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This article describes the use of computer-based analytical tech-
niques to define nuclear size, shape, and texture features. These
features are then used to distinguish between benign and malignant
breast cytology. The benign and malignant cell samples used in this
study were obtained by fine needle aspiration (FNA) from a consecu-
tive series of 569 patients: 212 with cancer and 357 with fibrocystic
breast masses. Regions of FNA preparations to be analyzed were
converted by a video camera to computer files that were displayed
on a computer monitor. Nuclei to be analyzed were roughly outlined
by an operator using a mouse. Next, the computer generated a
“snake” that precisely enclosed each designated nucleus. The com-
puter calculated 10 features for each nucleus. The ability to correctly
classify samples as benign or malignant on the basis of these features
was determined by inductive machine learning and logistic regression.
Cross-validation was used to test the validity of the predicted diagno-
sis. The logistic regression cross validated classification accuracy was
96.2% and the inductive machine learning cross-validated classifica-

Progress over the past 30 years in computer analysis
of microscope images has made possible highly accu-
rate quantitative and objective feature assessment for
diagnostic decision making." We have identified com-
puter-derived, quantitative digital features that accu-
rately classify breast epithelial cells as benign or malig-
nant. Classification is accomplished by inductive
machine learning by a computer program based on
the accumulated experience from previously diagnosed
cases. The program can then be used to generalize to
diagnose new cases that may differ from those pre-
viously encountered.

MATERIALS AND METHODS
Patients and Aspirate

The benign and malignant cell samples used in this study
were obtained by fine needle aspiration (FNA) from a consec-
utive series of b6Y patients: 212 with cancer and 357 with
fibrocystic breast masses.

To prepare an FNA, a small drop of viscous fluid is aspi-
rated from breast masses by making multiple passes with a
23-gauge needle while negative pressure is being applied to
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tion accuracy was 97.5%. Our computerized system provides a proba-
bility that a sample is malignant. Should this probability fall between
30% and 70%, the sample is considered “suspicious,” in the same
way a visually graded FNA may be termed suspicious. All of the 128
consecutive cases obtained since the introduction of this system were
correctly diagnosed, but nine benign aspirates fell into the suspicious
category. Fifty-seven FNAs were obtained that had been visually diag-
nosed elsewhere by others as “suspicious.” Eleven (19.3%) were simi-
larly classified as suspicious by the computer, but 84.8% of the re-
maining samples were correctly diagnosed. The methods described
in this article will provide the basis for computerized systems to
diagnose breast cytology. Hum PATHOL 26:792-796. Copyright ©
1995 by W.B. Saunders Company
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an attached syringe. The aspirated material is expressed onto
a silane-prepared glass slide and the aspirate is spread when
a similar slide is applied face to face, and the slides are sepa-
rated with a horizontal motion. Preparations are immediately
fixed in 95% ethanol, stained with hematoxylin-cosin, and
processed.

In our analysis, aspirates were classified as cancer based
on surgical biopsy and histological confirmation. No data con-
cerning breast histology was available in five patients who did
not have definitive breast surgery because extensive distant
metastases were present at diagnosis and in one patient who
had definitive surgery elsewhere. Among the remaining 206
patients, 10 had in situ and 196 had infiltrating cancers: 148
ductal, 18 not otherwise specified, 12 lobular, four medullary,
three tubular, three comedo, two mucinous, and one each of
signet ring, cribriform, sebaceous, papillary, inflammatory,
and pseudosarcomatous carcinoma. Cytologically diagnosed
benign breast masses were confirmed either by biopsy or by
follow-up for a year. Fifty-one cytologically benign lesions were
surgically excised: 35 fibroadenomas, 12 fibrocystic disease,
and one each of fat necrosis, stromal fibrosis, adenolipoma,
and atypical lobular hyperplasia. After a year, nonbiopsied
masses were considered to be benign if they had not en-
larged.”

