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Abstract—Community detection and influence analysis are
significant notions in social networks. We exploit the implicit
knowledge of influence-based connectivity and proximity encoded
in the network topology, and propose a novel algorithm for
both community detection and influence ranking. Using a new
influence cascade model, the algorithm generates an influence
vector for each node, which captures in detail how the node’s
influence is distributed through the network. Similarity in this
influence space defines a new, meaningful and refined connectivity
measure for the closeness of any pair of nodes. Our approach
not only differentiates the influence ranking but also effectively
finds communities in both undirected and directed networks, and
incorporates these two important tasks into one integrated frame-
work. We demonstrate its superior performance with extensive
tests on a set of real-world networks and synthetic benchmarks.

I. INTRODUCTION

Finding community structure is an important but difficult

problem in network analysis, and has attracted a great deal

of effort from many disciplines; see [1] and [2] for surveys.

While many algorithms have been presented, there are still

significant areas for improvement. One general problem is

the lack of a quantitatively precise definition of community.

While most researchers describe a community as a group

of nodes with higher internal than external connectivity, this

notion of connectivity is ambiguous, leading to many differ-

ent objective functions and performance metrics. Leskovec

et al. [3] present an empirical comparison of a range of

community-detection algorithms. They point out that intuitive

notions of cluster quality tend to fail as one aggressively

optimizes the community score, and conclude that approximate

optimization of community score introduces a systematic bias

into the extracted clusters. Yang et al. [4] evaluate various

commonly-used objective functions and cast doubt on their

quality. Modularity-based methods have crucial limits as well

in spite of their popularity [5].

Our work is motivated by observations from real-world

communities. Community members have individual social

roles: leaders, elite members, liaisons to other communities,

etc. Some are more influential than others, and some are

more susceptible to influence. Individual roles, influence, and

susceptibility are encoded in the network structure. In fact, it is

influence that not only differentiates individual roles but also

acts as the force holding the individuals together to form the

community. Shared-Nearest-Neighbor (SNN) similarity [6],

used in traditional clustering, indicates that two nodes both

being close to a common set of neighbors suggests they

are close to each other. This is naturally extended to our

influence-based scenario, and can be rephrased as: that two
nodes both influencing a common set of (direct and indirect)
neighbors suggests they are close to each other. We term

this idea Shared-Influence-Neighbor (SIN) similarity, which

captures our intuitive notion of community: that two nodes

both influencing a common set of neighbors confirms their

closeness and same-community membership.

Having chosen influence as the context for community

detection, the next question is how to define a quantitatively

precise influence measure. One fundamental step in influence

analysis is to differentiate the relative influence of the nodes,

which is often characterized using various centrality measures.

There are five widely-used measures of centrality: degree,

closeness, betweenness, eigenvector, and Katz centralities.

Unfortunately, none of them is fine enough or comprehensive

enough to quantify overall influence. Degree centrality is

simple but very coarse. It has many ties and fails to take into

account the influence weight of even the immediate neighbors.

The closeness and betweenness centralities are both based on

the shortest path. However, the spread of information does not

always go along the shortest path in reality. Eigenvector cen-

trality captures an intuitive but important concept: connecting
to a more influential node contributes more influence weight
to the node of interest than connecting to a less influential
node. Unfortunately, it fails to capture the fact that influence is

attenuated when passing through the network. The well-known

PageRank is a variant of eigenvector centrality. For undirected

graphs, PageRank degenerates into degree centrality. Katz
centrality is a good generalization of degree centrality and

eigenvector centrality plus an attenuation factor associated

with the path length. However, it allows influence to be

transmitted in a loop infinitely, which is not realistic. Further,

none of these centralities is able to measure the influence-

based proximity between pairs of nodes, which as indicated

could be a desirable metric for community detection.

