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A B S T R A C T

Objective: Speed, cost, and accuracy are three important goals in disease diagnosis. This paper proposes a

machine learning-based expert system algorithm to optimize these goals and assist diagnostic decisions

in a sequential decision-making setting.

Methods: The algorithm consists of three components that work together to identify the sequence of

diagnostic tests that attains the treatment or no test threshold probability for a query case with adequate

certainty: lazy-learning classifiers, confident diagnosis, and locally sequential feature selection (LSFS).

Speed-based and cost-based objective functions can be used as criteria to select tests.

Results: Results of four different datasets are consistent. All LSFS functions significantly reduce tests and

costs. Average cost savings for heart disease, thyroid disease, diabetes, and hepatitis datasets are 50%,

57%, 22%, and 34%, respectively. Average test savings are 55%, 73%, 24%, and 39%, respectively. Accuracies

are similar to or better than the baseline (the classifier that uses all available tests in the dataset).

Conclusion: We have demonstrated a new approach that dynamically estimates and determines the

optimal sequence of tests that provides the most information (or disease probability) based on a patient’s

available information.

� 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Diagnostic decision making is based on experience and hypothe-
tico-deductive reasoning [1]. In the face of diagnostic uncertainty, a
physician can either gather more evidence (test) or treat a patient
[2,3]. According to Bayesian theory, the clinician adjusts the
likelihood of the disease in question with each new diagnostic test.
The desired level of certainty depends largely on the consequences of
inaccuratediagnosis;onegenerally needstoperformdiagnostictests
until one has attained a treatment (or no test) threshold probability,
i.e., the threshold of sufficient evidence [1,2].

Each test result can revise the probability of disease in relation to
the treatment (or no-test) threshold, but the informativeness of the
same test result may vary based on the pre-test (prior) probability,
which in turn varies as a function of patient characteristics and other
test results. In addition, test parameters, such as sensitivity and
specificity may vary across different patient populations [4–7].

For a given individual or patient subgroup, it would be highly
desirable to identify the test sequence among all candidate
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sequences that optimizes the confidence of decision making while
minimizing cost. In advance of knowing the possible test results for
a given individual, one would like to identify the test whose result
is most likely to approach the treatment (or no-test) threshold.

This paper proposes a machine learning (ML)-based expert
system approach, called optimal decision path finder (ODPF), to
dynamically determine the test that is most likely to be
informative in terms of diagnostic accuracy while minimizing
the time and money spent on diagnostic testing. Two types of tests
are considered: immediate and delayed tests. The first type of test
such as blood pressure is routine and inexpensive, and the results
can be known immediately. The second type of test is more costly,
and the test results are not immediately available. This research
focuses on the second type of test. Our algorithm takes pre-test
probability, interaction of variables, and the cost of each test into
account and uses a greedy search to guess the test and generate an
individualized test sequence.

2. Background

2.1. Expert systems

As ODPF is an automated decision-making process, we place it
in the familiar context of expert systems. An expert system usually
rt system for cost-effective diagnosis. Artif Intell Med (2010),
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consists of a knowledge source and a mechanism for problem
solving that returns a response based on the information provided
by the query. The knowledge source of most expert systems (e.g.,
knowledge-based systems (KBS), fuzzy expert systems) is based on
direct input from domain experts and evidence from the literature.
As an early example, MYCIN [8] provides diagnostic and
therapeutic recommendations. The knowledge in MYCIN is stored
in the form of rules, which were elicited from infectious disease
experts. The process of transforming human knowledge to
machine-usable form is called knowledge acquisition and is
considered a bottleneck because it is time- and labor-intensive
[9]. In addition, maintaining the knowledge base is very labor-
intensive [10,11].

Other systems use techniques such as case-based reasoning and
machine-learning methods for inference, and are thus based
exclusively on data. They can avoid the knowledge acquisition
problem, e.g., case-based reasoning (CBR) as described in [12]. In
CBR, the knowledge consists of previous cases, including the
problem, the solution, and the outcome, stored in a central
location, called the case library. To obtain the solution for a new
case, one simply identifies the case that is most similar to the
problem in the case library, and the proposed solution can be
adapted from the retrieved case.

