
A Memetic Heuristic for the Co-clustering
Problem

Mohammad Khoshneshin1, Mahtab Ghazizadeh2, W. Nick Street1, and Jeffrey
W. Ohlmann1

1 The University of Iowa, Iowa City IA 52242, USA
{mohammad-khoshneshin,nick-street,jeffrey-ohlmann}@uiowa.edu

2 University of Wisconsin-Madison, Madison WI 53706, USA
ghazizadeh@wisc.edu

Abstract. Co-clustering partitions two different kinds of objects simul-
taneously. Bregman co-clustering is a well-studied fast iterative algo-
rithm to perform co-clustering. However, this method is very prone to
local optima. We propose a memetic algorithm to solve the co-clustering
problem. Experimental results show that this method outperforms the
multi-start Bregman co-clustering in both accuracy and time.

Key words: co-clustering, Bregman co-clustering, memetic algorithm.

1 Introduction

Clustering refers to partitioning similar objects into groups [7]. Co-clustering
partitions two different kinds of objects simultaneously and is a data mining ap-
proach with applications in many areas such as recommender systems [8, 6] and
microarray analysis [11, 5, 3, 4]. If one views the clustering problem as group-
ing rows of a matrix together, then co-clustering is the simultaneous grouping
of rows and columns. The intersection of a row cluster and a column cluster is
called a block. A popular goal in co-clustering is minimizing the sum of block
variances: ∑

i,j

wij(x̄ρ(i)γ(j) − xij)2 (1)

where xij is the value of the element in ith row, jth column of the matrix, ρ(i)
denotes the cluster of row i, γ(j) denotes the cluster of column j, x̄ρ(i)γ(j) is
the average value of the intersection block between row cluster ρ(i) and column
cluster γ(j), and wij is the weight of the value of the element in ith row, jth

column of the matrix.
As will be discussed, there is a limited literature regarding the optimization

problem mentioned above. The most popular co-clustering algorithm is a fast
iterative algorithm known as Bregman co-clustering [2] which is very prone to
local optima. Banerjee et al. [2] show that if the objective function of a co-
clustering problem can be expressed as a Bregman divergence [1] such as squared

2 M. Khoshneshin et al.

Euclidean distance or KL-divergence, then the Bregman co-clustering algorithm
can be used.

Bregman co-clustering moves from a co-clustering solution to a better solu-
tion by alternately fixing row (column) clusters and optimizing column (row)
clusters. When updating row clusters, we assume all co-cluster means are con-
stant and all columns are assigned to column clusters, then we assign each row
so that the sum of squared errors is minimized. Column cluster updating follows
the same approach. The updating step iterates until convergence; when given
column (row) clusters, no improvement by row (column) clusters is possible.
Banerjee et al. prove their algorithm will converge. However, the result may be
very poor since Bregman co-clustering algorithm is a greedy algorithm which
finds local optima.

To search the solution space more efficiently and effectively, we apply the
memetic algorithm [10] as a meta-heuristic algorithm. The memetic algorithm
outperformed multi-start Bregman co-clustering algorithm in the experiments.

There is limited literature regarding applying heuristic algorithms to the
co-clustering problem. Examples include memetic algorithms [11], genetic algo-
rithms [5], and evolutionary algorithms [3, 4, 8]. These works focus primarily on
co-clustering gene expression data. The goal of the co-clustering problem in the
above papers was minimizing entropy in diagonal blocks, by forcing the same
number of row clusters and column clusters. Specifically, if the number of row
and column clusters is N , only N blocks are considered and not N2. In our work,
the number of row and column clusters can be different, and all possible blocks
are included in the objective function. This is a more general case of the problem
described in the literature, to which none of the above approaches are applicable.
In the most relevant work [8], an evolutionary algorithm was used to solve the
general co-clustering problem. However, this work focuses on optimizing a group
of co-clustering solutions while our algorithm searches for individual solutions.

