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Abstract. Feature subset selection is important not only for the insight gained from determining relevant modeling variables
but also for the improved understandability, scalability, and possibly, accuracy of the resulting models. Feature selection has
traditionally been studied in supervised learning situations, with some estimate of accuracy used to evaluate candidate subsets.
However, we often cannot apply supervised learning for lack of a training signal. For these cases, we propose a new feature
selection approach based on clustering. A number of heuristic criteria can be used to estimate the quality of clusters built
from a given feature subset. Rather than combining such criteria, we use ELSA, an evolutionary local selection algorithm that
maintains a diverse population of solutions that approximate the Pareto front in a multi-dimensional objective space. Each
evolved solution represents a feature subset and a number of clusters; two representative clustering algorithms, K-means and
EM, are applied to form the given number of clusters based on the selected features. Experimental results on both real and
synthetic data show that the method can consistently find approximate Pareto-optimal solutions through which we can identify
the significant features and an appropriate number of clusters. This results in models with better and clearer semantic relevance.

1. Introduction

Feature selectionis the process of choosing a subset of the original predictive variables by eliminating
redundant and uninformative ones. By extracting as much information as possible from a given data
set while using the smallest number of features, we can save significant computing time and often build
models that generalize better to unseen points. Further, it is often the case that finding a predictive subset
of input variables is an important problem in its own right.

Feature selection has primarily been studied in a supervised learning context, where predictive accuracy
is commonly used to evaluate feature subsets. Feature selection can be done through two different models,
the wrapper model and the filter model [37]. The conceptual difference between these two models is based
on the underlying mechanism for feature selection and evaluation. The wrapper model uses the same
learning algorithm for the purpose of selecting and evaluating feature subsets. However, the filter model
selects feature subsets using intrinsic properties of the data and uses an independent induction algorithm
to evaluate subset quality. Both models require a search algorithm that explores the combinatorial space
of feature subsets. LetD represent the original feature dimension of a given data set. The whole search
space isO(2D), making exhaustive search impractical for data sets with even moderate dimensionality.
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Most feature selection algorithms have focused on heuristic search approaches, such as sequential
search [36], nonlinear optimization [9], and genetic algorithms [54]. Recent reviews of these methods
can be found in [13,40]. Regardless of the search algorithm employed, these methods evaluate potential
solutions in terms of predictive accuracy. Specifically, the data set could be divided into training and
test sets, with the error rate on the test set used to estimate the true error rate of classifiers. However, in
many situations we don’t have information about the class to which each data point belongs, and thus
we cannot apply supervised learning to estimate subset quality.

When we do not have prior information to evaluate candidate solutions, we instead wish to find natural
grouping of the examples in the feature space viaclusteringor unsupervised learningand utilize the
clustering results to evaluate solutions. The idea is to represent groups of points by a cluster center after
determining the inherent number of clusters in the given data set. Once the clusters have been formed
based on some given features, we must evaluate how well this model represents the complexity of the
data. Clustering may be performed using methods such as K-means [18], expectation maximization
(EM) [16], or optimization models [8]. Recently a set of novel clustering algorithms have been proposed
in the database community [26,55]. For instance, Agrawalet al. [1] present an order-independent
clustering algorithm, CLIQUE, that forms clusters in large data sets.

The problem of determining an appropriate model in unsupervised learning has gained popularity in
the machine learning, pattern recognition, and data mining communities. Unsupervised model selection
addresses either how to identify the optimal number of clustersK or how to select feature subsets
while determining the correct number of clusters. The latter problem is more difficult because of the
inter-dependency between the number of clusters and the feature subsets used to form the clusters [49].
To this point, most research on unsupervised model selection has considered the problem of identifying
the right number of clusters using all available features [38,49].

Other researchers [1,51] have studied feature selection and clustering together. In particular, Devaney
and Ram [17] combined a sequential forward and backward search algorithm with two concept learning
algorithms, COBWEB [21] and AICC, an improved variant of COBWEB. The category utility score
was employed as a quality measurement of feature subsets and the number of clusters was one of the
factors used for the computation of utility score. In [52], a Bayesian framework with a unified objective
function considering both the number of clusters and the feature subset was applied to the problem of
document clustering. Recently, Dy and Brodley [19] proposed a wrapper approach that uses an EM
algorithm to form clusters. Feature subsets are evaluated in terms of clustering quality based on either
scatter separability or maximum likelihood. In this study, we propose a new wrapper approach that
considers feature selection and clustering simultaneously.

The model we propose is very flexible so that any clustering algorithm can be easily combined with
our feature selection algorithm. We demonstrate this flexibility by applying our algorithm with the
two most popular clustering algorithms, K-means and EM. Note that it is not our intention to compare
the performance of two clustering algorithms. Since each algorithm is evaluated on a different set of
heuristic metrics, it might not be possible to draw general conclusions. However, we can still observe
relative performance from this comparative study in terms of speed, the significance of selected features,
and so on.

Our model also differs from other approaches in two main aspects of methodology: the evaluation
of candidate solutions along multiple independent heuristic criteria, and the use of a local evolutionary
algorithm to effectively cover the space of feature subsets and of cluster numbers.

First, we consider multiple fitness criteria simultaneously for evaluating clustering models. A number
of heuristic criteria, such as cluster compactness, inter-cluster separation, and maximum likelihood have
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been proposed, and attempts have been made to combine some or all of these into a single objective [14,
22]. Previous research on unsupervised model selection considered only one (single or combined)
criterion. We claim that our approach is a generalization of such previous work, in the sense that it could
capture both linear and non-linear relationships among the criteria.

From the perspective of knowledge discovery, our goal is to provide a clear picture of the (possibly
nonlinear) tradeoffs among the various objectives. This is important because no single criterion for
unsupervised feature selection is best for every application [20] and only the decision maker can determine
the relative weights of criteria for her application. In such situations we must usemulti-objective
or Paretooptimization. Formally, each solutionsi is associated with an evaluation vectorF (si) =
(F1(si), . . . , FC(si)) whereC is the number of quality criteria. One solutions1 is said todominate
another solutions2 if ∀c : Fc(s1) � Fc(s2) and∃c : Fc(s1) > Fc(s2), whereFc is thec-th criterion,
c ∈ {1 . . . C}. Neither solution dominates the other if∃c1, c2 : Fc1(s1) > Fc1(s2), Fc2(s2) > Fc2(s1).