ML methods use mathematical equations, rules, or decision
trees to represent the decision function. Using a mathematical
form of knowledge has the advantages of stability, observability,
and controllability [13,14]; however, complex real-world phe-
nomena cannot always be modeled using mathematical equations.
When the phenomenon of interest can be accurately modeled, we
can use several optimization approaches to guide actions. For
example, Chi et al. devised an expert system to select the hospital
in which a given patient can obtain the highest probability of
survival and lowest probability of complications [15]. In another
example, Liau et al. [16] devised an expert system in a crude oil
distillation unit to help control parameters to maximize oil
production rate.

Similar to case-based systems, ML-based expert systems can
avoid the bottleneck of knowledge acquisition because knowledge
is directly obtained from data. In addition, ML-based expert
systems are able to give recommendations that are generated by
non-linear forms of knowledge, and are easily updated by simply
adding new cases. This paper shows an application of an ML-based
expert system that uses a non-linear form of knowledge and
optimization techniques to guide selection of diagnostic testing
sequences.

2.2. Machine learning

Inductive machine learning algorithms can learn patterns from
labeled data, i.e., cases that have a known outcome [17]. The
decision functions, which result from the training process, can
predict labels (or scores) based on a set of input variables or
features and represent the knowledge that is mined from the data.
With an appropriate design, one can apply these functions to many
applications, such as word recognition, movie recommendations,
etc. Here we briefly introduce background for specific ML research
areas incorporated into our system.

2.2.1. Feature selection/acquisition

The purpose of feature selection is to reduce the number of
predictive features, reducing data-collection costs while either
improving or not affecting predictive performance in unseen cases.
Feature selection techniques can be divided into filter and wrapper
models [18]. The filter model is a preprocessing step that occurs
prior to the induction method. Feature ranking based on
correlation with the class label (i.e., outcome) is an example of
Please cite this article in press as: Chi C-L, et al. A decision suppo
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filtering. In a wrapper model, the induction method is used to
evaluate candidate feature subsets (e.g., forward selection,
backward elimination [19]). Another group of feature selection
techniques use embedded methods [19,20], in which the
optimization of model construction directly includes a penalty
term corresponding to the number of predictive features.

Most feature selection methods select one set of features for all
data points, which is a global strategy. Local variants find multiple
sets of features for different data points. This local strategy
examines local regions of the feature space, as the relevance of
features may vary across different clusters of cases [21]. The most
extreme form of local strategy uses one set of features for each
instance. For example, Domingos [22] uses a clustering-like
approach to select sets of locally-relevant features. The feature-
weighted methods also use different weighted sets for different
instances or classes. For example, Howe and Cardie [23] use class
distribution weighting to compute a different weight vector for
each class, and Park et al. [24] use artificial neural networks
(ANNs) to compute the feature weights for each instance.

Our approach is also related to utility-based data mining,
including such methods as active and cost-sensitive learning. For
example, some active learning studies [25–28] automatically
acquire feature values, instances, and/or class labels to reduce the
cost of data collection and obtain maximum information. Cost-
sensitive learning [29] was originally formulated to treat
misclassification of different classes unequally and uses different
costs to construct the model. Studies such as those by Turney [30]
and Ling et al. [31] aggregate both misclassification and attribute
costs, explicitly addressing the trade-off between cost and
performance.

Previous studies in the medical decision making literature [32–
34] also integrate the misclassification costs of different classes
with test costs, and make a diagnosis when the cost of testing
exceeds the value of additional information. Our use of thresholds
has a similar function to various misclassification costs, because
one can set various thresholds for different classes to control
misclassification of disease. In order to achieve the goal of quick
diagnosis, ODPF uses feature selection to identify the test that is
most likely to confirm diagnosis (or cross a threshold).

Existing local feature selection techniques can select relevant
features for an instance, in which the order of including features
is not a concern. For the sequential diagnosis problem, we
assume that a query is a new patient, such that each medical test
can be seen as a feature whose value is initially unknown.
Feature-selection techniques may identify at the outset all
important features that one needs to characterize a patient. In
the sequential diagnosis scenario, one needs to select tests
sequentially and dynamically because one needs to determine
whether a diagnosis can be made with confidence or whether
more evidence is needed, especially when the test is very
expensive. In addition, various feature subsets may result in
different optimal selection of a feature, i.e., the optimum
selection of a feature may be influenced by features at hand [35].
Thus, recursively including one test at a time may be better than
including all relevant tests simultaneously.

