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Abstract: The goal of this work is to determine the accu- 
racy of computer-based image analysis in diagnosing breast 
fine-needle aspirates (FNA). On 192 FNAs, the computer- 
based diagnostic accuracy was 97.9%. This is consistent with 
the  97.5% accuracy projected by machine learning methods 
during the initial training in 1994 with 569 FNAs. One of the 
attributes of this system is the  rendering of a value that  esti- 
mates the probability of malignancy. We consider estimated 
probability of malignancy values between 0.30 and 0.70 to be 
equivocal. Eleven of our samples (5.7%) fell into this equivocal 
category. All computer misclassified FNAs were correctly diag- 
nosed visually based on contextual features. We propose this 
computer-based system as a diagnostic adjunct rather than as 
a stand-alone system. W 
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he goal of this work is to determine the accuracy of T computer-based image analysis in diagnosing breast 
fine-needle aspirates (FNA). This paper describes the 
prospective accuracy of an interactive computer-based 
diagnostic system that we call Xcyt. Using a regular op- 
tical microscope on which a small videocamera is 
mounted, an operator selects the FNA field to be ana- 
lyzed. The image is then displayed on a Unix-based 
workstation and representative nuclei are outlined by 
the user with a mouse. The program then adjusts the 
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outline to conform to the exact nuclear border. The sys- 
tem calculates 10 nuclear size, shape, and textural fea- 
tures and reports their mean, standard errors, and worst 
values. Using machine learning methods, an algorithm 
was developed on the basis of an initial series of 569 pa- 
tients (357 benign and 212 malignant) with established 
diagnoses. Tenfold cross-validation (1) of these data led 
us to believe that 97.5% accuracy could be achieved. In 
this article, we report the prospective computer diagno- 
sis of 192 consecutive FNAs. 

MATERIALS AND METHODS 

A consecutive series of 569 patients (212 cancer, 357 
benign) provided the data to develop (train) the algo- 
rithm. Since then, an additional 194 consecutive, new 
patients were aspirated. Two samples did not contain 
sufficient cells for analysis. The 192 satisfactory FNAs 
were used to test the system. All 63 cancers and 33 of 
the benign masses were histologically confirmed. The 96 
remaining benign masses were followed for a year with- 
out change in size or character. The TNM classification 
of the FNA diagnosed cancers is given in Table 1. 

Fine-Needle Aspiration 
A small drop of viscous fluid was aspirated from 

breast masses by making multiple passes with a 23- 
gauge needle as negative pressure was applied to an at- 
tached syringe. The aspirated material was expressed 
onto a silane-coated glass slide. A similar slide was 
placed face-down on the aspirate, and the aspirate was 
spread as the slides were separated with a horizontal 
motion. Preparations were immediately fixed in 95% 
ethanol and examined after they were stained with he- 
matoxylin and eosin. Most of the samples were obtained 
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Table 1. TNM Tabulation of 61 of the FNA-Diagnosed 
Cancers (In two cases histologic confirmation was 
obtained by autopsy) 

n = O  n = l  n = x  

T =  
1 IS 
l a  
I b  
2a 
3 IS 
3a 
3b 
3c 
4b 
4d 

1 
7 
0 
8 
0 
2 
0 
1 
0 
0 

0 
8 
0 

15* 
0 
4* 
1 
0 
1 
1 

2 
5 
1 
2* 
1 
1 
0 
0 
0 
0 

*One patient in each of these groups had distant metastases a t  the time of initial di- 
agnosis. 

from palpable masses although several recent ones were 
obtained under ultrasound guidance. Only solid masses 
that yielded epithelial cells were computer-analyzed. 

Image Preparation 
The area on the aspirate slides to be analyzed was vi- 

sually selected by an operator for minimal nuclear over- 
lap. The image for digital analysis was generated by a 
JVC TK-1070U color videocamera mounted atop an 
Olympus microscope and the image was projected into 
the camera with a 63 X objective and a 2.5X ocular. The 
image was captured by a ComputerEyes/RT color 
framegrabber board (Digital Vision, Inc., Dedham MA 
02026) as a 640 X 400 Targa file. An 8-bit-per-pixel 
gray-scale image is used for the image analysis, since we 
are not interested in the color of the nuclei. 

Nuclear Features 
The first step in successfully analyzing the digital im- 

age is to specify the exact location of each cell nucleus. A 
graphical computer program called Xcyt was developed 
that allows the user to input the approximate location of 
enough nuclei (10-20) to provide a representative sam- 
ple. A mouse i s  used to trace a rough outline of cell nu- 
clei on the computer monitor. From this rough outline, 
the actual boundary of the cell nucleus is located by an 
adaptive spline technique (2). The mathematical aspects 
of these calculations are described elsewhere ( 3 ) .  

Once the nuclei to be analyzed have been identified 
by the operator and have been enclosed by the com- 
puter-generated splines, the computer calculates 10 nu- 
clear features for each nucleus ( 3 ) .  These features are 
modeled such that higher values are typically associated 
with malignancy. Nuclear size is expressed by the radius 

and area features. Nuclear shape is expressed by 
smoothness, concavity, compactness, concave points, 
symmetry, and fractal dimension features. Both size and 
shape are expressed by the perimeter feature. Nuclear 
texture is measured by finding the variance of the gray- 
scale intensities in the component pixels. Features were 
verified using idealized phantom cells (4). The mean 
value, worst (mean of the three largest values), and stan- 
dard error of each feature are computed for each image, 
resulting in a total of 30 features. 

