
Learning to Rank by Maximizing AUC with Linear Programming

Kaan Ataman, W. Nick Street Member, IEEE and Yi Zhang

Abstract— Area Under the ROC Curve (AUC) is often used to
evaluate ranking performance in binary classification problems.
Several researchers have approached AUC optimization by
approximating the equivalent Wicoxon-Mann-Whitney (WMW)
statistic. We present a linear programming approach similar to
1-norm Support Vector Machines (SVMs) for instance ranking
by an approximation to the WMW statistic. Our formulation
can be applied to nonlinear problems by using a kernel
function. Our ranking algorithm outperforms SVMs in both
AUC and classification performance when using RBF kernels,
but curiously not with polynomial kernels. We experiment with
variations of chunking to handle the quadratic growth of the
number of constraints in our formulation.

I. INTRODUCTION

A. Motivation
Many real world classification problems may require an

ordering instead of a simple classification. For example in
direct mail marketing, the marketer may want to know which
potential customers to target for sending new catalogs so as to
maximize the revenue. If the number of catalogs the marketer
is sending is limited then it is not enough to know who is
likely to buy a product after receiving the catalog. In this
case it would be more useful to distinguish top n-percent
of potential customers who yield the highest likelihood of
buying a product. By doing so, the marketer can more
intelligently target a subset of her customer base increasing
the expected profit. A slightly different example is collabo-
rative book recommendations. To intelligently recommend a
book, an algorithm must distinguish the similarities of book
preferences of people who have read and submitted a score
for the book. Combining these scores it is possible to return
a recommendation list to the user. Ideally this list would be
ranked in such a way that the book on the top of the list is
expected to appeal the most to the user. It is not hard to see
that there is a slight difference between those two ranking
problems. In the marketing problem the ranking is based on
binary input (purchase, non-purchase) whereas in the book
recommendation problem the ranking is based on a collection
of partial rankings. In this paper we consider the problem of
ranking based on binary input.

B. ROC Curves and Area Under the ROC Curve(AUC)
Ranking is a popular machine learning problem that has

been addressed extensively in the literature [4, 5, 21]. The

Kaan Ataman is with the Department of Management Sciences, The
University of Iowa, Iowa City, IA 52242, USA (phone: (319)-335-0922;
fax: (319) 335-0297; email: kaan-ataman@uiowa.edu).

W. Nick Street is with the Department of Management Sciences, The
University of Iowa, Iowa City, IA 52242, USA (phone: (319) 335-1016;
fax: (319) 335-0297; email: nick-street@uiowa.edu)

Yi Zhang is with the Department of Management Sciences, The Univer-
sity of Iowa, Iowa City, IA 52242, USA (phone: (319) 353-0972; fax: (319)
335-0297; email: yi-zhang-2@uiowa.edu)

most commonly used performance measure to evaluate a
classifier’s ability to rank instances in binary classification
problems is the area under the ROC curve.

ROC curves are widely used for visualization and com-
parison of performance of binary classifiers. ROC curves
were originally used in signal detection theory. They were
introduced to the machine learning community by Spack-
man in 1989, who showed that ROC curves can be used
for evaluation and comparison of classification algorithms
[20]. The main reason ROC curves became the mainstream
performance evaluation tool is the fact that the produced
curve is independent of class distribution or underlying
misclassification costs [15]. ROC curves plot true positive
rate vs. false positive rate by varying the threshold, which is
usually the probability of membership to a class, distance to
a decision surface or simply a score produced by a decision
function. In the ROC space, the upper left corner represents
perfect classification while a diagonal line represents random
classification. A point in ROC space that lies to the upper left
of another point represents a better classifier. Some classifiers
such as neural networks or naive Bayes naturally provide
those probabilities while other classifiers such as decision
trees do not. It is still possible to produce ROC curves for
any type of classifier using minor adjustments [7].

