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Abstract

In this paper we propose a meta-evolutionary approach to improve on the perfor-
mance of individual classifiers. In the proposed system, individual classifiers evolve,
competing to correctly classify test points, and are given extra rewards for getting
difficult points right. Ensembles consisting of multiple classifiers also compete for
member classifiers, and are rewarded based on their predictive performance. In this
way we aim to build small-sized optimal ensembles rather than form large-sized
ensembles of individually-optimized classifiers. Experimental results on 15 data sets
suggest that our algorithms can generate ensembles that are more effective than
single classifiers and traditional ensemble methods.

Key words: Optimal ensemble, evolutionary ensemble, feature selection, neural
networks, diversity of ensemble, ensemble size.

1 Introduction

In recent years, a great deal of interest in the data mining community has been
generated by ensemble classifiers. These are predictive models that combine
the predictions of a collection of individual classifiers, such as decision trees
or artificial neural networks. Popular method such as Boosting, Bagging and
Stacking differ in the ways that individual predictors are constructed, and in
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how their votes are combined. However, they have all demonstrated consistent—
in some cases, remarkable-improvements in predictive accuracy over individual
classifiers.

Much of the power of these methods comes from the diversity of the compo-
nent classifiers. Intuitively, gathering a collection of problem solvers is only
valuable if they are both accurate and diverse in their solutions. For instance,
Boosting explicitly rewards a component classifier for correctly predicting dif-
ficult points, and is grounded by theoretical results that prove its effectiveness.
The necessary diversity can be obtained in many ways, such as using different
learning algorithms for the base classifiers, sampling the training examples,
or projecting the examples onto different feature subspaces. However, little
attention has been paid to the idea of creating an optimal collection of clas-
sifiers, or indeed, what the idea of “optimality” might even mean in such a
context.

We propose to directly optimize ensembles by creating an two-level evolution-
ary environment. The various ensembles in this environment compete directly
with one another, being judged on their estimated predictive performance. In
addition, the underlying classifiers also compete with each other, being re-
warded for correctly predicting the training examples. This reward is greater
if the point in question is difficult, i.e., if it has been incorrectly classified by
most of the other classifiers in the ensemble. We use feature selection as the
mechanism for individual diversity.

In this paper, we demonstrate the feasibility of such a model and show that
the predictive accuracy obtained is better than a single classifier. Our model
not only maintains higher or comparable predictive accuracy, but also builds
ensembles smaller than traditional ensemble methods. In particular, our model
provides the framework to answer how ensembles can best be constructed
through the evolutionary process. Finally, we examine the relationship between
ensemble characteristics, such as classifier diversity and ensemble size, and the
predictive accuracy of the ensemble.

The remainder of this paper is organized as follows. In Section 2 we review
ensemble methods and ensemble feature selection algorithms. In Section 3
we present our bi-level approach to the ensemble feature construction, Meta-
Evolutionary Ensembles (MEE) in detail. Section 4 presents and analyzes our
experimental results. Section 5 addresses the directions of future research and
concludes the paper.



2 Ensemble methods and feature selection

2.1 Ensemble methods

Recently many researchers have combined the predictions of multiple classi-
fiers to produce a better classifier, an ensemble, and often reported improved
performance [1-3]. Bagging [4] and Boosting [5,6] are the most popular meth-
ods for creating accurate ensembles. Bagging is a bootstrap ensemble method
that trains each classifier on a randomly drawn training set. Each classifier’s
training set consists of the same number of examples randomly drawn from
the original training set, with the probability of drawing any given example
being equal. Samples are drawn with replacement, so that some examples may
be selected multiple times while others may not be selected at all. As a result,
each classifier could return a higher test set error than a classifier using all of
the data. However, when these classifiers are combined (typically by voting),
the resulting ensemble produces lower test set error than a single classifier. The
diversity among individual classifiers compensates for the increase in error rate
of any individual classifier and improves prediction performance.

Boosting [5] produces a series of classifiers, with each training set based on
the performance of the previous classifiers. New classifiers are constructed
to better predict examples for which the current ensemble’s performance is
poor. This is accomplished using adaptive resampling, i.e., examples that are
incorrectly predicted by previous classifiers are sampled more frequently, or
alternately given a higher cost of misclassification. Boosting can be imple-
mented in two different ways, Arcing [7] and AdaBoosting [5]. In Arcing, the
classifiers’ votes are weighted equally, while AdaBoost weights the predictions
based on the classifiers’ training error.

