
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 1, NO. 1, AUGUST 2002 1

Bagging with Adaptive Costs
Yi Zhang and W. Nick Street,Member, IEEE

Abstract— Ensemble methods have proved to be highly ef-
fective in improving the performance of base learners under
most circumstances. In this paper, we propose a new algorithm
that combines the merits of some existing techniques, namely
bagging, arcing and stacking. The basic structure of the algorithm
resembles bagging. However, the misclassification cost of each
training point is repeatedly adjusted according to its observed
out-of-bag vote margin. In this way, the method gains the
advantage of arcing – building the classifier the ensemble needs
– without fixating on potentially noisy points. Computational
experiments show that this algorithm performs consistently
better than bagging and arcing with linear and nonlinear base
classifiers. In view of the characteristics of bacing, a hybrid
ensemble learning strategy, which combines bagging and different
versions of bacing, is proposed and studied empirically.

Index Terms— Data mining, ensemble methods

I. I NTRODUCTION

A TYPICAL ensemble is a multi-classifier system in which
each component classifier tries to solve the same task.

The final model is obtained by a combination such as a
weighted average of the results provided by each of the
base classifiers. One wants each individual base model to be
accurate, and at the same time, these classifiers should have
different inductive biases and thus generalize in distinct ways
[1]–[5]. In recent years, many approaches have been taken
to systematically create a group of predictors that perform
better when combined, such as bagging [6], boosting [7],
arcing [8], stacking [9], and random forests [10]. The idea
behind bagging and random forests is to introduce random-
ness into the procedure of building individual classifiers, say,
by subsampling the training points. This generates variance
among them, and by combining their predictions, the bias of
the ensemble converges while the variance gets much smaller
than that of the base classifiers. By contrast, boosting and
arcing apply a “smart” weighting scheme to the training points,
causing the learning algorithm to focus on those examples
that were misclassified by the most recently-built classifier
(in the case of boosting) or the existing ensemble (arcing).
The key idea of stacking [9] is to improve generalization by
using a hold-out set to adjust the combination weights of
an existing ensemble, so that the error on the hold-out set
is minimized. All of these methods have been shown to be
effective at improving generalization performance in a wide
variety of domains and for base learning algorithms.

While these ensemble methods have proved to be powerful,
each has its own drawbacks. Bagging does nothing purposely
to reduce the bias so that any bias reduction is solely by

Zhang is with Microsoft AdCenter, One Microsoft Way, Redmond, WA
98052. Email: yzhan@microsoft.com

Street is with the Management Sciences Department, S232 Pappajohn
Business Building, University of Iowa, Iowa City, IA 52242. Email: nick-
street@uiowa.edu

chance. Boosting and arcing are very sensitive to outliers and
can result in overfitting [3], [11], [12]. Boosting and arcing use
training error to tune the weights despite the fact that training
error is often highly biased. Stacking requires large amounts
of data so that the hold-out set is big enough to approximate
the real data distribution, making it unsuitable for small data
sets. We propose a new algorithm that attempts to incorporate
the merits of these methods while avoiding their downfalls.
Based on the structure of the algorithm, we term it as Bagging
with Adaptive Costs, or bacing (pronounced as “baking”). Two
variations of the bacing algorithm with computational results
will be presented. A hybrid ensemble generation strategy
which combines bagging and bacing is also studied. Following
is an outline of the paper. Section II derives the original bacing
algorithm in detail. Section III outlines the computational
experiments and Section IV discusses the results. Section V
introduces a variation of the original bacing algorithm. The
hybrid ensemble generation strategy is presented in Section VI.
Section IV concludes the paper.

II. BACING ALGORITHM

Suppose we have a set of classifiersC for a two-class
problem and a training setS. S is composed of two subsets,
namelyA andB, where each data record inA andB belongs
to class1 and 2, respectively. Each classifierCk will give
each recordxi in the training set a classification labelcik. If
xi is classified as class1 by Ck, thencik = 1 and cik = −1
otherwise. The final classification by the ensemble is decided
by looking at the sign of the weighted average of the output
of those single classifiers. If this weighted average on a test
point is positive, this point is classified as class 1 and vise
versa.

If all the data records could be correctly classified, the
following inequalities would be satisfied:∑

k∈C

cikwk ≥ 0, ∀i ∈ A (1a)∑
k∈C

cjkwk < 0, ∀j ∈ B (1b)

wherewk is the weight on classifierCk. The vote margin of
each training data point is given by

mi =
∑
k∈C

cikwk, ∀i ∈ A (2a)

mj =
∑
k∈C

−cjkwk, ∀j ∈ B. (2b)

A positive mi(j) implies that the training point is correctly
labeled by the current ensemble. The larger the magnitude
of a positivemi(j), the more tolerance we can allow for the
next built classifier to make a mistake on this certain point.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 1, NO. 1, AUGUST 2002 2

A negativemi(j) corresponds to a misclassification made by
the current ensemble and thus we want the next classifier
to contribute a positive vote margin in order to increase the
overall vote margin of the ensemble on this point.

Assume that we use a linear support vector machine [13],
[14] as the base learner. A linear SVM is a linear separator, or
a hyperplane in the feature space that separates the two classes.
An L1-linear SVM model can be described as the following
linear programming problem,

min
∑
l∈S

δlel +
N∑

n=1

|αn|

N∑
n=1

αnxin ≥ 1− ei, ∀i ∈ A

N∑
n=1

αnxjn ≤ −1 + ej , ∀j ∈ B

ei, ej ≥ 0.

(3)

Here, α represents the coefficient vector of the hyperplane,
el is proportional to the distance between the corresponding
misclassified point and the separating plane,N is the dimen-
sion of the feature space, andδl is the misclassification cost
of point l. We assume that initially, misclassification costs for
the points are all equal.

Suppose now we already have an ensemble of linear sep-
arators and we want to build a new separator to insert into
the existing ensemble. For those points that already possess
positive margins, we may allow the new separator to make
mistakes on them. But for those points that the existing ensem-
ble does not get right, we should encourage the new separator
to classify them correctly. This objective can be achieved by
adjusting the misclassification cost of each point according
to its margin given by the existing ensemble. Generally, the
misclassification costs of those points that have a smaller
margin should be tuned up so that misclassifying them will
get more costly. A simple linear cost adjustment scheme is as
follows:

δl,t+1 = 1− ml,t

1 + |Ct|
. (4)

Here,δl,t+1 is the adjusted misclassification cost of pointl in
the next round of training,|Ct| is the number of classifiers
in the existing ensemble (which is in factt) and ml,t is the
current margin of pointl. It should be pointed out that the
misclassification cost of a point is essentially the same as the
weight of a point in arcing or boosting, in terms of the role
it plays in the linear support vector machine used here as the
base learner.