Area under the ROC Curve (AUC) is a single scalar value
for classifier comparison [2, 9]. Statistically speaking, the
AUC of a classifier is the probability that a classifier will rank
a randomly chosen positive instance higher than a randomly
chosen negative instance. Since AUC is a probability, its
value varies between 0 and 1, where 1 represents all positives
being ranked higher than all negatives. Larger AUC values
indicate better classifier performance across the full range of
possible thresholds. Even though it is possible that a classifier
with high AUC can be outperformed by a lower AUC
classifier at some region of the ROC space, in general the
high AUC classifier is better on average when the underlying
distribution is not known.

Mainstream classifiers are usually designed to minimize
the classification error, therefore they may not perform well
when they are applied to ranking problems. Support Vector
Machines (SVMs) are exceptions. Even though SVMs are
optimized for error minimization, by the nature of their
margin maximization property they turn out to be good
rankers. It has been shown that accuracy is not always the
best performance measure to compare classifier performance,
especially for datasets with skewed class or cost distributions
as many real world problems are.

The machine learning community has recently explored
the question of which performance measure is better in
general. Cortes and Mohri investigated the relationships



between AUC and accuracy [6]. Ling and Huang showed
in their recent study that AUC is a statistically consistent
and a more discriminating value than accuracy [12]. Recent
research indicates an increase in the popularity of AUC
as a performance measure especially in cases where class
distributions and/or misclassification costs are unknown.

C. Relations to Wilcoxon-Mann-Whitney Statistic

Assume that in a dataset there are two random variables
such that positive points are produced by one of the random
variables and negatives are produced by the other. If a pair-
wise comparison is to be made such that each positive point is
compared to each negative point then in this case AUC would
be the ratio of the number of correct pairwise orderings
vs. the number of all possible pairs. This quantity is called
the Wilcoxon-Mann-Whitney (WMW) statistic [13, 22] and
given as:

W =

∑p−1
i=0

∑n−1
j=0 I(xi, yj)
pn

I(xi, yj) =
{

1 if f(xi) > f(yj)
0 otherwise

where p is the number of positive points, n is the number
of negative points, xi is the ith positive point and yj is the
jth negative point. The function f(x) assigns a score to the
point x which is then used for ranking those points.

D. Related Literature

At this point it seems intuitive that an algorithm maxi-
mizing the WMW statistic will also maximize the AUC and
hence the ranking performance. The WMW statistic itself
is not a continuous function, therefore making it difficult to
maximize as is. Several papers suggested an approximation
approach to the WMW statistic. Both Yan et al. [24] and
Herschtal et.al. [10] used a continuous function as an approx-
imation to the WMW statistic. By doing so they were able
to use gradient methods to solve the optimization problem.
However, an approximation in the case of rank optimization
has to be handled carefully otherwise information related to
ranking may be lost easily in the process of approximation.

Recent research on instance ranking also utilized scenarios
where some kind of user feedback was available on the
initial rankings [11, 17]. This type of ranking is usually
very important and typical for ranking search engine results,
or ranking products where a user can interfere and the
algorithm can obtain valuable feedback from the user. This
feedback can be in the form of a subject evaluating the
initial rankings and reporting mis-ranked points or simply
returning a partial ranking where only a subset of points are
ranked. Note that in binary classification problems that we
will address in this paper, we have no prior or intermediate
knowledge of intra-class rankings or we do not obtain any
feedback for the correctness of the rankings at any level in
our algorithm. The problem of AUC maximization in the

context of binary classification is also a very similar problem
to ordinal regression [16].