The effectiveness of Bagging and Boosting can be explained based on the
bias-variance decomposition of classification error [2]. Bagging and Boosting
are known to reduce errors by reducing the variance term [7]. According to [5],
Boosting also reduces errors in the bias term by focusing on the misclassified
examples. It is noted that Boosting’s effectiveness depends more on the data
set than on the component learning algorithms, and it is often more accurate
than Bagging. However, Boosting, unlike Bagging, can create ensembles that
are much less accurate than a single classifier. In particular, Bagging performs
much better than Boosting on noisy data sets because Boosting can easily
overfit data by focusing more on the misclassified examples [8]. In most cases,
the improved performance of an ensemble is largely obtained by combining
the first few classifiers [9].

Note, however, that ensemble models are more complex for human to under-



stand. Ensemble models are also more expensive in terms of computing times
and require more memory than individual classifiers.

2.2 Feature subset selection

Feature selection is defined as the process of choosing a subset of the origi-
nal predictive variables by eliminating redundant and uninformative ones. In
many cases this can reduce overfitting and lead to better generalization. Most
feature selection research has focused on heuristic search approaches, such as
sequential search [10], nonlinear optimization [11], and genetic algorithms [12].

Our approach is based on the wrapper model [13] of feature selection, which
requires two components: a search algorithm that explores the combinatorial
space of feature subsets, and one or more criterion functions that evaluate the
quality of each subset based directly on the predictive model. In this work, we
use artificial neural networks (ANNs) as an induction algorithm to evaluate
the quality of the selected feature subsets. As a search algorithm, we turn
to evolutionary algorithms (EAs) to intelligently search the space of possible
feature subsets. An EA is a parallel and global search algorithm that works
with a population of solutions to simultaneously evaluate many points in the
search space. Standard EAs often converge prematurely to local optima and
employ computationally expensive global selection mechanisms. We instead
use a new evolutionary algorithm that maintains diversity by employing a
local selection scheme. This evolutionary local selection algorithm (ELSA)
has been successfully applied to multi-objective optimization problems, such
as feature selection in both supervised and unsupervised learning [14-16].

We employ feature selection not only to increase the prediction accuracy of an
individual classifier but also to promote diversity among component classifiers
in an ensemble [17]. The diversity among component classifiers of ensemble has
been proven critical to attaining higher generalization accuracy [18-20]. An
ensemble generalizes well by combining many accurate component classifiers
that make errors on different parts of data. Ensemble feature selection is based
on the notion that different feature subsets among component classifiers of an
ensemble can provide the necessary diversity. It is similar to the notion that
different training samples among component classifiers provide the necessary
diversity in ordinary ensemble methods.

2.3 Ensemble feature selection algorithms

The improved performance of ordinary ensemble methods comes primarily
from the diversity caused by re-sampling training examples. However, ensem-



ble methods typically use the complete set of features to train component
classifiers. Further, ensemble construction based on re-sampling is not recom-
mended when the size of data sets is large and data examples are relatively
homogeneous. This is mainly because re-sampling of homogeneous records may
not boost the diversity among classifiers and the large size of re-sampling may
take most of precious resources.

Recently several attempts have been made to incorporate the diversity in
feature dimension into ensemble methods. The Random Subspace Method
(RSM) in [21,22] was one early algorithm that constructed an ensemble by
varying the feature subset. RSM used C4.5 as a base classifier and randomly
chose half of the original features to build each classifier. Each classifier tree
was constructed after all the training examples were projected to the subspace
of selected features. The predictions were combined by simple majority voting.
In comparative experiments, RSM demonstrated better performance on four
public data sets than a single tree classifier with all the features and examples,
and also outperformed Bagging and Boosting on the full-dimensional data sets
[21].

A more sophisticated way to select a subset of features for ensembles was
proposed in [23]. They used a genetic algorithm (GA) to explore the space of
all possible feature subsets. Their experiments paired four different ensemble
methods, including Bagging and AdaBoost, with three different feature selec-
tion algorithms: complete, random, and genetic search. Using two table-based
classification methods, ensembles constructed using features selected by the
GA showed the best performance, followed by RSM. In [24], a new entropy
measure of the outputs of the component classifiers was used to explicitly mea-
sure the ensemble diversity and to produce good feature subsets for ensemble
using hill-climbing search.