One hundred twenty-eight consecutive specimens (94 be-
nign and 34 malignant), obtained at this institution since the
introduction of the system and 57 specimens visually diag-
nosed as suspicious at another institution were obtained and
diagnosed with the trained algorithm.

Image Preparation

The imaged area on the aspirate slides is visually selected
for minimal nuclear overlap. Areas of apocrine metaplasia
are avoided. The image for digital analysis is generated by a
JVC TE-1070U (JVC, Elmwood Park, IL) color video camera
mounted atop an Olympus (Lake Success, NY) microscope
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and the image is projected into the camera with a 63 X objec-
tive and a 2.5 X ocular. The image is captured by a Computer-
Eves/RT color framegrabber board (Digital Vision, Inc, Ded-
ham MA) as a 640 X 400, 8-bit-per-pixel Targa file.

User Interface (Xcyt)

The first step in successfully analyzing the digital image is
to specify the exact location of each cell nucleus. A computer
graphics program called Xcyt was developed that allows the
user to input the approximate location of a sufficient number
of nuclei (10 to 20) to provide a representative sample. The
program was developed using the X Window System and the
Athena WidgetSet on a DECstation 3100 (Digital Equipment
Corporation, Nashua, NH).

A mouse is used to trace a rough outline of cell nuclei
on the computer monitor. From this rough outline, the actual
boundary of the cell nucleus is located by an active contour
model known as a “‘snake.””™* The “‘snake’ is a deformable
spline that seeks to minimize an energy function defined over
the arc length of a curve. The energy function is defined in
such a way that the snake, in the form of a closed curve,
conforms itself to the boundary of a cell nucleus. The mathe-
matic aspects of the snake calculations are described else-
where.”

Nuclear Features

Once the nuclei to be analyzed have been identified by
the operator and have been enclosed by the computer-gener-
ated snakes, the computer calculates 10 nuclear features for
each nucleus.” These features are modeled such that higher
values are typically associated with malignancy. Features were
verified using idealized phantom cells.” Nuclear size is ex-
pressed by the radius and area features. Nuclear shape is
expressed by smoothness, concavity, compactness, concave
points, symmetry, and fractal dimension features. Both size
and shape are expressed by the perimeter feature.” Nuclear
texture is measured by finding the variance of the gray scale
intensities in the component pixels. The mean value, worst
(mean of the three largest values), and standard error of each

feature are computed for each image, resulting in a total of

30 features.

Classification Procedure and Cross-
Validation

In both our inductive machine learning and logistic re-
gression analyses, the accuracy of correctly classifying samples
as benign or malignant on the basis of digitally determined
nuclear features is determined by 10-fold crossvalidation.”
The resulting estimate is unbiased and accurate in cases such
as ours that have a large number of training samples. Initially,
the data set is divided into 10 randomly selected, equal parts.
One part is removed. A classifying algorithm is created from
the nine remaining parts, and the accuracy of the classifier
is tested on the 10th part. The 10th part is then returned,
and the process is repeated until all parts have been tested.

Classifying Algorithm Developed by
Inductive Machine Learning

Image processing produces a database consisting of one
30-dimensional point for each sample. The 30 dimensions
consist of the mean, standard error, and worst for the 10
features. The classification procedure becomes one of pattern
separation, spcciiirtal]}', that of determining how points can

best be separated into benign and malignant sets. The classi-
fication procedure is a variant on the Multisurface Method,™”
known as Multisurface Method—Tree (MSM-T)."™" This
method uses linear programming iteratively to place a series
of separating planes in the feature space of the samples. If
the benign and malignant sets can be separated by a single
plane, the first plane will be placed between them. If the sets
are not linearly separable, MSM-T constructs another plane
that minimizes an average distance of misclassified points.
Depending on the separation accuracy attained, the proce-
dure is recursively repeated on the two regions generated by
~ach plane until satisfactory separation is achieved (ie, each
of the final regions contains mostly points of one category).
The classifier thus obtained is then used as a decision tree to
categorize new cases. MSM-T is similar to other decision tree
methods such as CART' and C4.5," but has been shown to
be faster and more accurate on several real-world data sets. "

Generally, simpler classifiers perform better on new data
than do more complex ones. Therefore, we minimize not
only the number of separating planes but also the number
of features used in constructing the planes.

