
Finding Hierarchical Communities in Complex Networks
Using Influence-Guided Label Propagation

Wenjun Wang and W. Nick Street
Department of Management Sciences

University of Iowa
Iowa City, IA 52242, USA

e-mail: {wenjun-wang, nick-street}@uiowa.edu

Abstract—Communities play fundamental organizational
and functional roles in various complex network systems.
Community detection is an important challenge in network
analysis. We approach community detection based on a Shared-
Influence-Neighbor (SIN) similarity metric that measures the
closeness of a pair of nodes in terms of their mutual influence
and the common set of nodes they both influence. In this paper,
we present two novel influence-guided label propagation (IGLP)
algorithms. One is called IGLP-Weighted-Ensemble (IGLP-
WE), in which each node adopts the label of the majority
of its neighbors, weighted by the SIN similarity. This simple
weighting scheme effectively resolves the significant stability
issue in conventional label propagation algorithms. The other
is called IGLP-Direct-Passing (IGLP-DP), in which the label is
propagated directly from one node to its most similar neighbor
step by step. This new label propagation method produces a
deterministic partition and requires no convergent iterations.
For both IGLP-WE and IGLP-DP, we regard the resultant
partitioning as the initial configuration of the community struc-
ture. We then perform agglomerative hierarchical clustering to
uncover the hierarchical communities at different scales using a
new cluster-proximity measure. Extensive tests on a set of real-
life networks and synthetic benchmarks demonstrate superior
performance of our algorithms in terms of both quality
and efficiency in undirected/directed and unweighted/weighted
networks. Both IGLP-WE and IGLP-DP manifest promising
scalability for large-scale networks.

Keywords-community detection, influence diffusion, label
propagation, hierarchical clustering

I. INTRODUCTION

Community is one of the most significant structural
properties in networks. From a karate club of tens of
members to large-scale online social networks with millions
of participants, from functional protein modules in biology
to arXiv citation networks, community structures occur in
various network systems. Community detection is of great
importance in a wide variety of applications. However,
finding meaningful communities is a difficult task. Despite
the active attention and efforts from many disciplines, there
are still many open issues.

Due to ambiguity in the definition of community, a
surprisingly large number of algorithms have been presented
using many different objective functions and performance
metrics. Unfortunately, it is not clear which algorithms are

more consistently reliable in practice. Further, numerous
networks in diverse domains (such as Twitter and the Web)
are directed and/or associated with weights on edges to
differentiate the strength of the connections. Nevertheless,
most existing algorithms ignore the link direction and/or the
weights, which may cause considerable loss of information
and lead to unreliable or even misleading results. Moreover,
complex network systems often exhibit hierarchical com-
munity structure in which small communities successively
group together to form larger ones. However, the number
of algorithms that can identify hierarchical communities
in complex networks is limited, and those that do are
usually not scalable to large-scale networks. We propose
the following general but essential design principles for new
community-detection algorithms, and suggest using them as
evaluation criteria for a more comprehensive performance
comparison across various algorithms.

• Applicability: Many algorithms have been proposed
for undirected binary networks. However, directionality
and weights are usually essential features of diverse
networks. Ignoring the edge direction and weights fails
to capture the asymmetric relationship or the strength
of the relationship between vertex pairs. An applicable
algorithm should be able to incorporate the directional-
ity and weights such that it can be applied to not only
undirected binary networks but also directed/weighted
networks.

• Quality: An algorithm should be evaluated using a set
of well-known network benchmarks with or without
known communities, i.e., ground truth. For a network
with known communities, the widely-used normalized
mutual information (NMI) [1] is suitable for measuring
the accuracy of a community partition against the
ground truth. For network benchmarks without ground
truth, the modularity [2] is a well-defined measure for
the quality of a community partition. A reliable algo-
rithm should demonstrate both high accuracy in terms
of NMI score on benchmarks with ground truth, and
also find community partitions with high modularity
score on benchmarks with or without ground truth.



• Hierarchy: Real-life network systems often exhibit
some form of hierarchical organization; large commu-
nities are generally found to be made up of smaller,
tighter ones. We argue that even the “ground truth” of
the network benchmark is actually not unique but is
subject to the desired granularity level in the hierarchy
of the community structure. Moreover, the ground-truth
community partition does not have to be the one that
maximizes the modularity score. Instead, it could be
the one that just (closely) matches the hierarchical
community structure at some specific scale, which par-
tially explains why exhaustive modularity maximization
algorithms often fail to arrive at the ground truth of real-
life network benchmarks. Therefore, a robust algorithm
should be able to find hierarchical communities and
enable us to zoom into the community hierarchy at
different scales.

• Scalability: In the era of big data, the network may
grow unprecedentedly huge in size. However, most
existing algorithms are too computationally expensive
to be scalable for large-scale networks. A feasible
algorithm should be not only effective but also efficient
enough to be of promising scalability, especially if
we require the discovery of hierarchical community
structure.

