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Abstract—Inverse classification is the process of manipulating
an instance such that it is more likely to conform to a specific
class. Past methods that address such a problem have shortcom-
ings. Greedy methods make changes that are overly radical, often
relying on data that is strictly discrete. Other methods rely on
certain data points, the presence of which cannot be guaranteed.
In this paper we propose a general framework and method
that overcomes these and other limitations. The formulation of
our method uses any differentiable classification function. We
demonstrate the method by using Gaussian kernel SVMs. We
constrain the inverse classification to occur on features that
can actually be changed, each of which incurs an individual
cost. We further subject such changes to fall within a certain
level of cumulative change (budget). Our framework can also
accommodate the estimation of features whose values change as
a consequence of actions taken (indirectly changeable features).
Furthermore, we propose two methods for specifying feature-
value ranges that result in different algorithmic behavior. We
apply our method, and a proposed sensitivity analysis-based
benchmark method, to two freely available datasets: Student
Performance, from the UCI Machine Learning Repository and
a real-world cardiovascular disease dataset. The results obtained
demonstrate the validity and benefits of our framework and
method.

I. INTRODUCTION

In many predictive modeling problems, we are concerned
less with the actual prediction, and more with how an indi-
vidual prediction might be changed. Classification problems
such as loan screening and college admission have one output
class that is clearly “desired” by the test case. A person turned
down for a loan would naturally wonder why the decision was
made, and more importantly, what they could do to change
the outcome on the next attempt. We use the term inverse
classification to refer to the process of finding an optimal set
of changes to a test point so as to maximize its predicted
probability of the desired class label.

Such problems are particularly prevalent in personalized
medicine. Consider the example of making lifestyle choices
that minimize your long-term risk of cardiovascular disease
(CVD). Risk prediction incorporates many factors including
demographics (e.g. age, gender), lab measurements (e.g. BMI,
triglyceride level), medications, and lifestyle (e.g. diet, exer-
cise). Building an accurate predictor may require a complex
nonlinear mapping from an individual’s EHR data to CVD
risk. Once an individual’s risk has been predicted, we can

work “backwards” through the classifier to obtain recommen-
dations. We approach the recommendation step by defining an
optimization problem: what is the smallest (or, easiest) set of
feasible changes that the person can make in order to minimize
the predicted probability of developing CVD?

In order to ensure that such recommendations are feasible
in the real world, we must segment the predictive features
into groups based on whether or not they are changeable.
Clearly it is not useful to recommend that a person reduce
their age by ten years. We therefore segment features into two
categories: unchangeable and changeable features. Changeable
features can be further segmented into two groups: directly
changeable and indirectly changeable. Directly changeable
features are those that are immediately actionable, like diet
and exercise. Indirectly changeable features, on the other hand,
are affected by the directly changeable features, but are not
actionable themselves. Blood glucose is one example – one
cannot directly alter the reading on a lab test, but they can
change their eating habits, leading to changes in glucose levels.

Our method incorporates these important considerations.
We impose individual, attribute-wise costs on the changeable
features. Cumulative costs across such features are constrained
to be within a budgetary level. We also impose feature-
value limitations that restrict the amount that each feature can
actually be changed. All of this is performed by minimizing,
or maximizing, the score obtained from a trained classifier. In
this work, we use SVMs. In practice, our formulation can
accommodate any differentiable classifier. Additionally, we
estimate the effect of direct actions taken on the indirectly
changeable features.

Our approach makes several contributions to the inverse
classification problem. First, we propose a new framework by
which the inverse classification problem can be solved. The
framework introduces a cost function on the recommended
changes. Not all recommendations are equally easy; reducing
fat intake, for example, might be easier for a person than giving
up smoking. By assigning cost values to the feature modifica-
tions, we make the recommendations both more realistic and
more individualized, since in practice a patient could supply
their own costs. Furthermore, we subject cumulative changes
and their associated costs to fall within a specified budget,
which reflects an overall ‘willingness’ to change.

Secondly, we specify two bound-setting methods, Elastic
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and Hard-line, that iteract with the proposed framework,
allowing inverse classification to occur more freely or more
rigidly, depending upon the problem.

Thirdly, we incorporate an indirect feature estimator, that
adjusts features that change as a consequence of the directly
alterable set of features.

Lastly, we propose a method of inverse classification that
operates within the proposed framework and can be applied
to any differentiable classifier with a Lipschitz-continuous
gradient.

The rest of the paper is organized as follows. Section II
reviews past works done on inverse classification. Section III
describes our proposed framework and new method of inverse
classification. Section IV relates two experiments conducted
using both our proposed method and a sensitivity analysis-
based benchmark method. These experiments are performed
on two freely available datasets: a real-world cardiovascular
disease dataset, and a benchmark dataset from the UCI Ma-
chine Learning Repository. Section V concludes the paper.

II. RELATED WORK

Inverse classification can be seen as a form of sensitivity
analysis, the process of examining the input features’ effects
on the target output. By adjusting the inputs to a model
and examining the way the output changes, one can surmise
the individual and cumulative effects that the features have.
Sensitivity analysis is inherent to inverse classification, as the
process involves changing the inputs in such a way that a
desired outcome is observed.

Consider a trained logistic regression model. In the absence
of multi-collinearity, the beta coefficients and corresponding p-
values can be examined. These give an idea of which features
are important to the target class. Features having coefficients
with very low p-values are important to the predictive problem.
The sign of the coefficient tells us whether a particular feature
is indicative of the positive class, or the negative class.

There are more complex methods of performing sensitivity
analysis. Such methods include variation of parameters, local
sensitivity analysis, and domain-wide analysis [1], as well as
equation, weight magnitude, and variable perturbation methods
[2].

Of these methods, inverse classification is most similar to
the variable perturbation method. This method calls for exam-
ining the changes in the output as the input values are changed.
Inverse classification further extends variable perturbation by
incorporating a notion of local sensitivity analysis. That is, the
perturbations are centered about a particular test point.

Past works on inverse classification can be looked at from
two distinct perspectives: the manner in which the algorithms
operate – greedy [3, 4, 5, 6] and non-greedy [7, 8] – and
the types of data they can handle – discrete [3, 4, 5] and
continuous [6, 7, 8]. Greedy methods work by iteratively
selecting attribute values that most increase or decrease some
objective value. In [3] the authors select attribute values that
maximize class discrimination (measured using gini index) in
favor of the target class. In [4, 5] attributes are selected such

that the probability of a negative outcome is minimized. The
way in which these attributes are greedily selected also differs
between the methods. Chi et al. and Yang et al. use a weighted
k-nearest neighbor [9] approach to provide a set of viable
discrete attribute values [4, 5]. Aggarwal et al. leverage their
own data structure, called inverted lists, that indexes training
instances and each instance’s corresponding class by attribute
and value. Such a method also relies on discretization [3].