ThePareto frontis defined as the set of nondominated solutions. Our goal in Pareto optimization is to
approximate as best possible the Pareto front, presenting the decision maker with a set of high-quality
compromise solutions from which to choose. Non-Pareto solutions will not be considered because they
are inferior to those in the Pareto front by definition. By providing a set of alternative solutions to the
decision maker, our approach helps her to choose theright solution at the right time. This could present a
big advantage over other decision support systems that provide the decision maker with a single solution,
given that she might not be familiar with how the algorithm reached such solution.

Secondly, as a search process, we turn to evolutionary algorithms (EAs) to intelligently search the
space of possible feature subsets and to determine the appropriate number of clusters. Our choice of
EAs as a search algorithm is reasonable because of their potential capability to search through spaces
in a more global fashion than many other machine learning algorithms. EAs have also been used for
clustering, using an adjacency-based representation [47] or in conjunction with other algorithms [24,34].

A number of multi-objective extensions of evolutionary algorithms have been proposed in recent
years [15]. Most of them, such as the Niched Pareto Genetic Algorithm [29], employ computationally
expensive selection mechanisms like fitness sharing [24] and Pareto tournaments to favor dominating
solutions and to maintain diversity. Others [30,46,54] combine multiple objectives,such as measurements
of model complexity and model accuracy, into one evaluation criterion in a subjective manner. Instead,
we use a new evolutionary algorithm that maintains diversity over multiple objectives by employing a
local selection scheme. This Evolutionary Local Selection Algorithm (ELSA) considers each objective
separately and works well for Pareto optimization problems [34,45].

The remainder of this article is organized as follows. We motivate our approach by illustrating possible
application areas in Section 2. In Section 3 we review the K-means clustering algorithm and heuristic
metrics to evaluate the quality of clusters constructed by K-means. In Section 4 we present the EM
algorithm and justify our clustering quality metrics. We discuss our approach in detail in Section 5,
illustrating the evolutionary algorithm and describing how ELSA is combined with K-means or EM.
Sections 6 and 7 present some experimental results with a synthetic data set and a real data set, and
discuss the interpretation of the ELSA output to select a subset of good features. Finally Section 8
addresses directions of future research and concludes the paper.

2. Motivation for clustering-based feature selection

Let us consider some possible applications of our approach in marketing and other domains. The main
idea of cluster analyses is to represent groups of points that are similar. For example, cluster analysis can
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be used for grouping species of plants or animals or classifying new species. Certain methods for data
compression and encryption are also based on similarity among data points. In the marketing research
community, clustering and its variants [48,53], neural networks [4] and conjoint analysis [25] have been
widely used for market structure analysis and market segmentation. It is well known that manufacturers
use different marketing strategies based on customer behavior such as brand loyalty, price sensitivity, or
quality sensitivity. Furthermore, they can save time and expense by restricting their concern to a group
of customers who are most likely to buy their goods.

Standard application of cluster analysis uses the complete set of features or a pre-selected subset
of features. For instance, a market survey data contains various types of questions with regard to
respondents’ demographic and psychographic information, attitudes toward products and benefits sought.
Commonly, separate clustering analyses are implemented to find respondent segments and decide the
number of segments based on each different type of variables. A market manager might choose to cluster
using only demographic variables of the customers, to offer different campaign options to different
customer segments based on their age, sex, education level or income level. Or, the manager might
consider customer responses to changes in price, display style, or advertisements to define market
segments. Therefore clustering analysis has been implemented in a top-down fashion, dependent on the
prior knowledge of market managers who pre-determine the features to be used to segment customers.

However, this top-down approach could not find and exploit interactions among various types of
features on segments. Further, some segments can be discovered only if different types of variables are
considered together. Therefore, the utility of such a top-down approach is limited from the perspective
of knowledge discovery, because it cannot provide new marketing models that could be effective but
have not been considered. Our data-driven approach remedies this limitation by searching the space of
models, varying the feature subsets and the number of clusters. This way we can present the decision
maker with a set of high-quality solutions from which to choose.

As an example, consider the application of our approach to datasets like those collected by insurance
companies, containing customer information on both socio-demographic characteristics and ownership
of various types of insurance policies (see, for instance, the CoIL data sets [33].) When insurers try to
identify customers that are likely to buy a new policy, they consider only a few models dependent on
the prior knowledge and past experience of the market managers. Our data-driven approach searches
a much broader space of models and provides a compact summary of solutions over possible feature
subset sizes and numbers of clusters. Among such high-quality solutions, the manager can select
a specific model after considering the model’s complexity and accuracy. Further, newly-discovered
feature subsets that form well-differentiated clusters can affect the way new marketing campaigns should
be implemented. Let us suppose that an insurance company uses our data-driven approach to campaign
a new recreational vehicle policy. Let us also assume that our model selects as a solution a set of features
including ownership of moped and car policies. The market manager notes that moped policy features are
included in a final solution, even though she has never used this information before to identify customer
segments. However, further investigation reveals that many people who purchase a moped policy might
also purchase a recreational vehicle policy because they often carry their mopeds or bicycles on the back
of their vehicles [35].

Similarly, our approach can be useful for the analysis of finance and accounting data. For instance,
forecasting corporate bankruptcy has been studied extensively in the accounting, economics, and finance
community [2]. However, we are more interested in finding common and unknown factors that affect the
financial structure and eventually lead companies to go bankrupt. Our approach provides a number of
clustering results from different sets of selected features. If, say, profitability-related features form well-
separated clusters in terms of how soon companies go bankrupt, credit analysts can build a model that
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Fig. 1. K-means clustering algorithm.

predicts bankruptcy time more accurately. Or, if clustering analysis reveals that market-driven variables
such as market size have serious effects on the performance of the small-sized companies, forecasters of
corporate mergers should pay more attention to the changes in these variables than in other variables.

3. K-means algorithm

3.1. Algorithm detail

K-means is one of the most often used nonhierarchical clustering methods [7,22]. Nonhierarchical
clustering algorithms are designed to group items into a collection ofK clusters that can be specified in
advance or determined as part of the clustering procedure. Nonhierarchical methods start from either an
initial partition of items into groups or an initial set of seed points, which form the centroid or medoid1

of clusters.
The K-means algorithm employs a squared error criterion and implicitly assumes that clusters are

represented by spherical Gaussian distributions located at theK cluster means [6]. Starting with a
random initial partition, it iteratively assigns each data point to the cluster whose centroid is located
nearest to the given point, and recalculates the centroids based on the new set of assignments until a
convergence criterion is met. Some variants of K-means have been suggested in order to improve the
efficiency of the algorithm, avoid initial seed value effects, or find the global optimum [3,39]. However,
in our study we use the standard K-means algorithm [31] as summarized in Fig. 1.