Guided by these four criteria, we develop two novel
influence-guided label propagation (IGLP) algorithms,
IGLP-Weighted-Ensemble (IGLP-WE) and IGLP-Direct-
Passing (IGLP-DP), and present both of them in this paper.
Our work on IGLP-WE is motivated by the well-known label
propagation algorithm (LPA) [3] and a recently proposed
Shared-Influence-Neighbor (SIN) similarity [4], [5]. LPA is
basically an ensemble-based label association method, in
which each node adopts the label that the majority of its
neighbors have in an iterative process until a global consen-
sus is reached. Thanks to its nearly linear time complexity,
this algorithm has received much attention. Unfortunately, it
comes with a significant stability issue due to random tie
breaking. The problem exists in its majority voting rule,
which simply counts the number of neighbors that carry
the same label. This is a coarse technique that implicitly
assumes the votes of all neighbors have the same weight,
resulting in many ties. An intuitive solution is to weigh
the vote of each neighbor by its similarity (or closeness)
to the node of interest. But how can we differentiate the
similarity between a node and its neighbors based on the
network graph topology? We address this issue using the
SIN similarity, which measures the closeness of any pair of
nodes in terms of their mutual influence and the common
set of nodes they both influence.

Further, we develop IGLP-DP inspired by the follow-
ing intuition: given only the network graph topology, any
node should belong to the same community as its most

structurally-similar neighbor. We apply this idea to a new
label-propagation framework: once a node identifies its most
similar neighbor using SIN similarity, it passes its commu-
nity label to that neighbor, which in turn passes the label
to its most similar neighbor and so on. In the end of the
label propagation, the nodes of the same labels are grouped
into respective sub-communities. Each sub-community is
composed of a group of most similar neighbors chained
together. All of these sub-communities constitute the most
compact configuration of the community structure.

Finally, for both IGLP-WE and IGLP-DP, we regard
the resultant community partitions directly derived from
the label-propagation process as the building blocks, and
perform agglomerative hierarchical clustering using a novel
boundary-node-based cluster proximity measure to reveal
the hierarchical community structure. This approach greatly
improves the time complexity of hierarchical clustering
and maintains the representational advantages. We conduct
extensive tests on a set of real-life networks and synthetic
benchmarks, and demonstrate their superior performance
in terms of both quality and efficiency in both undi-
rected/directed and unweighted/weighted networks.

II. RELATED RESEARCH

Finding meaningful communities in complex networks is
an important challenge. Although numerous methods have
been presented, there is still significant area for improve-
ment. An in-depth survey is beyond the scope of this paper.
Here we briefly review the papers that are most relevant to
our work.

A. Label Propagation Algorithms

The label propagation algorithm (LPA) for community
detection is originally proposed by Raghavan et al. [3].
Suppose that a node x has j neighbors and let Cx(t) denote
the label of node x at the tth iteration. The main steps of
LPA can be described as follows:

1) Initialize the label of each node with its node index at
t = 0, i.e., Cx(0) = x;

2) Set t = 1;
3) Randomly choose an order in which all the nodes

update their labels;
4) For each node x chosen in that order, update its

label using the majority voting rule, i.e., Cx(t) =
f(Cx1

(t), ..., Cxi
(t), Cxi+1

(t − 1), ..., Cxj
(t − 1)),

where x1, ..., xi are the neighbors of x that have
already updated their labels in the tth iteration and
xi+1, ..., xj are those that have not updated their labels
yet. f returns the label that the maximum number of
neighbors carry and ties are broken randomly;

5) If every node has the same label as the maximum
number of its neighbors, group the nodes sharing the
same label into one community and stop the algorithm.
Otherwise, set t = t+ 1 and go to (3).



The label-updating process in Step 4 is asynchronous. In
synchronous updating, node x at the tth iteration updates its
label based on the labels of its neighbors at (t−1)th iteration,
i.e., Cx(t) = f(Cx1(t− 1), ..., Cxj (t− 1)). Raghavan et al.
propose the use of asynchronous updating to avoid oscilla-
tions of labels that may occur in synchronous updating.

This algorithm achieves a time complexity of O(km),
where k is the number of iterations and m is the total
number of edges in the network. This algorithm has gained
much attention due to its simplicity and nearly-linear time
complexity. However, it has a significant stability issue. It
produces different community partitions in different runs due
to both the random tie breaking and the random ordering of
nodes in its label-updating process, making the algorithm
nondeterministic.

Leung et al. [6] contrast asynchronous with synchronous
updating, showing that synchronous updating is more stable
on average but converges much more slowly than asyn-
chronous updating. They also introduce hop attenuation
and node preference to improve the performance. Xing et
al. [7] attempt to avoid the randomness by fixing the node
sequence of label updating and changing the label selection
mechanism. They improve the stability but the quality of the
resultant community partition is not consistently satisfactory.
Xie and Szymanski [8] introduce a set of operations to
control and stabilize the label propagation, and produce
deterministic partitions. However, all the methods discussed
above require one or more user-specified parameters, which
partially shifts the randomness issue from tie breaking to
the selection of those parameters. In this regard, the stability
issue of LPA is still open.

B. Shared-Influence-Neighbor (SIN) Similarity

The SIN similarity is a meaningful and refined
connectivity-based measure for the closeness of any pair of
nodes in the network. It is derived from a simple influence
diffusion model proposed by Wang and Street [4], [5]. Three
important rules are implemented in the influence-diffusion
process: 1) cycling is prohibited; 2) revisits along different
routes are allowed and independent; 3) the farther away
from the root, the less influence on arrival. To quantitatively
model the attenuation of influence when it is transmitted
outward from the root node, they define d−2 as the depth-
associated attenuation coefficient, where d is the depth along
the path from the root node to the node of interest.

In this model, any undirected link is replaced with a pair
of directed links pointing to each other of the pair of nodes of
interest. To capture influence diffusion in weighted networks,
they introduce a weight normalization scheme to differenti-
ate the relative susceptibility of a node to the influence of all
its in-link neighbors. The normalized susceptibility weight is
defined as

ŵij =
wij

maxk∈L wkj
,

Figure 1. Example of a directed and weighted network (given in [5]): (a)
Raw weights; (b) Normalized susceptibility weights.