Mannino and Koushik [6] use a genetic algorithm that
constructs an artificial data point based on the training data
and then attempt to minimize the distance between this point
and a given test instance, weighted by the cost of creating
such an artificial point. The cost is specified according to the
attribute-wise changes that were made to create such a data
point. This method works on continuously-valued attributes.

Greedy approaches tend to make the most radical changes
possible. When constructing recommendations in applications
such as health care, these methods may well make unrealistic,
and therefore discouraging, suggestions. This issue is slightly
overcome by [6] which incorporates attribute-specific costs.
However, it fails to impose a limit or budget on the cumulative
amount of cost that can be incurred. The majority of these
methods (with the exception of [6]) also rely on discrete data.
Such forced discretization leads to course-grained results; for
example, reducing fat intake from “medium” to “low” is not
a clear recommendation.

Non-greedy methods overcome these issues by focusing on
moderate objectives instead of radical ones. In [8] Pendharkar
uses data envelopment analysis (DEA) to find the efficient
frontier of those training instances that take on the negative
class (e.g., high risk). Test points that fall within such a
frontier are then manipulated such that they are moved across
it. Barbella et al. use a maximally separating surface, given by
support vectors, their corresponding labels and alpha values,
learned from the training data [7]. They attempt to minimize
the squared Euclidean distance between a test point and a
training point, requiring that such a training point fall exactly
on the separating surface. The algorithm is referred to as
border classification. While these methods are an improvement
over those that are greedy, they have shortcomings. In the
former case, a sufficient number of negative instances must
exist in order to ensure that a suitable frontier is constructed.
In the latter, there is no guarantee that any points fall on the
separating surface itself, which would mean that no feasible
points exist.

III. AN INVERSE CLASSIFICATION FRAMEWORK AND
METHOD

In this section we propose a new inverse classification
framework, and a method that can be used within the frame-
work to solve the problem. We begin by generally discussing
the problem and introducing some notation.

Suppose {(xi, yi)}i=1,2,...,n is a dataset of n instances
where xi ∈ Rp is a column feature vector of length p and
yi ∈ {−1, 1} is the binary label associated with xi for i =
1, 2, . . . , n. Let X = [x1, ...,xn]T ∈ Rn×p denote the matrix



of training instances with (xi)T ’s being its rows. Many clas-
sification models, including logistic regression, naive Bayes,
support vector machines (SVMs), decision trees and neural
networks, can be trained with this dataset and used to predict
the class of new instances. Different from most of the existing
literature, given a new instance x ∈ Rp, our goal is not only
to classify it to the positive or the negative class but also to
recommend an update on x that minimizes its probability of
being classified as positive. We assume one unit change in
each feature of x will incur a cost and that only a limited
amount of budget B is available. We propose a numerical
framework and algorithm that recommends an optimal change
on x based on a classification model that incorporates this
budgetary constraint.

A. Framework

Suppose we are allowed to change some of the features of
instance x to obtain a new version x′. Also suppose we want
this change to minimize the probability of x′ being classified
as positive. With a classifier f(x), such an x′ can be obtained
by minimizing f(x) over the features of the new version x′.

However, due to some physical or economical reasons, we
cannot search for the optimal x over the whole feature space
Rp. In particular, we assume the features {1, 2, . . . , p} can be
partitioned into two subsets C and U . Given a feature vector
x, let xC and xU represent the sub-vectors of x that contain
only changeable and only unchangeable features, respectively.
Since xU cannot be changed, we will minimize f(x) by
optimizing xC . Hence, we represent f(x) as f(xU ,xC) to
distinguish these two sub-vectors. In addition, we assume the
reasonable value of each changeable feature in C must be
within an interval, denoted by [li, ui] for i ∈ C. Moreover, the
costs for increasing and decreasing any feature xi by one unit
are denoted by c+i and c−i , respectively. Give a limited budget
B, the optimal feature design problem for a given instance x
can be formulated as follows:

min
x′C∈R|C|

f(xU ,x
′
C) (1)

s.t.
∑
i∈C

c+i (x′i − xi)+ + c−i (x′i − xi)− ≤ B

li ≤ x′i ≤ ui for i ∈ C,

where (x)+ = max{0, x} and (x)− = max{0,−x}.
In a more general setting, some of the features in C can

be changed directly by the designer. We call these features
the directly changeable features. However, there are features
that cannot be changed directly. Instead, they are changed
as a consequence of the changes in the directly changeable
features. We call these indirectly changeable features. In Chi
et al. [4] the effects of the directly changeable on the indirectly
changeable features are measured upon completion of the
inverse classification process. Our method incorporates them
as part of the optimization.

To model this phenomenon, we further partition the features
in C into two subsets, D and I , which represent the sets of
directly and indirectly changeable features, respectively. When

we optimize the features, we can only determine the value
for xD and the values of xI will depend on xD and xU .
Therefore, we model the dependency of xI on xD and xU
as xI = H(xD,xU ) where the mapping H : R|D|+|U | →
R|I| is assumed to be smooth and differentiable. Note that the
mapping H can be trained using the same training instances
for f(x). Therefore, we represent f(x) as f(xU ,xI ,xD) to
distinguish these three blocks so that the feature optimization
problem (1) can be generalized to

min
x′D∈R|D|

f(xU , H(x′D,xU ),x′D) (2)

s.t.
∑
i∈D

c+i (x′i − xi)+ + c−i (x′i − xi)− ≤ B

li ≤ x′i ≤ ui for i ∈ D.

We outline two specific methods for solving H(x′D,xU ) in
Section IV.A.3.

1) Hard-line and elastic bound-setting methods: The con-
straints in (1) and (2) are flexible enough to model different
feature perturbation requirements. Specifically, there are two
ways that the lower and upper bounds can be parameterized,
each resulting in different algorithmic behavior.

The first is rigid with respect to test point x’s original
directly changeable values: if c−i = 0 then li = xi, and if
c+i = 0 then ui = xi where i ∈ D. Such box constraint
parameterization prevents feature i from being increased with-
out cost if c+i = 0, or from being decreased without cost
if c−i = 0, even if doing so would be beneficial according
to the local function space, determined by f(x). This allows
for more control over the recommendations being made to
individuals. Say, for example, that we have specific domain
knowledge that indicates that it is always beneficial to increase
feature i ∈ D and that this increase comes at a cost c+i > 0
while the decrease is cost free (c−i = 0). However, due to
noisy data, the learned model believes that decreasing this
feature is beneficial. As a result the algorithm will recommend
decreasing xi to an extreme value, e.g., −∞. Setting li = xi
prevents our algorithm from making such a change. We refer
to this as the Hard-line bound-setting method.