In this paper, we propose a new feature selection technique
called locally sequential feature selection (LSFS). LSFS is a local
feature selection technique for one instance (query patient) that
recursively determines the most relevant feature based on the
current subset of features and their values. In other words, the next
test is determined based on the available information, e.g.,
symptoms and previous test results. Once the treatment threshold
is reached, the LSFS algorithm stops. The criteria used to select a
test include the relevance of a feature and the associated cost;
these criteria are implemented in speed-based and cost-based
objective functions, which will be discussed in Section 3.3.
rt system for cost-effective diagnosis. Artif Intell Med (2010),
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2.2.2. Lazy learning

Lazy learning – also called instance-based, case-based, memo-
ry-based learning – builds a prediction model specifically for the
query case. For example, a k-nearest neighbor (k-NN) classifier
finds the k closest training cases to identify the best label for the
query case. Lazy learning algorithms show three types of
properties [36]. First, the classifiers defer processing of the output
until a query case appears. Second, their responses combine the
training with the query information. Third, they discard the
constructed answer and any intermediate results. In contrast to
lazy learning algorithms, eager learning algorithms, such as ANNs
and decision trees, compile the data in advance and use it to
construct a predictive model. They use this global model to give
responses to all queries.

An alternative form of lazy learning is locally-weighted learning
[37]. Instances are weighted based on the distance to a query point.
This study turns support vector machines (SVMs) into lazy SVMs as
the base learners (e.g., d in Section 3.4), by assigning weights to
instances. The advantage of lazy SVM is that the base learners can
be adapted for the query, i.e., the more test results we know, the
more the classifiers can be trained to focus on data points similar to
the current query.

3. Methods

Fig. 1 shows a visual representation of the diagnosis process
that is supported by ODPF algorithm. The process begins with the
basic information of a query patient, and ends with a confident
diagnosis—disease or no disease. The question of what constitutes
a ‘‘confident’’ diagnosis is determined by two (initially, symmet-
ric) thresholds, a treatment threshold (above which disease is
highly likely) or a no-test threshold (below which disease is highly
Fig. 2. Confident diagnosis (prediction). f(x) = 0.5) represents a separation surface,

which can distinguish presence from absence of disease. A prediction with f(x) > 0.5

indicates a positive diagnosis (disease is present). There are two confidence

thresholds [1 � u, u] for a decision of treatment or no-test. A diagnosis can be made

only when the prediction of a patient’s disease status crosses the threshold (area A

or C). Otherwise, one needs more testing to support the prediction (area B or D).

Please cite this article in press as: Chi C-L, et al. A decision suppo
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unlikely and testing can be stopped) (Fig. 2). The thresholds must
be determined by physicians or other experts, based on an
analysis of relative costs and benefits [2].

Examining the confidence level of the diagnosis and selecting
the next test are repeated in each step. Initially (step 1), we only
have the patient’s symptoms and/or some immediately available
test results. A lazy classifier is trained with these data (performed
by module 1) and predicts whether or not a given patient has the
disease of interest. The system then examines the prediction in
relation to the treatment and no-test thresholds (performed by
module 2). If the prediction is sufficiently confident, the system
makes a diagnosis, and the process terminates. Otherwise, the
system looks for a test that can facilitate the prediction in the next
step (performed by module 3), and we do not know the test result
until step 2.

In module 1 at step 2, after the result of the selected test
(determined by module 3 in step 1) has been obtained for the
query, we train a new classifier with symptom data and the values
of the selected test (test(i)) from the training cases. (We note that
we need to train a query-specific classifier, so we build a classifier
with features corresponding to the query, i.e., symptoms and
(test(i)) Then we examine the confidence of the prediction
(performed by module 2) on the query and, if necessary, select
another new test (performed by module 3). These two steps are
repeated until a confident diagnosis occurs or until all options for
testing have been exhausted, at which point a diagnosis is made. If
no confident diagnosis can be made using all the tests, the
probability of disease estimated by the final classifier is presented
to the physician.

We detail lazy learning, LSFS, inheritance strategies, missing
values, multi-class prediction, unbalanced data, and description of
datasets in the following subsections.