Genetic Ensemble Feature Selection (GEFS) [17] also used a GA to search for
possible feature subsets. Component classifiers (ANNs) in GEFS were explic-
itly evaluated in terms of both generalization accuracy and diversity. GEFS
starts with an initial population of classifiers built using up to 2 - D features,
where D is the complete feature dimension. Using a variable feature subset
size promotes diversity among the classifiers and allows some features to be
selected more than once. Crossover and mutation operators search for new fea-
ture subsets, and new candidate classifiers are built for each of the new feature
sets. Finally, GEFS prunes the population to the 100 most-fit members and
majority voting is applied to determine the ensemble prediction. GEFS pro-
duces a good initial population, and in most cases produces better results the
longer it runs. GEFS reported better estimated generalization than Bagging
and AdaBoost on about two-thirds of 21 data sets tested.

However, longer chromosomes that can consider up to 2 - D features make



GEFS computationally very expensive in terms of memory usage [23]. Further,
GEFS evaluates each classifier after combining two objectives in a subjective
manner using fitness = accuracy—+\ diversity, where diversity is the average
difference between the prediction of component classifiers and the ensemble.
Since there is no obvious way to set the value of A\, GEFS dynamically adjusts
the parameter based on the discrete derivatives of the ensemble error, the
average population error and the average diversity within the ensemble.

Although all these methods reported improved performance using feature se-
lection for ensemble construction ensemble, they have one common limitation
in methodology: only one ensemble is considered. In this paper, we propose a
new algorithm for ensemble feature selection, Meta-Evolutionary Ensembles
(MEE), that considers multiple ensembles simultaneously and allows each
component classifiers to move into the best-fit ensemble. Genetic operators
change the ensemble membership of the individual classifiers, allowing the
size and membership of the ensembles to change over time. By having the var-
ious ensembles compete for limited resources, we can optimize their predictive
performance.

In order to avoid costly global selection (i.e., selection of agents for next gen-
eration by sorting and comparing all evaluated solutions based on accuracy
values) common to most GAs, we use a local selection mechanism in which
classifiers compete with each other only if they belong to the same ensemble.
Using ANNs as the base classifier and EA for feature selection, we evaluate and
reward each classifier based on two different criteria, accuracy and diversity.
A classifier that correctly predicts data examples that other classifiers in the
same ensemble misclassify contributes more to the accuracy of the ensemble to
which it belongs. We imagine that some limited “energy” is evenly distributed
among the examples in the data set. Each classifier is rewarded with some
portion of the energy if it correctly predicts an example. The more classifiers
that correctly classify a specific example, the less energy is rewarded to each,
encouraging them to correctly predict the more difficult examples. The pre-
dictive accuracy of each ensemble determines the total amount of energy to
be replenished at each generation. Finally, we select the ensemble with the
highest accuracy as our final classification model.

3 Meta-Evolutionary Ensembles

3.1 Theoretical motivation

In this section, we formulate optimal ensemble construction as an optimization
problem, and motivate why we take a gradient approach based on a generic



algorithm. For notational simplicity, we take a two-class classification problem,
where class the label for a data point i, y; for all i € {1,2,--- N}, is either
0 or 1. Note that our discussion can be easily extended for multiple-class
classification cases without modifying the main structure. Let’s also assume
that there is an ensemble e that consists of K individual classifiers, C;, where
j€{1,2,---, K}. Then, we can represent the predicted class label for a data
point ¢ by a classifier Cj, gﬁ , as follows:

. 1 if classifier C'; predicts data ¢ to be class 1
gl = ’ (1)
0 otherwise

Since the predicted class label for a data point ¢ by an ensemble e, 7, is a
weighted sum of ¢/, we represent it as follows:

K

) Lif Y w;-y > 0.5

g5 = =1 (2)
0 otherwise

where w; represents the weight allocated to classifier C;, and can have the
same value for all classifiers as in Bagging or be dependent on .

