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Abstract

Monitoring HbA1c, the measurement for the average blood glucose level, is important to diabetic patients and may
help improve their treatment. This study aims to train learning algorithms that predict patients with high variation
in their HbA1c readings. Attributes in clinical data are often continuous, such as age, blood pressure, and lab tests.
However, many machine learning algorithms work better – or work only – with categorical attributes. We propose
using discretization processes to identify meaningful cut points for continuous attributes. For example, the study could
help understand questions like, What is the range of age and BMI for diabetic patients that have high variation in their
HbA1c readings? The discretization process finds the number of intervals and the boundaries for the intervals. The
process may reveal meaningful cut points in continuous attributes and contribute knowledge to the medical domain.
Discretization process also allows us to discover suitable intervals and boundaries for a particular attribute depending
on variety of parameters that can be controlled by the experimenter.

Keywords: HbA1c Monitoring, Discretization algorithm, Decision Tree

1 Introduction

HbA1c is a measurement for the average blood glucose level and is commonly used to monitor diabetes patients. In this
paper, we explore methods to analyze patients who exhibit high variation for their HbA1c monitoring. We adopt Time
Abstraction (TA) based analysis [1] to derive useful summaries of time series. In addition, we employed discretization
algorithms to identify meaningful cut-points among continuous features to enhance the analysis. The goal of the
proposed methods is to improve predictive generalization and translate the discretization results into interpretable
clinical knowledge.

In clinical data analysis, discrete features are easier to interpret for both data scientists and clinicians. Dis-
crete features are closer to a knowledge-level representation than continuous ones. Prior research also indicates that
discretization makes learning faster and more accurate [2]. Discretization methods determine “cut-points” (or split-
points) for continuous features, dividing a range of continuous values into intervals of various lengths. The discovery
of meaningful cut-points would enhance knowledge to the question: what is the range of age and BMI for diabetic
patients that are more inclined to have high variance in their HbA1c readings?

Variation for HbA1c can be observed from two aspects: the variance and the delta. Variance indicates the usual
difference between a measurement and the mean of those measurements, while the delta is the mean of the differences
between consecutive readings. Figure 1a exemplifies ten HbA1c readings for two patients, represented separately by
a solid red line (Patient A) and a dashed blue line (Patient B). Both patients have the same variance (0.081) for their
HbA1c time series. However, Patient A has higher delta (0.46) than Patient B (0.15). Although Figure 1b shows that
the variance and the delta are linearly correlated, they represent different concepts.

In this paper, we aim to learn methods that explain and predict patients with high variance and high delta for their
HbA1c. We define that a patient has high variance and delta if the value is higher than one standard deviation away
from the mean of the data.

1This work is done during the author’s visit to the Center for Web and Data Science at the University of Washington
- Tacoma.
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(a) Illustration of delta and variance
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Figure 1: Variance vs. Delta
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Figure 2: Analysis framework

The remainder of the paper is organized as follows. In the next section, we propose an analysis framework that
incorporates the TA-based analysis and the discretization methods. In Section 3, we summarize the data and detail our
experiments. In Section 4, we discuss the experimental results. Section 5 concludes the work and outlines directions
for future research.

2 Methods

We incorporated TA based analysis and two discretization methods. Figure 2 shows the proposed analysis. The
preprocessed input data contains the sequence of measurements for diastolic blood pressure, systolic blood pressure,
BMI, and patient age, ordered by the sequence of visits. Each sequence of measurements is a time series feature.
As shown in Figure 2, we first summarize the preprocessed time series to obtain abstract descriptions of the data.
To provide this higher level description of the time series, we computed the mean, the variance, and delta (i.e. the
difference between two consecutive data), and the variance of delta for each time series feature.

As described in the proposed framework (see Figure 2), we apply discretization methods on these summaries of
time series to discover meaningful cut-points. We then use visualization techniques to examine the cut-points derived
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from different discretization algorithms. The visualizations of different cut-points support the interpretation of the
data. The discretized features is then used for data mining tasks to learn predictive models. The proposed framework
aims to investigate how to discover meaningful cut-points through visualizations and whether these summaries could
be used to learn some characteristics of the patients.