The second is less rigid, allowing feature i to increase even
if c+i = 0, or to decrease even if c−i = 0. To obtain such
behavior, if c+i = 0 then ui = max{1, xi} and if c−i = 0 then
li = min{0, xi}. We refer to this as the Elastic bound-setting
method.

In practice, we acknowledge any combination of these
bound-setting methods can be used in a feature-specific man-
ner. Bounds and costs can also be imposed such that indi-
viduals costs are incurred differently, depending on whether a
specific feature is increased or decreased.

B. Method

To solve the inverse classification problem, according to (1)
and (2), we assume the objective function f is differentiable
and its gradient is Lipschitz continuous. Under this assump-
tion, if f is linear, the problem can be solved optimally and



efficiently. If, however, the objective function is highly non-
linear and non-convex, finding the globally optimal solution is
NP-hard, in general. Because we do no wish to make further
assumptions about the linearity of f , we focus on methods that
can solve both these and the harder non-linear, non-convex
class of function.

The available techniques that can be applied to non-
convex, constrained optimization problems (see [10, 11, 12]
and extensive references therein) include: (a) deterministic
approaches such as branch and bound [12, 13], function
approximation [14], cutting plane methods [15], difference of
convex functions methods [16]; and (b) stochastic approaches
such as simulated annealing [17] and genetic algorithms [18].
However, these methods are typically slow and do not scale
to large problems1.

Therefore, our list of potential methods is left to include the
projected/proximal gradient method [19, 20, 21, 22] and the
zero-order method [21]. If f(x) is second-order differentiable,
the list of potential methods can be extended to include
regularized Newton’s method [23, 24], sequential quadratic
programming [25], and BFGS [26]. Among these methods,
the projected gradient method and the zero-order method can
guarantee that the iterative solution converge to a stationary
point at a rate of O( 1

t ). The rest of the methods only guarantee
asymptotic convergence, with no specified convergence rate.
Since the zero-order method is appropriate only when evalu-
ating the gradient of f is difficult, which is not our case, the
appropriate method to apply with good theoretical guarantees
is the projected gradient method.

1) The Projected Gradient Method: Before we present the
projected gradient method, we need to reformulate (1) or
(2) using the difference of the original features and updated
features as our decision variables. Because space is limited, we
will only conduct the reformulation and present the algorithm
for (2), but the same technique can be applied to (1). In (2),
we define z = x′D − xD and, by changing variables, (2) can
be equivalently written as

min
z∈∆D

g(z) (3)

where g(z) ≡ f(xU , H(xD + z,xU ),xD + z),

∆D ≡
{
z ∈ R|D|

∣∣∣∣ ∑i∈D c
+
i (zi)+ + c−i (zi)− ≤ B,

l′i ≤ zi ≤ u′i for i ∈ D.

}
, (4)

l′i = li − xi and u′i = ui − xi for i ∈ D. The projection
mapping onto the set ∆D is defined as

Proj∆D
(w) ≡ arg min

z∈∆D

1

2
‖z−w‖2. (5)

When g(z) is differentiable and its gradient ∇g(z) is L-
Lipschitz continuous,2 which is true for our class of function,
the projected gradient method for solving (4) is then given as
Algorithm 1.

1This fact is observed first-hand in conducting our own experiments; such
an experience will be further elaborated on in Section IV.

2 ∇g(z) is L-Lipschitz continuous if ‖∇g(z) − ∇g(z′)‖ ≤ L‖z − z′‖
for any z, z′ ∈ R|D|.

Algorithm 1 Projected Gradient Method

Input: z(0) ∈ ∆D, t = 0 and η > 0
1: while Stopping criterion is not satisfied do
2: z(t+1) = Proj∆D

(z(t)) − η∇g(z(t))
3: t← t+ 1
4: end while

Output: z(t)

According to Theorem 3 of [20], when η ≤ 1
L , Algorithm 1

guarantees that z(t) converges to a stationary point (or so-
called KKT point) of (3) in a speed of O( 1

t ), which is the
best convergence for non-convex smooth optimization.

Algorithm 1 requires solving the projection Proj∆D
(w) in

each iteration, which is itself an optimization problem. An
efficient scheme for solving this subproblem will be critical to
achieve a good time efficiency of Algorithm 1. Fortunately, if
the domain ∆D 6= ∅, it has a specific structure which allow us
to solve Proj∆D

(w) for any w with an efficient subroutine.
To see this, we define

hi(w, λ) =


w − λc+i if λ ≤ w

c+i
and w > 0

w + λc−i if λ ≤ − w
c−i

and w < 0

0 otherwise

(6)

for each i ∈ D. The subroutine is given in Algorithm 2.

Algorithm 2 Projection Mapping Proj∆D
(w)

Input: w ∈ R|D|, {c+i }i∈D, {c−i }i∈D, {l′i}i∈D and {u′i}i∈D
1: A− ← {i|u′i ≤ min(0, wi)}
2: A+ ← {i|max(0, wi) ≤ l′i}
3: zi ← u′i for i ∈ A− and zi ← l′i for i ∈ A+

4: if
∑

i∈D\(A+∪A−) max{min{hi(wi, 0), u′i}, l′i} ≤ B −∑
i∈A− u

′
ic
−
i −

∑
i∈A+

l′ic
+
i then

5: λ← 0
6: else
7: Apply bisection search to find λ ∈ (0,+∞) such that∑

i∈D\(A+∪A−)

max{min{hi(wi, λ), u′i}, l′i}

= B −
∑

i∈A−

u′ic
−
i −

∑
i∈A+

l′ic
+
i

8: end if
9: zi ← max{min{hi(wi, λ), u′i}, l′i} for i ∈ D\(A+ ∪A−)

Output: z

The correctness of Algorithm 2 is ensured by the following
proposition whose proof is given in Appendix.

Proposition 1: If ∆D 6= ∅, the solution z returned by
Algorithm 2 satisfies z = Proj∆D

(w).

IV. EXPERIMENTS

In this section we outline our experimental methods and
then apply such methods to two datasets. The first dataset is
a benchmark dataset from the UCI Machine Learning Repos-
itory [27] called Student Performance [28] and the second is



Fig. 1: The experiment process. (1) Data partitioning, (2) Pa-
rameter and model learning, (3) Inverse classification process
on test instances (4) Learn a validation model, (5) Validate
inv. class. test instances, (6) Assess results.4

from ARIC, the Atherosclerosis Risk in Communities study
[29]. We emphasize that both datasets are publicly available.
The latter requires explicit NIH permission3. Our experiments
on the ARIC dataset, which mitigates patients’ long-term risk
of developing cardiovascular disease (CVD) is guided by one
of the co-authors of this paper who is a CVD specialist.