3.1. Lazy support vector machines (SVMs)

SVMs [38] are a popular predictive model that can avoid
overfitting problems. Eq. (1) shows the primal optimization model
for training an SVM classifier. A training case is represented by a
vector of its predictive features xi and its diagnosic outcome yi,
which is either 1 or �1. W is the weight vector, and b is the bias
term for the decision function. ei is the error of training case i, and C

is a given constant that controls the balance between error and
model sparsity.

minimize
W ;e

hW �Wi þ C
Xl

i¼1

ei

 !

subject to yiðhW � xii þ bÞ�1� ei; i ¼ 1; . . . ; l
ei�0; i ¼ 1; . . . ; l

(1)
rt system for cost-effective diagnosis. Artif Intell Med (2010),
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A typical implementation of SVMs solves the dual of this
problem and induces nonlinearity in the separating surface using a
kernel function (see Vapnik [38] for details).

minimize
W ;e

hW �Wi þ
Xl

i¼1

Ciei

 !

subject to yiðhW � xii þ bÞ�1� ei; i ¼ 1; . . . ; l
ei�0; i ¼ 1; . . . ; l

(2)

In this project, we use lazy SVMs, which learn a decision
function specifically for the query case, as the base learners. Eq. (2)
shows the modified optimization formulation when training a lazy
SVM. The only difference between Eqs. (2) and (1) is C. In Eq. (2),
the value of C is different for each training case i. When Ci is large
for the training case i, case i gets more attention when optimizing,
reducing the chance of error for case i. In both equations, ð W � xih i þ
bÞ is the decision function d(x) that classifies whether or not a
patient has the disease of interest. In d(x), W represents the degree
of importance of variables and b represents the bias term.

The value of Ci is determined by the similarity to the query,
which is solely based on the results of the medical tests. An
extreme example is when all test values of a training case are
exactly the same as the query; this training case will have a very
large Ci. On the other hand, when a case has no test value matching
the query, the case will have a small Ci.

We use a simple algorithm to update instance weight (Ci) as
illustrated in Fig. 3, which shows a query and three training cases. g
(�1) is the multiplier for updating instance weights. The initial
weight for all training cases is 1 because we do not have any prior
knowledge of these training cases. In step 1, the query does not
pass the confidence threshold and we select Test X. After the test
result has been determined, only training case 3 has the same value
as the query. Thus, its instance weight (C3) is multiplied by a factor
of g (in this example, we use g = 2). In step 2, the values of training
cases 2 and 3 have the same value as the query, and their instance
weights (C2 and C3) are multiplied by 2. In step 3, only C2 and C3 are
multiplied again by 2.

After the selected test result has been obtained in each step, we
can update the instance weights for all training cases. More similar
cases have higher weight, making the training case population
more specific to the query after more tests results are known. In
our experiments, the multiplier g is decided empirically based on
predictive performance and costs.

3.2. Predicting probabilities

Although SVM can classify well, the output scores are not
probabilities. The range of SVM output scores is [�a, b], where a

and b depend on the data. In LSFS, the most important task is
comparing classifiers in order to find the best test. However, we
Fig. 3. Instance weight update example.

Please cite this article in press as: Chi C-L, et al. A decision suppo
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cannot compare classifiers that are trained with different subsets
by raw SVM scores, which are not probabilities. Instead, we need to
compare classifiers using calibrated predicted probabilities.

A forecaster is well-calibrated if the predicted probability is close
to the observed probability [39,40]. The quality of calibration can be
analyzed by a reliability diagram [39], in which the prediction space
is separated into 10 bins. Cases with values between 0 and 0.1 are
located in the first bin, and cases with the values 0.1 to 0.2 are located
in the second bin, etc. Then we calculate and plot the point of the
proportion of positive cases against the average predicted probabil-
ity for each bin. If a forecaster is well calibrated, all points should be
close to the diagonal.

The scores of SVM tend to be distributed away from the
extremes, and the predicted points would generally form a sigmoid
shape on the reliability diagram [41]. A good calibration method
can adjust the sigmoid shape to a near-diagonal line on the
diagram. Platt [42] used a sigmoid function to calibrate SVM scores.
The raw SVM scores are transformed into posterior probabilities
using the equation

Pðy ¼ þ1jdÞ ¼ 1

1þ expðAdðxÞ þ BÞ ; (3)

where A and B are parameters trained from the data (see Platt [42]).

3.3. Locally sequential feature selection strategies

LSFS selects features for only one case (the query). We use LSFS to
guess the next test to speed up diagnosis, so that only tests whose
order needs to be determined are considered as features in LSFS (e.g.,
delayed tests). The degree of importance of a feature may change
with differences in known patient information, demographic data,
history, physical findings, and previously selected tests results.