The method described so far is close to arcing, though
our cost-tuning formula is somewhat different. In arcing,
each data point is weighted proportionally to the number of
misclassifications by the previously created classifiers

δl,t = (1 + MCl,t)q, (5)

whereMCl,t is the number of misclassifications (wrong votes)
of the current ensemble on data pointl and q is a positive
constant. The whole training set is used for building each

individual separator and the margin is calculated by resubsti-
tution. As we know, resubstitution error is often biased down
compared to true error and hence the resubstitution margin is
biased up so that the cost derived will not correctly reflect
the relative importance of each point in the next round of
training. To fix this over-estimation of margins, the bagging
idea can be applied. In bagging, a bootstrap sample (bag)
is generated by uniformly sampling points from the training
set with replacement. Each separator is built from a different
bootstrap sample. For a given bootstrap sample, a point in the
training set has probability of approximately 0.632 of being
selected at least once. The remaining 36.8% will not be picked,
which constitutes a natural hold-out set, often called the out-
of-bag set. We may compute the test margin of each point
by only aggregating the predictions of separators that are not
trained on it and get a more fair estimate. LetTk represent the
subset of the training set that is used to train thekth separator.
The modified margin formula is

mi =
∑

k∈{k|i/∈Tk}

cikwk, ∀i ∈ A (6a)

mj =
∑

k∈{k|j /∈Tk}

−cjkwk, ∀j ∈ B. (6b)

The new cost adjustment scheme becomes

δl,t+1 = 1−
m′

l,t

1 + |C ′
l,t|

(7)

Here,C ′
l,t is the current set of separators that are not trained

on point l, andm′
l,t is the margin for the point obtained by

C ′
l,t. Notice that using the out-of-bag performance for weight-

tuning is a characteristic of stacking, although here the subject
of the adjustment is the misclassification cost instead of the
weight on each individual learner. In fact, it is still possible
to modify the weight on each separator to minimize the error
on the training set. However, our experiments indicate that
this leads to (often dramatic) overfitting. The weight on each
separator is therefore kept uniformly equal to one throughout
the ensemble construction.

As mentioned above, bagging, arcing and stacking each
plays a part in the new algorithm. It is hoped that bootstrapped
aggregation will reduce the variance components as it does
in bagging, cost adjustment will reduce the bias as it does
in arcing and the out-of-bag margin estimation will result in
better generalization as it does in stacking.

III. C OMPUTATIONAL EXPERIMENTS

Bacing was implemented using MATLAB and tested on 14
UCI repository data sets [15]: Autompg, Bupa, Glass, Haber-
man, Housing, Cleveland-heart-disease, Hepatitis, Ion, Pima,
Sonar, Vehicle, WDBC, Wine and WPBC. These data sets
were picked mainly because they are relatively small in size so
that the SVM problem can be solved in reasonable time. Some
of the data sets do not originally depict two-class problems
so we did some transformation on the dependent variables
to get binary class labels. Specifically in our experiments,
Autompg data is labeled by whether the mileage is greater
than 25mpg, Housing data by whether the value of the house

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 1, NO. 1, AUGUST 2002 3

Input : Training set T of size n, base learner `, integer k (number of training rounds)
let δj = 1

n , ∀j = 1..n; # initialize cost vector δ
let m′

j = 0, ∀j = 1..n; # initialize out-of-bag margin m
let Γj = 0, ∀j = 1..n; # initialize out-of-bag counter Γ
for i = 1 : k

Ti = bootstrap(T) #bootstrapping T with uniform distribution;
Ci = `(Ti, δ) # training with the cost sensitive learner `
for each xj

if xj /∈ Ti

m′
j = m′

j + yjCi(xj); # update out-of-bag margin
Γj = Γj + 1; # update out-of-bag counter

δj = 1 −
m′

j
1+Γj

; # update cost

endif
end
Normalize δj so that

P
j δj = 1;

endfor
Output : Ensemble classifier {C1, C2, · · · , Ck}.
Testing : C∗(x) = arg maxy∈Y

P
i: Ci(x)=y 1

Fig. 1. Pseudocode for Bacing

exceeds$25, 000, Cleveland-heart-disease by the presence or
absence of the disease, and Glass by window and non-window
varieties. Vehicle and Wine are multi-class problems so we set
the problem as separating one class pair each time, resulting
in a total of 20 data sets. Discrete variables were changed to
binary “dummy” variables for the linear SVM tests, and all
data points with missing values were removed. Table I lists
the characteristics of the 20 datasets.

In order to observe the characteristics of the algorithm
thoroughly, we built 100 classifiers for each run. For an
ensemble of such size, we may safely deduce the convergence
property of the algorithm and judge whether it will eventually
overfit the training data. The results are averaged over five
ten-fold cross-validations.

Since bacing can be viewed as a modification of bagging,
a comparison was made between bacing and bagging. In
each test, the same bootstrap samples were obtained for both
algorithms in each round. We also compared bacing with
arcing-x4 which was reported to be empirically the best among
its variants and comparable with Adaboost [8]. The arcing-x4
weighting scheme setsq = 4 in (5). While the weighting
schemes of bacing and arcing have somewhat the same flavor,
there are still crucial differences that need be stressed between
these two algorithms:

• The possible range of weights created by bacing is much
smaller than that by arcing-x4. As a result, arcing may
finally concentrate on a very limited number of training
points (possibly noisy points) and therefore be more
prone to overfitting.

• Arcing does not use “out-of-bag” error estimates for
weight updating.

The experimental results showed that these modifications do
help bacing outperform arcing in most cases. While we focus
on comparisons with bagging and arcing, we also include
results of the popular Adaboost method for completeness.

IV. RESULTS AND DISCUSSION

A. Error Evolution and Cost Adjustment History

The error evolution of bacing and bagging versus the size of
the ensemble for some data sets are shown in Figure 2. It can

be seen from the plots that both the training and test errors of
bacing are consistently below that of bagging. The fluctuation
of bacing is stronger during the first several rounds. This may
be attributed to the large cost adjustment at the beginning. In
the first few rounds, the costs can easily fluctuate between
their maximum (2) and minimum (0) values.

Figure 3 illustrates the change of costs over the 100-round
run. They axis represents the norm of the difference of the
cost vector between the two neighboring rounds. The plots
show that the costs undergo drastic changes at the start, but
as a good cost structure is obtained after a few rounds of
adjustment, the magnitude of the change slumps quickly and
remains stable at a low level thereafter. This low level of
adjustment is unavoidable because of the bootstrapping effect.
This mode of cost adjustment is quite the opposite of that
of boosting, in which the magnitude of weight adjustment
increases as the ensemble size gets larger. The extreme change
of weights in the end does help boosting drive the training
error down by focusing directly on difficult points, however
it often causes overfitting if there is classification noise in the
data set [7], [16], [17].