We use concepts and techniques from the fields of network

modeling, influence diffusion, AI, and data mining to decode

the implicit but rich information of influence-based connectiv-

ity in network topology, and arrive at a novel approach to both

community detection and influence ranking in both undirected

and directed networks. Experiments on real and simulated

networks show the superior performance of our algorithm.
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II. METHODOLOGY

Our approach differs from prior work in many ways. We

draw inspiration from the PageRank algorithm in the sense

that we cannot rely solely on the node degree. We propose

a new influence diffusion model that embeds influence into a

node and passes it around in the network. From the point of

view of centralities, our model extends degree centrality from

immediate neighbors to multi-step neighborhoods, includes the

shortest path (that the closeness and betweenness centralities

rely on) and non-shortest paths, and takes into account both

neighbors’ influence weight (like eigenvector centrality) and

influence attenuation (like Katz centrality) but without cycling.

Further, we not only find the total influence a node spreads,

but also keep track of where and how much its influence is

distributed so as to build its influence vector for community

detection.

A. Influence Diffusion Model

The influence defined in our diffusion model is different

from the influence defined in many other diffusion models,

such as the popular independent cascade model and the linear
threshold model in [7], in which the influence of a node is

quantified by the number of inactive nodes it can activate. We

assume the influence decays with path distance, and measure

a node’s influence weight by the total amount of influence it

spreads through the network. In addition, the influence in our

model is realized and transmitted through out-links step by

step. Therefore, for a specific real-life network, we need to

understand what the link direction represents. For example, in

a citation network, if paper i cites paper j, then the network

contains a directed link from node i to node j. However, this

directed link does not reflect the direction of the influence

propagation since it is actually the cited paper j that influences

the citing paper i. So, we need to reverse the citation network

to fit into our influence diffusion model. Finally, our model

can be applied to both directed and undirected (or mixed)

networks. For any undirected link, we allow influence to be

transmitted through it in either direction. In other words, if the

link between nodes i and j is undirected, we replace it with a

directed link from i to j and another directed link from j to i.
Our influence diffusion model can be regarded as a simple

branching process, in which influence originates from a root

node and propagates step by step to its offsprings following

out-links. We have three important rules implemented in this

model. First, cycling is prohibited. It makes sense since no

one should repeatedly exert influence in cycles in the same

round of an influence diffusion process. This distinguishes

our model from Katz centrality and most random-walk-based

community-detection algorithms. Second, revisits along dif-
ferent routes are allowed and independent. This is a realistic

imitation in the sense that the influence originating from the

root node may be delivered to the same person via many dif-

ferent routes independently. This distinguishes our centrality

from the closeness/betweenness centralities which only focus

on the shortest path. Further, to capture the influence locality,

it is reasonable to assume that the farther away from the

Input : Directed graph G(V,E) with n = |V |
Maximum depth depthLimit

Output : Influence-based connectivity matrix M
1: Set the influenceWeight of each node to 1

2: for node i = 1 to n do
3: Empty open/close list

4: Set all nodes to be unexplored

5: OpenList-PushStack (Node(i))
6: Set Node(i).depth = 0
7: while OpenList is not empty do
8: currNode = OpenList-PopStack ( )

9: Node(i).influenceV ector(currNode) +=

(currNode.depth)−2

10: Pop all nodes in CloseList with depth ≥
currNode.depth

11: Set those nodes to be unexplored

12: if currNode.depth < depthLimit then
13: for each out-link neighbor j of currNode do
14: if Node(j) is unexplored then
15: OpenList-PushStack(Node(j))
16: Set Node(j).depth = currNode.depth+ 1
17: end if
18: end for
19: Set currNode.isExplored = True
20: CloseList-PushStack (currNode)

21: end if
22: end while
23: M(i) = Node(i).influenceV ector
24: end for
25: Return M

Fig. 1. Pseudocode of InfluenceMatrix-Builder.

root, the less influence the message exerts on arrival.
We draw inspiration from the small-world phenomenon and

the concentric scales of resolution around a particular node

depicted in [8]. It is claimed that the probability of a center

node linking to a node at a fixed distance d of the ring is

proportional to d−2. This idea fits our influence scenario,

and we define a depth-associated coefficient to quantitatively

model the attenuation of influence, which is the inverse square

of the current depth from the root node.