Figure 2. Egocentric influence rings of node 1.

where wij is the raw weight of a directed link pointing from
node i to node j, and L denotes the set of in-link neighbors
of j. In unweighted networks, all the raw weights are simply
set to 1. As an example, a simple network is illustrated
in Fig.1(a) with the corresponding normalized susceptibility
weights shown in Fig.1(b). The influence-diffusion process
generates the egocentric influence rings of the root node.
Fig.2 shows the egocentric influence rings of node 1. Fol-
lowing a diffusion path from root node i→ j → k → l, the
influence nodes j, k, and l acquire from node i is 1

12 × ŵij ,
1
22 × ŵij × ŵjk, and 1

32 × ŵij × ŵjk × ŵkl, respectively.
Those coefficients are depth-associated attenuation.

A depth-limited search algorithm is developed to explore
the egocentric influence rings and generate an influence
vector for each node, recording where and how much the
influence of the root node is distributed in its neighborhood.
These influence vectors incorporate rich structural connectiv-
ity information and enable differentiation of the vertex-pair
similarity in a more precise manner. For a pair of nodes i and
j with their respective normalized influence vectors denoted
as V̂i and V̂j , the SIN similarity of i and j is defined as

Sij = V̂i(j)× V̂j(i) +
∑

k 6=i, k 6=j

V̂i(k)× V̂j(k).

It can be interpreted as the summation of their mutual influ-
ence (the first term) and the dot product of their influence
vectors (the second term), which captures their similarity in
terms of the set of neighbors they both influence.

Based on this influence diffusion model, Wang and
Street [5] define an influence centrality and propose an
influence-guided spherical K-means (IGSK) algorithm that
effectively finds communities in undirected/directed and
unweighted/weighted networks. It is demonstrated that the
SIN similarity is a refined vertex-pair proximity metric. The
main drawback of IGSK is that it requires the pre-specified
number of communities. In addition, it does not scale well
on large-scale networks.



C. Hierarchical Community Detection

Finding hierarchical communities in complex networks is
desirable but even more challenging. Only a few algorithms
in the literature attempt to unfold the community hierarchy.
Blondel et al. [9] propose a heuristic algorithm (known as the
Louvain method), in which a local-modularity-optimization
phase and a community-aggregation phase alternate repeat-
edly until the maximum modularity is attained. It is well
known for its high efficiency (roughly O(n log n)) and high
modularity. An implicit issue of this method is that the order
of visiting each node may affect not only the the computation
time but also the resultant community partitions. In addition,
the resultant hierarchy of communities is not complete, as
many intermediate levels are skipped. Instead of greedily
maximizing the modularity, Huang et al. [10] improve the
Louvain method by introducing a structural similarity used
in density-based clustering and guiding the community-
aggregation phase with a similarity-based modularity gain.
Lancichinetti et al. [11] present an algorithm that is based on
local optimization of a simple fitness function. The commu-
nity structure is revealed by peaks in the fitness histogram,
and different hierarchical levels can be investigated by tuning
a resolution parameter.

III. METHODOLOGY

In this section, we elaborate in detail how we apply the
SIN similarity to the label-propagation framework and arrive
at IGLP-Weighted-Ensemble (IGLP-WE) and IGLP-Direct-
Passing (IGLP-DP) algorithms.

A. IGLP-Weighted-Ensemble

As discussed above, the traditional LPA has a significant
stability issue due to random tie breaking and random
ordering of nodes in the label-updating process. The key
problem exists in its majority voting rule, which simply
counts the number of neighbors of the same labels. This
implicitly assumes that all neighbors have the same weight
applied to their votes, i.e.,

ci = argmax
l

∑
j∈N l

i

1,

where ci is the new label of node i and N l
i is the set of

neighbors of node i with label l. However, the similarity of
a node to its different neighbors is not exactly the same. The
SIN similarity is such a metric that enables us to differentiate
the structural proximity of a node to its neighbors in detailed
manner. Therefore, we propose a straightforward extension
to the traditional LPA by weighing the vote of each neighbor
using its SIN similarity to the node of interest. With Sij

denoting the SIN similarity of nodes i to j, our weighted
majority voting rule can be written as

ci = argmax
l

∑
j∈N l

i

Sij .

This simple weighting scheme not only directly resolves
the random tie-breaking issue but also implicitly addresses
the random node-order issue. Our experiments demonstrate
that IGLP-WE always produces the same community parti-
tion regardless of the order of nodes in the label-updating
process. Hence, we ignore the step of randomly choosing
a node-updating order. Our IGLP-WE algorithm can be
described in the following steps:

1) Generate the influence vector of each node based on
the influence diffusion model;

2) For each node, calculate its SIN similarity to each of
its neighbors;

3) Initialize the label of each node with its node index;
4) For each node, implement the asynchronous label

updating using the weighted majority voting rule;
5) If no node changes its label, group the nodes into

respective communities indicated by their labels and
stop. Otherwise, go to (4).

B. IGLP-Direct-Passing

Given only the network graph topology, it is sensible to
assume that: any node belongs to the same community as its
closest (most similar) neighbor. Inspired by this intuition,
we leverage the SIN similarity further to arrive at a new
label-propagation framework, in which the community label
is directly passed from a node to its most similar neighbor
iteratively. At the end of this process, we are left with a set
of most compact sub-communities. Each sub-community is
composed of a group of most similar neighbors chained up
from one to another.