A. Experimental Setup

In this section we outline a general process of validating
inverse classification methods, the learning algorithm used to
conduct the inverse classification, two methods for estimating
indirectly changeable features, and the method we will use as
benchmark to which our method can be compared.

1) Process: Our process of making and evaluating recom-
mendations is based on that proposed by [4]. Essentially, we
are attempting to ‘go back in time’ and make recommendations
such that the probability of a known outcome is reduced. In
other words, we are using data from the past in which known
outcomes are observed. We then make recommendations that
reduce the probability of a negative outcome occurring. But,
in the absence of a time machine, we need a way to validate
whether we have actually reduced the probability of a such an
event occurring. Such a method requires careful segmentation
of the data such that none of the information used to make
recommendations is used in validating the probability of an
outcome occurring. The process is related as follows:

Step 1 involves defining two different sets of data: a training
set and a testing/validation set. These two sets were generated
by splitting the initial full dataset into two equal parts. Data
cleansing and preparation were also performed. This involves
imputing missing values (mean) and normalizing the data
values to be within [0, 1].

Step 2 uses the training set to learn a model f . During
this step cross-validation can be used to find the optimal
parameters of f , if necessary. We also perform cross-validation
to obtain optimal parameters in the model xI = H(xD, xU )
for indirectly changeable features. These models are then used

3Obtained via BioLINCC.
4Graphics courtesy of: flaticon.com

with (2) to perform the inverse classification that generates
recommendations.

Step 3 involves partitioning the testing set such that a group
of test instances are set aside. (2) is applied to these individuals
about whom recommendations are obtained. The remaining
test instances are used in Step 4.

Step 4: In this step the remaining instances from the second
set of data are used to learn a separate validation model. As
in Step 2, we learn a model f and xI = H(xD,xU ).

Steps 3 and 4 both employ 10-fold cross-validation, in
which one fold is used as a set of test instances, and the
remaining nine folds are used to train the validation model. In
this manner, all of the second set of data can be used as test
instances for which we obtain recommendations.

Step 5: Here we apply the recommendations made to
each of the test instances in Step 3. For each test in-
stance x and its modified counterpart x′, we then evaluate
f(xU , H(x′D,xU ),x′D) with f and H being the validation
models from Step 4 and obtain a probability for x′.

Step 6: Here we examine the probabilities obtained for each
of the test instances x and x′ to assess the validity of our
method.

2) Inverse classification based on SVM: Among classifi-
cation models, kernel SVM is one of the most widely used.
Compared to the classical linear SVM, kernel SVM is more
appropriate for data in which two classes of instances have
a nonlinear boundary. A kernel SVM model can be trained
using its dual formulation which is related by the optimization
problem

max
α∈Rn

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjy
iyjk(xi,xj) (7)

s.t.
n∑
i=1

αiy
i = 0 and 0 ≤ αi ≤ C for i = 1, 2 . . . , n,

where k(x,x′) : Rp × Rp → R is a kernel function that
measures the similarity between any pair of instances x and
x′ in Rp. The commonly used kernel functions include linear
kernels k(x,x′) = xTx′, polynomial kernels k(x,x′) =
(1 + xTx′)d for any positive integer d, and Gaussian kernels
k(x,x′) = exp

(
−‖x−x

′‖2
2σ2

)
for σ > 0 where ‖ · ‖ represents

the Euclidean norm in Rp.
Suppose the optimal solution of (7) is α∗ ∈ Rn. An SVM

classifier can be derived based on the function5

f(x) =

n∑
i=1

α∗i y
ik(xi,x), (8)

where the instance xi with α∗i > 0 is called a support vector.
Given a new instance x, the value of f(x) represents how
similar x is to the positive class. A larger value of f(x) means
that x is more likely to be positive.

5In fact, the exact kernel SVM classifier is fb(x) =
∑n

i=1 α
∗
i y

ik(xi,x)+
b where b is an offset value such that the new instance x is classified to be
positive if fb(x) > 0 and to be negative otherwise.



However, the scores obtained from f(x) do not correspond
to likelihood directly. Therefore, we apply Platt’s Method [30].
Platt’s Method transforms the scores obtained from applying
f(x) to probabilities; specifically, the probability of being
positive. By applying this method we learn a probability space
that is more easily interpretable.

We elect to use the Gaussian kernel SVM in both sets of
experiments. This is for three reasons. The first is that such
a function is highly nonlinear and complex, giving us the
opportunity to explore a more extreme classifier by which
we can assess the effectiveness of our method. Secondly, the
Gaussian kernel can be used to assess point similarity. This is
beneficial in our experiments as one of our assumptions is that
similar points will have similar probabilities associated with
them. Finally, using the σ parameter, we can control the size
of the neighborhood used to assess point similarity. That is,
the larger the σ the more similar distant support vectors are
considered to be to test point x.

Therefore, our objective function, outlined in (1) and (2), be-
comes (8) with features segmented into appropriate groups and
the indirect feature estimator, outlined in the next subsection,
incorporated. We explicitly note that the minimization task is
not to minimize the learned margin, but to minimize the SVM
score. More appropriately, by applying Platt’s method, we will
be minimizing probability directly.

3) Estimating Indirectly Changeable Features: In our
experiments we propose two different models of xI =
H(x′D,xU ) for estimating indirectly changeable features. The
first one is the linear LASSO [31] model, learned using the
training dataset. In particular, for each indirectly changeable
feature j ∈ I , we solve

min
βj∈R|U|+|D|+1

1

2
‖xj − [1, XU,D]βj‖2 + λ ‖βj‖1 (9)

where xj ∈ Rn represents the column of feature j in the
training dataset and [1, XU,D] is the matrix of the unchange-
able and directly changeable features of the training instances
with an all-one column inserted to account for the offset
value. The regularization parameter λ is selected based on
cross-validation. The `1-norm regularization in (9) will enforce
sparsity in the solution βj . After solving (9), we build a linear
model xj = [1,xTU ,x

T
D]βj by only retraining the non-zero

components of βj from (9).
Applying this procedure to each indirectly changeable fea-

ture j ∈ I results in a coefficient matrix B ∈ R(|U |+|D|+1)×|I|

with B = [βj ] j ∈ I . Hence, the model xI = H(xD,xU ) in
(2) becomes xI = BT [1,xTU ,x

T
D]T .