It is the simple linear weight adjustment that shapes the
behavior of bacing. To examine bacing’s behavior, we differen-
tiate between “difficult” points, which are routinely misclassi-
fied and may in fact be noisy or otherwise detrimental to good
generalization (the sort of points that boosting and arcing tend
to focus on), and boundary points, which have a margin near
zero. Under our scheme, large costs will be assigned not only
to the difficult points in the long run, but also to the boundary
points, because if a boundary point is not in the training set,
it can easily be misclassified and have its weight tuned up. In
this way, the focus on the difficult points is diversified and
pulled to the boundary points, which is a desirable effect.
Usually, the number of the boundary points is much larger
than that of the difficult points so that the trend of the cost
adjustment will be influenced more by the boundary points.
Since the set of boundary points will become relatively stable
after a few rounds, so will the cost structure. As a result of the
convergence of the cost structure, the error evolution line of
bacing shows no obvious sign of overfitting. Often, the error
of bacing stabilizes after a certain number of rounds, which is

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 1, NO. 1, AUGUST 2002 4

TABLE I

CHARACTERISTICS OF DATASETS

Dataset # of Points # of Features Class Distribution (%:%)
autompg 392 9 39.8:60.2

bupa 345 7 42.0:58.0
glass 214 10 23.8:76.2

haberma 306 4 73.5:26.5
heart 297 14 46.1:53.9

hepatit 129 18 81.4:18.6
housing 506 13 22.4:77.6

ion 351 35 35.9:64.1
pima 768 9 34.9:65.1
sonar 208 61 46.6:53.4

vehicle12 429 19 49.4:50.6
vehicle13 430 19 49.3:50.7
vehicle14 411 19 51.6:48.4
vehicle23 435 19 49.9:50.1
vehicle24 416 19 52.2:47.8
vehicle34 417 19 52.3:47.7

wdbc 569 31 62.7:37.3
wine12 130 14 45.4:54.6
wine23 119 14 59.7:40.3
wpbc 188 34 77.1:22.9

0 10 20 30 40 50 60 70 80 90 100
0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135
housing

round

er
ro

r %

bagging−test
bacing−test
bagging−train
bacing−train

0 10 20 30 40 50 60 70 80 90 100
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3
sonar

round

er
ro

r %

bagging−test
bacing−test
bagging−train
bacing−train

Fig. 2. Error evolution of bacing and bagging

a nice property belonging to bagging. Now we have obtained
an algorithm that converges like bagging but can reduce bias
by generating classifiers specifically designed to correct the
errors of the existing ensemble.

B. Performance Comparison

Table II compares the performance of a single linear support
vector machine with 100-round ensembles formed by bacing,
bagging, Adaboost, and arcing-x4 on the 20 data sets. The
error estimates listed are average over five ten-fold cross-
validation runs. Standard deviations are shown in parentheses.
Note that Vehicleij stands for the subset of Vehicle with
only classi and classj. The same format applies to Wine.
Wine13 is omitted from the table because all four algorithms
generalized perfectly on it.

Table III and Table IV summarize the comparison results.
It is clear that all four ensemble algorithms outperform a
single SVM. Though bacing is seldom statistically better than
bagging and arcing (2 out of 20), it beats both bagging and
arcing 14 times out of the 20 experiments we ran in terms of
mean performance. What’s more, bacing shows a significant
improvement over the base learner six times, compared to two
or three for the other methods.

C. Discussion

These results to some extent demonstrate the advantage of
bacing over bagging and arcing. Bacing is better than bagging
because its iterative weighting scheme enables it to reduce
more bias than bagging. Bacing outperforms arcing-x4 because
it applies a more conservative cost (weight) adjustment scheme
which possibly avoids overfitting and the “out-of-bag” estima-
tion provides more accurate performance information for cost
updating.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 1, NO. 1, AUGUST 2002 5

TABLE II

PERFORMANCE OF LINEARSVM, BAGGING, ADABOOST, ARCING-X4 AND BACING. VALUES ARE PERCENTAGE ERROR, WITH STANDARD DEVIATION IN

PARENTHESES. THE BEST RESULT FOR EACH DATA SET IS BOLDED.

Datasets SVM Bagging Adaboost Arcing Bacing
Autompg 9.85 (0.46) 9.60 (0.23) 9.12(1.86) 9.29 (1.18) 8.83 (0.44)

Bupa 31.07 (0.44) 30.84 (0.82) 30.61(3.70) 31.17 (3.02)30.38 (0.50)
Glass 28.13 (0.43) 27.74 0.86) 29.31(1.25) 27.12 (1.60)27.08 (1.25)

Haberman 28.10 (0.64) 27.77 (0.60) 25.81(0.95) 25.89 (1.33)25.50 (0.40)
Heart 16.48 (0.49) 16.48 (0.49) 17.96(1.52) 17.64 (3.18) 17.14 (1.15)

Hepatitis 15.50 (1.58) 13.47 (1.17) 14.28(2.49) 14.86 (4.47) 13.94 (1.45)
Housing 12.95 (0.33) 13.11 (0.66) 12.18(1.58)11.83 (1.77) 12.68 (0.49)

Ion 12.42 (0.97) 11.51 (0.92) 10.60(1.38) 11.06 (2.12) 11.40 (0.89)
Pima 23.26 (0.36) 23.02 (0.36) 22.76(1.82) 23.30 (1.41) 22.94 (0.39)
Sonar 23.69 (1.18) 22.25 (1.27) 21.20(2.84)19.36 (2.13) 20.97 (1.55)

Vehicle12 33.46 (0.73) 33.23 (0.89) 32.75(3.64) 32.78 (2.55)32.44 (0.44)
Vehicle13 1.16 (0.23) 1.63 (0.16) 2.19(0.63) 3.35 (0.35) 1.77 (0.27)
Vehicle14 2.97 (0.80) 2.23 (0.21) 3.87(0.62) 3.21 (1.00) 2.14 (0.20)
Vehicle23 3.03 (0.60) 2.76 (0.43) 2.40(0.76) 4.24 (0.70) 2.62 (0.26)
Vehicle24 2.45 (0.40) 2.26 (0.13) 3.53(1.47) 2.88 (0.52) 2.26 (0.13)
Vehicle34 2.11 (0.26) 1.87 (0.39) 1.20(0.24) 3.07 (0.78) 2.11 (0.35)
WDBC 4.71 (0.31) 4.74 (0.21) 3.69(1.36) 3.94 (0.61) 4.50 (0.16)
Wine12 2.77 (0.42) 3.08 (0.77) 2.15(0.34) 2.00 (1.69) 2.46 (0.34)
Wine23 4.02 (1.08) 3.18 (0.34) 3.10(0.56) 4.73 (2.05) 3.68 (0.44)
WPBC 24.98 (0.35) 23.50 (0.98) 23.13(3.86)22.66 (2.44) 23.05 (0.86)

of Best 2 3 6 4 7

TABLE III

SUMMARY OF PERFORMANCE COMPARISON RESULTS AMONGSVM,

BAGGING, ADABOOST ARCING AND BACING

Algorithm Pair W-L-T
Bagging vs. SVM 15-4-1
Adaboost vs. SVM 15-5-0
Arcing vs. SVM 11-9-0
Bacing vs. SVM 17-2-1
Bacing vs. Bagging 14-5-1
Bacing vs. Adaboost 12-8-0
Bacing vs. Arcing 14-6-0

TABLE IV

SUMMARY OF SIGNIFICANT t-TEST RESULTS AMONGSVM, BAGGING,

ADABOOST ARCING AND BACING

Algorithm Pair W-L
Bagging vs. SVM 2-1
Adaboost vs. SVM 3-1
Arcing vs. SVM 2-1
Bacing vs. SVM 6-1
Bacing vs. Bagging 2-0
Bacing vs. Adaboost 2-1
Bacing vs. Arcing 2-0

In addition, the performance of bacing is more stable than
that of arcing-x4 (or boosting), which leads to smaller standard
deviations and makes the improvement over the base classifier
more likely to be statistically significant. The distribution of
weights may explain why bacing is a more stable algorithm
than arcing. Figure 4 shows the change of weights (nor-
malized) of arcing over the 100-round run. Obviously, the
normalized weights of arcing converge in the long run like

those of bacing. However, the convergence states of the two
algorithms are different.