Optimal ensemble construction problem is to find an ensemble with the lowest
classification error out of m ensembles, and can be formulated as follows:

Find an ensemble e such that error® < error®
where
N
error® = Z(g}f —y;)% ec{1,2,---,m} (3)
%]:Vl
errorkt = Z(g)f —y)?, Vk#eec{1,2,---,m}
i=1

Note that each ensemble can consist of a different number of classifiers. Though
the optimal ensemble construction problem can be formulated as in Equa-
tion 3, it is a difficult task to find the global solution by exploring the search
space exhaustively. For example, when we build a classifier based on a sub-
set of features out of D features as in our approach, there are 2P different
ways of building a classifier. Since an ensemble can consist of any number of
classifiers, there are 22 different ways of building an ensemble. Therefore, if
we consider m ensemble, the total number of candidate solutions we should
evaluate through exhaustive algorithms will be m-22" . Even with a small num-
ber of features, this exponential search space cannot be searched exhaustively.



Therefore, we take a gradient approach to search solutions space efficiently,
and genetic algorithms have been known very successful for exploring large
search space.

3.2 Algorithm detail

Pseudocode for the Meta-Evolutionary Ensembles (MEE) algorithm is shown
in Figure 1, and a graphical depiction of the energy allocation scheme is
shown in Figure 2. Each agent (candidate classifier) in the population is first
initialized with randomly selected features, a random ensemble assignment,
and an initial reservoir of energy. The representation of an agent consists of
D + log,(G) bits. D bits correspond to the selected features (1 if a feature is
selected, 0 otherwise). The remaining bits are a binary representation of the
ensemble index, where G is the maximum number of ensembles. Mutation and
crossover operators are used to explore the search space. A mutation operator
randomly selects one bit of an agent and mutates it. Our crossover operator
takes two agents, a parent a and a random mate, and scans through the bits of
the two agents. If a difference is found, the value of the bit in a is flipped with
a probability of 0.5. In this process, the mate contributes only to construct the
offspring’s bit string, which inherits all the common features of the parents.

In each iteration of the algorithm, an agent explores a candidate solution
(classifier) similar to itself, obtained via crossover and mutation. The agent’s
bit string is parsed to get a feature subset J. An ANN is then trained on
the projection of the data set onto J, and returns the predicted class labels
for the test examples. The agent collects AE from each example it correctly
classifies, and is taxed once with E.,. The net energy intake of an agent is
determined by its fitness. This is a function of how well the candidate solution
performs with respect to the classification task. But the energy also depends
on the state of the environment. We have an energy source for each ensemble,
divided into bins corresponding to each data point. For ensemble g and record
index 7 in the test data, the environment keeps track of energy EY’  and the
number of agents in ensemble g, count,, that correctly predict record r. The
energy received by an agent for each correctly classified record r is given by

Egvr
AE — : envt . (4)
min(5, prevCount, )

An agent receives greater reward for correctly predicting an example that
most in its ensemble get wrong. The min function ensures that for a given
point there is enough energy to reward at least 5 agents in the new gener-
ation. Candidate solutions receive energy only inasmuch as the environment
has sufficient resources; if these are depleted, no benefits are available until



initialize population of agents, each with energy 6/2
while there are alive agents in Pop’ and i < T
for each ensemble g
for each record r in Datatest
prevCountg,» = countg,,
countg r =0
endfor
endfor
for each agent a in Pop*
a’ = mutate(crossover(a, randomMate))

g = group(a)
train(a)
for each record r in Datatest
if (class(r) == prediction(r,a))

countg r + +
AgET: Eg;%t/ min(5, prevCountg,,)
Ee;vut = EC;L’Ut —AE
Eq, =FEq, + AFE
endif
endfor
Eqy = Eq — Ecost
if (Eq>0)
insert a,a’ into Popitl
E, =Eq/2
E,=FEq, —E,
else if (FEy, > 0)
insert a into Pop't!
endif
endfor
for each ensemble g
replenish energy based on predictive accuracy
endfor
i=1+1
endwhile

Fig. 1. Pseudo-code of Meta-Evolutionary Ensembles (MEE) algorithm. In each
iteration, the environmental energy for each pair of an ensemble g and a test example
r is replenished based on the predictive accuracy of g. The main loop calls agents in
random order and agents are rewarded based on their accuracy on each test record
r, normalized by the number of other agents that correctly classify r in the same
ensemble.

the environmental resources are replenished. Thus an agent is rewarded with
energy for its high fitness values, but also has an interest in finding unpop-
ulated niches, where more energy is available. The result is a natural bias
toward diverse solutions in the population. .. for any action is a constant

(Ecost < 6)

In the selection part of the algorithm, an agent compares its current energy
level with a constant reproduction threshold 6. If its energy is higher than
0, the agent reproduces: the agent and its mutated clone become part of the
new population, with the offspring receiving half of its parent’s energy. If the
energy level of an agent is positive but lower than 6, only that agent joins the
new population.