The second model we propose to use is based on Kernel
Regression [32, 33]. In particular, the model xI = H(xD,xU )
used in (2) is

xI =

∑n
i=1 k([xiD,x

i
U ], [xD,xU ])xiI∑n

i=1 k([xiD,x
i
U ], [xD,xU ])

, (10)

where the kernel k(x,x′) = exp
(
−‖x−x

′‖2
2σ2

)
(Gaussian) and

the value σ > 0 is selected based on cross-validation. By using
the model in (10) with the Gaussian kernel we are provided

with the added benefit of a point similarity assessment in
making estimations. The model works by considering the
known xiI , that are closer to x, more favorably than those
that are further away. In so doing, (10) obtains an estimate for
xI based on points that are most similar to it.

4) Methodological Benchmark: We compare our method
of solving the inverse classification problem with that of
a sensitivity analysis-derived variable perturbation method
(which we refer to as ‘benchmark method’ for the sake of
brevity) [2], which we incorporate into our framework. This
method operates by iteratively perturbing each feature xDi

i ∈ D to the bounds of feasibility. The objective function is
then evaluated. If this value is found to be better than any of
the previous single-feature perturbations, the perturbation is
accepted. After making single-feature perturbations, if some
amount of budget B remains, then subsequent rounds of
perturbations occur (double-feature perturbation, triple-feature
perturbation, etc.).

The reason we use such a method for comparison is because
all past methodological works (outlined in Section II) are
unable to accommodate one, if not many, aspects of our
specified framework. As an example, in [6], feasibility equivo-
cates to a definitive “desirable class” classification, which will
sometimes lead to infeasible solutions in our framework.

We also attempted to compare our method against the global
solver BARON [34], using the simpler objective function in
(1), on the CVD dataset. This solver, however, was unable to
find a single solution after a runtime > 48 hours. Therefore,
such a method was not further explored.

B. Grade-improving Recommendations

To validate the effectiveness of our method we selected the
Student Performance dataset from the UCI Machine Learn-
ing repository. We will first describe this dataset and then
discuss the results obtained from applying our experimental
methodology outlined by Figure 1. On this dataset we use both
methods of indirect feature estimation, and both the Hard-line
and Elastic bound-setting methods. We compare our method
of inverse classification against that outlined in Section IV.A.5.

1) Data Description: These data consist of individual Por-
tuguese students enrolled in two different classes: a math class
and a Portuguese language class. These are represented as
two different, but overlapping, datasets. The one used in this
experiment was the Portuguese language class, as it contained
the greater number of instances (n = 649).

Each student-instance has 45 associated features, including
a unique identifier and class variable. Therefore, p = 43.
These 43 features are either ordinally- or nominally-valued.
The nominally-valued features were binarized for this ex-
periment. The variables pertain to several categories of each
student’s life. There are those that capture parental information
(e.g., mother and father education), home-life information
(e.g., have internet), personal social information (e.g., amount
of time student goes out during the week), and school infor-
mation (e.g., absences from school).



(a) Benchmark Method – Linear Indirect Estimator (b) Our Method – Linear Indirect Estimator

(c) Benchmark Method – Kernel Indirect Estimator (d) Our Method – Kernel Indirect Estimator

Fig. 2: The probability of earning a poor grade vs. budget for both Hard-line and Elastic bound-setting methods.

The dependent variable is the student’s grade in the class,
represented as a continuous numerical value. Cortez and Silva
originally provided three different grade updates, representing
the student’s grade one and two thirds of the way through the
class, as well as the final grade [28]. We use the final grade as
the dependent variable, and discard the other two. We then turn
this continuous variable into a two-class variable. We define
“1” to be a grade of C or below and “-1” to be a grade of B or
above, using appropriate numerical cutoffs [35]. Because “1”
is a lower grade, our task will be to make recommendations
that minimize this probability.

We then categorize each variable as being either unchange-
able, indirectly changeable, or changeable. The latter class
of variable, as discussed, are those for which we can make
recommendations. We also specify individual costs to change
each of these, and include them as non-zero values in either
c+ or c−, which dictates whether increasing or decreasing the

variable incurs a cost. These include “weekday alcohol con-
sumption” (c−WkAlco = 3) and “weekend alcohol consumption”
(c−WendAlco = 6). The full set of these can be viewed in Table I
in the Appendix.

We also specify several indirectly changeable features.
These include a desire to pursue higher education and the
amount of free time the student has.

2) Results: Our first set of results relate how, by linearly
increasing the budget level B, we can continue to decrease the
probability of a low grade.

Figure 2 shows the results of this budgetary increase. The
red line shows the average probability among the 324 test
instances. The dotted blue lines show the top 95th and bottom
5th percentile of probabilities. The yellow line shows the
probability of “Student 135”, a randomly selected student who
originally earned a grade of C or less (known positive test
instance). We will show the recommendations made for this



individual shortly.
We only report four figures for our eight experiments

– linear-based indirect feature estimator with the Hard-line
bound-setting method for both our method and the benchmark
method, linear-based indirect feature estimator with Elastic
bound-setting method for both our method and the benchmark
method, kernel-based indirect feature estimator with Hard-line
bound-setting method for both our method and the bench-
mark method, and kernel-based indirect feature estimator with
Elastic bound-setting method for both our method and the
benchmark method – because the results of both bound-setting
methods were the same. This occurred because our algorithm
found no benefit to making recommendations that went in the
opposite direction of those that incurred costs, nor did the
benchmark method.

Figures 2a and 2b show the results of the benchmark method
and our method,respectively, using the linear indirect feature
estimator. As is easily observed, the benchmark method (Fig-
ure 2a) was entirely unsuccessful in reducing the probability
of a poor grade for both the test set as a whole and Student
135. Our method rapidly rapidly decreased both probabilities.

Figures 2c and 2d show the results of the benchmark method
and our method, respectively, using the kernel-based indirect
feature estimator. Similar to that of the linear indirect feature
estimator, the benchmark method (Figure 2c) was unsuccessful
in reducing the probability of a poor grade. Here, our method
was again rapidly able to reduce both probabilities. It can
be noted, however, that the benchmark method was able to
produce a slight decrease in average probability as the budget
constraint was incremented. The top 95% of the data at a
budget level of eight also saw a decrease in probability, if
only slightly. The probability of Student 135 was unmoved,
however.

In both cases, our method performed substantially better
than that of the benchmark. Therefore, the remainder of the
discussion and results will focus on our method.

There are differences between the two indirect feature-
estimators when employing our method. Overall, the kernel
method more quickly reduced the probability of individuals
falling within the top 95th percentile (Figure 2d) vs. that
of the linear method (Figure 2b). In the average case, the
methods performed very similarly. However, the linear method
more quickly decreased the probability for “Student 135”.
This suggests that there are instances in which it is more
beneficial to use the linear method, and instances in which
it may be more beneficial to use the kernel-based method.
For this problem and dataset, it seems that the more effective
method is the linear-based estimator.