B. Influence Matrix

We employ a modified depth-limited search algorithm to

generate an influence vector for each node. The pseudocode

in Figure 1 shows how we sweep over all the nodes to build

the influence matrix consisting of the influence vectors of all

the nodes in the network.

As discussed above, both undirected graphs and mixed

graphs can be converted into directed graphs by simply replac-

ing undirected links with a pair of directed links. Without loss

of generality, our algorithm takes a directed graph and a pre-

specified maximum depth limit as input. It maintains an open

list of to-be-explored nodes and a close list of already-explored

nodes, both implemented as a stack (Last-In-First-Out). Each
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node in the open/close list contains an integer variable that

indicates its depth in the influence rings of the root node, and a

Boolean variable that indicates whether it has been explored so

as to avoid cycling. The algorithm assigns an initial influence

weight of 1 to each node (Line 1). Starting with a root node

in the open list and an empty close list (Lines 3-6), we do the

depth-limited search until the open list is empty. Whenever

a node (currNode) is popped from the open list (Line 8), we

calculate the attenuated influence and accumulate it in the root

node’s influence vector accordingly (Line 9). Then we pop

from the close list all the nodes whose depth are greater than

or equal to the depth of the current node, and set all of those

nodes to be unexplored (Lines 10-11). This allows revisits

from different routes. Then we check whether the depth of the

current node is less than the maximum depth limit. If it is, we

explore the current node by pushing to the open list all of its

out-link neighbors that have not been explored, set their depth,

denote the current node as explored, and push it to the close

list (Lines 12-20). Each iteration of the For loop generates

an influence vector of a specific node, which contains all the

nodes it affects associated with the corresponding influence

value distributed from that node. After sweeping over all the

nodes, the algorithm builds up an influence matrix as a whole

of the network.

We also develop a closed form for the influence matrix up

to a depth limit of 3. Let A denote the adjacency matrix of the

network (without self-loops). The matrix An (i.e., the matrix

product of n copies of A) has an interesting interpretation:

the entry in row i and column j gives the number of paths of

length n from node i to node j. Let Dn denote the diagonal

matrix of An. The entry dii is the number of paths of length

n for node i to walk to itself. Then the influence matrix M
with different depth limit is given as follows:

M0 = I

M1 = M0 +A

M2 = M1 +
1

4
(A2 −D2)

M3 = M2 +
1

9
[(A2 −D2)A−D3 −AD2 +A⊗AT ]

M0 is the initial assignment of influence weight of 1 to each

node at depth 0, where I is the identity matrix. M1 is simply

the first-step influence propagation. In M2, we avoid the two-

step cycling by subtracting D2 from A2 and multiply by 2−2,

which is the two-step influence attenuation coefficient. In M3,

we first let all the nodes on the second depth propagate to depth

3, which is represented by (A2−D2)A, then subtract the three-

step cycling D3 of the root node and the two-step cycling of

all the first-step nodes. For all those first-step nodes that link to

the root node with an undirected link, we remove them twice,

one in D2A and one in AD2. And so we get one back by

adding A ⊗ AT , which is the component-wise multiplication

of matrix A and its transpose matrix AT . Finally, we multiply

by 3−2 to reflect the three-step influence attenuation.

C. Influence Ranking

As described above, the influence weight of a node is quan-

tified by the total influence it spreads throughout the network.

Once the influence matrix is built, it is straightforward to

compute the influence weight of each node, which is simply

the summation of all the elements in the influence vector

(a row vector in the influence matrix) corresponding to each

individual node.

We refer to our influence ranking as influence centrality. It

is noted that the pre-specified maximum depth limit is a nice

gauge to measure the influence from local to global at different

scales. It incorporates degree centrality (when depthLimit=1)

and extends it to multi-step influence centrality. In addition, an

important characteristic is hidden in the influence matrix. Let

Row(i) and Column(i) denote the influence matrix’s ith row

vector and ith column vector, respectively. Then Row(i) is the

influence vector of node i that describes where and how much

influence node i distributes through the network. Interestingly,

the column vector Column(i) is exactly a representation of

where and how much influence node i acquires from the

network. In other words, Row(i) consists of the set of nodes

that are influenced by node i, and Column(i) represents

the set of nodes that influence node i. The summation of

all the elements in Column(i) is the total influence node i
receives from the network, which could be a good indicator

of susceptibility among all the nodes in the network.