The pseudocode of IGLP-DP is shown in Algorithm 1.
Each node contains three integer variables: 1) msn denotes
the node index of its most similar neighbor; 2) label denotes
its community index; 3) parent denotes the node index of the
node that passes the community label to the node of interest.
The algorithm starts with the generation of the influence
vector for each node based on the influence diffusion model.
Then it finds the most similar neighbor of each node using
the SIN similarity, and sets the community label of all nodes
to 0 to indicate they are all unlabeled (Lines 3-6). In the
following For loop, we first check if node i (root node) is
unlabeled (Line 8). If yes, we assign its node index as its
community label, and set its parent to be 0 to indicate its par-
ent node is null (Line 9-10). We then assign its node index
to pIndex and the node index of its most similar neighbor
to cIndex (Lines 11-12). In the following while loop (Lines
13-18), we propagate forward the community label from
Node(pIndex) to its most similar node Node(cIndex), and
denote pIndex as the node index of Node(cIndex)’s parent
node until reaching a node that already has a community
label, which is denoted as newLabel. If newLabel is the same
as the root node’s label i (i.e., the label we are propagating
forward), the propagation stops, and we skip to the next
node in the For loop. Otherwise, we propagate backward



newLabel to Node(pIndex) and its parent node iteratively
in a while loop until reaching the root node (Lines 20-25).
After sweeping over all the nodes, IGLP-DP generates a set
of sub-communities, in which each node acquires the same
community label as its most similar neighbor.

Algorithm 1 IGLP-Direct-Passing
1: procedure IGLP-DP(G(V,E))
2: Generate the influence vector of each node
3: for node i← 1, n do
4: Find Node(i).msn using the SIN similarity
5: Node(i).label← 0
6: end for
7: for node i← 1, n do
8: if Node(i).label = 0 then
9: Node(i).label← i

10: Node(i).parent← 0
11: pIndex← i
12: cIndex← Node(i).msn
13: while Node(cIndex).label = 0 do
14: Node(cIndex).label← i
15: Node(cIndex).parent← pIndex
16: pIndex← cIndex
17: cIndex← Node(pIndex).msn
18: end while
19: newLabel← Node(cIndex).label
20: if newLabel 6= i then
21: while pIndex > 0 do
22: Node(pIndex).label← newLabel
23: pIndex← Node(pIndex).parent
24: end while
25: end if
26: end if
27: end for
28: end procedure

IGLP-DP is easy to implement and efficient. It resolves
the stability issue and produces a deterministic partition.
Another distinguishing feature is that it requires no con-
vergent iteration. It is worth pointing out that the backward
propagation is essential to maintain the crucial property in
which IGLP-DP is rooted, that is, each node should acquire
the same community label as its most similar neighbor;
meanwhile, it addresses the stability issue caused by node
ordering in the label-updating process.

C. Hierarchical Clustering
The resultant community partitioning from IGLP-WE and

IGLP-DP provides an initial configuration of the community
structure. Especially for IGLP-DP, the initial configuration
contains many small, tight sub-communities. We consider
those communities in the initial configuration to be the
building blocks for agglomerative hierarchical clustering to
explore the community hierarchy at different scales.

The key issue here is how to define a cluster-proximity
measure that is quantitatively accurate and computationally
cheap. Since neighboring communities are connected by
the boundary nodes, it makes sense to measure the cluster
proximity using the SIN similarity of the boundary nodes.
More precisely, we focus on the out-link-based boundary
nodes of each community. We refer to a node as an out-link-
based boundary node if it has at least one out-link neighbor
that resides in a different community. We measure the cluster
proximity between a pair of neighboring communities based
on their out-link-based boundary nodes’ SIN similarity.
Considering that large communities tends to have more
boundary nodes and more neighboring communities, we
scale the similarity by the number of community members
and the number of neighboring communities to eliminate the
bias caused by the community size.

Let Pij denote the cluster proximity between community
i and community j, Bij denote the set of boundary nodes in
community i with out-link neighbors in community j, Dkj

denote the set of node k’s out-link neighbors in community j,
Skl denote the SIN similarity of nodes k to l, Ni denote the
number of nodes in community i, and Ci denote the number
of neighboring communities that community i has. Similarly,
let Fji denote the set of boundary nodes in community j
with out-link neighbors in community i, Hmi denote the
set of node m’s out-link neighbors in community i, Smn

denote the SIN similarity of nodes m to n, Nj denote the
number of nodes in community j, and Cj denote the number
of neighboring communities that community j has. Then we
define our cluster-proximity measure as

Pij =
1

Ni × Ci

∑
k∈Bij

∑
l∈Dkj

Skl+
1

Nj × Cj

∑
m∈Fji

∑
n∈Hmi

Smn.

A major weakness of traditional hierarchical clustering is
its high computational cost. A straightforward implementa-
tion has time complexity O(n3), which makes it too slow
to be scalable for large-scale datasets. We take advantage
of our boundary-node-based cluster-proximity measure, and
arrive at a novel and highly efficient hierarchical-clustering
algorithm. A high-level description of this algorithm reads
as follows:

1) For each cluster, sweep over each cluster member’s
out-link neighbors to find the boundary nodes and
construct a neighboring-cluster list associated with the
corresponding cluster proximity;

2) Sweep over each cluster’s neighboring-cluster list to
find the closest pair of clusters;

3) Merge the two closest clusters and relabel them;
4) For each cluster, sweep over each boundary node’s

out-link neighbors to reconstruct its neighboring-
cluster list associated with the updated cluster prox-
imity;

5) Repeat Steps 2 to 4 until only one cluster remains.