Figure 5 compares the distribution of point weights of
bacing and arcing-x4 at the final round by histograms. (The
WPBC data set as was used for this example. The plots of
other data sets are similar.) On both plots, there is a large
portion of points accumulated around zero. These are the
“easy points.” The major difference is on the other end of
the graph. Arcing-x4 heavily weights a very limited number of
data points, which may cause large fluctuations in performance
among different folds in the cross-validation since a small
change in the training set may make a big difference on
the separating surface because of the over-concentration. On
the other hand, the effectively non-zero weights generated by
bacing are more spread over the training data. As mentioned
before, bacing is able to concentrate on both the boundary
points and the difficult points. This smoother distribution of
non-zero weights reduces the risk of overfitting and makes the
performance of the algorithm more robust.

D. Out-of-Bag Margin and In-Bag Margin

An important characteristic of bacing is that it uses out-
of-bag margin for cost updating. To the best of the author’s
knowledge, all other existing sequential weight-updating en-
semble algorithms such as boosting and arcing all use in-bag
error estimation. The advantage of out-of-bag estimation is
that it is a more fair estimate compared with resubstitution.
However, there is also a downside. The probability of each
point being sampled in a uniform bagging is about 63%.
Therefore, the out-of-bag margin of each point is calculated

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 1, NO. 1, AUGUST 2002 6

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7
sonar

no
rm

 o
f c

os
t d

iff
er

en
ce

round

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12
housing

no
rm

 o
f c

os
t d

iff
er

en
ce

round

Fig. 3. Change of misclassification costs, bacing

only based on roughly one-third of the ensemble classifiers,
which may cause insufficient information. Whether out-of-bag
margin will bring in better performance is hence a trade-off
between fair estimation and sufficient information.

We did experiments to see how these two error estimation
perform empirically. Two bacing ensembles of size 100 with
linear SVM as base classifier are created on each dataset, one
based on in-bag margin calculation and the other on out-of-
bag. The results are shown in Table V.

In terms of performance, these two versions of bacing are
not significantly different. However, the out-of-bag bacing
seems to be a more stable algorithm by looking at the standard
deviations of classification errors. In most cases, the standard
deviations of out-of-bag bacing are much lower than that of
in-bag bacing. Therefore, when compared to other algorithms,
out-of-bag bacing is more likely to be significantly different,
as was seen in Table IV.

E. Bacing with Decision Trees

Previous experiments use a linear SVM as the base clas-
sifier. Linear classifiers generally display high bias and low
variance. The variance reduction effect of an ensemble is not

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

round

no
rm

 o
f w

ei
gh

t d
iff

er
en

ce

sonar

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

round

no
rm

 o
f w

ei
gh

t d
iff

er
en

ce

housing

Fig. 4. Change of weights, arcing-x4

a major factor leading to better performance with a linear
classifier as the base leaner. Therefore, to observe the ability
of bacing to reduce variance, experiments with nonlinear base
classifiers were conducted.

We chose unpruned C4.5 decision tree [18] as the base
classifier for the experiments.The C4.5 decision tree algorithm
is fast, easy to implement and its corresponding classification
function is highly nonlinear, resulting in large variance. The
only problem is that it is not designed as a cost-sensitive
classifier. However, we are able to get around the problem
by treating the misclassification cost on each data point as a
resampling prior, which has an equivalent effect [3], [8]. The
algorithm is shown in Figure 6.

The experiments were conducted on the same UCI datasets
as with the linear SVM. Since bagging is known to be
one of the best variance reduction ensemble algorithms, a
performance comparison between bagging and bacing is made.
Table VI shows the training and test error of bacing and
bagging, as well as the test error of a single C4.5 tree, arcing,
and boosting. Table VII and VIII summarize the comparison
results based on mean value and pairedt test.

With a low-bias, high-variance classifier such as a C4.5
decision tree, the performance improvement of an ensemble

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 1, NO. 1, AUGUST 2002 7

TABLE V

PERFORMANCE COMPARISON BETWEEN IN-BAG BACING AND OUT-OF-BAG BACING. L INEAR SVM AS BASE CLASSIFIER. VALUES ARE PERCENTAGE

TEST ERROR, WITH STANDARD DEVIATION IN PARENTHESES.

dataset In-Bag Bacing Out-of-bag Bacing
autompg 9.54(1.40) 8.83(0.44)

bupa 31.08(3.49) 30.38(0.50)
glass 27.80(0.60) 27.28(1.25)

haberma 24.84(2.32) 25.50(0.40)
heart 16.93(1.78) 17.14(1.15)

hepatit 14.45(3.53) 13.94(1.45)
housing 12.29(0.32) 12.68(0.49)

ion 10.95(0.95) 11.40(0.89)
pima 23.05(0.83) 22.94(0.39)
sonar 21.04(3.36) 20.97(1.55)

vehicle12 32.17(1.20) 32.44(0.44)
vehicle13 1.49(0.61) 1.77(0.27)
vehicle14 1.99(0.47) 2.14(0.20)
vehicle23 3.13(0.90) 2.62(0.26)
vehicle24 2.11(0.71) 2.26(0.13)
vehicle34 1.68(1.12) 2.11(0.35)

wdbc 4.60(1.18) 4.50(0.16)
wine12 2.31(0.77) 2.46(0.34)
wine23 3.21(0.72) 3.68(0.44)
wpbc 21.78(3.28) 23.05(0.86)

Out vs. In Absolute W-L-T 8-12-0
Out vs. In Significant W-L-T 0-0-20

TABLE VI

PERFORMANCE OFC4.5, BAGGING, ADABOOST, ARCING AND BACING. VALUES ARE PERCENTAGE ERROR, WITH STANDARD DEVIATION IN

PARENTHESES. THE BEST RESULT FOR EACH DATA SET IS BOLDED.