The literature on applying heuristic search to the clustering problem in not
trivially applicable to the co-clustering problem. Most related works encode a
solution via centroid of clusters (for example see [9]) assuming each object is
represented by a vector. In the co-clustering problem, two different types of
object are related via one scalar and the goal is minimizing the divergence of
blocks from objects. Therefore, the centroid- encoding approach is not applicable
to the co-clustering problem.

2 Memetic algorithm

A memetic algorithm is a population-based hybrid of a genetic algorithm and
local search [10]. Memetic algorithm is inspired by cultural evolution while ge-
netic is by biological evolution. In this work, we use the Bregman co-clustering
algorithm as a local search method in conjunction with genetic algorithm op-
erations (crossover and mutation). In our context, let P co-clustering solutions
exist. The goal is to find better solutions by combining the current solutions.
Every genetic algorithm has three main steps: 1) selection, in which two or more

A Memetic Heuristic for the Co-clustering Problem 3

individuals are chosen to create offspring; 2) crossover, in which the selected
items are combined to create new solutions; and 3) replacement, in which the
new solutions replace the existing solutions if they satisfy some criteria.

Input {data matrix, number of row and column clusters K & L, Population size P}

Randomly initialize P co-clustering solutions {(ρp, γp)}P
p=1

Bregman co-clustering {(ρp, γp)}P
p=1

Repeat

Randomly choose 2 unforbidden couples{(ρparent
u , γparent

u)}u=1,2

Add {(ρparent
u , γparent

u)}u=1,2 to forbidden couples

ρchild
1 , ρchild

2 = crossover(ρparent
1 , ρparent

2)

γchild
1 , γchild

2 = crossover(γparent
1 , γparent

2)

Mutate {(ρchild
u , γchild

v)}u=1,2,v=1,2

Bregman co-clustering {(ρchild
u , γchild

v)}u=1,2,v=1,2

Update population ({(ρp, γp)}P
p=1, {(ρchild

u , γchild
v)}u=1,2,v=1,2)

Until no unforbidden couple or maximum iteration

Fig. 1. Memetic heuristic outline

Figure 1 illustrates our Memetic co-clustering algorithm. The data matrix,
number of row and column clusters, and population size are the inputs to the al-
gorithm. Note that the number of clusters or population does not change during
the algorithm execution. A group of co-clustering solutions is randomly generated
and locally optimized via iterative Bregman co-clustering. In the evolutionary
iteration phase, two co-clustering solutions are randomly selected for crossover.
To speed up the convergence of the algorithm, we use the concept of forbidden
couples. This means that a couple used for performing crossover in a given iter-
ation will not be allowed for crossover in the following iterations. Without the
forbidden couple strategy, the same two parents may be chosen and create very
similar offspring, which is both inefficient and damaging to the population diver-
sity. The algorithm terminates when no unforbidden couple is left for crossover
or after reaching the preset maximum number of iterations.

After selecting two co-clusterings, a new solution is generated via the crossover
function (see Figure 2). We explain crossover for two different clustering solu-
tions which can be row or column clusterings. Let N objects be clustered in K
clusters. There are K! different ways to represent the same clustering (because
of the indifference to the order of clusters). For effective clustering crossover,
corresponding clusters must be found. We propose a way to find correspondence
between two clusterings. Let C be an N ×K matrix and let the (i, k)th element
of C be 1 if object i is in cluster k and 0 otherwise. O = CT1 C2, the intersection
matrix, shows the number of objects that are in two clusters of different cluster-
ings where C1 is the C matrix of the first clustering and C2 is the C matrix of
the second clustering. In other words, O shows the amount of overlap between
two clusters of different clusterings. Correspondence can be computed relative
to either parent clustering. Based on the first clustering, the first cluster of the
first clustering will be associated with a cluster from the second clustering with
which it has maximum overlap. Then, the second cluster of the first clustering

4 M. Khoshneshin et al.

Input: parent clusters φ1 and φ2,cluster size K
Output: offspring clusters ψ1 and ψ2