Our hierarchical clustering takes the initial community
partition given by the label propagation as input. This is a
significant improvement in efficiency compared to conven-
tional agglomerative clustering that starts by assigning each
node to a separate cluster, since the number of clusters in our
initial community partition is much smaller than the number
of nodes in the network. The efficiency is further improved
by constructing a neighboring-cluster list for each cluster
which greatly reduces the time complexity when searching
for the closest pair of cluster in Step [2]. Moreover, each
node contains a Boolean variable that indicates whether it
is a boundary node, which helps efficiently reconstruct the
neighboring-cluster list and update the cluster proximity in
Step [4]. This is another considerable improvement in time
complexity.

Finally, we note that we incorporate our hierarchical-
clustering algorithm as an integral part of the IGLP-WE
and IGLP-DP algorithms. Hereafter whenever we refer to
IGLP-WE or IGLP-DP, it means we perform the respective
label propagation followed by the hierarchical clustering,
and deliver a hierarchy of communities.

IV. EXPERIMENTS

To evaluate the performance of IGLP-WE and IGLP-DP,
we extensively test them on a large set of networks, which
includes 6 widely-used real-life networks and more than 500
LFR benchmarks [12]. For networks with ground truth, we
split the resultant hierarchy dendrogram at the level at which
the number of separated communities is the same as the
number of communities of ground truth, and use normalized
mutual information (NMI) [1] to evaluate the accuracy of our
community partition. For networks without ground truth, we
adopt modularity [2] to evaluate the quality of a community
partition. We present the maximum modularity we find in
the community hierarchy of real-life networks.

A. Real-life Networks

The 6 real-life networks are: Zachary’s Karate Club [13],
Dolphin Social Network [14], Political Books [15], American
College Football [16], Email [17], and PGP Network [18].
Only the first 4 have the ground truth of known commu-
nities. Their basic information is listed in Table I. Fig.3
is an illustration of Zachary’s karate club network. The
community dendrograms IGLP-WE and IGLP-DP generate
are shown in Fig.4. As we can see, IGLP-WE produces
an initial configuration of 6 sub-communities of different
sizes, and IGLP-DP delivers 8 sub-communities by splitting
2 sub-communities detected by IGLP-WE into 4 smaller
ones. In fact, IGLP-DP always produces more smaller and
tighter sub-communities in the initial configuration than
IGLP-WE. Both IGLP-WE and IGLP-DP find communities
that match the ground truth perfectly when we split their
respective hierarchy dendrogram at the level of two separate
communities.

Table I
REAL-LIFE NETWORKS

Networks Nodes Edges Communities

Karate 34 78 2
Dolphins 62 159 2
PolBooks 105 441 3
Football 115 613 12
Email 1133 5451 —
PGP 10680 24316 —

Figure 3. Zachary’s karate club.

Figure 4. Dendrograms generated by: (a) IGLP-WE; (b) IGLP-DP.

The NMI and modularity scores of applying IGLP-WE
and IGLP-DP to all the 6 real-life networks are listed in
Table II. We compare the performance with a set of 9
representative algorithms examined in the literature [5], [7],
[11], [19]. As we can see, both IGLP-WE and IGLP-DP
demonstrate excellent performance. They clearly outperform
Fitness, CPM, Fastgreedy, and LPA in terms of higher
NMI scores on all networks with ground truth. Both of
them achieve perfect NMI score on Karate Club and the
highest NMI score on Dolphins. Moreover, when using
the modularity as the metric, they both achieve superior
performance. The only exception is the score of IGLP-WE
on Email. It groups all the nodes in one community in its
initial configuration. This is actually a common feature of
most LPAs. One may notice that the traditional LPA is
closely related to the strong-community definition, which
requires each node to have higher internal connections
than external connections. When the community structure
is sufficiently fuzzy, LPA arrives at one or several monster
communities. IGLP-DP exhibits its advantages in this re-
gard by zooming into the community hierarchy in a much



more detailed manner. IGLP-DP achieves higher modularity
scores on both Email and PGP networks than Fastgreedy,
which is a representative algorithm that explicitly maximizes
modularity. In addition, it is worth pointing out that: for
some algorithms (like Fitness and NIBLPA), one has to tune
a user-specified parameter to find the best result for each
network individually; the only user-specified parameter in
IGLP-WE and IGLP-DP is the depth limit that specifies
the maximum depth from the root node in the influence
diffusion model. We set it to 3 (by default) for all networks
examined in this paper. In fact, the depth limit of 3 can be
regarded as a fixed, built-in parameter in both IGLP-WE
and IGLP-DP, which matches the well-known 3-degree-of-
influence phenomenon [20].

B. LFR Benchmarks

Since large real-life networks with reliable ground truth
are rarely available (especially for directed and/or weighted
networks), we further test our algorithms on LFR bench-
marks. To compare with the algorithms examined in [12],
we generate a set of LFR benchmark graphs using the same
parameter settings: average degree = 20, maximum degree
= 50, degree-distribution exponent = -2, community-size-
distribution exponent = -1. There are two different network
sizes (1000 and 5000 nodes), and two different ranges for
community size (S and B). “S” stands for “small”, which
means min/max community size = 10/50. In contrast, “B”
stands for “big”, which means min/max community size =
20/100. In each of the 8 unweighted benchmark sets (4
undirected and 4 directed), we vary the topological mixing
parameter µt from 0.1 to 0.8. Similarly, we generate 4 sets
of LFR weighted networks using the above parameters plus
another 2 parameters: weight-strength-distribution exponent
β = 1.5 and weight mixing parameter µw. As done in [12],
while µw varies from 0.1 to 0.8, we fix µt to 0.5 and
0.8, respectively. We generate 5 realizations for each value
of the mixing parameters and average the results in each
experiment.