D. Influence-Guided Spherical K-means (IGSK)

From a geometric perspective, our algorithm projects the

graph into an n-dimensional influence space, where each node

defines one dimension. The position of a node in this space

is determined by its influence vector. And we measure the

closeness of two nodes with their Shared-Influence-Neighbor
(SIN) similarity, i.e., the cosine similarity of their influence

vectors. We can then apply a variety of well-studied clustering

algorithms to find communities. In this paper, we use spherical

K-means clustering [9]; hence our algorithm is termed as

Influence-Guided Spherical K-means (IGSK).

We also use the influence information in a heuristic method

for initializing the cluster centroids. Intuitively, the most

influential member of a community is more likely to be located

near the center of the community. We take advantage of

the influence ranking, which is already available from the

influence matrix. We first choose the node with the highest

influence ranking as the centroid of cluster 1. For the next

(K-1) centroids, we choose the remaining node with greatest

influence, and assign it as a centroid of a cluster if its similarity

score with the previously-selected centroids is less than a

similarity threshold. This mechanism significantly improves

both the accuracy and the efficiency.

The remaining parameter is the maximum depth. Remember

that the influence diminishes inversely proportional to the

square of the depth. We find that setting the maximum depth to

3 is sufficient for community detection. Moreover, for small-

size networks or small communities, or when the community

structure is fuzzy, setting the maximum depth to 2 may have
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advantages over setting it to 3. In practice, we run IGSK
by setting the maximum depth to 2 and 3. Between the two

resultant clusterings, we finalize the cluster assignment with

the one of higher modularity score.

III. EXPERIMENTS

To get preliminary insights and verify the validity of our

algorithm, we focus on networks with known communities.

Since the ground truth for large-scale real-world networks is

rarely available, we test our algorithm on several small real-

world datasets and a set of simulated networks using the LFR

model [10], and evaluate the performance by comparing with

the ground truth and a set of representative algorithms. We also

use a large citation network to evaluate our influence centrality.

A. Network Description

The real-world datasets are: Zachary’s Karate Club [11],

Mexican Political Power [12], Sawmill Communication Net-

work [13], Dolphin Social Network [14], American College

Football [15], and arxiv HEP-TH citation network [16]. All

of them are commonly-used benchmarks for algorithm evalu-

ation. Moreover, in order to compare with the 12 representative

algorithms examined in [17], we generate a set of LFR bench-

mark graphs using exactly the same parameter settings: aver-
age degree = 20, maximum degree = 50, degree-distribution
exponent = -2, community-size-distribution exponent = -1.

There are two different network sizes (1000 and 5000 nodes),

and two different ranges for community sizes (S and B). “S”

stands for “small”, which means min/max community size =

10/50. In contrast, “B” stands for “big”, which means min/max
community size = 20/100. In each of the 8 benchmark sets

(4 undirected sets and 4 directed sets), we vary the mixing
parameter from 0.1 to 0.8, and generate 5 realizations for

each value of the mixing parameter. This results in a total of

320 simulated networks.

B. Influence Ranking

Figure 2 shows the Karate Club network. Its influence

ranking (with depthLimit=3) is shown in Figure 3. We use

a rating scale of 0 to 10, with 10 meaning “most influential”.

Our algorithm uncovers the minute influence difference among

nodes based on the network topology. It successfully identifies

the two leaders (nodes 1 and 34) and a set of core members

(nodes 2, 3, 4, 9, 14, 32 and 33). Interestingly, nodes 10 and

17 both have a degree of 2, but node 10 has a much higher

influence weight than node 17 since node 10 connects to nodes

34 and 3, which are much more influential than nodes 6 and

7 to which node 17 connects. Moreover, even though node

12 only has a degree of 1, its influence weight is also greater

than that of node 17 because node 12 has a direct connection

to the leader Node 1. It follows our intuition that connecting

to a more influential person contributes more influence to the

person of interest than connecting to a less influential one.

