
Bagging with Adaptive Costs

Yi Zhang
yi-zhang-2@uiowa.edu

W. Nick Street
nick-street@uiowa.edu

Department of Management Sciences, The University of Iowa
Iowa City, IA 52242-1000

Abstract

Ensemble methods have proved to be highly effective
in improving the performance of base learners under
most circumstances. In this paper, we propose a new
algorithm that combines the merits of some existing
techniques, namely bagging, arcing and stacking. The
basic structure of the algorithm resembles bagging, us-
ing a linear support vector machine (SVM). However,
the misclassification cost of each training point is re-
peatedly adjusted according to its observed out-of-bag
vote margin. In this way, the method gains the ad-
vantage of arcing – building the classifier the ensem-
ble needs – without fixating on potentially noisy points.
Computational experiments show that this algorithm
performs consistently better than bagging and arcing.

1 Introduction

A typical ensemble is a multi-learner system in
which each component learner tries to solve the same
task. The final model is obtained by a combination
such as a weighted average of the results provided by
each individual learner. One wants each individual
learner to be accurate, and at the same time, these
learners should have different inductive biases and thus
generalize in distinct ways [8, 6]. In recent years, many
approaches have been taken to systematically create a
group of learners that perform better when combined,
such as bagging [3], boosting [7], arcing [4] and ran-
dom forests [5]. The idea behind bagging and ran-
dom forests is to introduce randomness into the pro-
cedure of building individual learners, hoping to gen-
erate variance among them and thus by average, the
bias of the ensemble converges while the variance gets
much smaller than that of the base learner. By con-
trast, boosting and arcing force the learner to focus
on difficult training examples and pay less attention to

those that the most recently-built learner (boosting)
or the existing ensemble (arcing) got right, by apply-
ing a “smart” weighting scheme on the training data.
These methods are effective at improving generaliza-
tion performance in a wide variety of domains and for
diverse base learners. Wolpert proposed the stacking
idea which improves generalization by using a hold-out
set to adjust the weights of an existing ensemble so
that the error on the hold-out set is minimized [10].

While these ensemble methods have proved to be
powerful, each has its own drawbacks. Bagging does
nothing purposely to reduce the bias so that any bias
reduction is solely by chance. Boosting and arcing are
very sensitive to outliers and can result in overfitting
[1]. Boosting and arcing use training error to tune
the weights despite the fact that training error is of-
ten highly biased. Stacking requires large amounts of
data so that the hold-out set is big enough to approx-
imate the real data distribution, making it unsuitable
for small data sets. We propose a new algorithm that
attempts to incorporate the merits of these methods
while avoiding their downfalls.

2 Algorithm

This section describes the derivation of our proposed
algorithm, termed Bagging with Adaptive Costs, or
bacing (pronounced “baking”). Suppose we have a set
of classifiers C for a two-class problem and a training
set {xi, yi}. yi = 1 or -1 according to the true class
label of each data record. Each classifier Ck will give
each record xi in the training set a classification label
cik. If xi is classified as class 1 by Ck, then cik = 1 and
cik = −1 otherwise. The final classification by the en-
semble is a weighted average on those single classifiers.
If all the data records could be correctly classified, the
following inequalities would be satisfied:

yi

∑
k∈C

cikwk ≥ 0, (1)

1

where wk is the weight on classifier Ck. The vote mar-
gin of each training data point is given by

mi = yi

∑
k∈C

cikwk. (2)

A positive mi implies that the training point is cor-
rectly labeled by the current ensemble. The larger the
magnitude of a positive mi, the more tolerance we can
allow for the next classifier to make a mistake on this
point. A negative mi corresponds to a misclassifica-
tion made by the current ensemble, so we want the
next classifier to contribute a positive vote margin in
order to increase the ensemble’s margin on this point.