Our computerized system provides a benign or malignant
diagnosis together with a probability of malignancy deter-
mined by the distance the new point lies from the separating
plane.” Should this probability fall between 30% and 70%,
the sample is considered “‘suspicious,” in the same way a
visually graded FNA may be termed suspicious.

Classifying Algorithm Developed by Logistic
Regression Analysis

The classifying algorithm developed by logistic regression
analysis was performed with SAS'! software (SAS Institute,
Cary, NC). Other statistical analyses and graphics were per-
formed with Systat'™'" software (Evanston, IL).

RESULTS
Feature Analysis

Diagnostic features for 357 benign and 212 malig-
nant samples are noted in Table 1. Values for area are
expressed as square micra (pm®), and for radius and
perimeter as micra (gm). Values for remaining features
are dimensionless. Independent samples ttest was not
significant for differences between benign and malig-
nant for mean of fractal dimension, standard error of
texture, standard error of smoothness, standard error
of symmetry, and for standard error of fractal dimen-
sion. The differences were P < .001 for all other fea-
tures.

Logistic Regression Classification

A stepwise logistic regression selection process se-
lected a model consisting of the variables standard error
of the radius, worst radius, worst texture, and worst
concave point. Standard error of the radius seemed to
contribute little to the predictive ability of the model
(as judged by sensitivity and specificity) and conse-
quently was dropped. Nine benign and 12.4 malignant
FNAs were misclassified when this model classified with
10-fold cross-validation repeated 100 times (Table 2).
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TABLE 1. Diagnostic Features
Benign Malignant
(N = 357) (N = 212)

Mean Radius (pm) 3471 + 0.508 5.004 = 0922
Mean area (p.m"’) 3780 + 10.96 H80.30 + 30.36

Mean Perimeter (um) 2232 + 3372 33.06 £ 6275
Mean Texture 1792 + 3993 21.60 *+ 3786
Mean Smoothness 0.093 + 0.013 0.108 + 0.013
Mean Compactness 0.080 + 0.034 0.146 = 0.053
Mean Concavity 0.046 = 0.044 0.165 + 0.075
Mean Concave points 0.026 + 0.016 0.089 =+ 0.034
Mean Symmetry 0174 = 0.025 0.194 = 0.028
Mean Fractal dimension® 0.063 = 0.007 0.063 = 0.008
SE Radius (pm) 0.081 = 0.032 0.175 £ 0.100
SE Area (pum®) 1.730 = 0.723 6.008 + 5171
SE Perimeter (um) 0.570 = 0.220 1.247 = 0.740
SE Texture* 1.222 + 0.031 1.213 = 0.483
SE Smoothness* 0.007 = 0.000 0.007 £ 0.003
SE Compactness 0.022 = 0.001 0.033 = 0.018
SE Concavity 0.026 = 0.002 0.042 = 0.022
SE Concave points 0.010 = 0.000 0.015 = 0.006
SE Symmetry* 0.021 = 0.000 0.021 = 0.011
SE Fractal dimension*® 0.004 = 0.000 0.004 = 0.002
Worst Radius (gm) 3.825 = (.667 6.049 + 1.245
Worst Area (um®) 45.67 + 13.37 116.7 =+ 50.37

Worst Perimeter (pm) 2488 + 387 40.49 + H.A488
Worst Texture 2353 + 5487 2924 + 5480
Worst Smoothness 0.125 = 0.020 0.145 = 0.022
Worst Compactness 0.184 = 0.094 0.375 = 0.170
Worst Concavity 0.167 = 0.141 0.454 + 0.182
Worst Concave point 0.075 = 0.036 0.18% = 0.046
Worst Symmetry 0.271 = 0.042 0.325 = 0.076
Worst Fractal dimension 0.080 = 0.014 0.092 = 0.021

Abbreviation: SE, standard error.