The literature also includes algorithms such as Rankboost
by Freund et al. that utilize a multi-stage approach (ensem-
bling) [8]. This algorithm works by combining preferences
based on the well-known boosting approach. Also a variation
to Rankboost was later introduced by Rudin et al. [19].
Rankboost is considered to be state of the art algorithm,
however for the sake of fairness since it is a multi-stage
algorithm as opposed to our one shot optimization algorithm
we will not compare our results with Rankboost or any other
multi-stage methods. We believe that we can further improve
the performance of our LP ranker by ensembling it. Only then
we plan to compare our ranking performance with Rankboost
and other multistage rank optimizing algorithms. This paper
we will only compare the performance to that of SVMs. Our
algorithm is quite similar to SVMs in formulation except
that it is specifically setup to maximize ranking performance
as opposed to minimizing the error rate. In literature it is
a common practice to rank new examples based on the
output of a classifier. Among classifier methods SVMs are
considered to be good rankers, therefore we believe that
initially comparing our algorithm to SVMs will provide us
valuable feedback on the improvement we can get over an
already good ranking algorithm by setting the formulation
up as a rank optimization problem.

Rank optimizing SVMs have came into focus recently.
An effort by Rakotomamonjy to investigate rank optimizing
kernels within the context of SVMs led to a formulation
that produced comparatively inferior results to regular SVM
formulations [18]. However his work led to more inves-
tigations in the area. Brefeld et al. introduced a similar
kernel formulation which led to a better ranking performance
compared to the previous work [3]. In their algorithm they
used regular quadratic optimization in the objective with a
kernel structure which improved the ranking performance.

From the discussions above we can conclude that the
rank optimization problem should minimize the number
of pairwise misrankings. We achieve this objective with a
formulation that produces scores for each instance where
these scores we can be used to rank the data points. The
algorithm should be able to handle nonlinear problems so that
it can be applied to a wide range of problems. We achieve this
with the help of kernel functions. Also the algorithm should
be robust to any size dataset. Our formulation introduces two
exact speed-up approaches to improve the solving time of
the algorithm, however this part is still a work in progress.
Our initial results discussed later in this paper are promising.

Next section introduces our LP formulation that imple-
ments the properties mentioned above. Then we present our
results and discussions and we sum it up with conclusions.

II. THE ALGORITHM

Let (x, y) be an instance in the training set, X , where x
is the data vector and y ∈ {−1, 1} is the class label for that
instance. We refer to the set of positive points in the data set
as X+ and negatives as X−. To optimize the WMW statistic,



we would like to have all positive points ranked higher than
all negative points, such as:

f(xi) > f(xj) ∀xi ∈ X+, xj ∈ X−.

where f is some scoring function. A perfect separation of
classes is impossible for most real world datasets. Therefore
an LP is constructed to minimize some error term corre-
sponding to the number of incorrect orderings. We construct
a linear program with soft constraints penalizing negatives
that are ranked above positives. This requires p (number
of positive points) times n (number of negative points)
constraints in total. Our formulation avoids combinatorial
complexity by minimizing the error, z, which is the dif-
ference in scores of incorrectly ordered pairs. We select a
scoring function, f(x), such that it assigns a real valued score
to each data point while making the optimization problem
continuous. This leads to the following set of constraints:

f(xi)− f(xj) ≥ ε− zij ∀xi ∈ X+, xj ∈ X−. (1)

where ε is a small quantity usually set to 1 and added to the
right hand side to avoid strict inequalities in the constraints.
The scoring function is similar to an SVM classification
function without the intercept. The intercept is not necessary
since it would add the same amount for all the points in the
scoring function and would have no influence on both the
relative scores and the overall ranking. The scoring function
is defined as:

f(x) =
∑
i∈X

yiαik(x, xi) (2)

where αi represents a weight for each point in the training
set. The function k(.) is a kernel function through which
we can induce nonlinearity in the linear constraints. In our
objective function we would like to minimize the error, z’s,
along with the magnitude of the coefficients, α. We minimize
α to maximize the separation margin similar to SVMs.
The proposed objective function and LP can be obtained as
follows by substituting the scoring function (2) in (1) and
rearranging the left side of the inequality:

min
α,z

eT α + CeT z

s.t.