We illustrate in Fig.5 the results on the 4 sets of undirected
and unweighted LFR benchmarks, in which each curve
shows the variation of the averaged NMI score with respect
to the topological mixing parameter µt. We compare the
performance against 9 state-of-the-art algorithms including
IGSK [5] and the 8 algorithms examined in [12]. They are
referred to as: Blondel et al. [9], MCL [25], Infomod [26],
Infomap [22], Cfinder [21], Clauset et al. [23], Radicchi
et al. [27], and Sim. ann. [28]. Note that Blondel et al. is
exactly the Louvain method discussed in Section II.

As we can see, IGLP-WE and IGLP-DP achieve almost
perfect NMI scores on all datasets when µt is less than or
equal to 0.5. IGLP-WE maintains its superior performance
on 5000-S datasets with µt up to 0.7. IGLP-DP exhibits
even better performance than IGLP-WE. IGLP-DP outper-
forms almost all the other algorithms except Infomap, which

Figure 6. Performance comparison on directed and unweighted LFR
benchmarks. Plot of IGSK is from [5], and plot (b) from [12].

achieves higher NMI scores than IGLP-DP when µt is 0.6
and 0.7. But as shown in Table II, IGLP-DP beats Infomap
on all real-life networks except Football dataset. Both IGLP-
WE and IGLP-DP perform better on larger networks and
smaller community size.

Community detection in directed networks is more chal-
lenging. Most existing algorithms are not able to find com-
munities in directed networks, and extension of an algorithm
to directed networks is nontrivial. We illustrate the results of
IGLP-WE and IGLP-DP in Fig.6 and compare them against
IGSK, Infomap, and Sim. ann. Once again, both IGLP-
WE and IGLP-DP demonstrate outstanding performance
in directed networks (even better than their performance
in undirected networks). IGLP-WE achieves perfect NMI
scores on both 1000-S and 5000-S/B datasets when µt is
less than or equal to 0.7. Both of them outperform IGSK on
almost all datasets. They are better than Infomap on 1000-
S/B datasets, and clearly beat Sim. ann. on both 1000-S
and 5000-S/B datasets. It is noted that both IGLP-WE and
IGLP-DP exhibit better performance on larger networks and
smaller community size in directed networks as well.

For weighted networks, the perform comparison against
IGSK and the 3 algorithms examined in [12] is shown
in Fig.7. Interestingly, while both IGLP-WE and IGLP-DP
consistently show excellent performance and maintain their
preference on smaller community size, they show different
performance on the topological mixing parameter. IGLP-
WE works better on 5000-S/B-0.5 datasets, but IGLP-DP
performs better on 5000-S/B-0.8 datasets. As discussed and
shown in [5], when µt is 0.8 (fuzzy community structure),



Table II
PERFORMANCE COMPARISON ON REAL-LIFE NETWORKS

NMI Modularity
Algorithm Karate Dolphins PolBooks Football Karate Dolphins PolBooks Football Email PGP
Fitness [11] 0.690 0.781 — 0.754 — — — — — —
CPM [21] 0.170 0.254 — 0.697 — — — — — —
DCBNT [19] 1.000 0.762 0.578 0.949 — — — — 0.537 0.819
Infomap [22] 0.700 0.537 0.494 0.972 — — — — 0.526 0.801
Fastgreedy [23] 0.693 0.557 0.531 0.753 — — — — 0.507 0.853
Walktrap [24] 0.504 0.582 0.543 0.937 — — — — 0.531 0.789
LPA [3] 0.583 0.516 0.572 0.863 0.296 0.465 0.489 0.582 0.38 0.806
NIBLPA [7] 1.000 0.622 0.656 0.872 0.423 0.521 0.497 0.582 0.427 0.783
IGSK [5] 1.000 0.814 0.541 0.924 0.421 0.406 0.513 0.609 — —
IGLP-WE 1.000 0.889 0.482 0.927 0.450 0.546 0.463 0.613 0.002 0.868
IGLP-DP 1.000 0.889 0.576 0.918 0.450 0.528 0.521 0.612 0.547 0.863

Figure 5. Performance comparison on undirected and unweighted LFR benchmarks. Plot of IGSK is from [5], and plots (b) and (c) from [12].

the weight distribution always reinforces the community
structure while µw is less than 0.8. However, if µt is set to
0.5 (relatively clear community structure), the weight distri-
bution undermines the community structure when µw > 0.5.
Therefore, we can infer that IGLP-DP is able to exploit
the weight information more than IGLP-WE, and so, is
more sensitive to the weight distribution. Except for IGLP-
WE on 5000-B-0.8 dataset, IGLP-DP and IGLP-WE clearly
outperforms all the other algorithms in the comparison.

Our extensive tests on both real-life networks and LFR
benchmarks demonstrate IGLP-WE and IGLP-DP are the
best performing algorithms overall. Moreover, unlike most
existing algorithms in the literature that deliver a single
community partition, IGLP-WE and IGLP-DP reveal the
complete community hierarchy, which enables us not only
to achieve high accuracy in terms of NMI scores but also to
examine different levels of granularity to find the community
partition of the highest modularity. They show superior
performance consistently on undirected/directed and un-
weighted/weighted networks.