The environment for each ensemble is replenished with energy based on its pre-



Fig. 2. Graphical depiction of energy allocation in the MEE algorithm. Individual
classifiers (small boxes in the environment) receive energy by correctly classifying
test points. Energy for each ensemble is replenished between generations based on
the accuracy of the ensemble. Ensembles with higher accuracy have their energy
bins replenished with more energy per classifier, as indicated by the varying widths
of the bins.

dictive accuracy, as determined by majority voting with equal weight among
base classifiers. We sort the ensembles in ascending order of estimated accu-
racy and apportion energy in linear proportion to that ranking, so that the
most accurate ensemble is replenished with the greatest amount of energy per
base classifier. Since the total amount of energy replenished also depends on
the number of agents in each ensemble, it is possible that an ensemble with
lower accuracy can be replenished with more energy in total than an ensemble
with higher accuracy.

4 Experimental results

4.1 Data sets

We test the performance of MEE combined with neural networks on several
data sets that are publically available [25] and were used in [17]. We show the
characteristics of our data sets in Table 1.

In our experiments, the weights and biases of the neural networks are initial-
ized randomly between 0.5 and -0.5, and the number of hidden node is deter-
mined heuristically as v/inputs. For example, the number of hidden nodes of
models for both “credita” and “creditg” is set to seven. This way the structure
of ANNs is dynamically adjusted depending on the number of input nodes to
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Table 1
Summary of the data sets used in the computational experiments.

Features Neural Network

Dataset Records Classes | Cont. Disc. Inputs
credita 690 2 6 9 47
creditg 1000 2 7 13 63
diabetes 768 2 8 - 8
cleveland 303 2 8 5 13
hepatitis 155 2 6 13 32
votes-84 435 2 16 16
ionosphere 351 2 34 - 34
krvskp 3196 2 - 36 40
labor 57 2 8 8 29
sick 3772 2 6 21 31
sonar 208 2 60 - 60
iris 150 3 4 - 4
hypo 3772 4 6 21 31
segment 2310 7 19 - 19
soybean 683 19 - 35 84

reduce computational burden. The other parameters for the neural networks
include a learning rate of 0.1 and a momentum rate of 0.9. The number of
training epochs was kept small (50) for computational reasons. The values for
the various parameters are: Pr(mutation) = 1.0, Pr(crossover) = 0.8, Egpst
= 0.2, 0 = 0.3, and T = 30. The value of E'?, = 30 is chosen to maintain a
population size around 100 classifier agents.

All computational results for MEE are based on the performance of the best
ensemble and are averaged over five standard 10-fold cross-validation experi-
ments. For each 10-fold cross-validation the original data set is first partitioned
into 10 equal-sized sets, each maintaining the original class distribution. Each
set is in turn used as an evaluation set while the classification system is trained
on the other sets. Within the training algorithm, each ANN is trained on
two-thirds of the training set and tested on the remaining third for energy
allocation purposes.
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4.2 Predictive accuracy and data characteristics

Experimental results of various models are summarized in Table 2. We present
the performance of a single neural network using the complete set of features
as a baseline algorithm. In the win-loss-tie results shown at the bottom, a
comparison is considered a tie if the intervals defined by one standard error of
the mean overlap. In our experiments, standard error is computed as standard
deviation / v/iter where iter = 5. We also include the results of Bagging,
AdaBoost, and GEFS from [17] for indirect comparison. In these comparisons,
we do not have access to the accuracy results of the individual runs. Therefore,
a tie is conservatively defined as a test in which the one-standard-deviation
interval of our test contained the point estimate of accuracy from [17].

In terms of predictive accuracy, our algorithm demonstrates superior perfor-
mance compared to single neural networks with the complete set of features.
As shown in the win-loss-tie summary, MEE shows significantly superior per-
formance to single neural networks in 12 data sets and slightly better perfor-
mance in the other data sets: diabetes, votes-84, and hypo. Compared to the
traditional ensembles (Bagging and Boosting), MEE also shows superior per-
formance. In comparison to Bagging, MEE demonstrates significantly better
performance in five data sets but only marginally in the remaining data sets.
Compared to Boosting, MEE performs significantly better in eight data sets
but shows worse performance in four data sets. It is interesting that MEE
performs worse performance in two data sets, labor and segment, compared
to both ordinary ensemble methods.