∑
i∈X yiαi[k(x+, xi)− k(x−, xi)] ≥ 1− z±,

∀x+ ∈ X+, x− ∈ X−

α, z ≥ 0
(3)

where e is the unit vector, C is the tradeoff parameter
between the two parts of the objective and z± represents an
error term for each positive/negative pair. In our experiments
we use both RBF (4) and polynomial (5) kernels of the form

k(xi, xj) = e−γ‖xi−xj‖2 (4)

k(xi, xj) = (1 + xixj)p (5)

where γ is the RBF parameter that controls the smoothness
of decision surface and p is the polynomial parameter that
controls the degree or complexity. The output of the LP gives
the optimal set of weights, α∗. The instances with non-zero
weights, which we will call ranking vectors, represent the
unique points that influence the ranking. By using a kernel,
we are mapping the input space to a feature space defined
by the kernel function. This makes it possible to rank the
data points which were otherwise unrankable, in the mapped
space. We tested our algorithm using an RBF kernel as well
as polynomial kernels with order 2 and 3. Once the optimal
weights are found for each point in the training set, α∗, we
then use the scoring function

f(xtest) =
∑
i∈X

yiα
∗
i k(xtest, xi) (6)

to obtain scores for each test point. Finally we can rank the
test points by the scores obtained.

Our algorithm differs from Brefeld et al. [3] in that we
directly solve the primal problem with the nonlinear kernel
function. The major advantage of the primal formulation is
that, it requires less resources to solve the problem. It only
needs to compute a size n2 kernel matrix to cover all the con-
straints while Brefeld’s dual formulation needs to compute a
size (n+ × n−)2 (number of positive points times negative
points) kernel matrix. Also the number of α variables is n
for the primal form and n+ × n− for the dual form. In
addition, the primal form provides flexibility in picking the
objective function. In our case, 1-norm is used for both the
error terms and the weights in the objective function so that
the whole problem becomes a linear program. In addition,
our algorithm produces n ranking vectors to score future test
points against n+×n− ranking pairs by Brefeld’s algorithm.
In practical applications, ranking vectors can provide more
intuitive explanation then ranking pairs.

When an RBF kernel is used, our approach is similar
to distance-weighted k-nearest neighbor (kNN) algorithm,
where k is equal to the number of ranking vectors. Consider
the scoring function of distance-weighted kNN where only
the ranking vectors are used as training points, f(xtest) =∑

i∈X yi × distance(xtest, xi)−1. If the inverse of RBF is
used as the distance function such that distance(xi, xj) =
eγ‖xi−xj‖2 , the above scoring function is different from
(6) only by the coefficient αi, which is obtained by the
optimization procedure in our approach.

A linear programming formulation that includes pairwise
constraints presents a challenge such that the number of
constraints grow quadratic with the number of data points.
Therefore we implement a chunking like approach to speed
up the solving time of the optimization problem. The varia-
tions we experimented with are explained in the next section.
A general overview of the complete algorithm is shown in
Figure 1.



Create all possible constraints, C
Divide C into manageable chunks, Ci

Initialize empty constraint set S
While size of S not converged

For each chunk of constraints, ci ⊂ C ,
Solve (3) with constraints S +ci, obtaining α∗

Evaluate α∗ on C − ci for pairwise violations
Add violated constraints to S

End For
End While

Fig. 1. Algorithm Outline

III. RESULTS AND DISCUSSION

In our experiments we used 11 data sets from the UCI
repository. Multi-class data sets are converted to binary
classification problems by using one class vs. others scheme.
Details of these conversions are given in Table I. We com-
pared our results with a regular 2-norm SVM using RBF and
Polynomial kernels.

We implemented our algorithm in Matlab and used
CPLEX for optimization in the Matlab environment. For
performance comparisons with SVM we used the Sequential
Minimal Optimization (SMO) algorithm [14] implemented
in WEKA [23]. We constructed a grid search to find the best
RBF parameter settings for both our ranker LP and SVM
using γ = {0.001, 0.01, 0.1, 1} and C = {1000, 100, 10, 1}.
Best results for both algorithms were obtained when C =
{1, 100} and γ = 0.01. Also for the polynomial kernel
comparisons we used p = {2, 3} as the degree of the
polynomial. For all the datasets, we averaged 5×10-fold
cross validation results.