Data Analysis 
The mathematical programming on which the data 

analysis is based has been described in detail elsewhere 
(5 ) .  Briefly, image processing produces a database con- 
sisting of one 30-dimensional point for each sample. We 
then wish to construct a surface that separates the be- 
nign points from the malignant points in this 30-dimen- 
sional space. The classification procedure is known as 
MSM-Tree (MSM-T) (6,7). This method uses linear 
programming to iteratively place a series of separating 
planes in the feature space of the samples. If the benign 
and malignant sets can be separated by a single plane, 
the first plane will be so placed between them. If the sets 
are not linearly separable, MSM-T constructs a plane 
that minimizes an average distance of misclassified 
points. Depending on the separation accuracy attained, 
the procedure is recursively repeated on the two regions 
generated by each plane until satisfactory separation is 
achieved, that is, each of the final regions contains 
mostly points of one category. The classifier thus ob- 
tained is then used as a decision tree to categorize new 
cases. MSM-T is similar to other decision-tree methods 
such as CART (8 )  and C4.5 ( 9 )  but has been shown to 
be faster and more accurate on several real-world data 
sets (6). 

In many instances, simpler classifiers perform better 
on new data than do more complex ones. Therefore, we 
minimize not only the number of separating planes but 
also the number of features used in constructing the 
planes. The three diagnostic features that, when used to- 
gether, gave the best separation were worst area, worst 
smoothness, and mean texture (3). These three features 
and a single separating plane were used to accomplish 
diagnostic separation. Using cross-validation ( 1) the di- 
agnostic accuracy of the resulting classifier was esti- 
mated to be 97.5%. 

Our computerized system gives a benign or malig- 
nant diagnosis together with a probability of malig- 
nancy determined by the distance the new point lies 
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Table 2. Computer-Generated Estimated Probability for 
192 Prospectively Obtained Breast FNAs and their 
Eventual Diagnosis 

Xcyt Estimated Probability of Malignancy 

0.00 to  0.09 
0.10 to 0.1 9 
0.20 to 0.29 
0.30 to 0.39 
0.40 t o  0.49 
0.50 to 0.59 
0.60 t o  0.69 
0.70 to  0.79 
0.80 to 0.89 
0.90 to 0.1 .oa 

Final Diagnosis 

Benign Malignant 

98* 0 

5 0 
8 0 
1 0 
1 0 
1 0 
0 2 
0 1 

14 I +  

1* 59 

*One sample from multiple papillomatosis was incorrectly visually diagnosed as ma- 
lignant. 
‘Lobular neoplasia correctly diagnosed visually. 
*Fibroadenorna. 

from the separating plane (4). Should this probability 
fall between 30% and 70%, the sample is considered 
“suspicious,” in the same way a visually graded FNA 
may be termed suspicious. 

RESULTS 

Table 2 lists the Xcyt-generated estimated probability 
of malignancy for the 192 consecutive FNAs from 
which an adequate diagnostic sample was obtained. One 
hundred twenty-nine proved to be benign (33 by biopsy 
and 96 by follow-up) and 63 proved to be malignant. 

Xcyt prospectively diagnosed breast FNAs with 97.9% 
accuracy. 

DISCUSSION 

Adequate diagnostic FNAs were obtained from 192 
of 194 consecutively aspirated masses. The prospective 
97.9% accuracy of computer-based diagnosis is consis- 
tent with the 97.5% accuracy projected by machine- 
learning methods during Xcyt’s initial training in 1994 
with 569 FNAs. In addition to validating the accuracy 
of Xcyt, these results also confirm the use of cross-vali- 
dation of retrospective data as a means for estimating 
prospective accuracy. 

Correct visual diagnoses can easily be made for FNA 
samples at the extremes of malignancy and benignity. 
Diagnostic difficulties arise for equivocal samples. One 
of the attributes of Xcyt is the rendering of a value that 
estimates the probability of malignancy. Currently, we 
consider Xcyt-estimated probability of malignancy val- 
ues between 0.30 and 0.70 to be equivocal. Eleven of 
our samples (5.7%) fell into this equivocal category. All 

were benign and included two that fell on the malignant 
side of the separating plane. The other two misclassifica- 
tions were a lobular neoplasia (lobular carcinoma in 
situ) that was clearly misclassified as benign and a fi- 
broadenoma that was clearly misclassified as malignant. 
Xcyt does not address the problem of inadequate sam- 
ples that constitute a small percentage in this (4% of 
samples) and in other series (10-13). 

The estimated probability of malignancy rendered by 
Xcyt is clinically useful by objectively quantitating the 
uncertainty inherent in classifying some FNAs. Visually, 
such FNAs are reported as “suspicious.” This estimated 
probability of malignancy as rendered by Xcyt provides 
objectivity for discussion the need for following up on 
the FNA results, be it observation, excisional biopsy, or 
definitive surgery. 

We propose Xcyt as a diagnostic adjunct rather than 
as a stand-alone system. All computer misclassified 
FNAs were correctly diagnosed visually. Contrariwise, 
one FNA obtained from a case of multiple polyposis was 
incorrectly diagnosed visually, but was correctly diag- 
nosed by Xcyt. Although Xcyt accurately assesses sin- 
gle-cell nuclear features, it does not assess contextual 
features that are useful in making a visual diagnosis. Of 
particular importance are the contextual features of 
clump thickness, the adherence of cells at the periphery 
of clumps, and the presence of intact single cells rather 
than only bare nuclei (14). 

The accuracy of the system probably can be increased 
by combining the new 192 samples with the original 
569 samples and retraining. However, any system that is 
to be used at multiple sites should be trained on samples 
obtained and analyzed by multiple investigators located 
at different institutions. Presently, Xcyt has been vali- 
dated for one investigator located at a single institution. 
Xcyt currently runs under Linux on a PC, thus obviating 
the need for a work station. 

We conclude that digital image analysis coupled with 
machine-learning techniques can accurately diagnose 
breast FNAs, and that the most effective approach com- 
bines automated diagnosis with visual diagnosis. 
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