Dataset C45-test Bag-train Bac-train Bag-test Ada-test Arc-test Bac-test
autompg 11.06(2.46) 0.87(0.10) 0.00(0.00)10.56(1.41) 10.67(1.80) 10.77(1.80) 10.71(1.39)

bupa 35.93(3.08) 1.10(0.26) 0.00(0.00) 30.49(2.56)28.90(2.25) 30.61(1.45) 30.19(3.12)
glass 24.48(4.07) 1.63(0.46) 0.00(0.00) 17.10(1.54) 14.53(3.04)13.44(5.55) 14.35(2.81)

haberma 35.76(4.65) 6.19(0.18) 1.76(0.15)30.79(2.35) 33.99(3.43) 34.25(1.18) 33.93(1.96)
heart 27.26(4.44) 0.90(0.14) 0.00(0.00) 19.87(2.78) 20.18(1.65)19.83(3.73) 21.57(2.44)

hepatitis 20.94(1.91) 2.39(0.25) 0.00(0.00) 17.23(3.11) 16.24(3.78) 15.99(3.82)15.36(2.35)
housing 16.56(1.48) 0.66(0.08) 0.00(0.00) 12.73(0.92) 11.47(1.35)10.78(1.05) 11.36(1.60)

ion 8.94(1.39) 0.44(0.11) 0.00(0.00) 6.15(0.91) 5.75(1.03)5.73(0.87) 5.98(0.51)
pima 29.09(3.27) 1.24(0.02) 0.00(0.00) 24.37(1.38) 24.56(2.52)24.25(1.30) 25.88(1.12)
sonar 30.00(3.39) 0.09(0.07) 0.00(0.00) 24.73(1.70) 22.56(4.75) 22.76(3.68)19.13(1.80)

vehicle12 42.10(2.70) 0.35(0.07) 0.00(0.00) 42.01(1.80) 41.88(2.85) 42.60(2.16)41.32(2.44)
vehicle13 5.02(1.92) 0.20(0.05) 0.00(0.00) 3.81(1.02) 1.83(0.75) 2.19(0.63)1.81(0.60)
vehicle14 7.01(1.42) 0.19(0.09) 0.00(0.00) 5.26(1.25) 4.83(1.21) 5.01(1.04)4.72(0.79)
vehicle23 5.37(1.41) 0.42(0.06) 0.00(0.00) 4.19(0.64)2.67(1.31) 2.83(1.09) 2.72(0.88)
vehicle24 8.41(1.83) 0.14(0.04) 0.00(0.00) 5.73(1.64)4.27(1.94) 4.66(0.63) 5.00(0.55)
vehicle34 1.97(1.06) 0.27(0.02) 0.00(0.00) 1.40(0.10) 1.34(0.62)1.10(0.77) 1.30(0.14)

wdbc 4.67(1.54) 0.54(0.07) 0.00(0.00) 4.01(0.74) 3.91(0.77)3.34(0.60) 3.80(0.56)
wine12 3.08(2.05) 0.38(0.19) 0.00(0.00) 2.62(0.88) 2.92(1.48) 3.08(1.72) 2.77(1.29)
wine23 6.56(2.16) 0.04(0.05) 0.00(0.00) 3.20(1.81) 3.38(1.59) 3.35(1.44) 4.23(2.85)
wpbc 32.20(6.19) 1.02(0.27) 0.00(0.00) 24.19(3.64) 24.23(2.21) 24.15(1.81)23.94(1.78)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 1, NO. 1, AUGUST 2002 8

Input : Training set T of size n, base learner `, integer k (number of training rounds)
let δj = 1

n , ∀j = 1..n; # initialize cost vector δ
let m′

j = 0, ∀j = 1..n; # initialize out-of-bag margin m
let Γj = 0, ∀j = 1..n; # initialize out-of-bag counter Γ
for i = 1 : k

Ti = bootstrap(T, δ) # bootstrapping T with sampling prior δ
Ci = `(Ti) #training with C4.5 tree learner ` and training set Ti

for each xj

if xj /∈ Ti

m′
j = m′

j + yjCi(xj); # update out-of-bag margin
Γj = Γj + 1; # update out-of-bag counter

δj = 1 −
m′

j
1+Γj

; # update cost

endif
end
Normalize δ so that

P
j δj = 1;

endfor
Output : Ensemble classifier {C1, C2, · · · , Ck}.
Testing : C∗(x) = arg maxy∈Y

P
i: Ci(x)=y 1

Fig. 6. Pseudocode for Bacing with C4.5

0 0.002 0.004 0.006 0.008 0.01 0.012
0

5

10

15

20

25

30

35

40

45

50
Bacing

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

10

20

30

40

50

60

70

80

90
Arcing−x4

Fig. 5. Distribution of weights, bacing and arcing-x4

TABLE VII

SUMMARY OF PERFORMANCE COMPARISON RESULTS AMONGC4.5,

BAGGING, ADABOOST, ARCING AND BACING

Algorithm Pair W-L-T
Bagging vs. C4.5 20-0-0
Adaboost vs. C4.5 20-0-0
Arcing vs. C4.5 18-1-1
Bacing vs. C4.5 20-0-0
Bacing vs. Bagging 14-6-0
Bacing vs. Adaboost 12-8-0
Bacing vs. Arcing 11-9-0

TABLE VIII

SUMMARY OF SIGNIFICANT t-TEST RESULTS AMONGC4.5, BAGGING,

ADABOOST, ARCING AND BACING

Algorithm Pair W-L
Bagging vs. C4.5 12-0
Adaboost vs. C4.5 13-0
Arcing vs. C4.5 13-0
Bacing vs. C4.5 13-0
Bacing vs. Bagging 5-2
Bacing vs. Adaboost 0-0
Bacing vs. Arcing 0-0

algorithm like bagging or boosting is substantial. None of the
ensembles we tested were ever worse than a single decision
tree. Bagging significantly improves accuracy 12 times while
bacing does it 13 times out of 20 datasets. Since a single
C4.5 tree is itself complex enough in most cases, the error
reduction of the ensemble algorithm comes mainly from
variance reduction. In terms of improving a single C4.5 tree,
bagging and bacing perform almost equally well. Therefore,
we may conclude that bacing is as competent as bagging for
variance reduction. On the other hand, the significant win-
loss statistic between bacing and bagging is 5-2. This is not
surprising because the cost-updating scheme enables bacing to
reduce bias whenever possible. Interestingly, for most of the
datasets, bacing is able to drive the training error to be zero.
Although the cost updating scheme of bacing seems ad hoc,
it is able to empirically achieve the same goal of Adaboost,
whose weighting scheme is well-crafted. Bacing and arcing
perform similarly in the nonlinear classifier case. However,
bacing consistently reduces the variation across different runs;

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 1, NO. 1, AUGUST 2002 9

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
sonar

round

er
ro

r %

bagging−test
bacing−test
bagging−train
bacing−train

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
housing

round

er
ro

r %

bagging−test
bacing−test
bagging−train
bacing−train

Fig. 7. Error evolution of bacing with C4.5 as base classifier, for Sonar and
House data sets.

the standard deviation of the five cross-validation runs is lower
than arcing on 15 of the 20 tests.

The training and testing error evolution curves over the 100-
run of the House and Sonar datasets are displayed in Figure 7.
Similar to the linear SVM case, the training and testing errors
of bacing are consistently below those of bagging.