To investigate the effects of rank optimization on clas-
sification performance we also included accuracy results
from both algorithms. We believe that the nature of the
optimization that ranks positive points above negatives could
have a favorable effect on accuracy since the process also
enforces separation of two classes. To obtain accuracy for
our algorithm we find the threshold (score) that gives the
best accuracy value on the training set. We used the same
threshold on the test set to classify the test points.

Table II shows that our ranking algorithm performed
better in general then SVM both in ranking and accuracy
performance when RBF kernel is used. The last row of
the table shows statistical comparisons in the form of (win,
loss, tie) where significance was set at the 0.05 level. Our
ranker, optimized for ranking, was significantly better in
AUC performance for eight datasets and worse for two.
When accuracies were compared, ranker won four times and
lost twice. We got similar results for parameter settings of
C = 100, γ = 0.01 which we did not include here. We
have experimented with polynomial kernels in our algorithm
however the results we obtained so far are not promising.

The results for polynomial kernel is given in Table III. In this
case there was only one significant win versus six significant
losses. We are currently investigating the possible reasons for
this. Intuitively the choice of kernels and their performance
should be data dependent which is the case in classification.
However, in our evaluations RBF kernel performed better in
almost all the datasets while polynomial kernel performed
poorly in most cases. In the light of these results we believe
that RBF kernels are better suited for ranking problems than
polynomial kernels.

Fig. 2. Ranking vs Support Vectors: Linearly separable case

Fig. 3. Ranking vs Support Vectors: Linearly non-separable case

We observe that ranking vectors are quite different than
support vectors. We created two artificial data sets to observe
those differences. Figures 2 and 3 show two different two-
dimensional problems where one problem requires a linear
decision surface and the other requires a nonlinear surface.



TABLE I
OVERVIEW OF THE DATASETS AND MODIFICATION DETAILS

Datasets # of points # attributes % rare class # of class - Comments
BOSTON 506 14 9 (MEDV < 35) = 1, REST = 0

ECOLI 336 8 15 “PP” = 1, REST = 0
GLASS 214 10 14 “7” = 1, REST = 0
HEART 270 14 44 2
SONAR 208 61 47 2
SPECTF 351 45 28 2

CANCER(WPBC) 194 34 24 2
IONOSPHERE 351 35 36 2
HABERMAN 306 4 26 2

LIVER(BUPA) 345 7 42 2
CANCER(WBC) 699 10 34 2

TABLE II
AUC & ACCURACY RESULTS USING RBF KERNEL FROM 5×10-FOLD CROSS-VALIDATION.

γ = 0.01,C = 1 AUC Accuracy
Datasets LP Ranker SVM LP Ranker SVM
BOSTON 0.9732(0.0034) 0.9535 (0.0085) 0.9598 (0.0021) 0.9476 (0.0021)

ECOLI 0.9632(0.0051) 0.9387 (0.0069) 0.9602 (0.0035) 0.9120 (0.0035)
GLASS 0.9753(0.0032) 0.9590 (0.0035) 0.9741 (0.0044) 0.9608 (0.0044)
HEART 0.9112(0.0046) 0.9012 (0.0039) 0.8185 (0.0042) 0.8274 (0.0042)
SONAR 0.8735(0.0079) 0.7950 (0.0092) 0.7895 (0.0123) 0.7108 (0.0123)
SPECTF 0.9127(0.0006) 0.8835 (0.0055) 0.7927 (0.0109) 0.7995 (0.0109)
WPBC 0.7624(0.0299) 0.7649 (0.0064) 0.7893 (0.0085) 0.7851 (0.0085)