We now examine the recommendations made for “Student
135” over these 20 budgetary constraints using our method.
Figure 3a shows the recommendations made using the linear-
based indirect feature estimator and Figure 3b shows the
recommendations made using the kernel-based indirect feature
estimator.

The two indirect feature estimation methods have resulted in
slightly different recommendations being made. From budget 1

(a) The linear-based indirectly changeable feature estimator.

(b) The kernel-based indirectly changeable feature estimator.

Fig. 3: Recommended changes for Student 135 vs. budget for
both Hard-line and Elastic bound-setting methods.

to 12 the recommendations made are virtually the same: first
daily alcohol consumption is reduced as much as possible,
then the student is recommended to attend class more often,
before being recommended to curb their weekend drinking.
From here the algorithms traded off between recommending
more studying and less time out with friends.

C. Cardiovascular Disease-mitigating Lifestyle Recommenda-
tions

We now apply our method to a real-world patient dataset
called ARIC, initially comparing the result to those obtained
using the benchmark method. We follow the same experimen-
tal methodology outlined previously, but with a more specific
focus. Specifically, we refine our experiments to use only
the kernel-based method of indirect feature estimation, along
with the Hard-line bound-setting method. We do this for the
same reasons that we elected to use the Gaussian kernel in
the optimization. This set of experiments is also guided by
a cardiovascular disease (CVD) specialist. It is because of
such expertise that we have elected to use only the Hard-line
bound-setting method, over that of the more permissive Elastic



bound-setting method. The goal of these experiments is to
make recommendations that optimally reduce the probability
of patients developing CVD over the next 10 years. Similar
to the previous experiments we will first provide a description
of the dataset and then discuss the results.

1) Data Description: The ARIC dataset contains patient
information. This patient data was collected as part of a large
prospective epidemiological study. The study began in 1987,
recruiting individuals from four different communities. A sam-
ple of approximately 4000 patients, ranging in age from 45 to
64, was taken from each. The study began with an initial exam.
During this exam patients were asked to fill out a lifestyle
survey, which asked how much and how frequently certain
foods were consumed, and how often patients exercised,
for instance. Measurements were also taken. These included
blood samples to record molecular-level information, such as
blood glucose, as well as height and weight measurements.
Demographic information was also collected. Proceeding the
initial exam, follow-ups examinations occurred on a semi-
annual basis.

Our dataset contains the patient information collected at the
initial exam in 1987. Our class variable is defined based on
certain cardiovascular disease events that occurred or did not
occur over the following 10 years. Specifically, if a patient
had one or more of the following diagnoses, then his or
her binary ‘CVD’ class variable was encoded as 1: probable
myocardial infarction (MI), definite MI, suspect MI, definite
fatal coronary heart disease (CHD), possible fatal CHD, and
stroke. Patients not having any of these diagnoses have their
CVD class variable encoded as -1.

Our dataset contains 12907 patients, and excludes those
individuals in the ARIC study who had one of the aforemen-
tioned diagnoses at the beginning of the study. Each individual
has 110 features recorded. These include demographics, such
as age and race; lifestyle, such as number of exercise hours and
cigarettes smoked per day; measurements that are easy to take,
such as height and weight; and molecular-level measurements
that are taken from a blood sample, such as sodium and
potassium levels.

We define each of the 110 features to be either unchange-
able, directly changeable, or indirectly changeable. Demo-
graphic features fall entirely in the unchangeable category, for
example. Measurement features fall almost exclusively in the
indirectly changeable feature category, except features such as
height. There are 61 such indirectly changeable features. The
features that we include in the directly changeable category
are those that pertain to lifestyle, such as diet and exercise.
For each of the changeable features our CVD specialist
parameterized an associated cost to change, also specifying
whether each feature cost belonged to the c+ or c− vector.
The full list of these can be viewed in Table II located in the
Appendix.

Our CVD specialist also recommended we impose special
caveats on two of the directly changeable features: alcohol in-
take and exercise hours per week. According to our specialist,
both alcohol and exercise are best in moderation. We take a

somewhat naive approach in determining what these moderate
values are. On the training data, for each of the variables,
we created 10 equally-spaced bins. Each training point was a
member of one bin. We then compute the probability of CVD
for each bin based on the number of people who had a CVD
event occur over the population in that bin. We then selected
the bin with the lowest probability of CVD, defining its center
to be the ideal value. Therefore, if a test patient was found to
be below this value, then the upper bound ui was set equal
to it. If, on the other hand, the patient was found to have a
value above this, then the lower bound li was set equal to it.
These values were found to be 9.55 exercise hours per week
and 66.29 grams of alcohol per week.

2) Results: Figure 4 shows the decrease in probability as
budget increases. The red line shows the average probability
of CVD among the 6454 test patients. The blue line shows the
CVD probability of the top 95 and bottom 5% of test patients.
The yellow line shows the CVD probability of a randomly
selected test patient who ended up having a CVD event (known
positive test instance). We refer to this patient as “Patient 15”.

Figures 4a and 4b show the results of the benchmark
method and our method, respectively. As we can observe, the
benchmark method (Figure 4a) was somewhat successful in
initially reducing the average probability, and that of Patient
15. The top 95% of the data also decreases as budget is
increased. The probability of Patient 15%, however, plateaus
shortly after a budget of one. By comparison, our method
(Figure 4b) was far more successful in reducing the probability
of CVD at each budget constraint in both the average case and
for “Patient 15”. The reduction in probability of those patients
who fall in the top 95%, including “Patient 15” is reduced
drastically as budget increases. The average case decreases
at a slower rate. This makes sense, as we would expect to
see diminishing returns for healthier individuals. Of additional
note is the large initial decrease in probability when B = 1.
This effect is observed in the average case and in the case of
“Patient 15”.

We will now examine the changes recommended to “Patient
15” over the 20 budgetary constraints using our method.
These can be observed in Figure 5. At a budgetary constraint
of one, our algorithm has decided that the most beneficial
and cost-effective thing to do is to eat more dark or grain
breads. From here, at B = 2, our method trades consuming
more bread for decreasing the number of cigarettes smoked.
At a budget of three, our algorithm recommends increasing
the intake of fruits and vegetables. Fruits and vegetables are
increased until a budgetary constraint of 8. Interestingly, at
a budget of eight, and again at a budget 11, our method
trades on and off decreasing sodium intake, while continuing
to increase the consumption of fruits and vegetables. At a
budget of 13, however, sodium begins to become a more
dominant recommendation. At a budget of 16, dietary fiber
is recommended to increase as the budget continues to go
up. The last recommendation made is to slightly increase the
consumption of nuts.