We use a linear support vector machine [9] as the
base learner. An L1-linear SVM model can be de-
scribed by the linear programming problem

min
∑
i∈S

δiei +
N∑

n=1

|αn|

s.t. yi

N∑
n=1

αnxin ≥ 1− ei,

ei ≥ 0.

(3)

Here, α represents the coefficient vector of the sepa-
rating hyperplane, ei is proportional to the distance
between the corresponding misclassified point and the
plane, N is the dimension of the feature space, and δi

is the misclassification cost of point i.
Suppose we have an ensemble of linear separators

and we wish to build a new separator to insert into the
existing ensemble. We may allow the new separator
to make mistakes on points that already possess posi-
tive margins. But for those points misclassified by the
existing ensemble, we should encourage the new sepa-
rator to classify them correctly. This objective can be
achieved by adjusting the misclassification cost of each
point according to its margin given by the existing en-
semble. Generally, the misclassification costs of those
points that have a smaller margin should be tuned up
so that misclassifying them is more costly. A simple
linear cost adjustment scheme is as follows:

δi,t+1 = 1− mi,t

1 + |Ct|
. (4)

Here, δi,t+1 is the adjusted misclassification cost of
point i in the next round of training, |Ct| is the number
of classifiers in the existing ensemble (equal to t) and
mi,t is the current vote margin of point i. The misclas-
sification cost of a point is essentially the same as the
weight of a point in arcing or boosting in terms of its
role in the linear SVM used here as the base learner.

The method described so far is close to arcing,
though our cost-tuning formula is somewhat different.
In arcing, each data point is weighted proportionally
to the number of misclassifications by the previously
created classifiers: δi,t = (1 + MCi,t)q, where MCi,t is
the number of misclassifications (wrong votes) of the
current ensemble on data point i and q is a positive
constant (set to 4 here). The whole training set is used
to build each individual separator and the vote margin
is calculated by resubstitution. As we know, resub-
stitution error is often biased down compared to true
error and hence the resubstitution margin is biased up
so that the derived cost will not correctly reflect the
relative importance of each point in the next round of
training. To fix this over-estimation of margins, the
bagging idea can be applied. In bagging, a bootstrap
sample (bag) is generated by uniformly sampling points
from the training set with replacement. Each separa-
tor is built from a different bootstrap sample. For a
given bootstrap sample, a point in the training set has
probability of approximately 0.632 of being selected at
least once. The remaining 36.8% constitute a natural
hold-out set, often called the out-of-bag set. We com-
pute the test margin of each point by only aggregating
the predictions of separators that are not trained on
it and get a more fair estimate. Let Tk represent the
subset of the training set that is used to train the kth
separator. The modified margin formula is

mi = yi

∑
k∈{k|i/∈Tk}

cikwk, (5)

The new cost adjustment scheme becomes

δi,t+1 = 1−
m′

i,t

1 + |C ′
i,t|

(6)

Here, C ′
i,t is the current set of separators not trained on

point i, and m′
i,t is the margin for the point obtained by

C ′
i,t. Notice that using the out-of-bag performance for

weight-tuning is a characteristic of stacking, although
here the subject of the adjustment is the misclassifi-
cation cost instead of the weight on individual learn-
ers. While it is possible to modify the weight on each
separator to minimize the training set error, our ex-
periments indicate that this leads to (often dramatic)
overfitting. The weight on each separator is therefore
kept equal to one throughout the ensemble construc-
tion.

As mentioned above, bagging, arcing and stacking
each play a part in the new algorithm. It is hoped that
bootstrapped aggregation will reduce the variance com-
ponents as in bagging, cost adjustment will reduce the
bias as in arcing and the out-of-bag margin estimation
will result in better generalization as in stacking.