∀x, r, c : ζrc ← x|φ1(x) = r & φ2(x) = c
Urow = {}
Ucol = {}
FOR k = 1 to K − 1

c∗ = argmax
c/∈Ucol

|ζkc|

∀x ∈ ζkc∗ : ψ1(x)← k
Ucol ← c∗

r∗ = argmax
r/∈Urow

|ζrk|

∀x ∈ ζr∗k : ψ2(x)← k
Urow ← r∗

ENDFOR
∀x|ψ1(x) = 0 : ψ1(x)← K
∀x|ψ2(x) = 0 : ψ2(x)← K

Fig. 2. Crossover algorithm. ζrc is the intersection set between cluster r in clustering
φ1 and cluster c in clustering φ2. Urow and Ucol are respectively the used clusters of
the first and the second clustering.

will be associated with a remaining cluster of the second clustering with maxi-
mum overlap and this continues until the last cluster. A similar approach can be
used based on the second clustering. Note that this is a greedy algorithm to find
the overlap between two clusters and will not necessarily result in an optimal
overlap solution.

After finding all correspondences, objects that are located in a pair of corre-
spondent clusters are assigned to a cluster. The remaining objects are assigned
to a leftover cluster. After assigning all remaining objects to the leftover clus-
ter, it may have more objects than the rest of the clusters. However, the rest
of the clusters must have good quality since two different clusterings agree on
them. Therefore, the Bregman co-clustering algorithm, which starts with com-
puting block averages, is expected to find a good solution because the majority
of blocks are of high quality.

As a result of crossover, there are two offspring for each row clustering and
two for each column clustering. Two offspring for the row (column) clustering
are the result of computing correspondence relative to the row (column) parent
clusterings. Therefore, four child co-clustering solutions are possible. Note that
the number of clusters in the offspring is exactly equal to the number of clusters
in the parent. So the number of clusters does not change.

After crossover, mutation is performed on all offspring to encourage diversity.
To perform mutation, a number of objects are chosen based on some probability,
and then each is assigned to a random cluster. In all experiments, the algorithm
selects objects with probability 1/K (where K is the number of clusters) and
then it assigns them to equally probable clusters.

In the next step, the offspring from crossover will be locally optimized via
the fast iterative Bregman co-clustering algorithm [2]. This is an important step
since most objects might have been assigned to the last cluster in the crossover
step. However, since the iterative co-clustering first estimates averages and then

A Memetic Heuristic for the Co-clustering Problem 5

assigns rows and columns, we hope that most of the blocks will have accurate
averages via fewer but carefully selected rows and columns in crossover.

Input: {(ρp, γp)}P
p=1, {(ρchild

u , γchild
v)}u=1,2,v=1,2, and τ

Output: {(ρp, γp)}P
p=1

∀p : ωp ← Ω(ρp, γp)

(u∗, v∗)← argmin
u,v

Ω(ρchild
u , γchild

v)

∀p : S ← {p|sim[(ρp, γp), (ρ
child
u∗ , γchild

v∗), τ] = 1}
IF ωu∗,v∗ > maxp(ωp)

RETURN {(ρp, γp)}Pp=1

ELSE
p∗ ← argmax

p∈S
ωp

IF p∗ = ∅
p∗ ← argmax

p
ωp

ELSEIF ωu∗,v∗ > ωp∗

RETURN {(ρp, γp)}Pp=1

ENDIF

REPLACE (ρp∗ , γp∗) BY (ρchild
u∗ , γchild

v∗)

RETURN {(ρp, γp)}Pp=1

ENDIF

Fig. 3. Update algorithm. Function Ω() is the objective function.
sim[(ρp, γp), (ρchildu∗ , γchild

v∗), τ] is the similarity function (τ is the threshold). S is
the set of similar clusterings to the best offspring clustering.

Finally, we should either discard a current solution or the offspring to preserve
the total number of solutions. We conduct replacement to maintain diversity as
well as improve the solution quality of the population. In favor of diversifica-
tion, only the best offspring is considered for replacement since all offspring are
expected to be very similar. The best offspring (with respect to the objective
function) replaces a member of the current population that is deemed similar
to the offspring and has a worse quality than the best offspring and the worst
quality among similar individuals. If there is no similar individual to the best
offspring, then the best offspring replaces the worst individual in the population.
Otherwise, no replacement occurs. The algorithm is illustrated in Figure 3.