These changes across different budgetary constraints



(a) Benchmark method (b) Our method

Fig. 4: CVD probability vs budget using the kernel-based indirectly changeable feature estimator and the Hard-line bound-
setting method.

demonstrate the power of our method. Recommendations
depend highly on the amount of effort an individual is willing
to exert. Things like smoking and the consumption of fruits
and vegetables are consistently recommended, given certain
budget levels. Others, like sodium, depend highly on the level
of effort.

Fig. 5: The recommendations made to Patient 15 using the
kernel-based indirectly changeable feature estimator and the
Hard-line bound-setting method.

V. CONCLUSIONS AND FUTURE WORK

In this work we propose and validate a new framework
and method for inverse classification. These overcome the
shortcomings of past works in a number of ways. First, our
framework accounts for the fact that there are features that

cannot be acted upon, features that can be directly acted upon,
and features that are in-actionable, but are indirectly affected
by the direct actions that can be taken. We incorporate the
various costs needed to take different actions, as well as a
threshold amount that individuals are willing to cumulatively
change. Imposing such costs and budgetary constraints avoids
overly recommendations while still moving the individual in
an optimal direction. Our framework makes use of features of
all types (discrete and continuous), and is highly modular.

This modularity is expressed in four different ways. The
first is the number of model choices available. While we
use SVMs, which themselves express modularity through
the different kernel options available (Gaussian, polynomial,
linear), in practice any differentiable classifier can be used.
These include, but aren’t limited to: artificial neural networks
and logistic regression. The second is feature segmentation: the
user can decide how to segment features and whether or not to
incorporate indirectly changeable feature estimation into their
optimization. Third, the user can select virtually any learning
algorithm to estimate indirectly changeable features. Finally,
the user can decide which bound-setting method is appropriate
for their problem.

We demonstrated the efficacy of our method, as compared
to a sensitivity analysis-based method, on two datasets cover-
ing two different domains: ten year cardiovascular disease-
mitigating lifestyle recommendations and grade-improving
recommendations on a dataset from the UCI Machine Learning
Repository. On both datasets we were able to reduce the
probability of negative outcomes using an innovative valida-
tion method. The sensitivity analysis-based benchmark method
was unable to achieve even comparable performance. The
recommendations that achieved these results were reported
over differing levels of cumulative willingness to change



(budget). Such results demonstrate that our algorithm can be
tailored to the individual, and makes recommendations that
reflect what is most optimal and cost effective.

There are numerous directions for future work. Recommen-
dations that lead to a test point being re-classified are not
made instantaneously, but rather over some period of time.
We would like to incorporate these temporal changes into
our model. Treatment plans that suggest changes in temporal
increments leading to optimal values is an additional direction
of future work. We would also like to incorporate sparsity
constraints that lead to more sparse recommendations, as well
as formulations that can be used with and overcome noisy
data.

There are also areas of future work pertaining to the
application of such a method. In addition to cardiovascular
disease-mitigating lifestyle recommendations, we would also
like to make recommendations about medications, such as
statins. Such a problem is inherently difficult to address as
medication-takers are often associated with negative outcomes.
Future work will also apply this algorithm to recommending
optimal cancer treatment plans.

REFERENCES

[1] S. S. Isukapalli, Uncertainty Analysis of Transport-
transformation Models. PhD thesis, Citeseer, 1999.

[2] J. Yao, “Sensitivity analysis for data mining,” in Fuzzy
Information Processing Society, 2003. NAFIPS 2003.
22nd International Conference of the North American,
pp. 272–277, July 2003.

[3] C. C. Aggarwal, C. Chen, and J. Han, “The inverse
classification problem,” Journal of Computer Science and
Technology, vol. 25, no. May, pp. 458–468, 2010.

[4] C. L. Chi, W. N. Street, J. G. Robinson, and M. A. Craw-
ford, “Individualized patient-centered lifestyle recom-
mendations: An expert system for communicating patient
specific cardiovascular risk information and prioritizing
lifestyle options,” Journal of Biomedical Informatics,
vol. 45, no. 6, pp. 1164–1174, 2012.

[5] C. Yang, W. N. Street, and J. G. Robinson, “10-year CVD
risk prediction and minimization via inverse classifica-
tion,” in Proceedings of the 2nd ACM SIGHIT symposium
on International health informatics - IHI ’12, pp. 603–
610, 2012.

[6] M. V. Mannino and M. V. Koushik, “The cost minimiz-
ing inverse classification problem : A genetic algorithm
approach,” Decision Support Systems, vol. 29, no. 3,
pp. 283–300, 2000.

[7] D. Barbella, S. Benzaid, J. Christensen, B. Jackson, X. V.
Qin, and D. Musicant, “Understanding support vector
machine classifications via a recommender system-like
approach,” in Proceedings of the International Confer-
ence on Data Mining, pp. 305–11, 2009.

[8] P. C. Pendharkar, “A potential use of data envelopment
analysis for the inverse classification problem,” Omega,
vol. 30, no. 3, pp. 243–248, 2002.

[9] T. M. Cover and P. E. Hart, “Nearest neighbor pattern
classification,” Information Theory, IEEE Transactions
on, vol. 13, no. 1, pp. 21–27, 1967.

[10] R. Horst and P. M. Pardalos, eds., Handbook of Global
Optimization (Volumne 1). Springer, 1995.

[11] P. M. Pardalos and H. E. Romeijn, eds., Handbook of
Global Optimization (Volume 2). Springer, 2002.

[12] A. Neumaier, “Complete search in continuous global op-
timization and constraint satisfaction,” Acta Numerica,,
vol. 13, pp. 271–369, 2004.

[13] I. P. Androulakis, C. D. Maranas, and C. A. Floudas,
“A global optimization method for general constrained
nonconvex problems,” Journal of Global Optimization,
vol. 7(4), pp. 337–363, 1995.

[14] D. R. Jones, “A taxonomy of global optimization meth-
ods based on response surfaces,” Journal of Global
Optimization, vol. 21, pp. 345–383, Dec. 2001.

[15] H. Tuy, T. V. Thieu, and N. Q. Thai, “A conical algo-
rithm for globally minimizing a concave function over a
closed convex set,” Mathematics of Operations Research,
vol. 10, pp. 498–514, 1985.

[16] H. Tuy, “Global minimization of a difference of two
convex functions,” Mathematical Programming Studies,
vol. 30, pp. 150–182, 2009.