0 10 20 30 40 50 60 70 80 90 100
10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

15
housing dataset error evolution

round

er
ro

r
%

training−bagging
testing−bagging
training−baking
testing−baking

Figure 1. Error evolution of bacing, bagging

3 Experiments and Results

Bacing was implemented in MATLAB and tested on
14 UCI repository data sets [2]. Some data sets were
modified to create binary classification problems. Au-
tompg is labeled by whether the mileage is greater than
25mpg, Housing by whether the house value exceeds
$25, 000, and Cleveland-heart-disease by the presence
or absence of the disease. For multi-class data sets Ve-
hicle and Wine, we separated one class pair each time,
resulting in a total of 20 data sets. In order to ob-
serve the characteristics of the algorithm thoroughly,
we built 100 classifiers for each run. For an ensem-
ble of such size, we may safely deduce the convergence
property of the algorithm and judge whether it will
eventually overfit. The results are averaged over five
ten-fold cross-validations. In comparing bacing with
bagging, identical bootstrap samples were obtained for
both algorithms in each round. We also compared bac-
ing with arcing-x4, reported to be empirically the best
among its variants and comparable with Adaboost [4].

The error evolution of bacing and bagging versus the
size of the ensemble for the housing data set is shown in
Figure 1; plots for other data sets are similar. Both the
training and test errors of bacing are consistently below
that of bagging. In the first few rounds, bacing costs
can easily fluctuate between their max (2) and min (0)
values, so the error fluctuation of bacing is stronger.

Figure 2 illustrates the change of costs over the
100-round run, showing the norm of the difference
of the cost vector between neighboring rounds. The
costs undergo drastic changes at the start, but as a
good cost structure is obtained, the magnitude of the
change drops quickly and then remains stable at a low
level. Small adjustments are unavoidable because of

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12
housing

no
rm

 o
f c

os
t d

iff
er

en
ce

round

Figure 2. Change of bacing costs

the bootstrapping effect. This mode of cost adjust-
ment is quite the opposite of boosting, in which the
magnitude of weight adjustment increases as the en-
semble size gets larger. The extreme change of weights
in the end does help boosting drive the training error
down by focusing directly on difficult points, however
it often causes overfitting if there is classification noise
in the data set [7].

Under bacing’s simple linear weight adjustment
scheme, not only the difficult points will have a large
cost in the long run, but also the boundary points,
since a boundary point that is not in the training set
can easily be misclassified and have its weight tuned
up. Thus, the focus on the difficult points is diversified
and beneficially pulled to the boundary points. Often,
the number of boundary points is much larger than
that of the difficult points so that the new classifiers
will be influenced more by the boundary points. Since
the set of boundary points becomes relatively stable af-
ter a few rounds, so will the cost structure. As a result
of the convergence of the costs, the error evolution line
of bacing shows no obvious sign of overfitting. Often,
the error of bacing stabilizes after a certain number of
rounds, as in bagging. Now we have obtained an algo-
rithm that converges like bagging but can reduce bias
by generating classifiers specifically designed to correct
the errors of the existing ensemble.

Table 1 compares the performance of a single linear
SVM with 100-round ensembles produced by bacing,
bagging and arcing-x4. Vehicleij is the subset with
only classes i and j. The same format applies to Wine.
Wine13 is omitted because it is linearly separable.

Table 2 summarizes the comparison results. All
three ensemble algorithms outperform a single SVM.
Though bacing is seldom statistically better than bag-

Table 1. Percentage error of SVM, Bagging,
Arcing-x4, Bacing. Best results are bolded.

Data SVM Bagging Arcing Bacing

Autompg 9.85 9.60 9.29 8.83
Bupa 31.07 30.84 31.17 30.38
Glass 28.13 27.74 27.12 27.08

Haberman 28.10 27.77 25.89 25.50
Heart 16.48 16.48 17.64 17.14

Hepatitis 15.50 13.47 14.86 13.94
Housing 12.95 13.11 11.83 12.68

Ion 12.42 11.51 11.06 11.40
Pima 23.26 23.02 23.30 22.94
Sonar 23.69 22.25 19.36 20.97