V. A BSOLUTE MARGIN: A NEW COST UPDATING SCHEME

In the current bacing setting, the cost updating scheme is
fixed throughout the ensemble generation process. The out-
of-margin based cost adjustment scheme (7) puts emphasis on
those points that are misclassified by the current ensemble.
Although the bootstrapping step alleviates the problem of
overfitting compared with boosting when there is a certain
amount of noise in the training set, the possibility of overfitting
never goes away. An alternative cost adjustment scheme, as
shown in 8, seems to be able to handle the overfitting problem.

δl,t+1 = 1−
|m′

l,t|
1 + |C ′

l,t|
(8)

The only difference between scheme (7) and (8) is that (8)
puts an absolute value on the out-of-bag marginm′

l,t. Figure 8

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

co
st

margin

(a) δl,t+1 = 1−
m′

l,t

1+|C′
l,t

|

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

margin

co
st

(b) δl,t+1 = 1−
|m′

l,t|
1+|C′

l,t
|

Fig. 8. Cost curves of two updating schemes, with|C′
l,t| = 25

illustrates the two schemes.
As a result, under scheme (8), the emphasis is no longer

put on the points having large negative margins, but on those
points with margins with small magnitude, either on the
positive side or the negative side. Noisy points that will often
be misclassified by most classifiers and accumulate negative
margins will ultimately take a very small weight and effec-
tively be ignored in the later rounds of training. Therefore, this
scheme will theoretically not result in overfitting. However, the
downside of this scheme is also obvious. In the first several
rounds of training, it is not able to differentiate boundary
points from difficult / noisy points. Although like the noisy
points, boundary points can often be misclassified, they are
important training points for the learning process to form the
classification boundary. Under the alternative cost updating

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 1, NO. 1, AUGUST 2002 10

scheme, some boundary points may be de-emphasized if they
are not correctly classified by the first several classifiers.

From now on, we call bacing with scheme (7) as “bacing-0”
and bacing with scheme (8) as “bacing-1”. Table IX compares
the performance of these two versions of bacing on the 20
UCI datasets. C4.5 trees are used as the base classifier. One
hundred classifiers are built for each ensemble. Bagging results
are also listed as the benchmark. A simple comparison statistic
of how many times each algorithm performs the best among
three algorithms (in terms of mean error) is listed at the end
of the table.

Both of the two versions of bacing perform substantially
better than bagging. There is no big difference between them
in terms of test error. Generally speaking, bacing-0 is good
at exploring. It attempts to modify the ensemble classification
function to maximize the number of points it can correctly
classify. On the other hand, bacing-1 is good at focusing on
and fixing the classification boundary. Its major effort is put
on increasing the margin of the boundary points. It turns out
that both the strategies are effective.

VI. COMBINING BAGGING AND BACING

Currently, the bacing algorithm starts weight-tuning right
after the first classifier is built. It is however questionable
whether this is the best way to exploit the boosting effect of the
cost adjustment scheme. In fact, the later classifiers built are
dependent on the first classifier since their target is to correct
its errors, directly or indirectly. Therefore, if the first classifier
takes a wrong direction by chance, the whole ensemble may
be led astray or it may take many iterations to come back on
the right track.

Under the current setup, the first classifier is built on a
uniformly bootstrapped set which involves a bit of random-
ness. There is a possibility that the first classifier, with the
next several classifiers built heavily dependent on it, is not
representative enough in terms of identifying easy points,
boundary points and difficult points, which is essential for the
success of bacing. Hence, we consider starting bacing with
an initial set of classifiers with less such bias introduced by
randomness.

A simple strategy is to build a bagging ensemble as a
start. This initial bagging ensemble may create a good picture
of the learnability of the training points. The accumulated
margin on each data point of this bagging ensemble should
be more trustworthy than that of a single classifier. Therefore,
we expect that this hybrid strategy, which essentially fuses
bagging and bacing, may produce better results.

Table X lists the computation experiment results of com-
bining bagging and bacing. Since there are two versions of
bacing, namely bacing-0 and bacing-1, bagging is combined
with each of them and each combined ensemble is compared
with the original bacing ensemble. Each hybrid ensemble starts
with 50 rounds of bagging followed by 50 rounds of bacing.
The size of the pure bacing ensembles are 100 as well.

The empirical results shows that combining bagging with
bacing-0 generally improves the performance. As mentioned
before, the initial bagging helps create better margin informa-
tion and thus the cost adjustment scheme of bacing-0 is able

to act more accurately to modify the separating surface. On
the other hand, the initial bagging seems not very helpful for
bacing-1. Our explanation is bacing-1’s lack of initiative of
exploring when the separating surface becomes clear. After
bagging, the accumulated margin more clearly defines the
boundary and bacing-1 can only slightly tune this boundary. It
simply ignores those data points with a large negative margin
after bagging, which might still be correctable.

For an ideal sequential ensemble algorithm, at the begin-
ning, it should be able to explore the potential of the classifica-
tion function to make it fit as many training points as possible.
Then it should focus on the gradually-shaped boundary to
increase margins of the boundary points. In terms of the bias-
variance tradeoff, the former part is for bias reduction and the
latter part for variance reduction. Interestingly, bacing-0 and
bacing-1 are somehow following these two kinds of strategies
respectively, regarding their cost updating schemes. Therefore,
if we combine these two versions of bacing, we might get
closer to an ideal sequential ensemble.

Depending on whether we start the ensemble-building pro-
cess with some initial rounds of bagging, we have two new
hybrid algorithms: bacing-0 plus bacing-1, and bagging plus
bacing-0 plus bacing-1. We compare these two algorithms with
the best algorithm so far: bagging plus bacing-0.

In each of the different ensemble setups, 50 rounds were run
for every component, namely bagging, bacing-0 or bacing-1.
Again, C4.5 was picked as the base classifier.

The computational experiments show that bagging plus
bacing-0 dominates the other two hybrid algorithms (see
Table XI). It seems that the bacing-1 stage is unnecessary, if
not harmful, because the first 100 rounds of “Bag+Bac0” and
“Bag+Bac0+Bac1” are exactly the same. The extra 50 rounds
of bacing-1 failed to help boost the performance in most cases.
As Figure 9 shows, the test error stops going down during the
bacing-1 stage. We conjecture that bacing-1’s over-attention to
the well-established boundary found by bagging and bacing-0
may lead to the slight deterioration in performance in some
cases.

Although the preliminary computational results are not
satisfactory, it is still early to relinquish the idea of combining
the three seemingly complementary algorithms. Changing the
combination strategy or slightly revising the cost-updating
schemes of bacing algorithm might have a positive impact
on the hybrid strategy.

VII. C ONCLUSIONS ANDFUTURE WORK

The bacing algorithm combines some of the nice features
of bagging, boosting and stacking. An effective boosting-like
bias correction mechanism is added into the standard bagging
method. The bootstrapping procedure of bagging naturally
provides a hold-out set that helps the correction mechanism
get a fair estimate on the performance of the current ensemble.
Therefore, it is expected that bacing will be a generally
better method than bagging and arcing. The computational
experiments supported the conjecture for two kinds of base
learners, linear support vector machines and decisions trees.