Note also that MEE shows comparable performance compared to GEFS with
a win-loss-tie score (4-5-6). However, we note that such comparisons are in-
evitably inexact, since subtle methodological differences can cause variations
in estimated accuracy. For example, it is possible that the more complex struc-
ture of neural networks used in GEFS can learn more difficult patterns in data
sets. We do not have implementation details enough to replicate the same re-
sults of GEFS. It is possible the training epochs in GEFS were empirically
determined for each data set to optimize performance, while we minimized
such an effort.

In addition to predictive accuracy, computational time is another popular
measurement used to compare different algorithms. From the perspective of
computational time, our MEE algorithm can be very slow compared to Bag-
ging and Boosting. However, MEE can be very fast compared to GEFS because
GEFS uses twice as many as input features as used in MEE. In addition, the
larger number of hidden nodes and longer training epochs can make GEFS
extremely slow.

12



Table 2
Experimental results of MEE/ANN with a varying number of epochs

Single Net MEE

Dataset Avg. S.D. | Bagging AdaBoost GEFS | Avg. S.D. Epochs
credita 84.3  0.30 86.2 84.3 86.8 | 86.4 0.52 40
creditg 71.7 043 75.8 74.7 75.2 | 75.6 0.78 50
diabetes 76.4  0.93 77.2 76.7 77.0 | 76.8 0.42 50
cleveland 80.7  1.83 83.0 78.9 83.9 | 83.3 1.54 50
hepatitis 81.5 0.21 82.2 80.3 83.3 | 84.9 0.65 40
votes-84 95.9 0.41 95.9 94.7 95.6 | 96.1 0.44 40
ionosphere 89.3  0.85 90.8 91.7 94.6 | 93.5 0.81 100
krvskp 98.8  0.63 99.2 99.7 99.3 | 99.3 0.10 50
labor 91.6  2.29 95.8 96.8 96.5 | 944 0.78 50
sick 95.2  0.47 94.3 95.5 96.5 | 99.3 0.03 50
sonar 80.5  2.03 83.2 87.0 82.2 | 85.2 1.57 100
iris 95.9 1.10 96.0 96.1 96.7 | 96.5 0.73 100
hypo 93.8  0.09 93.8 93.8 94.1 | 93.9 0.06 50
segment 92.3  0.97 94.6 96.7 96.4 | 93.2 0.28 50
soybean 92.0 0.92 93.1 93.7 94.1 | 93.8 0.19 50
Win-loss-tie | 12-0-3 5-2-8 8-4-3 4-5-6
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In summary, in terms of predictive accuracy, MEE and GEFS is the best fol-
lowed by traditional ensemble methods, and single neural network is the worst.

However, single neural network classifier is the fastest followed by traditional
ensemble methods and MEE, and GEFS is the slowest.

We also try to profile data sets that MEE relatively works better or worse to
provide data analysts with guidelines on how to build construct ensembles,
using either re-sampling records or selecting features. We first investigate if
MEE performs worse on multi-class data sets. In general, if there are mul-
tiple concepts to learn, classifiers (either single or ensemble models) need a
sufficient number of data points with detailed information from most of in-
put features to learn multiple patterns. Therefore, classifiers with information
from few projected variables will not perform well. Note that, among 15 data
sets, there are four multi-class data sets (iris, hypo, segment, and soybean)
while the remaining 11 data sets are bi-class data sets. Out of four multi-class
data sets, MEE shows consistently worse performance on “segment” data com-
pared to re-sampling based ensemble methods and GEFS, although it shows
comparable performance on the other three data sets. Therefore, from the cur-
rent study, we do not find any strong link for the relationship between MEE’s
performance and the number of classes.

We also assume that MEE may not work well on the data sets with few input
variables because there is no room to boost the diversity among classifiers
when they are built on different sets of feature spaces. Table 2 confirms our
conjecture by showing the trends that MEE performs worse on data sets with
few input variables such as “iris”, “diabetes”, “segment”, and “labor”. How-
ever, it warrants further investigation because of few exceptions on other data
sets.