3.2. Heuristic metrics for clustering

A number of numerical measurements are available to evaluate clustering quality [14,28]. Most of them
are based on geometric distance metrics to measure cluster cohesiveness or inter-cluster separateness.
Even though we find that they capture important properties to be measured, these metrics are not directly
applicable in our study because they are computed based on the whole dimensionality of feature space.
Note that the dimensionality of the space is variable in our study. Therefore any metrics without
appropriate adjustment of dimensionality can be biased and misleading. In our study we use four
heuristic fitness criteria, described below. Two of the criteria are inspired by statistical metrics and two
by Occam’s razor [5]. Each objective, after being normalized into the unit interval, is to be maximized
by the EA.

1A medoid is the most centrally located point in a cluster.
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Fwithin: This objective is meant to favor dense clusters by measuring cluster cohesiveness. It is inspired
by the total within-cluster sum of squares (TWSS) measure. Formally, letxn, n = 1, · · · , N , be
data points andxnj be the value of thej-th feature ofxn. Let d be the dimension of theselected
feature set,J , andK be the number of clusters. Now, define the cluster membership variablesα nk

as follows:

αnk =
{
1 if xn belongs to clusterk
0 otherwise

wherek = 1, · · · ,K andn = 1, · · · , N .
The centroid of thek-th cluster,γk, can be defined by its coordinates:

γkj =
∑N

n=1 αnkxnj∑N
n=1 αnk

, j ∈ J.

Fwithin can be computed as follows:

Fwithin = 1− 1
Zwithin

1
d

K∑
k=1

N∑
n=1

αnk

∑
j∈J

(xnj − γkj)2 (1)

where the normalization by the number of selected features,d, is meant to compensate for the
dependency of the distance metric on the dimensionality of the feature subspace.Zwithin is a
normalization constant meant to achieveFwithin values spanning the unit interval. Its value is set
empirically for each data set.

Fbetween: This objective is meant to favor well-separated clusters by measuring their distance from the
global centroid. It is inspired by the total between-cluster sum of squares (TBSS) measure. We
computeFbetween as follows:

Fbetween =
1

Zbetween

1
d

1
K − 1

K∑
k=1

N∑
n=1

(1− αnk)
∑
j∈J

(xnj − γkj)2 (2)

where, as forFwithin, we normalize by the dimensionality of the selected feature subspace and by
the empirically derived constantZbetween.

Fclusters: The purpose of this objective is to compensate for the previous metrics’ bias towards increasing
the number of clusters. For example,Fwithin = 1 in the extreme case when we have the same
number of clusters as the number of data points, with each point allocated to its own cluster. Clearly
such overfitting makes the model more complex than can be justified by the data, and thus less
generalizable. Therefore, other things being equal, we want fewer clusters:

Fclusters = 1− K − Kmin

Kmax − Kmin
(3)

whereKmax (Kmin) is the maximum (minimum) number of clusters that can be encoded into a
candidate solution’s representation.
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Fcomplexity: The final objective is aimed at finding parsimonious solutions by minimizing the number of
selected features:

Fcomplexity = 1− d − 1
D − 1

. (4)

Note that at least one feature must be used. Other things being equal, we expect that lower complexity
will lead to easier interpretability and scalability of the solutions as well as better generalization.

4. EM algorithm for mixture models

4.1. Algorithm detail

The expectation maximization algorithm [16] is based on the well-established theory of probability
and is one of the most often used statistical modeling algorithms [11,23]. The EM algorithm often
significantly outperforms other clustering methods [42] and is superior to the distance-based algorithms
(e.g. K-means) in the sense that it can handle categorical data. The EM algorithm for mixture models
assumes that the patterns are drawn from one of several given distributions, and the goal is to identify
the parameters of each distribution. In the EM framework, the parameters of the clusters are unknown,
and these are estimated from the given data.

The EM algorithm starts with an initial estimate of the parameters and iteratively recomputes the
likelihood that each pattern is drawn from a particular density function, and then updates the parameter
estimates. Formally, letxn, n = 1, · · · , N , be a data point andxnj be the value of thej-th feature ofxn.
Let d be the dimension of theselectedfeature set,J , andK be the number of clusters. If we model each
cluster with ad-dimensional Gaussian distribution, we can approximate the data distribution by fittingK
density functionsck, k = 1, · · · ,K, to the data set{xn|n = 1, · · · , N}. The probability density function
evaluated atxn is the sum of all densities:

P (xn) =
K∑

k=1

pk · ck(xn|θk) (5)

where thea priori probabilitypk is the fraction of the data points in clusterk and
∑K

k=1 pk = 1, pk � 0.
The functionsck(xn|θk) are the density functions for patterns of the clusterk andθk represents the
parameters of the density function. For Gaussian distributions, the parameters are the meanµk and
covariance matrixΣk. For greater efficiency and reduced overfitting, we ignore cross terms and represent
Σk as a vector of the variances for each dimension. The membership probability of patternxn in cluster
k is computed as follows:

pk(xn) =
pk · ck(xn|θk)∑K
i=1 pi · ci(xn|θi)

. (6)

Now, the original problem of finding clusters is reduced to the problem of how to estimate the
parametersΘ = {θ1, · · · , θK} of the probability density [10]. Under the independence assumption
among attributes within a given cluster, we can represent each density function as a product of density
functions over each selected attributej = 1, · · · , d:

ck(xn|θk) =
∏
j∈J

ckj(xnj |θkj) (7)
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whereθkj represents the parameters of thej-th feature of clusterk.
Finally, the multivariate Gaussian distribution for clusterk = 1, · · · ,K is parameterized as follows:

ck(xn|µk,Σk) =
∏
j∈J

1√
2 π σ2

kj

exp

(
(xnj − µkj)2

−2 σ2
kj

)
(8)

whereµkj andσ2
kj represent the mean and variance of thej-th feature of clusterk, respectively.2 Now

we can quantify the quality of a given set of parametersΘ using the Eq. (8). At this point, our only
problem is to find the mixture parametersµk andΣk along withpk. The maximum likelihood (ML)
method [18] is used to maximize the probability of the data set given a particular mixture model, and
often the log-likelihood is maximized for analytical purposes as follows:

L(Θ) =
N∑

n=1

logP (xn) =
N∑

n=1

log

(
K∑

k=1

pk · ck(xn|µk,Σk)

)
.