Determining similarity between two clusterings is similar to finding corre-
spondence between them (function sim() in Figure 3). We propose a method
to measure similarity based on the intersection matrix O. Let J be a matrix
with the same size as O. Also, let (u, v)th element of J be 1 if (u, v)th of O is
greater than a threshold τ , and 0 otherwise. If J is an assignment matrix, then
two clusterings are similar (sim() = 1). In an assignment matrix, each row is
assigned to only one column (shown by 1), and each column is assigned to only
one row. Mathematically, the formula (

∏
u

∑
v juv) · (

∏
v

∑
u juv) (where juv is

the (u, v)th element of the matrix J) gives the value 1 if the two clusterings are
similar and a value other than one, otherwise.

6 M. Khoshneshin et al.

3 Experiments

The proposed memetic algorithm for co-clustering is compared to the multi-start
Bregman co-clustering algorithm with new random initializations. We used root
mean squared error (RMSE) as the objective function. Note that minimizing
RMSE is equivalent to minimizing the proposed objective function in (1).

3.1 Dataset

Both artificial and real data were used for evaluating the proposed algorithm.
For the artificial dataset, we generated a 1000× 1000 data matrix. The number
of row and column clusters was set to 20 in advance. Then each row and column
was assigned to a row and column cluster randomly. The average of each block
was chosen from 1 to 10, with equal probability. Then, each element of the data
matrix was set to its block average. That is, all data in one block have the same
value. Therefore, for this dataset, there is a co-clustering solution with RMSE=0.
We name this dataset AF (full artificial dataset). To simulate realistic problems,
we introduced noise to AF. First, each element of AF was chosen with probability
of 0.1. Then one of the values {-2,-1,1,2} (selected with equal probability) was
added to the chosen data. Values above 10 were set to 10 and those below 1 were
set to 1. This data is called AFN (full artificial dataset with noise). Using the
original generative co-clustering, RMSE is 0.4591 for AFN. Finally, to establish
similarity with real data, we added missing values to the data. To this end, each
element of the data matrix was chosen with probability of 0.1 and added to the
sparse data matrix from AF and AFN. This results in datasets AS (artificial
sparse data) and ASN (artificial sparse data with noise). Note that the density
(number of known elements over all possible elements) of these datasets is around
0.1. Using the original generative co-clusterings, RMSE is 0 for AS and 0.4592
for ASN.

To examine the algorithm on a real-life problem, a subset of the Netflix
dataset1 was used. In this dataset, rows are users, columns are movies, and
values are viewer ratings on a 1 to 5 scale. Our subset included 12,326 users,
9,730 movies, and 1,638,799 ratings. The number of row clusters was set to 30
and the number of column clusters was set to 20. We refer to this dataset as NS
(Netflix dataset subset).

3.2 Results

We implemented the multi-start (MS) of the Bregman co-clustering algorithm
with random initialization and the proposed memetic algorithm (MA) on the
datasets mentioned above. For the MS, we set the number of iterations to 4000.
For the MA, the maximum number of iterations was set to 1000. Therefore, these
two methods are equivalent in terms of the opportunity to generate individual
co-clusterings since MA generates 4 co-clustering solutions in each iteration.

1 http://www.netflixprize.com

A Memetic Heuristic for the Co-clustering Problem 7

However, in many cases MA terminates before 1000 iterations while MS cannot
terminate before reaching to 4000 iterations. The threshold to measure similarity
between the two clusterings was set to 30. This value was set arbitrarily and no
fine-tuning was done.

Table 1 summarizes the results. For artificial data without noise, MA was
able to find the best known solution. In the case of artificial data with noise
(both full and sparse), the solution is better than the result obtained from the
original generative co-clustering solution; however, it is not guaranteed to be
optimal. MS could find the best solution (only for the artificial sparse data
(AS)). The performance of MS is very poor on the full data matrices. The reason
for poor performance of the pure Bregman co-clustering on full matrices is not
obvious; however, it might be due to the greediness of this algorithm. For the
Netflix subset (NS), the memetic algorithm outperforms MS as well. Note that
increasing the population in MA adds to the power of the algorithm; however, it
delays convergence. MA outperforms MS in running time as well. This is because
crossover is a quick way to finding good solutions and thus, a few iterations might
be enough to reach promising results. However, random starting does not benefit
from such a feature.