IONOSPHERE 0.9554(0.0079) 0.9196 (0.0034) 0.9270 (0.0048) 0.8904 (0.0048)
HABERMAN 0.5387(0.0304) 0.7028 (0.0164) 0.7068 (0.0037) 0.7434 (0.0093)

LIVER 0.5647(0.0267) 0.6912 (0.0082) 0.5607 (0.0093) 0.6600 (0.0037)
WBC 0.9955(0.0006) 0.9949 (0.0004) 0.9716 (0.0011) 0.9663 (0.0011)

(W,L,T) (8,2,1) (4,2,5)

TABLE III
AUC & ACCURACY RESULTS USING POLYNOMIAL KERNEL FROM 5×10-FOLD CROSS-VALIDATION.

p = 3,C = 1 AUC Accuracy
Datasets LP Ranker SVM LP Ranker SVM
BOSTON 0.9636 (0.0063) 0.9812 (0.0040) 0.9538(0.0041) 0.9569 (0.0041)

ECOLI 0.9659 (0.0063) 0.9519 (0.0058) 0.9364(0.0047) 0.9180 (0.0047)
GLASS 0.9647 (0.0165) 0.9660 (0.0179) 0.9759(0.0051) 0.9667 (0.0051)
HEART 0.8417 (0.0079) 0.8471 (0.0103) 0.7807(0.0210) 0.8015 (0.0210)
SONAR 0.9075 (0.0108) 0.9472 (0.0088) 0.8198(0.0098) 0.8576 (0.0098)
SPECTF 0.9124 (0.0126) 0.9332 (0.0029) 0.9156(0.0081) 0.8751 (0.0081)
WPBC 0.7699 (0.0278) 0.7895 (0.0232) 0.7969(0.0123) 0.7598 (0.0123)

IONOSPHERE 0.9326 (0.0058) 0.9619 (0.0066) 0.8928(0.0069) 0.8843 (0.0069)
HABERMAN 0.6866 (0.0216) 0.7076 (0.0156) 0.7293(0.0095) 0.7321 (0.0095)

LIVER 0.7159 (0.0087) 0.7004 (0.0111) 0.6963(0.0128) 0.6712 (0.0128)
WBC 0.9753 (0.0041) 0.9954 (0.0004) 0.9500(0.0040) 0.9613 (0.0040)

(W,L,T) (1,6,4) (3,3,5)



For the data in the figures, RBF kernel is used for both SVM
and ranker LP. While support vectors, as expected, are the
points that appear close to the boundary, ranking vectors
are usually positioned at the extremity of one class in the
given two dimensional problems. As can be seen in Figure
2 only three and in Figure 2 only four ranking vectors were
necessary to optimally rank all the points. Ranking vectors
are also usually fewer in number and are the influential points
for ranking the data points. Figures 2 and 3 also illustrate the
power of RBF kernels for its applicability to linear problems
as well as nonlinear ones.

A remaining challenge is the quadratic expansion of the
number of constraints with the increasing number of data
points. Ideally the number of constraints needed to obtain
the real solution is equal to the number of positive points
times the number of negatives. This number grows very
quickly as the number of data points increases making the
linear program solving time unreasonably long. We have tried
several speed up tricks, related to chunking [1], to reduce
the number of constraints by removing potentially redundant
ones. Note that the schemes we implement here can still
obtain exact solution to the problem. Chunking divides the
data into manageable bins and optimizes separately so that
the whole problem can be solved in reasonable time. After
solving for each chunk, points that are most influential
(points with nonzero α’s) are added to the next bin as the
algorithm iterates through the whole dataset. This approach
did not work well for our formulations. The reason is that
in our case non-zero α’s represent ranking vectors. They are
far away from the decision boundary and in general are not
necessarily relevant to other chunks as in regular chunking.