The EM algorithm begins with an initial estimation ofΘ and iteratively updates it in such a way that the
sequence ofL(Θ) is non-decreasing. In our implementation, EM iterates until|L(Θt+1)− L(Θt)| � ε,
ε > 0 or up tomaxIteration iterations. We choose the somewhat loose convergence criteria,ε = 1.0
andmaxIteration = 15 because the marginal likelihood gain per additional computing resource for
more restrictive criteria is negligible. We outline the standard EM algorithm in Fig. 2.

4.2. Heuristic metrics for clustering

In order to evaluate the quality of the clusters formed by the EM algorithm, we use three heuristic
fitness criteria, described below. One of the criteria is inspired by statistical metrics and two by Occam’s
razor. Each objective is again normalized into the unit interval and maximized by the EA. Note that
we exclude two distance-based metrics,Fwithin andFbetween, but include one new likelihood-based
metric. This is mainly because data points can belong to multiple clusters in the EM algorithm, and thus
distance-based metrics are not intuitive to evaluate the quality of clustering.

Faccuracy: This objective is meant to favor cluster models with parameters whose corresponding like-
lihood of the data given the model is higher. With estimated distribution parametersµk andΣk,
Faccuracy is computed as follows:

Faccuracy =
1

Zaccuracy

N∑
n=1

log

(
K∑

k=1

pk · ck(xn|µk,Σk)

)
(9)

whereZaccuracy is an empirically derived, data-dependent normalization constant meant to achieve
Faccuracy values spanning the unit interval.

Fclusters: This criterion is defined in the same way as in Section 3 (Eq. (3)).
Fcomplexity: This is another criterion defined as in Section 3 (Eq. (3)).

2Since small values ofσ2
kj can cause overflow in our computations, we set a lower bound value ofσ2

kj to 10−10.
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Fig. 2. Summary of the EM algorithm whereε > 0 is a stopping tolerance andpt
k, µt

k, andΣt
k represent the mixture model

parameters of clusterk at iterationt. In our implementation, we setε = 1.0 andmaxIteration = 15 for fast convergence.

5. Evolutionary local selection algorithm

ELSA springs from algorithms originally motivated by artificial life models of adaptive agents in
ecological environments [43]. Modeling reproduction in evolving populations of realistic organisms
requires that selection, like any other agent process, be locally mediated by the environment in which
the agents are situated. In these models an agent’s fitness results from local individual interactions with
the environment, which contains other agents as well as finite shared resources. This naturally yields a
diverse set of agents [44], which is essential to achieve a broad coverage of the search space as required
for the feature selection problem and for Pareto optimization in general.

Below we describe the ELSA implementation for the feature selection problem discussed in this paper.
Further discussion of the algorithm and its application to Pareto optimization problems, including feature
selection in supervised learning, can be found elsewhere [33–35].

We first show the wrapper model of ELSA with clustering algorithms in Fig. 3. In our proposed
wrapper model, there are three relevant spaces:search space, data space, andobjective space. In search
space, ELSA searches the space of feature subsets and number of clustersK. Once a specific feature
subset (e.g.c) and number of clusters (e.g.K = 3) is selected, this information is encoded into a
chromosome of an agent. In data space, three clusters are formed via K-means or EM. In objective
space, clusters are evaluated in terms of the evaluation criteria and an agent is rewarded energy from each
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Fig. 3. The wrapper model of ELSA with clustering algorithms.

objective based on its fitness and the local environment to which it belongs. Each agent will survive,
reproduce, or die depending on its energy level, and ELSA biases its search in the direction of high
energy levels. This process is repeated for a fixed number of iterations,T .

We outline the ELSA algorithm in Fig. 4. Each agent (candidate solution) in the population is first
initialized with some random solution and an initial reservoir of energy. The representation of an agent
consists ofD + Kmax − 2 bits. D bits correspond to the selected features (1 if a feature is selected, 0
otherwise). The remaining bits are a unary representation of the number of clusters.3 This representation
is motivated by the desire to preserve the regularity of the number of clusters under the genetic operators:
changing any one bit will changeK by one. Mutation and crossover operators are used to explore the
search space. The mutation operator randomly selects one bit of an agent and flips it. Our crossover
operator follows the commonality-based crossover framework [12]. It takes two agents, a parenta and
a random mate, and scans through every bit of the two agents. If it locates a different bit, it flips a coin
to determine the offspring’s bit. In this process, the mate contributes only to construct the offspring’s bit
string, which inherits all the common features of the parents.

In each iteration of the algorithm, an agenta explores a candidate solutiona ′ similar to itself (offspring).
The agent collects∆E from the environment and is taxed withEcost for this action.Ecost for any action

3The cases of zero or one cluster are meaningless, therefore we count the number of clusters asK = κ + 2 whereκ is the
number of ones andKmin = 2 ≤ K ≤ Kmax.
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Fig. 4. ELSA pseudo-code. In each iteration, the environment is replenished and then each alive agent executes the main loop.
The program terminates afterT solutions (agents) are evaluated. The details of the algorithm are illustrated in the text.

is a constant (Ecost < η). The net energy intake of an agent is determined by its offspring’s fitness. This
is a function of how well the candidate solution performs with respect to the criteria being optimized.
But the energy also depends on the state of the environment. The environment corresponds to the set of
possible values for each of the criteria being optimized.4 We have an energy source for each criterion,
divided into bins corresponding to its values. So, for criterion fitnessFc and bin valuev, the environment
keeps track of the energyE c

envt(v) corresponding to the valueFc = v. Further, the environment keeps

4Continuous objectives are discretized.
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a count of the number of agentsPc(v) havingFc = v. The energy corresponding to a solutiona for
criterionc is given by

Fitness(a, c) =
Fc(a)

Pc(Fc(a))
. (10)

Agents receive energy only inasmuch as the environment has sufficient resources; if these are depleted,
no benefits are available until the environmental resources are replenished. Thus an agent is rewarded
with energy for its high fitness values, but also has an interest in finding unpopulated niches in objective
space, where more energy is available. The result is a natural bias toward diverse solutions in the
population.