The arXiv HEP-TH citation network consists of 27,771

papers and 352,807 citations among them. Those papers are

in the field of high energy physics, and were added to the

Fig. 2. Zachary’s karate club.

Fig. 3. Influence ranking of Zachary’s karate club.

e-print arXiv between 1992-2003. The first 4 digits of each

paper ID represent the year and the month when the paper

was published online. For instance, paper 9510017 indicates

it was published in October of 1995. We list in the Influence
Centrality column of Table I the top 10 papers identified by

our influence-ranking algorithm (depthLimit=3), and compare

it with the in-degree centrality and PageRank. The in-degree

centrality is the number of citations a paper receives, which

is listed in parenthesis in the In-degree centrality column. The

number listed in parenthesis in the Influence centrality column

is the in-degree ranking of the corresponding paper.

Like most centrality measures, our influence centrality is

correlated with degree centrality. All the top-10 influence-

centrality papers are of very high in-degrees, which we can

tell by their respective in-degree ranking. It includes 7 of the

top-10 in-degree centrality papers but ranks them in different

order. While we cannot prove that our influence centrality

gives the most accurate ranking, it does differentiate the

influence ranking in a more meaningful and precise manner

than in-degree centrality. As discussed, degree centrality can

be regarded as a special case of our influence centrality,
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TABLE I
COMPARISON OF DIFFERENT CENTRALITIES.

Rank Influence centrality In-degree centrality PageRank
1 9510017 (6) 9711200 (2414) 9402044

2 9503124 (8) 9802150 (1775) 9205068

3 9711200 (1) 9802109 (1641) 9205027

4 9410167 (15) 9407087 (1299) 9207053

5 9510135 (14) 9610043 (1199) 208020

6 9802150 (2) 9510017 (1155) 9204102

7 9802109 (3) 9908142 (1144) 9301042

8 9610043 (5) 9503124 (1114) 9201019

9 9407087 (4) 9906064 (1032) 9205081

10 9601029 (17) 9408099 (1006) 9209016

TABLE II
COMPARISON ON REAL-LIFE NETWORKS USING RANDINDEX AND NMI.

RandIndex NMI

Algorithm Karate Mexican Sawmill Algorithm Football Dolphin Karate

RankClus 1.000 0.489 0.530 GPSODM 1.000 0.723 1.000
Walktrap 0.745 0.536 0.560 GGADM 0.910 0.736 1.000

KernelBased 0.941 0.536 0.527 HA 0.907 0.707 0.754

LinkComm 0.743 0.536 0.560 MMC 0.885 0.579 1.000
SPICi 0.586 0.553 0.629 LPA 0.927 0.710 0.751

Betweenness 0.913 0.605 0.570 InfoMap 0.899 0.695 0.643

IGSK 1.000 0.716 0.870 IGSK 0.924 0.814 1.000

i.e., depthLimit=1, in which it simply counts the number of

immediate in-link neighbors. When we set depthLimit=3 as

we do by default, we explore the 3-step neighborhood of each

node, in which neighbors’ influence weights are incorporated

via the influence diffusion process. In addition, it is observed

that PageRank fails to rank the influence in this case. All the

top-10 PageRank papers are old papers that do not have any

out-links (since the papers they cited are not included in the

dataset).

C. Community Detection

Table II shows the results of applying our algorithm IGSK
to 5 real-life datasets. We use RandIndex for comparison

with the 6 representative algorithms presented in [4], and use

Normalized Mutual Information (NMI) for comparison with

another set of 6 algorithms presented in [18]. It is shown our

algorithm has the best performance overall.

We illustrate our results of the tests on the 4 sets of

undirected LFR benchmarks (1000-node-S/B and 5000-node-

S/B) in Figure 4 (a), in which each curve shows the variation of

the averaged NMI score with respect to the mixing parameter.