We experimented with two variations of chunking. In our
first scheme, after each chunk we evaluated the weights
on the remaining data points, and for the next chunk we
add to the set of previously violated constraints only those
constraints that represent pair-wise violations. In this case we
observed a majority of the violated constraints accumulating
during the first few iterations instead of showing a gradual
increase through iterations as we expected. As a second
approach, to reduce the effect of a sudden increase of
constraints, for each chunk we added only the top k most
violated constraints in the LP where we set k to be 1000.
This seemed to work well in most of the datasets. In this
case the number of passes, hence the number of iterations
until convergence increased slowing the LP solution time.
An overview of the speed up comparisons are given in
Table IV. The second column shows the total number of
possible constraints for the given dataset. Columns 3 to 5
show the results for the first approach and columns 6 to 8
show the results for the second approach. The column labeled
’pass’ in columns 3 and 6 represents the number of full
passes on the dataset until the number of retained constraints
converge. With the implemented approaches we were able to
significantly reduce the number of constraints needed to solve
the optimization problem in most of the datasets. However,
the overall speed up was not as impressive as we thought

would be. We are still investigating similar approaches to
reduce LP solution times.

Several researchers also tackled this problem by an ap-
proximation heuristic. Herschtal et al. used a random sam-
pling approach for reducing the number of constraints [10].
Rakotomamonjy suggested reducing the number of con-
straints in the optimization problem by only considering
the constraints created by a predefined number of nearest
positive neighbors for each negative point [18]. Brefeld
et al. proposed a clustering approach for the reduction of
constraints [3]. All of these heuristics helped speed up the
time to obtain a solution, however they are all approximate
methods and hence the performance of each heuristic would
vary greatly with the nature of the data.

IV. CONCLUSIONS

We have introduced an LP formulation to optimize ranking
performance by maximizing an approximation to the WMW
statistic. Our results show that our algorithm which is similar
to 1-norm SVMs, gives superior ranking performance com-
pared to a regular 2-norm SVM when RBF kernels are used.
Performance degraded when we used polynomial kernels. We
have tackled speed issues with variations to the chunking
approach, but we were not able to significantly improve LP
solving times by using exact heuristics. As a next step we
intend to look into approximate heuristics to speed up LP
times. We will also investigate the loss of performance with
polynomial kernels.

REFERENCES

[1] B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training
algorithm for optimal margin classifiers. In D. Haussler,
editor, Proceedings of the 5th Annual ACM Workshop
on Computational Learning Theory, pages 144–152.
ACM Press, 1992.

[2] A.P. Bradley. The use of the area under the ROC
curve in the evaluation of machine learning algorithms.
Pattern Recognition, 30:1145–1159, 1997.

[3] U. Brefeld and T. Scheffer. Auc maximizing support
vector learning. In Preceedings of ICML 2005 work-
shop on ROC Analysis in Machine Learning, 2005.

[4] R. Caruana, S. Baluja, and T. Mitchell. Using the
future to “sort out” the present: Rankprop and multitask
learning for medical risk evaluation. In D.S. Touretzky,
M.C. Mozer, and M.E. Hasselmo, editors, Advances
in Neural Information Processing Systems, volume 8,
pages 959–965. The MIT Press, 1996.

[5] W.W. Cohen, R.E. Schapire, and Y. Singer. Learning to
order things. In Michael I. Jordan, Michael J. Kearns,
and Sara A. Solla, editors, Advances in Neural Infor-
mation Processing Systems, volume 10, pages 243–270.
The MIT Press, 1998.

[6] C. Cortes and M. Mohri. Auc optimization vs. error rate
minimization. In S. Thrun, L. Saul, and B. Scholkopf,
editors, Advances in Neural Information Processing
Systems. MIT Press, Cambridge, MA, 2004.