We adopted Minimum Description Length Principle (MDLP) and ChiMerge to discretize continuous features.
MDLP is a supervised, top-down (splitting) discretization method. It selects cut-points that maximizes the information
entropy. ChiMerge is a supervised, bottom-up (merging) discretization method. It uses the chi-square statistic to
determine if the class frequencies of the two intervals are significantly different.

Our predictive models include logistic regression model and decisions trees. We compare the performance of
logistic regression model on the original continuous features and the discretized features. The logistic regression model
over continuous attributes is used as a baseline to compare with a discretized logistic regression. The performance is
measured in AUC and F1 scores, averaging from 10-fold cross validation.

3 Data Description

We used real patient data extracted from the patient record system at the University of Iowa Hospitals and Clinics. The
data contains the engineered summary of time series clinical data. The data includes 1,208 patients who have at least
10 recorded HbA1c readings. All patients have a diagnosis of Type II diabetes.

Table 1 describes the variables used in the data. The processed data include time abstractions (i.e. mean, variance,
delta, and variance of delta) for diastolic blood pressure, systolic blood pressure, BMI, and the patient age. Since the
class label is determined by the feature hba1c var, and hba1c delta, we excluded the two features from the data for
the classification tasks.

Table 2 shows the correlation results of the 14 explanatory variables (x-variables) and 2 predicted variables (y-
variables, i.e. hba1c var and hba1c delta). The results indicate that the four time abstractions provide different infor-
mation for the predicted variables. As shown in Table 2, although bp sys mean does not have significant correlation
to hba1c var and hba1c delta, bp sys var and bp sys delta exhibit correlations. In addition, although bmi mean is
significantly correlated to hba1c var and hba1c delta, bmi var is not.

In this paper, we aim to learn methods that explain and predict patients with high variance and high delta for their
HbA1c. We define that a patient has high variance and delta if the value is higher than one standard deviation above
the mean of the data. The final processed data for classification tasks contains 131 patients are labeled positive for
having high variance for HbA1C and 165 patients are labeled positive for having high delta for HbA1c.

Table 1: Variable description. HbA1c related metrics are excluded from predictive models.

Index Variable Description
1 bp dia mean Mean of diastolic blood pressure
2 bp dia var Variance of diastolic blood pressure
3 bp dia delta Difference between two consecutive diastolic blood pressure
4 bp dia delta var Variance of the difference between two consecutive diastolic blood pressure
5 bp sys mean Mean of systolic blood pressure
6 bp sys var Variance of systolic blood pressure
7 bp sys delta Difference between two consecutive systolic blood pressure
8 bp sys delta var Variance of the difference between two consecutive systolic blood pressure
9 bmi mean Mean of BMI

10 bmi var Variance of BMI
11 bmi delta Difference between two consecutive BMI
12 bmi delta var Variance of the difference between two consecutive BMI
13 pat min age Lowest recorded age for a patient
14 pat max age Highest recorded age for a patient
15 hba1c var Variance of HbA1c
16 hba1c delta Difference between two consecutive HbA1c readings
17 class var Patients with HbA1c variance larger than one standard deviation
18 class delta Patients with HbA1c delta larger than one standard deviation

3



Table 2: Correlations between variable. * indicates the significance level <0.05.

index 1 2 3 4 5 6 7 8 9 10 11 12 13 14
hba1c var 0.20* 0.24* 0.22* 0.21* 0.02 0.15* 0.11* 0.13* 0.09* 0.007 0.06* 0.06* -0.17* -0.19*

hba1c delta 0.22* 0.23* 0.22* 0.18* 0.04 0.16* 0.13* 0.15* 0.11* 0.01 0.08* 0.07* -0.19* -0.21*

Table 3: Performance Comparison for AUC and F1

AUC F1
Learner Y Raw MDLP ChiMerge Raw MDLP ChiMerge
Logistic Variance 0.657 0.735 0.728 0.07 0 0.535
Regression Delta 0.694 0.752 0.811 0.045 0.109 0.579
Decision Tree Delta 0.615 0.527 0.646 0.052 0.066 0.11

4 Predictive Models

We constructed logistic regression models and decision trees using both the numeric features and the discretized
features. Table 3 compares the performances of three models – a logistic regression model to predict high variance, a
logistic regression model to predict high delta, and a decision tree model to predict high delta. We also compare the
results between the original continuous features, the features discretized by MDLP method, and the features discretized
by the ChiMerge method. We use the models that constructed with the original continuous features as the baseline to
evaluate the performance.

