because we try to select an ensemble for each test point. Running time of the algorithms depends on
how many data points that we have in our test set. So, the choice of the search method is an important
decision. There are many heuristic search methods. However, in this paper we will only consider three
of them: first improvement, best improvement and multi-objective GA.

For the local search algorithms, it is important how the neighborhood is defined because the search
space is too large and the aim of searching algorithms is to find high quality solutions at a reasonable
time. The neighborhood is as follows: Let S be the solution space. For each solution s € S, the set
N(s)={j: ||s/j|l = 1} is defined as the neighborhood of s. In other words, s and j are two sets which
have n — 1 common classifiers. The size of N (s) is n(M —n) where M is the total number of classifiers
in the pool and n is the size of the ensemble. In this study, we specified M to be 1024 and n to be 25.

In this study, we considered linear combinations of weighted objectives. Since we don’t know the
appropriate trade-offs between the various objectives, it is important to cover as much of the objective
space as possible. Therefore, for each search method, we re-ran the algorithm 100 times with randomly-
selected weights on the objectives.

The first improvement algorithm begins by randomly generating a feasible solution s. At each it-
eration it randomly chooses both a classifier a € s to remove and a classifier b ¢ s from the pool to
replace, creating the new ensemble, s,,¢,,. It terminates when an iteration count Ny, has been met or
no improvement is found after exhausting all possible swaps. For our experiments, Ny, is set to 1000.

The best improvement algorithm also begins with a random ensemble s. At each step it then iterates
over all possible swaps, picking the best one if it is an improvement.

For this paper, we implemented a modified version of MOGA. This method is similar to single-
objective GA. However, the selection procedure and the elitist strategy they used are different [7]. Their
selection procedure takes a weighted sum of the individuals’ objectives and chooses individuals for
crossover based on this. The other difference is that a certain number of individuals are selected from
Pareto optimal solutions and moved to the next generation as elite individuals. In the original MOGA,
the weights of the various objectives were assigning randomly at each generation, changing the direction
of the search as it proceeded. In order to increase coverage of the objective space and make a fair
comparison to the other methods, we kept the weights constant during all generations of a single run.

4 Experimental Results

The computer used for experimentation was an Dell Studio XPS laptop with 4 GB of DDR2 RAM. The
program was written in Matlab and used LIBSVM to construct classifiers. We chose the parameters such
that classifiers overfit the data. In order to create a highly diverse initial pool of classifiers, they were
constructed using a combination of bootstrap instance sampling (as in bagging) and random subspace
selection. Five separate runs of five-fold cross validation are performed. 60% of the dataset is used to
train classifiers, 20% is used for tuning and 20% for testing.

We first performed an experiment to decide which search algorithm to use. In our experiments, even
though MOGA and best improvement resulted in somewhat better solutions, they were dramatically
slower than first improvement.

Table 1: Comparison of Heuristic Search Methods

MOGA BEST IMP FIRST IMP
Speed ObjValue TestAcc Speed ObjValue TestAcc Speed ObjValue TestAcc
Div 60sec 0.625 0.7392 300 sec 0.612 0.7411 13 sec 0.5457 0.7299
Acc +Conf 9lsec/pt 0.8661 0.7391 400 sec/pt 0.8243 0.7459 15sec/pt 0.5835 0.7328
Acc+Div 102sec 0.9234 0.7304 480sec 0.8452 0.7558 32sec 0.7544 0.746
Conf+Div 121sec/pt 0.8975 0.7296 513sec/pt 0.6433 0.7352 27sec/pt 0.5732 0.7516
Acc+Conf+Div 137sec/pt 0.6351 0.7522 600sec/pt 0.6042 0.7574 43 sec/pt 0.621 0.7449

Due to computation time that these experiments require, we used first improvement as our searching
algorithm for the comparative tests.