4.3  Guidelines toward optimized ensemble construction

4.8.1 Ensemble size and predictive accuracy

In this section, we use MEE to examine ensemble characteristics and provide
data analysts with practical guidelines on how to construct optimal ensembles.
We expect that by optimizing the process of ensemble construction, MEE will
in general achieve superior or at least comparable accuracy to other methods
using fewer individual classifiers. Note that we show the findings from only
one data set, credit-g, due to the similar findings on few other data sets and
the limitation of spaces. In particular, we use data collected from the first fold
of the first cross-validation routine for the following analyses. Two additional
classifiers, a Naive Bayesian [26] and C4.5 (a decision tree algorithm) [27]
were adopted to study if different classifiers need different configurations for
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building optimized ensembles in terms of ensemble size and diversity.

We first investigate whether the ensemble size is positively related with the
predictive accuracy. It has been well-established that to a certain degree, the
predictive accuracy of an ensemble improves as more classifiers built on dif-
ferent sets of records are included in the ensemble. It is our objective to in-
vestigate whether the same positive relationship exists when the classifiers are
built on different sets of input feature spaces.

The Figure 3 shows relationship diagrams between the predictive accuracy
and the size of ensemble for three different classifier. Note that the ensemble
size is measured by the number of classifiers that belong to the ensemble. Two
different accuracy measurements, average and maximum accuracy, are used.
The average accuracy and maximum accuracy for a given ensemble size is
computed by taking an average and the maximum value of accuracy values of
all ensembles with the same size.

The Figure 3(a) shows a steady improvement of average accuracy of decision
tree ensembles up to an ensemble size of 10 and the improvements flatten at
an ensemble size of approximately 10-25, seeming to confirm the results in
[9]. However, in contrast to the findings in [9], we found a negative relation-
ship between two factors when ensemble consists of 25 or more classifiers. We
partly attribute this finding to the fact that our algorithm in its nature is a
gradient search algorithm and its results are dependent on initial populations
and stochastic properties. In particular, we believe that ensembles consisting
of 25 or more classifiers is not fully explored as other small-sized ensembles.
This is confirmed that more than 90% of decision tree ensembles explored
consist of 25 or less classifiers. Similar patterns are observed in Figure 3(b)
for maximum accuracy of decision tree ensembles.

Accuracy and number of ensemble members Accuracy and number of ensemble members
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Fig. 3. Relationship diagrams between ensemble size and accuracy
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In contrast, ensembles of Naive Bayesian classifiers shows robust performance
over various ensemble sizes. Note that predictive models of Naive Bayesian
are more likely to be dependent on class distributions of data sets rather than
on marginal variations of feature spaces compared to other classifiers. For
example, predictive models of decision trees are very different depending on
which input variables are chosen at the root and successive nodes of the tree.
However, as shown in Figure 3(a) and (b), Naive Bayesian ensembles show
robust performance.

The average and maximum accuracy of neural network ensembles show a
steady increase (ensemble size is < 10), flattens out (ensemble size is between
10 and 20), and finally sharply decreases (ensemble size is > 20). In particular,
the maximum accuracy peaks at an ensemble size of 18 and sharply decreases
as more than 18 neural networks consist of ensemble.

Overall, ensembles of three different classifiers share the same positive rela-
tionship between ensemble size and accuracy. Further, decision tree and neural
networks ensembles also show the negative relationship between these two fac-
tors. Note that it is not our main goal to compare predictive accuracy of three
ensemble models and hence no attempts to compare three models (e.g., de-
cision tree ensembles are more accurate than neural networks ensembles) are
made.

4.3.2  Ensemble diversity and predictive accuracy

We also investigate whether the diversity among classifiers is positively re-
lated with the ensemble’s classification performance. In our experiment, the
diversity of ensemble is measured based on the difference of predicted class
between each classifier and the ensemble. We first define a new operator & as
follows:

Oifa=p
adp= (5)
1 otherwise

When an ensemble e consists of g classifiers, the diversity of ensemble e,
diversity®, is defined as follows:

K Ny
22> (@)
ORI |
diversity® = TN (6)
Ny

where N, is the number of records in the test data and g;'. and ¢ represent the
predicted class label for record j by classifier 7 and ensemble e respectively.
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Fig. 4. Relationship diagrams between ensemble diversity and accuracy

The larger the value of diversity®, the more diverse the ensemble is.