The algorithm itself is simple to implement, adds very
little computational complexity to bagging and can be applied

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 1, NO. 1, AUGUST 2002 11

TABLE IX

PERFORMANCE COMPARISON AMONG BAGGING, BACING-0 AND BACING-1. C4.5AS BASE CLASSIFIER. VALUES ARE PERCENTAGE TEST ERROR, WITH

STANDARD DEVIATION IN PARENTHESES.

Dataset Bagging Bacing-0 Bacing-1
autompg 10.56(1.41) 10.71(1.39) 10.86(2.34)

bupa 30.49(2.56) 30.19(3.12) 29.21(2.10)
glass 17.10(1.54) 14.35(2.81) 16.45(1.93)

haberma 30.79(2.35) 33.93(1.96) 30.14(1.47)
heart 19.87(2.78) 21.57(2.44) 20.48(2.54)

hepatit 17.23(3.11) 15.36(2.35) 15.22(3.13)
housing 12.73(0.92) 11.36(1.60) 12.68(0.89)

ion 6.15(0.91) 5.98(0.51) 5.93(0.89)
pima 24.37(1.38) 25.88(1.12) 24.33(2.68)
sonar 24.73(1.70) 19.13(1.80) 22.67(3.02)

vehicle12 42.01(1.80) 41.32(2.44) 42.14(0.97)
vehicle13 3.81(1.02) 1.81(0.60) 1.95(0.63)
vehicle14 5.26(1.25) 4.72(0.79) 4.96(0.70)
vehicle23 4.19(0.64) 2.72(0.88) 3.13(1.03)
vehicle24 5.73(1.64) 5.00(0.55) 6.63(0.98)
vehicle34 1.40(0.10) 1.30(0.14) 1.63(0.65)

wdbc 4.01(0.74) 3.80(0.56) 3.80(0.70)
wine12 2.62(0.88) 2.77(1.29) 2.92(2.13)
wine23 3.20(1.81) 4.23(2.85) 3.20(1.59)
wpbc 24.19(3.64) 23.94(1.78) 23.26(5.05)

of Wins 3 11 8

TABLE X

PERFORMANCE COMPARISON BETWEEN PURE BACING AND BACING COMBINED WITH BAGGING. C4.5AS BASE CLASSIFIER. VALUES ARE PERCENTAGE

TEST ERROR, WITH STANDARD DEVIATION IN PARENTHESES.

Dataset Bac0 Bag+Bac0 Bac1 Bag+Bac1
autompg 10.71(1.39) 10.51(1.98) 10.86(2.34) 10.77(1.10)

bupa 30.19(3.12) 28.56(3.76) 29.21(2.10) 29.73(2.50)
glass 14.35(2.81) 15.00(2.48) 16.45(1.93) 17.11(3.77)

haberman 33.93(1.96) 32.18(3.98) 30.14(1.47) 30.90(3.51)
heart 21.57(2.44) 20.60(1.97) 20.48(2.54) 20.09(2.27)

hepatitis 15.36(2.35) 15.53(2.98) 15.22(3.13) 16.14(0.79)
housing 11.36(1.60) 12.05(1.41) 12.68(0.89) 12.96(1.11)

ion 5.98(0.51) 5.65(1.62) 5.93(0.89) 5.81(1.31)
pima 25.88(1.12) 24.76(1.93) 24.33(2.68) 24.35(1.49)
sonar 19.13(1.80) 22.60(2.00) 22.67(3.02) 22.86(1.65)

vehicle12 41.32(2.44) 42.06(3.06) 42.14(0.97) 40.79(2.29)
vehicle13 1.81(0.60) 1.12(0.34) 1.95(0.63) 1.58(1.07)
vehicle14 4.72(0.79) 4.86(1.88) 4.96(0.70) 4.72(1.37)
vehicle23 2.72(0.88) 2.34(1.37) 3.13(1.03) 3.17(0.88)
vehicle24 5.00(0.55) 4.99(0.77) 6.63(0.98) 5.43(1.20)
vehicle34 1.30(0.14) 1.01(0.43) 1.63(0.65) 1.10(0.62)

wdbc 3.80(0.56) 3.20(0.44) 3.80(0.70) 3.90(1.52)
wine12 2.77(1.29) 2.15(1.67) 2.92(2.13) 3.23(1.48)
wine23 4.23(2.85) 3.88(0.93) 3.20(1.59) 3.56(2.84)
wpbc 23.94(1.78) 23.11(4.57) 23.26(5.05) 23.86(2.95)

of Wins 6 14 12 8

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 1, NO. 1, AUGUST 2002 12

TABLE XI

PERFORMANCE COMPARISON AMONG BAGGING PLUS BACING, BACING-0 PLUS BACING-1 AND BAGGING PLUS BACING-0 PLUS BACING-1. C4.5IS THE

BASE CLASSIFIER. VALUES ARE PERCENTAGE TEST ERROR, WITH STANDARD DEVIATION IN PARENTHESES.

Dataset Bag+Bac0 Bac0+Bac1 Bag+Bac0+Bac1
autompg 10.51(1.98) 10.67(1.95) 10.87(2.06)

bupa 28.56(3.76) 28.70(3.12) 27.84(2.04)
glass 15.00(2.48) 16.55(1.74) 14.47(2.96)

haberman 32.18(3.98) 29.41(2.71) 33.38(2.91)
heart 20.60(1.97) 20.94(3.01) 20.67(3.09)

hepatitis 15.53(2.98) 16.19(4.28) 16.94(1.80)
housing 12.05(1.41) 12.81(1.56) 11.20(1.56)

ion 5.65(1.62) 6.21(0.60) 5.76(1.49)
pima 24.76(1.93) 25.21(1.64) 24.87(1.39)
sonar 22.60(2.00) 21.51(2.82) 20.98(2.53)

vehicle12 42.06(3.06) 40.69(2.11) 41.44(2.06)
vehicle13 1.12(0.34) 2.47(1.07) 1.44(0.50)
vehicle14 4.86(1.88) 4.91(0.64) 4.63(1.42)
vehicle23 2.34(1.37) 3.23(0.81) 2.40(0.64)
vehicle24 4.99(0.77) 4.99(1.29) 4.81(0.18)
vehicle34 1.01(0.43) 1.35(0.54) 1.20(0.51)

wdbc 3.20(0.44) 4.21(1.00) 3.55(1.14)
wine12 2.15(1.67) 2.62(1.40) 2.62(1.40)
wine23 3.88(0.93) 2.88(1.65) 3.03(1.00)
wpbc 23.11(4.57) 23.63(2.17) 23.61(0.83)

of Wins 11 3 6

using any cost-sensitive base learner. For non-cost-sensitive
base learners like decision trees, resampling techniques can
be applied to produce similar improvement.