C. Space and Time Complexity Analysis

The space complexity is O(Ln), where n is the number
of nodes in the network, and L is the average length of
influence vectors. L is determined by the average node

out-degree b, depth limit dmax and and the community
structure. Generally, the more cohesive community structure,
the shorter influence vectors. In fact, the space complexity
can be easily improved. Instead of simply following the
node-index order to generate the influence vector for each
node, we can implement the breath-first search algorithm
to generate the influence vector of a node followed by
generating the influence vectors of its neighbors. Once that
node finds its SIN similarity to each of its neighbors, it is
no need to keep the influence vector of that node. We can
delete it and reclaim the space immediately.

To examine time complexity, we experiment on a set of
undirected and unweighted LFR benchmarks with µt = 0.5
and min/max community size = 20/100 (all other parameters
are the same as described before). We vary the number of
nodes n from 2,500 to 25,000 in an increment of 2,500,
and generate 5 realizations for each value of n. All the
experiments are carried out on a regular desktop PC with
Intel(R) Core(TM) i5-4670 CPU @ 3.40 GHz and 8.0 GB
memory under Windows 7 64-bit OS. Let m denote the
number of edges in the network, Kgt denote the number of
communities of ground truth, and Kwe and Kdp denote the
number of sub-communities in the initial community config-
uration given by IGLP-WE and IGLP-DP, respectively. We



Figure 7. Performance comparison on undirected and weighted LFR
benchmarks. Plot of IGSK is from [5], and plot (b) is from [12].

Table III
NETWORK INFORMATION AND EXPERIMENTAL RESULTS

n m Kgt Kwe Kdp NMIwe NMIdp
2,500 24,630 50 50 161 1 1
5,000 48,959 100 101 267 1 1
7,500 73,535 150 151 372 1 1
10,000 97,985 201 203 494 1 1
12,500 121,891 249 252 565 1 1
15,000 146,859 303 305 665 1 1
17,500 171,520 355 357 761 1 1
20,000 195,839 401 407 842 1 1
22,500 219,820 455 461 931 1 1
25,000 244,688 502 510 1,031 1 1

also include their respective NMI scores denoted by NMIwe

and NMIdp. The experimental results are shown in Table III
and Fig.8, in which we present not only the total time but
also the time spent on generating the influence vectors, label
propagation and hierarchical clustering, respectively.

As we can see, both IGLP-WE and IGLP-DP not only
consistently achieve perfect NMI scores for all datasets,
but also run fast. For the 25,000-node (∼245,000 edges)
dataset, IGLP-WE produces a community hierarchy of 510
levels in less than 250 seconds, and IGLP-DP delivers a
more detailed hierarchical community structure of 1,031
levels within 300 seconds. They are actually faster than
many existing algorithms such as IGSK, which provide

Figure 8. Time complexity: (a) IGLP-WE; (b) IGLP-DP.

only a single community partition. IGLP-WE and IGLP-
DP incorporate the same depth-limited search algorithm
[5] that generates the influence vectors efficiently. Its time
complexity is O(m) as shown in Fig.8. For both IGLP-
WE and IGLP-DP, the time complexity is dominated by
label propagation. IGLP-DP runs slightly faster than IGLP-
WE w.r.t label propagation since IGLP-DP requires no
convergent iteration. Actually, the label-propagation process
itself is fast with both weighted ensemble and direct passing.
Most of the time is spent on calculating the SIN similarity
of each node to each of its neighbors, which has a time
complexity of O(Lm). Recall L is the average length of
influence vectors, which is determined by the average node
out-degree b, depth limit dmax and and the community
structure. It is independent of n and m in general, which
explains why the time complexity of label propagation is
linear in m as shown in Fig.8.

The time complexity of hierarchical clustering, however,
is slightly superlinear. For each iteration, we need to visit
those boundary nodes and their neighbors to calculate the
cluster proximity, which leads to a time complexity of
O(m). This is done (K − 1) times to build the hierarchy
of communities agglomeratively, where K is the number
of communities in the initial configuration given by label
propagation. Hence, our hierarchical clustering has a time
complexity of O(Kwem) and O(Kdpm) for IGLP-WE and
IGLP-DP, respectively. Note that: Kwe and Kdp are much
smaller than m, and the number of boundary nodes is a
monotonically decreasing fraction of n. Kwe and Kdp are
closely related to Kgt. As shown in Table III, Kgt increases
monotonically as the network size increases when we fix
both the topological mixing parameter and the min/max
community size. While IGLP-WE consistently arrives at
an initial community configuration that matches the ground
truth closely, IGLP-DP zooms into deeper scales of the
community structure and renders an initial configuration that
includes many small sub-communities (roughly 2∼3 times



of the number of communities of the ground truth). And
so IGLP-DP takes more time on hierarchical clustering than
IGLP-WE. It is worth pointing out that: both IGLP-WE and
IGLP-DP deliver a complete hierarchy of communities in
the sense that no intermediate scale is missing above the
initial configuration, as opposed to the well-known Louvain
method [9]. From this point of view, O(Km) is the best
time complexity one can achieve to generate a community
hierarchy of K levels.