The results show that using features discretized by ChiMerge methods consistently enhance the performance of
AUC and F1 score for the three predictive models. Although using features discretized by MDLP method introduces
mixed results to the models, it outperforms the baseline on both AUC and F1 scores for the logistic regression model
that predicts high delta. The MDLP method also achieves higher performance on F1 score for the decision tree model
and has higher AUC for the logistic regression model that predicts the high variance. The experimental results show
promise using discretized features to enhance predictive models.

5 Cut-points Visualization

The choice of cut-points could affect the perceptions and the understanding of the data. Figure 5 shows how the choices
of alpha parameters changes the number of selected cut-points. Experts in medical domain may provide input on how
the parameters could be tuned. For example, Figure 3c is simpler to interpret than Figure 3b and Figure 3c. However,
Figure 3b provides a more granulated view of the class distribution, indicating that the negative correlation observed
in Table 2 may mostly exhibit among patients older than 39 years old. This pattern does not exhibit in a simpler
discretization results. It requires experiments and collaborations with domain experts to select the most appropriate
and useful number of cut-points.

Figure 5 shows six examples of cut-points visualization. Each sub-figure in Figure 5 shows the distribution of
class label for each discretized interval. The width of each vertical columns reflects the size of intervals – the number
of patients within the interval. The goal of cut-point visualizations is to provide graphical representations of the data
to reveal patterns that are concealed in correlation analysis.

In general, MDLP method provides a discretization result that is easier to interpret. However, with different
choices of alpha parameter, ChiMerge methods has the flexibility to represent the data with more granularity. For
example, Figure 4b suggests that the group of patients between age and 32 has lower probability for high variance in
HbA1c despite the general linear trend that the variance decrease as the age increases.

6 Conclusion

Data mining techniques are increasingly used in clinical domains such as treatment planning. However, simply build-
ing a better model – traditionally the goal of the data mining community – is not enough in these problems. Health care

4
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Figure 3: Comparisons between choices of alpha parameter. Figure (a) has the cut-point at 56.5,
Figure (b) has the cut-points at 38.5, 46.5, 56.5, 68.5, and Figure (c) has the cut-points at 12.5 19.5,
22.5, 23.5, 27.5, 38.5, 46.5, 56.5, 68.5.

Table 4: Cut-points for Figure 5

X Y MDLP ChiMerge
pat min age var {51.5} (Fig. 4a) {19.5, 32.5, 51.5} (Fig. 4b)
pat min age delta {56.5} (Fig. 4c) {38.5, 46.5, 56.5, 68.5} (Fig. 4d)
bmi delta delta {0.94} (Fig.4e) {0.58} (Fig. 4f)

professionals are unlikely to trust models which are not understandable. Variable discretization can be an important
tool in building models that are both accurate and interpretable.

In this paper we explored the use discretization to aid in the prediction and understanding of which diabetic
patients will have trouble controlling their blood sugar. Our conclusions are as follows. First, we note that HbA1c
variation is better measured using the delta measurement, or change in consecutive readings, as opposed to the more
traditional variance measure. Clinically, we are looking for patients whose readings show large variations in the short
term, while a large variance may indicate a continuous but undramatic trend. Applying discretization methods to
continuous features such as age, blood pressure, and BMI provide insight into the profiles of patients with different
variation properties, especially when used in conjunction with interpretable predictive models such as decision trees.
For example, patients in their 40s show a much greater probability of high variation than those in their 60s and 70s.
Finally, the discretization process often leads to improved generalization, as was seen with all of the models we tested.

In the future we will expand our list of predictive variables and explore the use of multi-dimensional discretization
methods. The goal is to build easily recognizable profiles of patients who may have difficulty controlling their blood
sugar in order to help guide treatment planning.
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Figure 4: Visualization examples for cut-points. See Table 4 for the values of cut-points.
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