Data Method Population RMSE Time (sec)

AS MS 4000 0 1455
MA 10 0 199

ASN MS 4000 0.6208 1454
MA 10 0.4570 190

AF MS 4000 1.5808 4884
MA 10 0 504

AFN MS 4000 1.6755 4885
MA 10 0.4581 504

NS MS 4000 0.8893 114231
MA 10 0.8825 5472
MA 30 0.8818 30069

Table 1. Result of experiments on different datasets for MS (multi-start) and MA
(memetic algorithm). Population shows the population size used in memetic search
and is simply the total number of runs in multi-start.

4 Conclusion

In this paper, we proposed a memetic algorithm for solving the co-clustering
problem with the goal of minimizing Euclidean distance between data and
block averages. The best known algorithm for this problem is the Bregman
co-clustering algorithm which is very fast but prone to local optima and can
lead to very poor results. To address this shortcoming, we proposed a memetic
algorithm which employs the Bregman co-clustering algorithm as a local search.

8 M. Khoshneshin et al.

Experimental results indicate that the proposed memetic algorithm outperforms
the multi-start Bregman co-clustering algorithm in both accuracy and time.

There are several direction to improve the proposed memetic algorithm. Two
drawbacks can be mentioned for the similarity measure. The similarity measure
only determines whether two clusterings are similar. However, similarity is a
continuous concept. Incorporating a continuous metric as a similarity measure in
the algorithm may help diversify the population and therefore improve the result.
Another drawback is related to the size of clusters. If two clusterings are exactly
the same but some of the clusters are very small, our similarity measure cannot
detect it. In the update function of the memetic algorithm, we only consider the
best offspring. However, it is possible to measure the similarity among offspring
and discard the worse ones if they are similar. In another direction, instead of
giving the number of clusters to the memetic algorithm, it can search for proper
numbers in an evolutionary manner.

References

1. K. Azoury and M. Warmuth. Relative loss bounds for on-line density estimation
with the exponential family of distributions. Machine Learning, 43(3):211–246,
2001.

2. A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D. Modha. A generalized maxi-
mum entropy approach to Bregman co-clustering and matrix approximation. The
Journal of Machine Learning Research, 8:1919–1986, 2007.

3. H. Banka and S. Mitra. Evolutionary biclustering of gene expressions. Ubiquity,
7(42):1–12, 2006.

4. S. Bleuler, A. Prelic, and E. Zitzler. An ea framework for biclustering of gene
expression data. In Proceedings of the IEEE 2004 Congress on Evolutionary Com-
putation (CEC 2004), volume 1, pages 166–173, 2004.

5. A. Chakraborty and H. Maka. Biclustering of gene expression data using genetic
algorithm. In Proceedings of the 2005 IEEE Symposium on Computational Intelli-
gence in Bioinformatics and Computational Biology, pages 1–8, 2005.

6. T. George and S. Merugu. A scalable collaborative filtering framework based on
co-clustering. In IEEE Intl. Conf. on Data Mining, pages 625–628, 2005.

7. A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1988.

8. M. Khoshneshin and W. N. Street. Incremental collaborative filtering via evolu-
tionary co-clustering. In Proc. ACM Conference on Recommender Systems. ACM,
2010.

9. U. Maulik and S. Bandyopadhyay. Genetic algorithm-based clustering technique.
Pattern Recognition, 33(9):1455–1465, 2000.

10. P. Moscato and C. Cotta. A gentle introduction to memetic algorithms. Inter-
national Series in Operations Research and Management Science, pages 105–144,
2003.

11. N. Speer, C. Spieth, and A. Zell. A memetic co-clustering algorithm for gene
expression profiles and biological annotation. In Proceedings of the IEEE 2004
Congress on Evolutionary Computation, CEC 2004, volume 2, pages 1631–1638,
2004.