V. CONCLUSION

In this paper, we present two novel algorithms, IGLP-WE
and IGLP-DP, for finding hierarchical communities in com-
plex networks. IGLP-WE and IGLP-DP naturally integrate
undirected/directed and unweighted/weighted networks into
one unified framework and consistently uncover a hierarchy
of the community structure with excellent quality and high
efficiency. In future work, one interesting direction is to
extend them to overlapping community detection. Another
advantage of IGLP-WE and IGLP-DP is that they can be
easily parallelized. It is desirable to parallelize them for
large-scale networks of millions of nodes and potential
online community detection.

REFERENCES

[1] L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas, “Com-
paring community structure identification.” J of Stat. Mech.,
p. P09008, 2005.

[2] M. Newman, “Analysis of weighted networks.” Phys. Rev. E,
vol. 70, p. 056131, 2004.

[3] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear
time algorithm to detect community structures in large-scale
networks.” Phys. Rev. E, vol. 76, p. 03106, 2007.

[4] W. Wang and W. N. Street, “A novel algorithm for commu-
nity detection and influence ranking in social networks.” in
ASONAM, 2014, pp. 555–560.

[5] W. Wang and W. N. Street, “Modeling influence diffusion
to uncover influence centrality and community structure in
social networks.” J of Social Network Analysis and Mining,
vol. 5, no. 1, 2015.

[6] I. Leung, P. Hui, P. Liò, and J. Crowcroft, “Towards real-
time community detection in large networks.” Phys. Rev. E,
vol. 79, p. 066107, 2009.

[7] Y. Xing, F. Meng, Y. Zhou, M. Zhu, M. Shi, and G. Sun, “A
node influence based label propagation algorithm for com-
munity detection in networks.” The Scientific World Journal,
2014, 627581.

[8] J. Xie and B. K. Szymanski, “Labelrank: A stablized label
propagation algorithm for community detection in networks.”
in IEEE Network Science Workshop, 2013, pp. 138–143.

[9] V. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre,
“The louvain method for community detection in large net-
works.” J of Statistical Mechanics: Theory and Experiment,
vol. 10, p. P10008, 2008.

[10] J. Huang, H. Sun, J. Han, H. Deng, Y. Sun, and Y.Liu,
“Shrink: A structural clustering algorithm for detecting hi-
erarchical communities in networks.” in CIKM, 2004.

[11] A. Lancichinetti, S. Fortunato, and J. Kertesz, “Detecting the
overlapping and hierarchical community structure in complex
networks.” New J of Physics, vol. 11, 2009, 033015.

[12] A. Lancichinetti and S. Fortunato, “Community detection
algorithms: A comparative analysis.” Phys. Rev. E, vol. 80,
pp. 056 117(1–11), 2009.

[13] W. Zachary, “An information flow model for conflict and
fission in small groups.” J of Anthropological Research,
vol. 33, pp. 452–473, 1977.

[14] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase,
E. Slooten, and S. M. Dawson, “The bottlenose dolphin com-
munity of doubtful sound features a large proportion of long-
lasting associations.” Behavioral Ecology and Sociobiology,
vol. 54, pp. 396–405, 2003.

[15] M. Newman and M. Girvan, “Finding and evaluating commu-
nity structure in networks,” Phys. Rev. E, vol. 69, p. 026113,
2004.

[16] M. Girvan and M. Newman, “Community structure in so-
cial and biological networks.” Proceedings of the National
Academy of Sciences of USA, vol. 99, no. 12, pp. 7821–7826,
2002.

[17] R. Guimera, L. Danon, D.-G. A., F. Giralt, and A. Arenas,
“Self-similar community structure in a network of human
interactions,” Phys. Rev. E, vol. 68, p. 065103, 2003.

[18] M. Boguna, R. Pastor-Satorras, A. Diaz-Guilera, and A. Are-
nas, “Models of social networks based on social distance
attachment,” Phys. Rev. E, vol. 70, p. 056122, 2004.

[19] W. Liu, M. Pellegrini, and W. X., “Detecting communities
based on network topology,” Scientific Report, vol. 4, p. 5739,
2014.

[20] N. A. Christakis and J. H. Fowler, “The spread of obesity
in a large social network over 32 years.” New England J of
Medicine, vol. 357, pp. 370–379, 2007.

[21] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek, “Uncovering
the overlapping community structure of complex networks in
nature and society.” Nature, vol. 435, pp. 814–818, 2005.

[22] M. Rosvall and C. Bergstrom, “Maps of random walks on
complex networks reveal community structure.” Proceedings
of the National Academy of Sciences of USA, vol. 105, pp.
1118–1123, 2008.

[23] A. Clauset, M. Newman, and C. Moore, “Finding community
structure in very large networks.” Phys. Rev. E, vol. 70, p.
066111, 2004.

[24] P. Pons and M. Latapy, “Computing communities in large
networks using random walks.” J of Graph Algorithms Ap-
plications, vol. 10, no. 2, pp. 191–218, 2006.

[25] S. van Dongen, “Graph clustering by flow simulation.” Ph.D.
dissertation, University of Utrecht, 2000.

[26] M. Rosvall and C. Bergstrom, “An information-theoretic
framework for resolving community structure in complex
networks.” Proceedings of National Academy of Sciences, vol.
104, pp. 7327–7331, 2007.

[27] R. Radicchi, C. Castellano, F. Cecconi, and D. Parisi, “Defin-
ing and identifying communities in networks.” Proceedings of
National Academy of Sciences of USA, vol. 101, pp. 2658–
2663, 2004.

[28] R. Guimera and L. Amaral, “Functional cartography of com-
plex metabolic networks,” Nature, vol. 433, pp. 895–900,
2005.