The cost-updating rule of bacing is somewhat ad hoc. A
second cost-updating rule (8), which puts an absolute value on
the margin in the original rule (7), is studied. Computational
tests reveal that the bacing-1 algorithm based on this rule
compares favorably with bagging, as the original algorithm
bacing-0 does. However, the mechanisms of these two versions
of bacing that drive the improvement are different. Bacing-0
tends to fix any misclassified point by the out-of-bag margin
estimate while bacing-1 put more focus on those points close
to the separating surface, either correctly or wrongly classified.

The different characteristics of bacing-0 and bacing-1
prompt the idea of hybrid strategies, which sequentially com-
bine different ensemble algorithms. The combination schemes
involving bagging, bacing-0 and bacing-1 are extensively stud-
ied by computational experiments. The addition of the bagging
stage is based on the idea of establishing a good initial margin
estimate. Empirical evidence shows that the strategy of se-
quentially combining bagging and bacing-0 performs the best
among all different combination schemes studied. Although
combining bacing-0 and bacing-1 is intuitively promising,
computational results show otherwise. Adding bacing-1 to
the ensemble generation process seems to be unnecessary,
if not harmful. Whether revising the cost updating schemes
of bacing-1 will change the current conclusion awaits future
research work.

We did not provide any termination rules for the bacing
algorithm. In a real-world application such a rule would be

useful for efficiency purposes. In fact, we have tried to set a
threshold on the declining rate of training error as a termina-
tion criterion, but it did not work well empirically. Exploring
other characteristics of the algorithm or a combination of them
to find a good termination rule will be a direction for future
work. Another area for exploration is to look for a better way
to aggregate the ensemble output other than the majority-vote
rule applied here.

REFERENCES

[1] A. Krogh and J. Vedelsby, “Neural network ensembles, cross
validation, and active learning,” inAdvances in Neural Information
Processing Systems, G. Tesauro, D. Touretzky, and T. Leen, Eds.,
vol. 7. The MIT Press, 1995, pp. 231–238. [Online]. Available:
citeseer.nj.nec.com/krogh95neural.html

[2] T. G. Dietterich, “Ensemble methods in machine learning,”Lecture
Notes in Computer Science, vol. 1857, pp. 1–15, 2000. [Online].
Available: citeseer.nj.nec.com/dietterich00ensemble.html

[3] E. Bauer and R. Kohavi, “An empirical comparison of voting
classification algorithms: Bagging, boosting, and variants,”Machine
Learning, vol. 36, no. 1-2, pp. 105–139, 1999. [Online]. Available:
citeseer.ist.psu.edu/bauer99empirical.html

[4] D. Opitz and R. Maclin, “Popular ensemble methods: An empirical
study,” Journal of Artificial Intelligence Research, vol. 11, pp. 169–198,
1999. [Online]. Available: citeseer.ist.psu.edu/opitz99popular.html

[5] T. G. Dietterich, “An experimental comparison of three methods for
constructing ensembles of decision trees: Bagging, boosting, and ran-
domization,”Machine Learning, vol. 40, no. 2, pp. 139–157, 2000.

[6] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24,
no. 2, pp. 123–140, 1996. [Online]. Available: cite-
seer.nj.nec.com/breiman96bagging.html

[7] Y. Freund and R. E. Schapire, “Experiments with a new
boosting algorithm,” in 13th International Conference on
Machine Learning, 1996, pp. 148–156. [Online]. Available:
citeseer.nj.nec.com/freund96experiments.html

[8] L. Breiman, “Arcing classifiers,”Annals of Statistics, vol. 26, pp. 801–
849, 1998.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 1, NO. 1, AUGUST 2002 13

0 50 100 150
0

0.05

0.1

0.15

0.2

0.25

0.3

round

er
ro

r
sonar

bagging
bacing−0
bacing−1

0 50 100 150

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

round

er
ro

r

housing

bagging
bacing−0
bacing−1

Fig. 9. Error evolution of “Bag+Bac0+Bac1” for sonar and housing data
sets. The top line is testing error and the bottom line is training error.

[9] D. H. Wolpert, “Stacked generalization,” Neural Networks,
vol. 5, pp. 241–259, 1992. [Online]. Available: cite-
seer.nj.nec.com/wolpert92stacked.html

[10] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, 2001. [Online]. Available: cite-
seer.nj.nec.com/breiman01random.html

[11] A. J. Grove and D. Schuurmans, “Boosting in the limit: Maximizing
the margin of learned ensembles,” inAAAI/IAAI, 1998, pp. 692–699.
[Online]. Available: citeseer.ist.psu.edu/grove98boosting.html

[12] G. Ridgeway, “Discussion of additive logistic regression: A statistical
view of boosting,”Annals of Statistics, vol. 28, pp. 393–400, 2000.

[13] P. S. Bradley, U. M. Fayyad, and O. L. Mangasarian, “Mathematical
programming for data mining: Formulations and challenges,”INFORMS
Journal on Computing, vol. 11(3), pp. 217–238, 1999. [Online].
Available: citeseer.nj.nec.com/bradley98mathematical.html

[14] V. N. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

[15] C. Blake and C. Merz, “UCI repository of machine learning databases,”
1998, http://www.ics.uci.edu/∼mlearn/MLRepository.html. [Online].
Available: http://www.ics.uci.edu/∼mlearn/MLRepository.html

[16] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” inEuropean Conference
on Computational Learning Theory, 1995, pp. 23–37. [Online].
Available: citeseer.nj.nec.com/article/freund95decisiontheoretic.html

[17] S. Abney, R. Schapire, and Y. Singer, “Boosting applied to tagging and
PP attachment,” inJoint SIGDAT Conference on Empirical Methods in
Natural Language Processing and Very Large Corpora, 1999. [Online].
Available: citeseer.nj.nec.com/abney99boosting.html

[18] R. J. Quinlan,C4.5: Programs for Machine Learning. San Manteo,
CA: Morgan Kaufman, 1993.

Yi Zhang Yi Zhang received a Ph.D. in Management
Sciences from the University of Iowa in 2006, an
M. Eng. in High Performance Computation from
Singapore-MIT Alliance in 2001, and a B.S. in Me-
chanical Engineering from Tongji University (China)
in 1997. He is currently an applied researcher at
Microsoft AdCenter Labs. His research work focuses
on mathematical programming, machine learning,
data mining and their applications on real-world
problems.

W. Nick Street received a Ph.D. in Computer
Sciences from the University of Wisconsin-Madison
in 1994, an M.S. in Computer Science from De-
Paul University in 1990, and a B.A. in Math and
Computer Science from Drake University in 1985.
He is currently an associate professor and Henry B.
Tippie Research Fellow in the Management Sciences
Department at the University of Iowa, and has joint
appointments in the Computer Science Department
and the College of Nursing. His research interests are
in machine learning and data mining, particularly the

use of mathematical optimization in inductive learning techniques. His recent
work has focused on ensemble construction methods for large and distributed
data sets, rank learning, subset clustering for market segmentation, active
learning, and medical decision making. He has received an NSF CAREER
award and an NIH INRSA postdoctoral fellowship. He is a member of IEEE,
ACM, INFORMS and AAAI.