We show the relationship between the predictive accuracy and ensemble di-
versity in Figure 4(a) and (b). These two diagrams show the expected positive
relationship between accuracy and diversity for ensembles. From homogeneous
ensembles with diversity® < 0.1, it is not easy to draw a conclusion about
the positive relationship between ensemble diversity and accuracy. This is in
particular true to ensembles of neural networks and Naive Bayesian models.
However, the performance of ensembles with diversity® > 0.1 improves as
they become more diverse. Ensembles of Naive Bayesian models show rela-
tively stable performance over various values of diversity although ensembles
with diverse classifiers show slightly superior performance. Note also that en-
sembles of Naive Bayesian models show relatively uniform diversity compared
to ensembles of decision trees and neural networks. We attribute this finding
to the fact that Naive Bayesian models are heavily dependent on the overall
distributions of records and hence individual Naive Bayesian models generate
relatively uniform predictions as long as the distributions of records are not
drastically different.

However, our results do not provide sufficient information to determine whether
too much diversity among classifiers can deteriorate the performance of ensem-
ble models. Too much diversity can negatively affect the ensemble performance
as the final decision made by ensemble becomes a random guess. Ensembles
of neural networks show a sudden drop of predictive accuracy after a certain
point of diversity (diversity® > 0.2). Decision tree ensembles also provide a
partial support of this claim but it warrants further investigation using more
data sets.
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5 Conclusions

In this paper, we propose a new ensemble construction algorithm, Meta-
Evolutionary Ensembles (MEE). This algorithm employs a novel two-level
evolutionary search through the space of ensembles, using feature selection
as the diversity mechanism. At the first level, individual classifiers compete
against each other to correctly predict held-out examples. Classifiers are re-
warded for predicting difficult points, relative to the other members of their
respective ensembles. At the top level, the ensembles compete directly based
on classification accuracy.

Our model has several nice properties. First of all, our experimental results
indicate that this method shows very comparable classification accuracy while
keeping the ensemble size small by optimizing it directly. The final solution
shows consistently improved classification performance compared to a single
classifier at the cost of computational complexity. Compared to the traditional
ensembles (Bagging and Boosting) and GEFS, our resulting ensemble shows
comparable performance while maintaining a smaller ensemble.

Our model also makes it possible to understand and analyze how and why
ensemble methods achieve improved predictive accuracy. Our two-level evolu-
tionary framework confirms that more diversity among classifiers can improve
predictive accuracy. Up to a certain level, the ensemble size also has a positive
effect on the ensemble performance. In our model, the fittest ensemble is the
one that survives through direct competition based on classification accuracy.
In this way, we optimize ensembles directly, rather than combining optimized
classifiers into an ensemble.

Further, our framework is a meta-search algorithm, meaning that it is indepen-
dent of classifier types and/or various mechanism to promote diversity among
classifiers. For example, we use feature selection as the mechanisms for indi-
vidual diversity in this study. However, our flexible framework enables us to
use data sampling (or both) to promote diversity among classifiers as in tradi-
tional ensemble methods. Our preliminary experiments show no big difference
in overall performance between two methods for promoting diversity.

The next step is to compare this algorithm more rigorously to others on a larger
collection of data sets, and perform any necessary performance tweaks on the
EA energy allocation scheme. This new experiment is to verify the claim that
Breiman [28] proposed through experiments on synthetic data sets. He claimed
that there is relatively little room for other types of ensemble construction
algorithm to obtain further improvement because his decision forest method
performs at or near the Bayes optimal level. Along the way, we will examine the
role of various characteristics of ensembles (size, diversity, etc.) and classifiers
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(type, number of dimensions / data points, etc.). By giving the system as
many degrees of freedom as possible and observing the characteristics that
lead to successful ensembles, we can directly optimize these characteristics
and translate the results to a more scalable architecture [29] for large-scale
predictive tasks.

Another direction of future research is to investigate whether oversearching
affects the classification performance of our model. Through the evolutionary
process, MEE evaluates a number of ensemble models and selects one as the
final solution. However, more extensive search can increase the probability
of finding fluke rules that fit the data well but have low predictive accuracy
[30]. We will investigate the relationship between the number of models and
the predictive accuracy, particularly on data sets where MEE did not perform
well.
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