[17] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, “Op-
timization by simulated annealing,” Science, vol. 220,
pp. 671–680, 1983.

[18] D. E. Goldberg, Genetic Algorithms in Search, Opti-
mization and Machine Learning. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1st ed.,
1989.

[19] Y. Nesterov, Introductory Lectures on Convex Optimiza-
tion: A Basic Course. Boston: Kluwer, 2004.

[20] Y. Nesterov, “Gradient methods for minimizing com-
posite objective function,” Mathematical Programming,
Series B, vol. 140, pp. 125–161, 2013.

[21] S. Ghadimi and G. Lan, “Stochastic first- and zeroth-
order methods for nonconvex stochastic programming,”
SIAM Journal on Optimization, vol. 23, pp. 2341–2368,
2013.

[22] S. Ghadimi, G. Lan, and H. Zhang, “Mini-batch stochas-
tic approximation methods for nonconvex stochastic
composite optimization,” Mathematical Programming,
vol. 155, pp. 267–305, 2014.

[23] C. Cartis, N. I. M. Gould, and P. L. Toint, “On the
complexity of steepest descent, Newton’s and regular-
ized Newton’s methods for nonconvex unconstrained
optimization problems,” SIAM Journal on Optimization,
vol. 20, pp. 2833–2852, 2010.

[24] N. I. M. Gould and P. L. Toint, “An adaptive cubic
regularization algorithm for nonconvex optimization with
convex constraints and its function-evaluation complex-
ity,” IMA Journal of Numerical Analysis, 2010.

[25] F. E. Curtis and M. L. Overton, “A sequantial quadratic
programming algorithm for nonconvex, nonsmooth con-



strained optimization,” SIAM Journal on Optimization,
vol. 22, pp. 474–500, 2012.

[26] F. E. Curtis, T. Mitchell, and M. L. Overton, “A BFGS-
SQP Method for Nonsmooth, Nonconvex, Constrained
Optimization and its Evaluation using Relative Mini-
mization Profiles,” tech. rep., New York University, 2015.

[27] A. Asuncion and D. Newman, “UCI Machine Learning
Repository,” 2007.

[28] P. Cortez and A. M. G. Silva, “Using data mining
to predict secondary school student performance,” in
Proceedings of 5th Annual Future Business Technology
Conference, EUROSIS, 2008.

[29] ARIC Investigators and others, “The Atherosclerosis
Risk in Communitities (ARIC) study: Design and ob-
jectives,” 1989.

[30] J. Platt et al., “Probabilistic outputs for support vec-
tor machines and comparisons to regularized likelihood
methods,” Advances in Large Margin Classifiers, vol. 10,
no. 3, pp. 61–74, 1999.

[31] R. Tibshirani, “Regression Selection and Shrinkage via
the Lasso,” 1994.

[32] E. A. Nadaraya, “On estimating regression,” Theory of
Probability & Its Applications, vol. 9, no. 1, pp. 141–142,
1964.

[33] G. S. Watson, “Smooth regression analysis,” The Indian
Journal of Statistics, Series A, vol. 26, no. 4, pp. 359–
372, 1964.

[34] N. V. Sahinidis, BARON 15: Global Optimization
of Mixed-Integer Nonlinear Programs, User’s Manual,
2015.

[35] StudyInEurope.eu, “Study in Portugal.”
http://www.studyineurope.eu/study-in-portugal/grades,
2016.

APPENDIX

Lists of Features

c+/c−
Feature:Cost

c+ Study time: 7, Paid tutoring: 8

c−
Time out with friends: 6, Weekday alcohol: 3,
Weekend alcohol: 6, Absences from class: 5

TABLE I: Directly changeable variables for the Student Per-
formance dataset.

c+/c−
Feature:Cost

c+
Dark or grain breads: 3, Peanut butter: 4, Nuts: 5,
Other(prunes,avocado): 5, Vegetables: 6, Fruit: 6,
Fiber: 7, Vegetable fat: 5, Polyunsaturated fat: 5

c−
Liver: 8, White carbs: 6, Fish: 9, Cereal: 4, Cigarettes:

9, Caffeine: 7, Carbs: 7, Cholesterol: 6, Sodium: 7,
Animal fat: 7, Saturated fat: 6

c+/c−
Exercise hours: 10, Alcohol: 9

TABLE II: Directly changeable variables for the ARIC CVD
dataset.

Proof of Proposition 1

Consider the index i ∈ A−. Due to the relationship l′i ≤
zi ≤ u′i ≤ min(0, wi), any feasible value of zi can be at most
u′i while deviating zi from u′i increases the objective value
of (5) and generates cost at a rate of c−i . Hence, the optimal
value for zi must be u′i for each index i ∈ A−. Similarly, the
optimal value for zi must be l′i for this index i ∈ A+.

With the optimal value of zi for i ∈ A+ ∪A− determined,
the optimization problem (5) is reduced to

min
z̃∈∆D̃

1

2
‖z̃− w̃‖2 (11)

where D̃ = D\(A+ ∪ A−), w̃ = wD̃, i.e., the sub-vector of
w containing the features in D̃, and

∆D̃ ≡

z̃ ∈ R|D̃|
∣∣∣∣∣

∑
i∈D̃ c

+
i (z̃i)+ + c−i (z̃i)−

≤ B −
∑

i∈A− u
′
ic
−
i −

∑
i∈A+

l′ic
+
i ,

l′i ≤ z̃i ≤ u′i for i ∈ D̃.

 .

For any λ ≥ 0, let zi = max{min{hi(wi, λ), u′i}, l′i} for i ∈
D̃. Using the definition of hi in (6), we can show that the
elements in the set

zi − wi + λc+i ∂(zi)+ + λc−i ∂(zi)−

are all positive only if zi = l′i and the elements in the set

zi − wi + λc+i ∂(zi)+ + λc−i ∂(zi)−

are all negative only if zi = u′i for any i ∈ D̃, where ∂(z)+

and ∂(z)− represent the subdifferentials of the functions (z)+

and (z)−
6. This indicates that (zi)i∈D̃ is the optimal solution

of the Lagrangian relaxation problem

min
l′i≤z̃i≤u′i,i∈D̃

1

2
‖z̃− w̃‖2 + λ

∑
i∈D̃

c+i (z̃i)+ + c−i (z̃i)−


with λ being the Lagrangian multiplier. Step 4 and Step 8 in
Algorithm (2) ensure (zi)i∈D̃ is a feasible solution of (11) and
satisfies the complementary slackness conditions with λ. This
implies that (zi)i∈D̃ is the optimal solution of (11) so that
(zi)i∈D is the optimal solution of (5).

6Note that the subdifferential of a non-smooth function at some point can
be a set.
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