NOTE. Values for area are expressed as square micra (pum®), and
for radius and perimeter as micra (um). Values for remaining features
are nondimensional. Independent samples ttest was not significant
(indicated by * in the table) for differences between benign and
malignant for mean of fractal dimension, standard error of texture,
standard error of smoothness, standard error of symmetry, and for
standard error of fractal dimension. The differences were P < (001
for all other features.

Inductive Machine Learning Classification

A computationally intensive search showed that
worst Area, mean Texture and worst Smoothness gave
the most accurate three-feature, single-plane classifica-
tion separation. The location of these points in the
three-dimensional space defined by the three classifying
features is shown in Fig 1. The entire 10-fold cross
validation process was done five times and the re-
sults reported occurred three of the five times. Seven
benign and seven malignant FNAs were misclassified
when MSM-T was used to classify with cross validation
(Table 3).
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W. Area

FIGURE 1. The location of 212 malignant @ and 357 benign
O samples in the three-dimensional space defined by the com-
puter-generated features of mean Texture (Texture, x axis),
worst Stoothness (W. Smoothness, y axis), and worst Area (W.
Area, z axis). The feature values are standardized and the sym-
bol sizes vary according to the perspective. MSM-T generates
the plane that provides the best separation, in this case with
7 benign points lying on the side with 205 malignant points and
7 malignant points lying on the side with 350 benign points.

Prospective Analyses

All of the 128 consecutive cases obtained since the
introduction of this system were correctly diagnosed,
but nine benign aspirates were categorized as suspi-
cious. Eleven (19.3%) of the 57 FNAs that were visually
diagnosed elsewhere as “*suspicious’ were similarly clas-
sified by the computer, but 84.8% of the remaining
samples were correctly diagnosed."”

DISCUSSION

Nuclear feature analysis is better performed on cy-
tological FNA preparations than on the more com-
monly used histological tissue samples. FNA cells are
preserved intact, whereas histological processing cuts
cells at various planes. Selection of nuclei for analysis,
as performed in our study, has been shown to be robust
and operator independent."® A wide variety of histologi-
cal tumor types was included in this study, not only
“high grade™ infiltrating ductal cancers that would
have made classification easy. Our pathologists do not

TABLE 2. Logistic Regression Classification: Predicted TABLE 3. Inductive Machine Learning Classification:
Versus Confirmed Diagnosis Predicted Versus Confirmed Diagnosis
Malignant, Benign, Malignant, Benign,
Confirmed Confirmed Total Confirmed Confirmed Total
Malignant, predicted 199.6 = 0.65 9.0 + 0.72 208 Malignant, predicted 205 7 212
Benign, predicted 124 + 0.65 348.0 + (.72 361 Benign, predicted 7 350 357
Total 212 357 569 Total 212 357 569
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grade cancers because of difficulties in interobserver
\-:ariability,]"l but the large standard error of nuclear
Area across samples (Table 1) indicates that an assort-
ment of tumor grades™ were included in the study.