Our algorithm shows excellent performance. Even when the

mixing parameter is set to 0.5 (the threshold of defining

strong communities), we achieve NMI scores of 0.999, 0.992,

0.968, and 0.99 for 1000-node-S, 1000-node-B, 5000-node-S,

and 5000-node-B, respectively. Our algorithm is generally not

sensitive to the community size or the network size. We do

the performance comparison against a set of 12 representative

community-detection algorithms examined in [17]. Due to

space limits, we illustrate in Figure 4 (b) the performance

Fig. 4. Performance comparison on undirected LFR benchmark graphs. (a)
our IGSK and (b) is a plot given in [17].

of 4 algorithms in [17]. Our algorithm is one of the top-3

performing algorithms among the 12 algorithms.

Finding communities in directed networks is more chal-

lenging. Most existing algorithms are not able to deal with

directed networks. Among the 12 algorithms Lancichinetti

and Fortunato examined in [17], only 5 can be used for

directed networks. We generate 4 sets of directed networks

using the same parameters as theirs, in which both degree-
distribution exponent and mixing parameter refer to the in-

degree of the nodes while the out-degree is kept constant for

all nodes. This setting makes the resulting networks similar

to the citation networks in terms of in-degree/out-degree

distributions. Therefore, as we did with the arXiv HEP citation

network, we reverse these LFR directed graphs to reflect the

influence flow in our influence diffusion model, and then run

our IGSK algorithm to find the communities. We illustrate our

results in Figure 5 (a), and compare the performance of our

algorithm against the 2 algorithms Lancichinetti and Fortunato

investigate in [17] as seen in Figure 5 (b). Our algorithm

demonstrates superior performance in directed networks as

well (even better than its performance in undirected networks).

D. Space and Time Complexity Analysis

Let n denote the total number of nodes in the network, b
denote the average node out-degree, d denote the depth limit,

K denote the number of communities, I denote the number of

iterations to converge, and L denote the average length of the

influence vectors.
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Fig. 5. Performance comparison on directed LFR benchmark graphs. (a) our
IGSK and (b) is a plot given in [17].

Space complexity is closely related to the influence vectors.

Using an array of length n definitely wastes space since

most nodes can never spread influence to all other nodes in

the network. To improve the space complexity, we store the

influence vector in compact arrays that keep only the nodes

affected by the root node. Let L denote the average length

of the influence vectors, we then have the space complexity

of O(nL). L is directly affected by the depth limit d and the

average node degree b as well as the community structure.

For time complexity, it may take O(bd) time for a node to go

through the influence branching process to build its influence

vector. The worst case is O(nbd) time to sweep over all the

nodes to generate the influence matrix. But this worst case is

unlikely to happen since its corresponding network structure is

a full tree structure. In fact, in most cases, it is roughly O(nL)
time to generate the influence matrix. The next is the spherical

K-means clustering. It has a time complexity of O(nKLI).
It is demonstrated in our experiments that IGSK converges

very fast especially when the community structure is clear. For

example, for almost all our experimented LFR benchmarks, the

clustering converges in 2 iterations when the mixing parameter

is 0.3 or less. When the community structure is fuzzy (mixing
parameter>0.6), we force it to stop if it does not converge

after 8 iterations.

IV. CONCLUSION AND FUTURE WORK

In this paper, we provide a new perspective on the influence-

based connectivity of network graph topology, and define a

novel influence centrality and Shared-Influence-Neighbor
(SIN) similarity in an integrated framework. Our influence

centrality differentiates the influence ranking in networks in a

more meaningful and detailed manner, and the SIN similarity

is well-suited as a refined proximity metric for community

detection. Experiments on both real-world and simulated net-

works show the effectiveness and superior performance of our

algorithm (IGSK) in both undirected and directed networks.

In future work, we will examine the combination of this

influence-based methodology with other clustering techniques

to avoid pre-specifying the number of communities, and ex-

tend this approach to weighted networks as well as finding

overlapping communities. Furthermore, we will combine the

algorithm with content analysis, i.e., considering both the

network graph topology and the nodes’ profile information.

Finally, we point out that the influence ranking and the SIN
similarity metric introduced in this paper provide important

implications for viral marketing and link prediction in social

networks.
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