In the selection part of the algorithm, an agent compares its current energy level with a constant
reproduction thresholdη. If its energy is higher thanη, the agent reproduces: the agent and its mutated
clone that was just evaluated become part of the new population, each with half of the parent’s energy. If
the energy level of an agent is positive but lower thanη, only the agent itself joins the new population. If
an agent runs out of energy, it is killed. The population size is independent of the reproduction threshold;
η only affects the energy stored by the population at steady-state.

When the environment is replenished, each criterionc is allocated an equal share of energy as follows:

Ec
tot =

Etotal

C
=

pmaxEcost

C
(11)

whereC = 4 for K-means orC = 3 for EM in this study. This energy is apportioned in linear
proportion to the values of each fitness criterion, so as to bias the population toward more promising
areas in objective space. Note that the total replenishment energy that enters the system at each iteration,
Etotal = pmaxEcost is determined in such a way that the population sizep will be bound bypmax. This
is because energy is conserved and the energy leaving the system (p E cost) is always less than the total
energy (Etotal).

In order to assign energy to a solution, ELSA must be informed of clustering quality. In the experiments
described here, the clusters to be evaluated are constructed based on the selected features using a standard
K-means or EM algorithm (cf. Fig. 3). Each time a new candidate solution is evaluated, the corresponding
bit string is parsed to get a feature subsetJ and a cluster numberK. The clustering algorithm is given
the projection of the data set ontoJ , uses it to formK clusters, and returns the fitness values.

6. Experiments on synthetic data set

6.1. Data description and baseline algorithm

It is difficult to evaluate the quality of an unsupervised learning algorithm, and feature selection
problems present the added difficulties that the clusters depend on the dimensionality of the selected
features and that any given feature subset may have its own clusters, which may well be incompatible
with those formed from different subsets. In order to evaluate our approach, we construct a moderate-
dimensional synthetic data set, in which the distributions of the points and the significant features are
known, while the appropriate clusters in any given feature subspace are not known. We evaluate the
evolved solutions by their ability to discover five pre-constructed clusters in a ten-dimensional subspace.

The data set hasN = 500 points andD = 30 features. The feature set consists of “significant”
features, “Gaussian noise” features, and “white noise” features. It is constructed so that the first 10
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Fig. 5. A few 2-dimensional projections of the synthetic data set.

features are significant, with 5 “true” normal clusters consistent across these features. The next 10
features are Gaussian noise, with points randomly and independently assigned to 2 normal clusters along
each of these dimensions. The remaining 10 features are white noise in which points are drawn from
uniform distributions. The standard deviation of the normal distributions isσ ≈ 0.06 and the means are
themselves drawn from uniform distributions in the unit interval, so that the clusters may overlap. We
present some 2-dimensional projections of the synthetic data set in Fig. 5.

For further comparisons we have implemented a greedy heuristic algorithm known as theplus 2-take
away 1 sequential selectionalgorithm [36]. This is a reasonable choice for a comparative algorithm
because we want our algorithm to outperform most commercial statistical programs (e.g. SAS and SPSS)
that implement simpler search algorithms, such as sequential forward and backward selection, for feature
selection. Since the greedy algorithm we have implemented allows limited backtracking, it performs
better than feature selection algorithms typically used in commercial programs. Our implementation of
this algorithm for clustering requires a set value ofK and usesFwithin andFbetween for K-means, and
Faccuracy for EM as the optimization criteria. It begins by finding the single dimension along which
the objective is optimized. At each successive step, the algorithm adds an additional feature that, when
combined with the current set, forms the best clusters. It then checks to see if the least significant
feature in the current set can be eliminated to form a new set with superior performance. This iteration
is continued until all the features have been added. We ran the algorithm for each of the values ofK
considered by ELSA.

Individuals are represented by 36 bits, 30 for the features and 6 forK (Kmax = 8). There are 15
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Fig. 6. The ELSA/K-means fronts with composition of features selected forFcomplexity corresponding to 10 features (see text).
We omit the candidate fronts ofK = 8 because of its incomplete coverage of the search space.

energy bins for all energy sources,Fclusters, Fcomplexity, Fwithin, Fbetween, andFaccuracy. The values for
the various ELSA parameters are:Pr(mutation) = 1.0,Pr(crossover) = 0.8,pmax = 100,Ecost = 0.2,
Etotal = 40,η = 0.3, andT = 30,000.

6.2. Results using K-means

We first show two different types of Pareto approximation evolved by ELSA/K-means in Fig. 6, one
based onFwithin and the other one based onFbetween, in order to observe the usefulness of our two
clustering quality metrics. Recall that both are used in ELSA to evaluate the quality of clusters. We use
the termcandidate frontfor the set of solutions with the highest measured clustering quality at every
Fcomplexity value for eachK. We construct candidate fronts based on all solutions evaluated during the
evolutionary process with two different clustering quality measures,Fwithin andFbetween. In order to
show the candidate fronts of each different number of clustersK, we sort all the non-dominated solutions
by K.

We expect the candidate front based onFwithin for any reasonableK to typically decrease from higher
values ofFcomplexity (lower complexity) to lower values ofFcomplexity (higher complexity). This is
because we normalizeFwithin by the number of selected featuresd. Selecting more features make it
more likely to select less relevant features, deteriorating the clustering quality. The fronts based on
Fwithin in Fig. 6 show the trend that we expect. The clustering quality in terms ofFwithin improves as
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the number of clusters approaches the true number of clusters,K = 5. In particular, the fronts forK =
5 andK = 6 not only explore mostFcomplexity values but also show high clustering quality. A decision
maker would determine the correct number of clusters to be either 5 or 6.

The candidate fronts based onFbetween are less stable than those based onFwithin. We attribute
this to the fact thatFbetween is more sensitive to outliers thanFwithin. Fbetween is affected explicitly
by bothd andK in its computation, whileFwithin is affected explicitly byd but implicitly by K via
clustering quality. However, the fronts become stable with more than half of features selected because
many features neutralize the effects of outliers from certain features. Although we feel thatFbetween

captures useful information about the quality of the clusters, its instability makes it inappropriate as a
single metric to determine the best solution to be presented to a decision maker.