Because of our multi-objective optimization approach, we are left with the problem of choosing a
single solution (ensemble) to classify each test point. Originally we examined only those solutions on
the Pareto front (that is, non-dominated solutions), and chose based on Pareto ranking, the number of
other local solutions that each one dominated. Better results were obtained by evaluating local solutions
based on a tuning error to estimate generalization performance. Still, in some cases the size of the Pareto
front was quite small, as low as three ensembles. In the experiments that follow, therefore, we chose
the final ensemble from among all the local solutions, based on tuning performance. Tables 2-5 show
the computational results on four datasets retrieved from the LIBSVM site: Liver Disorder, Australian,
Heart Disease and Diabetes. The tables show the objective values obtained, along with the generalization
errors, for each combination of objective functions.

Table 2: Liver Disorder

f Acc(E) Conf(E) Div(E) Test Acc Test Acc SE

All Classifiers 0.0000 0.5535 0.6568 0.4877 0.6365 0.0064
Acc 0.7442 0.7442 0.7298 0.3158 0.7154 0.0150

Conf 0.9595 0.5535 0.9595 0.4268 0.6330 0.0176

Div 0.5558 0.5668 0.6566 0.5558 0.6916 0.0122

Acc +Conf 0.4078 0.5802 0.7064 0.5136 0.6962 0.0129
Acc+Div 0.7306 0.5759 0.6602 0.5402 0.6986 0.0085
Conf+Div 0.6805 0.5641 0.6947 0.5369 0.6957 0.0134
Acc+Conf+Div 0.6133 0.5767 0.6900 0.5318 0.6968 0.0106

Table 3: Australian

f Acc(E) Conf(E) Div(E) Test Acc Test Acc SE

All Classifiers 0.0000 0.5526 0.6231 0.4458 0.5634 0.0187
Acc 0.8339 0.8339 0.8406 0.2985 0.8249 0.0069

Conf 0.9524 0.5526 0.9524 0.4019 0.7956 0.0085

Div 0.5764 0.5908 0.6387 0.5764 0.8307 0.0084

Acc +Conf -0.1872 0.5792 0.6738 0.5512 0.8095 0.0109
Acc+Div 0.6397 0.5841 0.6481 0.5662 0.8237 0.0159
Conf+Div -0.0108 0.5731 0.6681 0.5610 0.8254 0.0115
Acc+Conf+Div 0.1088 0.5797 0.6688 0.5606 0.8205 0.0132

Table 4: Heart

f Acc(E) Conf(E) Div(E) Test Acc Test Acc SE

All Classifiers 0.0000 0.5380 0.6029 0.5068 0.6342 0.0475
Acc 0.7787 0.7787 0.7292 0.4110 0.7613 0.0190

Conf 0.8926 0.5380 0.8926 0.4155 0.7219 0.0173

Div 0.5746 0.5795 0.6150 0.5746 0.7659 0.0161

Acc +Conf 0.4579 0.5684 0.6393 0.5554 0.7553 0.0206
Acc+Div 0.6902 0.5677 0.6161 0.5621 0.7672 0.0134
Conf+Div 0.6004 0.5571 0.6360 0.5583 0.7516 0.0181
Acc+Conf+Div 0.5643 0.5647 0.6278 0.5607 0.7449 0.0067

Table 5: Diabetes

f Acc(E) Conf(E) Div(E) Test Acc Test Acc SE

Acc 0.7613 0.7613 0.7735 0.3538 0.7461 0.0101

Conf 0.9706 0.5784 0.9706 0.4355 0.7352 0.0087

Div 0.5583 0.5621 0.6745 0.5607 0.7299 0.012

Acc+Conf 0.5835 0.5995 0.693 0.5354 0.7328 0.0048
Acc+Div 0.7123 0.6008 0.6954 0.5257 0.746 0.017
Conf+Div 0.5412 0.5571 0.636 0.5583 0.7516 0.0045
Acc+Conf+Div 0.645 0.5647 0.6278 0.5466 0.7449 0.0141