Vehicle12 33.46 33.23 32.78 32.44
Vehicle13 1.16 1.63 3.35 1.77
Vehicle14 2.97 2.23 3.21 2.14
Vehicle23 3.03 2.76 4.24 2.62
Vehicle24 2.45 2.26 2.88 2.26
Vehicle34 2.11 1.87 3.07 2.11

WDBC 4.71 4.74 3.94 4.50
Wine12 2.77 3.08 2.00 2.46
Wine23 4.02 3.18 4.73 3.68
WPBC 24.98 23.50 22.66 23.05

ging and arcing (2 out of 20), it beats both of them 14
times out of the 20 experiments in terms of mean per-
formance. Further, bagging and arcing significantly im-
prove the base learner only twice while bacing achieves
it six times. These results to some extent demonstrate
the advantage of bacing over bagging and arcing. Bac-
ing is better than bagging because its iterative weight-
ing scheme enables it to reduce more bias than bag-
ging. Bacing outperforms arcing-x4 because it applies
a more conservative cost (weight) adjustment scheme
which possibly avoids overfitting and the “out-of-bag”
estimation provides more accurate performance infor-
mation for cost updating. In addition, the performance
of bacing is more stable than that of arcing-x4, which
leads to smaller standard deviations (not shown). The
distribution of weights may explain why bacing is a
more stable algorithm than arcing. Arcing-x4 heavily
weights a small number of data points, which may incur
big fluctuations in performance among different folds
in the cross-validation since a small change in the train-
ing set may dramatically change the separating surface.
Conversely, the effectively non-zero weights generated
by bacing are more spread over the training data, bal-
ancing the focus between the boundary points and the
“hard” points. This smoother distribution of non-zero
weights reduces the risk of overfitting and makes the
performance of the algorithm more robust.

Table 2. Summary of accuracy results

Algorithm Pair Absolute Significant
W-L-T W-L

Bagging vs. SVM 15-4-1 2-1
Arcing vs. SVM 11-9-0 2-1
Bacing vs. SVM 17-2-1 6-1
Bacing vs. Bagging 14-5-1 2-0
Bacing vs. Arcing 14-6-0 2-0

4 Conclusion

The bacing algorithm combines good features of
bagging, arcing and stacking. An effective arcing-like
bias correction mechanism is added to the standard
bagging method. Bootstrap sampling provides a nat-
ural hold-out set that helps the correction mechanism
get a fair estimate on the current ensemble’s perfor-
mance. Therefore, it is expected that bacing will be a
generally better method than bagging and arcing. The
computational experiments supported the conjecture.
The algorithm itself is simple to implement, adds very
little computational complexity to bagging and can be
applied using any cost-sensitive base learner.

References

[1] E. Bauer and R. Kohavi. An empirical comparison
of voting classification algorithms: Bagging, boost-
ing, and variants. Machine Learning, 36(1-2):105–139,
1999.

[2] C. Blake and C. Merz. UCI reposi-
tory of machine learning databases, 1998.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[3] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[4] L. Breiman. Arcing classifiers. Annals of Statistics,
26:801–849, 1998.

[5] L. Breiman. Random forests. Machine Learning,
45(1):5–32, 2001.

[6] T. G. Dietterich. Ensemble methods in machine learn-
ing. Lecture Notes in Computer Science, 1857:1–15,
2000.

[7] Y. Freund and R. E. Schapire. Experiments with a
new boosting algorithm. In International Conference
on Machine Learning, pages 148–156, 1996.

[8] A. Krogh and J. Vedelsby. Neural network ensembles,
cross validation, and active learning. In G. Tesauro,
D. Touretzky, and T. Leen, editors, Advances in Neu-
ral Information Processing Systems, volume 7, pages
231–238. The MIT Press, 1995.

[9] V. N. Vapnik. The Nature of Statistical Learning The-
ory. Springer-Verlag, New York, 1995.

[10] D. H. Wolpert. Stacked generalization. Neural Net-
works, 5:241–259, 1992.