We also show in Fig. 6 the composition of selected features, i.e., the number of significant-Gaussian
noise-white noise features selected atFcomplexity = 0.69 (10 features). Note that the selected features at
this value ofFcomplexity are not necessarily all the “significant” features that we constructed. We attribute
this finding to the fact that if one or more Gaussian noise features form good clusters with the previously
selected significant features, the clustering quality can be improved by adding these features. This is also
consistent with the notion that not all strongly relevant features are selected and some weakly relevant
features could be selected as “relevant” features [37]. Though even mixes of significant and Gaussian
features are selected atFcomplexity = 0.69, ELSA/K-means found a better composition of selected features
at values ofFcomplexity near 0.69. For example, the composition of selected features forK = 5 based on
Fwithin were 8-3-1, 7-3-1, 5-4-1, and 6-3-0 over 0.62≤ Fcomplexity ≤ 0.73 (9–12 features), respectively.

Figure 7 shows snapshots of the candidate fronts withK = 5 based onFwithin at intervals of every
3,000 solution evaluations. It is evident that ELSA/K-means identifies better solutions and explores an
increasingly broad space of feature subsets as it evaluates more solutions.5 We show the improvement
of the candidate fronts by computing thecoverageKM as follows:

coverageKM =
∑

i∈Fcomplexity

F i
within (12)

whereF i
within is theFwithin value atFcomplexity = i. As ELSA finds new and better solutions (with

higherFwithin), the coverage increases.
We finally evaluated ELSA/K-means in terms of classification accuracy. We compute accuracy by

assigning a class label to each cluster based on the majority class of the points contained in the cluster,
and then computing correctness ononly those classes, e.g., models with only two clusters are graded
on their ability to find two classes. ELSA results represent individuals chosen from fronts based on
F̃accuracy = Fwithin · Fbetween.6 This criterion is based on the fact that neitherFwithin norFbetween truly
represents the quality of the clusters. The classification accuracy of candidate solutions based on either
Fwithin or Fbetween was inferior to that based oñFaccuracy. Table 1 shows the classification accuracy
with standard error of various models formed by both ELSA/K-means and the greedy feature search.
ELSA/K-means results represent individuals with less than eight features from the candidate fronts. All
accuracy measures are averaged over five different runs of ELSA/K-means and of the greedy search.

The overall performance of ELSA/K-means is superior to that of the greedy search on models with few
features and few clusters–exactly the sort of models the algorithm was designed to find. The last row and

5Similar results were obtained for different number of clustersK and forFbetween.
6This new measurement is used only for selecting a final solution. In ELSA,Fwithin andFbetween are considered separately.
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Fig. 7. The candidate fronts forK = 5 based onFwithin evolved in ELSA/K-means. It is captured every 3,000 evaluated
solutions. There is no further improvement in coverage after the 7th interval.

Table 1
The average classification accuracy (%) with standard error of five runs of ELSA/K-means and greedy search.
The last row and column show the number of win-lose-tie cases of ELSA/K-means compared with greedy
search. A tie is assumed when error bars overlap

Number of selected features
K

2 3 4 5 6 7 W-L-T
ELSA/KM 100± 0.0 100± 0.0 100± 0.0 100± 0.0 59± 0.0 100± 0.02
Greedy 59± 0.0 59± 0.0 59± 0.0 59± 0.0 59± 0.0 59± 0.0

5-0-1

ELSA/KM 93.2± 5.2 39.4± 0.4 98.6± 1.4 100± 0.0 100± 0.0 100± 0.03
Greedy 40.6± 0.3 40.8± 0.2 40.2± 0.2 63.6± 3.9 100± 0.0 100± 0.0

3-1-2

ELSA/KM 85.2± 4.1 31.4± 0.3 92± 4.9 100± 0.0 100± 0.0 100± 0.04
Greedy 30.8± 0.2 55± 0.0 55± 0.0 55± 0.0 55± 0.0 55± 0.0

5-1-0

ELSA/KM 62 ± 0.6 48.4± 1.5 75± 2.1 58.4± 1.9 63.4± 0.4 79.4± 0.65
Greedy 25.6± 0.3 53.4± 0.6 53.4± 0.6 55± 0.0 63± 0.0 66.4± 3.4

4-1-1

W-L-T 4-0-0 1-3-0 4-0-0 4-0-0 1-0-3 3-0-1 17-3-4

column shows the number of win-loss-tie cases of ELSA/K-means compared with greedy search. The
performance of ELSA/K-means ford = 3 across differentK is slightly inferior, although the difference is
small forK = 3 andK = 5. For more complex models with more than 10 selected features (not shown),
the greedy method is often better able to reconstruct the original classes. This is reasonable, since ELSA
by design does not concentrate on this part of the search space.

6.3. Results using EM

We show the candidate fronts found by the ELSA/EM algorithm for each different number of clusters
K in Fig. 8. In contrast with the ELSA/K-means model, we have a single measurement of clustering
quality Faccuracy in ELSA/EM. We did the same analysis to see whether our ELSA/EM model is able
to identify the correct number of clusters based on the shape of the candidate fronts across different
values ofK andFaccuracy. A different characteristic shape of the Pareto fronts is observed in ELSA/EM
because of the different measurement of clustering quality: an ascent in the range of higher values of
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Fig. 8. The candidate fronts of ELSA/EM model. We omit the candidate front forK = 8 because of its inferiority in terms
of clustering quality and incomplete coverage of the search space. Composition of selected features is shown forFcomplexity

corresponding to 10 features (see text).

Fcomplexity (lower complexity), and a descent for lower values ofFcomplexity (higher complexity). This
is reasonable because adding additional significant features will have a good effect on the the clustering
quality with few previously selected features. However, adding noise features will have a negative effect
on clustering quality in the probabilistic model, which, unlike Euclidean distance, is not affected by
dimensionality. Hence the curve forms a shape similar to the supervised learning curve, with a global
maximum indicating the optimal number of features. The coverage of the ELSA/EM model shown in
Fig. 8 is defined as:

coverageEM =
∑

i∈Fcomplexity

F i
accuracy (13)

We note that the clustering quality and the search space coverage improve as the evolved number of
clusters approaches the “true” number of clusters,K = 5. The candidate front forK = 5 not only shows
the typical shape we expect but also an overall improvement in clustering quality. The other fronts do
not cover comparable ranges of the feature space either because of the agents’ lowF clusters ( K = 7) or
because of the agents’ lowFaccuracy andFcomplexity (K = 2 andK = 3). A decision maker again would
conclude the right number of clusters to be 5 or 6.