Contrary to our expectations, confidence appears to be a poor complement to the two traditional
ensemble objectives of accuracy and diversity. Choosing classifiers based solely on their confidence
gives worse performance than choosing based on either accuracy or diversity alone. Adding confidence
to any other objective or set of objectives has a small but detrimental effect. Since confidence is the
only objective specific to an individual test point, this unfortunately means that we find no advantage to
creating dynamic ensembles in this fashion. Note however that our definition of confidence (the average
confidence of the base predictors) is different from that used in previous studies (the vote margin of the
ensemble). In order to understand the effects of the weights on the results we also examined the weights
of the solutions (ensembles) chosen to classify the test points. The weights of the solutions appear to be
approximately uniformly distributed, with a small preference for weights that are close to each other. So,
curiously, our method generally chooses ensembles (based on tuning error) that were optimized giving
confidence (which doesn’t appear to help with generalization) an equal weight. Why the selection process
chooses these weights, as opposed to reducing the importance of confidence, is under investigation.

5 Conclusions

This study examines one form of dynamic ensemble construction and the role of classifier confidence as
a criterion in a multi-objective optimization setting. The primary problem to overcome in such systems
is performance; re-optimizing for each test point consumes significant time and reduces the size and
complexity of the data sets we can reasonably experiment on. Our results, based on a thorough exam-
ination of four small datasets, indicates that confidence (and therefore, dynamic construction) are not
helpful. One challenge with these small datasets was to maintain reasonable accuracy and diversity in
the initial classifier pool; this can be partly solved by experimenting on larger datasets. In future work,
we will develop a heuristic search method that gives good solutions and runs faster. Then we can use
more datasets with more data points.

In addition, we believe that the results can be improved if we use different ways to combine objective
values instead of taking linear combination of them. As a future work, we want to create cluster of
data points based on the classifiers’ confidence and accuracy values. This will help us to decrease the
incorrectly classified instances due to high confidence value.

References

[1] L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.

[2] L. Didaci, G. Giacinto, F. Roli, and G.L. Marcialis. A study on the performances of dynamic
classifier selection based on local accuracy estimation. Pattern Recognition, 38(11):2188-2191,
2005.

[3] Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In /3th International
Conference on Machine Learning, pages 148-156, 1996.

[4] G. Giacinto and F. Roli. Dynamic classifier selection based on multiple classifier behavior. Pattern
Recognition, 34:1879-1881, 2001.

[5] T. K. Ho. The random subspace method for constructing decision forests. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 20(8):832—-844, 1998.

[6] B. Li, K. Goh, and E. Y. Chang. Confidence-based dynamic ensemble for image annotation and
semantics discovery. In Proc. 11th ACM Int. Conf. on Multimedia, pages 195-206, 203.

[7] T. Murata and H. Ishibuchi. Moga: Multi-objective genetic algorithms. In IEEE International
Conference on Evolutionary Computation, volume 1, pages 289-294, 1995.

[8] J. Platt. Probabilistic outputs for support vector machines and comparison to r egularized likelihood
methods. In Advances in Large Margin Classifiers, pages 61-74. MIT Press, 1999.

[9] E. M. Dos Santos, R. Sabourin, and P. Maupin. Single and multi-objective genetic algorithms for
the selection of ensemble of classifiers. In International Joint Conference on Neural Networks,
pages 5377-5384, Vancouver, B.C., 2006.

[10] E.M. Dos Santos, R. Sabourin, and P. Maupin. A dynamic overproduce-and-choose strategy for the
selection of classifier ensembles. Pattern Recognition, 41:2993-3009, 2008.

[11] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, NY, 1995.

[12] K. Woods, W.P. Kegelmeyer, and K. Bowyer. Combination of multiple classifiers using local accu-
racy estimates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):405-410,
1997.

[13] Y. Zhang, S. Burer, and W. N. Street. Ensemble pruning via semi-definite programming. Journal
of Machine Learning Research, 7:1315-1338, 2006.