We compared our feature values with those re-
ported in the literature. Morphologic alterations result
from any fixation process and features, such as nuclear
texture vary according to the nuclear stain used (eg,
Feulgen versus hematoxylin). Therefore, feature values
presented here pertain only to FNAs processed in the
same manner as described herein. Separate algorithms
will have to be developed if deviations are made in
preparing or processing the FNAs (eg, air drying). Nev-
ertheless, the perimeter measurements for our benign
and malignant nuclei were the same as those reported
by Hutchison et al.”! They found the mean nuclear
perimeter * standard deviation for 169 benign samples
to be 23.99 + 2.97 micra compared with 22.32 + 3.38
micra for our 357 benign samples. Similarly, their values
for the perimeter of 168 malignant samples was 35.29 =
5.98 micra compared with 33.06 * 6.28 micra for our
212 malignant samples. Their values for the nuclear
area of benign samples was 36.43 * 8.89 square micra
and ours was 37.80 * 10.96, whereas their malignant
sample area was 76.38 * 23.03 and ours was 80.30 *
30.36. Therefore, the size values for both benign and
malignant samples seem to be the same despite method-
ological differences. However, the methodology used
seems to make a difference in shape. ‘‘Shape” was de-
fined by Hutchison et al*' as pL‘riIIIEl.EF2/47F area, which
we termed compactness. They found the mean nuclear
“shape” and standard deviation for 169 benign samples
to be 1.28 + 0.12 versus 1.071 = 0.032 for our 357
benign samples. Similarly, their values for the “shape”
of 168 malignant samples was 1.33 * 0.15 versus 1.120 *
0.049 for our 212 malignant samples. The difference
between our compactness and the nuclear *‘shape’ of
Hutchison et al’' is significant (P < .001) for both be-
nign and malignant samples. Although the absolute dif-
ferences are small, the statistical significance develops
from the small variability in the measurements: 3% and
4%, respectively, for benign and malignant in our se-
ries, and 9% and 11% for that of Hutchison et al.”!

A size, a texture, and a shape feature were selected
to give the most accurate classification by both the logis-
tic regression and by the inductive machine learning
process. Worst Radius, worst Texture, and worst Con-
cave points were used by the logistic regression model
and worst Area, mean Texture, and worst Smoothness
were used by the inductive machine learning model.
The number of classifying features was kept to a mini-
mum to avoid data overfitting. Pearson’s correlation
coefficient was so strong (r = .983) between worst Ra-
dius and worst area, and between worst Texture and
mean Texture (r=.912) that these feature values seem
virtually interchangeable. However, the correlation was
weaker (r= .546) between worst Concave points and
worst Smoothness. Classification based on digital fea-
ture analysis is robust; similar classification accuracy was
obtained by logistic regression and inductive machine

learning classification. The logistic regression cross vali-

dated classification accuracy is 96.2% and the inductive
machine learning cross-validated classification accuracy
is 97.5%. These results are considerably better than the
89% accuracy based on individual cell analysis achieved
by Hutchison et al.?! Our improved accuracy apparently
was achieved through the use of shape and texture fea-
tures not measured by Hutchison et al.*!

The logistic regression classification sensitivity is
94.1% + 0.83%, and the specificity is 97.5% * 0.2%.
The inductive machine learning classification sensitivity
is 96.7%, and the specificity is 98.0%. These perfor-
mance parameters were determined by cross-validation
to test the validity of the predicted diagnosis. With
our comprehensive assessment of shape features, we
achieve better performance parameters than have pre-
viously been rt'.portedAm In fact, our performance
parameters rival those obtained by visual diagnosis.”
Giard and Hermans®* emphasized the need for devel-
oping individual performance characteristics for per-
sons doing FNA of breast masses because the accuracy
achieved is operator dependent. The reported accuracy
of visually diagnosed breast FNAs is more than 90%.
The overall accuracy was 94.3% in a 62-series study with
a total of 23,741 satisfactory breast FNAs.°® Individually,
the mean sensitivity for these series was 0.91 * 0.07,
and the mean specificity was 0.87 * 0.18. The relatively
high standard deviations indicate that the accuracy
achieved in individual series varies considerably and
reflects the subjectivity of the procedure. Additionally,
it is unlikely that such accuracy is generally achieved
because publication bias is toward publishing favorable
results. The variation in accuracy is largely caused by
the subjectivity that is inherent in visual interpretation.
Visually assessed size, shape, and texture features that
distinguish benign from malignant cells are now mea-
sured by computers. We believe that our methods pro-
vide a basis for highly accurate computerized diagnostic
systems for breast cytology.
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