TABLE IV
COMPARISON OF SPEED UP HEURISTICS

1st Speed up Approach 2nd Speed up Approach
Datasets # of constraints pass # of constraints in LP % reduction pass # of constraints in LP % reduction
BOSTON 18172 2 4920 72.92 5 4501 75.23

ECOLI 12336 3 4170 66.20 4 4312 65.05
GLASS 4509 3 3036 32.67 3 3039 32.60
HEART 14824 3 6730 54.60 5 4692 68.35
SONAR 8888 5 3874 56.41 5 3939 55.68
SPECTF 20240 3 4775 76.41 5 3186 84.26

CANCER(WPBC) 5628 3 3981 29.26 5 3585 36.30
IONOSPHERE 23142 2 5850 74.72 4 5060 78.13
HABERMAN 15022 2 12580 16.26 7 6409 57.34

LIVER(BUPA) 23711 2 22500 5.11 8 8250 65.21
CANCER(WBC) 86616 2 7370 91.49 2 3288 96.20

[7] P. Domingos. Metacost: A general method for making
classifiers cost-sensitive. In Knowledge Discovery and
Data Mining, pages 155–164, 1999.

[8] Y. Freund, R. Iyer, R.E. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
Journal of Machine Learning Research, 4:933–969,
2003.

[9] J.A. Hanley and B.J. McNeil. The meaning and the
use of the area under a receiver operating characteristic
(ROC) curve. Radiology, 143:29–36, 1982.

[10] A. Herschtal and B. Raskutti. Optimising area under
the ROC curve using gradient descent. In ICML
’04: Twenty-First International Conference on Machine
Learning. ACM Press, 2004.

[11] T. Joachims. Optimizing search engines using click-
through data. In KDD ’02: Proceedings of the eighth
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 133–142. ACM
Press, 2002.

[12] C. Ling, J. Huang, and H. Zhang. AUC: A statistically
consistent and more discriminating measure than accu-
racy. In Proceedings of International Joint Conference
on Artificial Intelligence, 2003.

[13] H.B. Mann and D.R. Whitney. On a test whether one
of two random variables is stochastically larger than the
other. Annals of Mathematical Statististics, 18:50–60,
1947.

[14] John C. Platt. Fast training of support vector machines
using sequential minimal optimization. In C. Burges
B. Schlkopf and A. Smola, editors, Advances in Kernel
Methods - Support Vector Learning. MIT Press, 1998.

[15] F.J. Provost and T. Fawcett. Analysis and visualization
of classifier performance: Comparison under imprecise
class and cost distributions. In Knowledge Discovery
and Data Mining, pages 43–48, 1997.

[16] K. Obermayer R. Herbrich, T. Graepel. Large margin
rank boundaries for ordinal regression. In Advances
in Large Margin Classifiers, pages 115–132. The MIT
Press, 2000.

[17] F. Radlinski and T. Joachims. Query chains: Learning to
rank from implicit feedback. In KDD ’05: Proceedings
of the ACM Conference on Knowledge Discovery and
Data Mining. ACM Press, 2005.

[18] A. Rakotomamonjy. Optimizing area under ROC curve
with SVMs. In ROC Analysis in Artificial Intelligence,
pages 71–80, 2004.

[19] C. Rudin, C. Cortes, M. Mohri, and R. Schapire.
Margin-based ranking meets boosting in the middle. In
In 18th Annual Conference on Computational Learning
Theory, 2005.

[20] K.A. Spackman. Signal detection theory: Valuable tools
for evaluating inductive learning. In Proceedings of
the Sixth International Workshop on Machine Learning,
pages 160–163. Morgan Kaufman, 1989.

[21] C. Vogt and G. Cottrell. Using d’ to optimize rankings.
Technical Report CS98-601, U.C. San Diego, CSE
Department, 1998.

[22] F. Wilcoxon. Individual comparisons by ranking meth-
ods. Biometrics, 1:80–83, 1945.

[23] I.H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann, 2000.

[24] L. Yan, R.H. Dodier, M. Mozer, and R.H. Wolniewicz.
Optimizing classifier performance via an approximation
to the Wilcoxon-Mann-Whitney statistic. In Interna-
tional Conference on Machine Learning, pages 848–
855, 2003.