As noticed in ELSA/K-means, the first 10 selected features, 0.69≤ Fcomplexity ≤ 1, are not all
significant. This notion is again quantified through the number of significant-Gaussian noise-white noise
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Fig. 9. Candidate fronts forK = 5 based onFaccuracy evolved in ELSA/EM. It is captured at every 3,000 solution evaluations
and two fronts (t = 18, 000 andt = 24, 000) are omitted because they have the same shape as the ones att = 15, 000 and
t = 21, 000, respectively.

features selected atFcomplexity = 0.69 (10 features) in Fig. 9.7 None of the “white noise” features is
selected and the overall composition of selected features is better in ELSA/EM than in ELSA/K-means.

We also show snapshots of the ELSA/EM fronts forK = 5 at every 3,000 solution evaluations in Fig. 9.
Similarly to the ELSA/K-means model, ELSA/EM explores a broad subset of the search space, and thus
identifies better solutions acrossFcomplexity as more solutions are evaluated. We observed similar results
for different number of clustersK.

Table 2 shows classification accuracy of various models formed by both ELSA/EM and the greedy
feature search. We compute accuracy in the same way that we did in ELSA/K-means. ELSA results
represent individuals selected from candidate fronts with less than eight features. ELSA/EM consistently
outperforms the greedy search on models with few features and few clusters. As we noticed in the
ELSA/K-means case, for more complex models with more than 10 selected features, the greedy method
often shows higher classification accuracy.

7. Experiments on WPBC data

In addition to the artificial data set discussed in Section 6, we also tested our algorithm on a real
data set, the Wisconsin Prognostic Breast Cancer (WPBC) data [41]. This data set records 30 numeric
features quantifying the nuclear grade of breast cancer patients at the University of Wisconsin Hospital,
along with two traditional prognostic variables–tumor size and number of positive lymph nodes. This
results in a total of 32 features for each of 198 cases. For the experiment, individuals are represented by
38 bits, 32 for the features and 6 forK (Kmax = 8). Other ELSA parameters are the same as those used
in the previous experiments.

7ForK = 2, we useFcomplexity = 0.76, which is the closest value to 0.69 represented in the front.
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Table 2
The average classification accuracy (%) with standard error of five runs of ELSA/EM and greedy search. The
“–” entry indicates that no solution is found by ELSA/EM. The last row and column show the number of
win-loss-tie cases of ELSA/EM compared with greedy search

Number of selected featuresK
2 3 4 5 6 7 W-L-T

ELSA/EM 52.6± 0.3 56.6± 0.6 92.8± 5.2 100± 0.0 100± 0.0 100± 0.02
Greedy 51.8± 1.3 52.8± 0.8 55.4± 1.1 56.6± 0.4 62.8± 3.2 80.2± 8.5

5-0-1

ELSA/EM 83.2± 4.8 52± 6.6 91.6± 5.7 93.8± 6.2 99± 1.0 100± 0.03
Greedy 40.6± 0.3 40.8± 0.2 40.2± 0.2 63.6± 3.8 100± 0.0 100± 0.0

4-0-2

ELSA/EM 46.2± 2.2 − 50.6± 0.6 89.6± 5.9 52± 1.0 60.6± 5.14
Greedy 27.8± 0.8 27.8± 0.4 29± 0.4 29.6± 0.9 38± 4.4 74.2± 3.5

4-2-0

ELSA/EM 44.6± 2.0 32.6± 3.8 72± 3.8 62.4± 1.9 66.4± 3.7 88± 4.95
Greedy 23± 0.4 22.2± 0.8 24.2± 0.9 23.8± 0.5 29.6± 1.7 81.2± 3.0

5-0-1

W-L-T 3-0-1 3-1-0 4-0-0 4-0-0 3-0-1 1-1-2 18-2-4
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Fig. 10. Candidate fronts evolved by ELSA/K-means on the WPBC data. The front forK = 8 is omitted because of its
incomplete coverage of the search space.

7.1. Clustering analysis

In this experiment, we assume that we have no prior knowledge about the clusters and the relevant
features. We first show two different types of fronts evolved by ELSA/K-means in Fig. 10, one based on
Fwithin and the other based onFbetween.

The candidate fronts based onFwithin in Fig. 10 again show a typical decrease in quality from
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higher values ofFcomplexity (lower complexity) to lower values ofFcomplexity (higher complexity). It is
interesting to note that the fronts based onFbetween not only show much more stable patterns than those
in Fig. 6 but also become almost identical to the fronts based onFwithin, asK increases. We attribute this
partially to the composition of correlated features in the WPBC data. The correlation among features
comes from the fact that the mean, the standard error and the largest value of the 10 measurements that
quantify the nuclear grade of breast cancer were recorded into the WPBC data, resulting in a highly
correlated set of 30 features. Further, none of these features is regarded as white noise because each
feature reflects some aspect of nuclear grade.

A decision maker might pickK = 5 as the correct number of clusters because the candidate front for
K = 5 not only explores most ofFcomplexity values but also shows a stable pattern with high clustering
quality in terms of bothFwithin andFbetween. However, let us select a model withK = 3 in order to
compare our approach to previous research in which three clusters have been used to analyze this data set.
In addition, the smaller number of clusters makes it easier to understand clustering results and satisfies
one of our criteria, the preference for parsimonious models.

We also select a “best” solution (feature set) for prognostic analysis based on the value ofF̃accuracy . In
particular, we chose the solution with three clusters and the highest value ofF̃accuracy among solutions
that have between five and ten features. These minimum and maximum limits on the number of features
are used to find a robust but simple solution, respectively. The chosen solution has seven features and its
implication for prognostic analysis is discussed in Section 7.2.

Our findings by ELSA/K-means are confirmed in the candidate fronts evolved by ELSA/EM, shown
in Fig. 11. The correlation among features and the absence of white noise features result in a different
characteristic shape of the candidate fronts from those in Fig. 8. The fronts show a steady increase from
the range of higher values ofFcomplexity (lower complexity) to the range of lower values ofFcomplexity

(higher complexity). However, the curves peak at a certain point (e.g.,Fcomplexity = 0.26 for K �
4) because most of the information in the feature set is already extracted through previously selected
features.

A decision maker might determine the correct number of clusters to beK = 4 orK = 5 because those
models not only explore most of theFcomplexity values but also show a stable pattern with high clustering
quality in terms ofFaccuracy. For prognostic analysis, however, we again will consider solutions with
three clusters, in order to be consistent with previous research. We note that theFaccuracy values of
solutions with up to 10 features are steadily improving, which makes it difficult to choose any one of
them as our final solution. This makes us turn to the gradient information in the candidate front forK =
3. We choose a solution that causes the greatest improvement in clustering quality in terms ofFaccuracy .
The chosen solution has 11 features (Fcomplexity = 0.68) and we discuss its prognostic implication in the
following section.

7.2. Prognostic analysis

We analyzed performance on this data set by looking for clinical relevance in the resulting clusters.
Specifically, we observe the actual outcome (time to recurrence, or known disease-free time) of the cases
in the three clusters. Figure 12 shows Kaplan-Meier estimates [32] of the true disease-free survival times
for patients in the clusters found by ELSA/K-means.

Figure 12 displays well-separated survival characteristics of three prognostic groups: good (88 pa-
tients), intermediate (83 patients), and poor (27 patients). The good prognostic group was significantly
different from the intermediate group (p < 0.01) and the intermediate group was well-differentiated
from the poor group (p < 0.06).
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Fig. 11. Candidate fronts evolved by ELSA/EM on the WPBC data. The front forK = 8 is omitted because of its incomplete
coverage of the search space.

Five-year recurrence rates of these groups were 11.28%, 35.91%, and 47.96%, respectively. The
chosen solution used to cluster patients into three groups has seven dimensions including the mean
nuclear radius and area, the standard error of the radius and area, and the largest value of the radius,
perimeter and area. It is interesting that neither of the traditional medical prognostic factors, tumor size
and lymph node status, is selected by ELSA/K-means.

Similarly, Fig. 13 shows the survival characteristics of three prognostic groups found by ELSA/EM.
The three groups showed well-separated survival characteristics and more balanced clustering quality
in the sense that patients are more evenly distributed. Out of 198 patients, 59 patients belong to the
good prognostic group, and 54 patients and 85 patients belong to intermediate and poor prognostic
groups, respectively. The good prognostic group was well-differentiated from the intermediate group
(p < 0.076) and the intermediate group was significantly different from the poor group (p < 0.036).
Five-year recurrence rates were 12.61%, 21.26%, and 39.85% for the patients in the three groups.

The chosen dimensions by ELSA/EM included a mix of nuclear morphometric features such as the
mean and the standard error of the radius, perimeter and area, and the largest value of the area and
symmetry along three other features. We note that again neither of the traditional medical prognostic
factors is chosen, which is consistent with the result of ELSA/K-means. This finding is potentially
important because one of the traditional prognostic factors, the lymph node status, can be determined
by microscopic examination of lymph nodes only after they are surgically removed from the patient’s
armpit [50]. Our experiments tend to support the hypothesis that prognostic groups with significantly
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Fig. 12. Estimated survival curves for the three groups found by ELSA/K-means.

different expected outcomes can be formed without this data.
In order to address this matter, we investigate whether other solutions with lymph node information

can form three prognostic groups as good as our EM chosen solution. For this purpose, we selected
Pareto solutions across all differentK values that have fewer than 10 features including lymph node
information and formed three clusters using these selected features, disregarding the evolved value of
K. The survival characteristics of the three prognostic groups found by the best of these solutions was
very competitive with our chosen solution. The good prognostic group was well-differentiated from the
intermediate group (p < 0.10), and the difference between the intermediate group and the poor group
was significant (p < 0.026). This suggests that lymph node status may indeed have strong prognostic
effects, even though it is excluded from the best models evolved by our algorithms.

8. Conclusions

We presented a novel evolutionary multi-objective local selection algorithm for unsupervised feature
selection. ELSA, an evolutionary local selection algorithm, was used successfully in previous work
in conjunction with supervised learning [33,45]. As an extension of our previous work [34], we
used ELSA to search for possible combination of features and numbers of clusters, with the guidance
of two representative clustering algorithms, K-means and EM. The combination of a multi-objective
search algorithm with unsupervised learning provides a promising framework for feature selection. We
summarize our findings as follows.

– ELSA covers a large space of possible feature combinations while simultaneously optimizing the
multiple criteria separately. In particular, as ELSA evaluates more solutions, it finds new and better
solutions, improving the candidate fronts of both ELSA/K-means and ELSA/EM models.
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Fig. 13. Estimated survival curves for the three groups found by ELSA/EM.

– A number of possibly conflicting heuristic metrics can be plugged into the algorithm,while remaining
agnostic about their relative worth or their relationships.

– Our algorithm, both ELSA/K-means and ELSA/EM, outperforms a greedy algorithm in terms of
classification accuracy. On the artificial data, the number of win-lose-tie cases of ELSA/K-means
and ELSA/EM compared to a greedy algorithm were 17-3-4 and 18-2-4, respectively.

– Most importantly, in the proposed framework we can reliably select an appropriate clustering model,
including significant features and the number of clusters. For example, ELSA/K-means correctly
identifed the number of clustersK = 5 based onFwithin, and the composition of significant-Gaussian
noise-white noise features were 6-3-0, 5-4-1, 7-3-1, and 8-3-1 when 9–12 features were selected.

– Our algorithm is more interpretable and scalable due to the reduced dimensionality. On the WPBC
data, ELSA/K-means and ELSA/EM (with 11 and 7 chosen features, respectively) showed well-
separated survival characteristics of for three different groups of patients.

In future work we would like to compare the performance of ELSA on the unsupervised feature
selection task with other multi-objective EAs, using each in conjunction with clustering algorithms.

Another promising future direction will be a direct comparison of different clustering algorithms. In
the results presented in this paper, ELSA/EM shows better results than ELSA/K-means on the synthetic
data in terms of the composition of selected features and prediction accuracy. Furthermore, EM allows
for easier choice of best compromise solution because of single quality metric. However, ELSA/K-means
shows very competitive results on the real data set in terms of well-separated survival curves. Further,
ELSA/K-means is much faster (roughly by a factor of 3) than ELSA/EM to evaluate the fixed number
of solutions. Thus, it is possible for ELSA/K-means to find better solutions given the same amount of
computing time as ELSA/EM.

From a knowledge discovery perspective, our algorithm offers several advantages. Certainly the
simplicity bias of Occam’s Razor is well-established as a means for improving generalization on real-
world data sets. Further, it is often the case that the user can gain insight into the problem domain by
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finding the set of relevant features; consider, for example, the problem of finding relevant prognostic
factors in breast cancer, or determining the variables that define relevant market segments.

Finally, a key problem in data mining is the scaling of predictive methods to large data sets. Our
algorithm can easily be used as a preprocessing step to determine an appropriate set of features, allowing
the application of iterative algorithms like K-means on much larger problems.
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