One important property of LSFS is the sequence of features
(tests). The symptoms and demographic data of each patient
varies, so the timing of the same test for two patients may differ.
For example, when the predicted probability of disease is very
close to either 0 or 1 but has not crossed either threshold, most
tests can help to cross the treatment (or no-test) threshold easily.
However, if the prediction is close to 0.5, a very strong predictor
may be necessary. The next test of these two cases can be very
different. As a result, each case will have an unique test sequence
because the known information of each patient varies.

There are two selection strategies used with LSFS: speed-based
and cost-based. The test selection strategy is represented by the
evaluation function f. The selected feature can provide the most
information for the query. For speed-based strategies, information
means the speed of the next prediction moving toward a predicted
probability of either 0 or 1. For cost-based strategies, information
means the most cost-efficient choice, considering not only speed
but also the cost of a test.

We consider four evaluation functions in each category of
selection strategy. For the speed-based category, these evaluation
functions are probability contribution, minimum uncertainty,
expected uncertainty, and instance weight-expected uncertainty
(IWEU). Each function has a corresponding cost-based evaluation
function.

We begin by describing the speed-based approaches. When
selecting a test, we have to consider which test is most likely to lead
to diagnostic certainty (with a post-test probability approaching
either 0 or 1). We cannot know the actual value of a test that has yet
to be performed, but we can compute the predicted probability of
diseases associated with all possible values of that test. We can then
find the most promising test that can approach either end the fastest.

The probability contribution (PC) function finds the test that
produces the greatest changes in predicted probability of disease.
rt system for cost-effective diagnosis. Artif Intell Med (2010),
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For all possible values of test i, f is the maximum difference of
probabilities. This function is defined as follows:

f PCðv̄[uiÞ ¼maxðhðdðv̄[uk
i ÞÞ

� hðdðv̄[uk0

i ÞÞÞ; 8 k; k0 2 f1; . . . ; juijg; k 6¼ k0;

where juij is the number of possible values for the feature ui, v̄ is the
known information of the query including symptoms, demograph-
ic data, and previously selected test results. uk

i is the value k of test i

(unknown information), k is the index of values of the test ui. Once
the result of the selected test is known, it becomes known
information. d is the predictive function that returns SVM scores,
and h transform SVM scores into probabilities.

The idea of minimum uncertainty (MU) is to find the test that
would push the prediction closest to either 0 or 1. We define
uncertainty as simply the minimum difference between the
predicted probability and zero or one. This function is defined as

f MUðv̄[uiÞ ¼minð0:5� jhðdðv̄[uk
i ÞÞ � 0:5jÞ; 8 k2f1; . . . ; juijg:

Compared to minimum uncertainty, the expected uncertainty
(EU) is a more stable strategy. The uncertainty of each value of a
test is weighted by its frequency in the training set. We find the test
with minimum f. The expected uncertainty is defined as

f EUðv̄[uiÞ ¼
X

k

ð0:5� jhðdðv̄[uk
i ÞÞ � 0:5jÞ � FreqkP

kFreqk
;

where Freqk is the frequency of training cases with the value uk
i .

For the IWEU, we use instance weights to replace frequency.
The uncertainty of value uk

i is weighted by the instance weights
based on previous tests. Similar to expected uncertainty, we find
the test with the minimum f. The formulation can be expressed as

f IWEUðv̄[uiÞ ¼
X

k

ð0:5� jhðdðv̄[uk
i ÞÞ � 0:5jÞ � CkP

kCk
;

where Ck is the sum of instance weights of training cases with the
value uk

i .
The last three functions find the test with the smallest

uncertainty based on a single (minimum uncertainty) or average
(expected uncertainty and IW-expected uncertainty) test result(s).
Locations of predictions provide information to guess which test is
most likely to move the probability of disease upward or
downward. The first function (fMU) finds the test with some value
that has the global minimum uncertainty, and the last two
functions use expected uncertainty to select a test.

In the cost-based strategy, cost is defined as test cost while
effectiveness is the degree of movement toward either end (as in
the speed-based strategy). We use the ratio effectiveness=cost

instead of only effectiveness.
Each speed-based evaluation function has a corresponding

cost-based function. The cost-based version of probability
contribution becomes probability contribution per dollar. We
want to select the test with maximum f. The cost-based objective
function is

f costPCðv[uiÞ ¼
maxðhðdðv[uk

i ÞÞ � hðdðv[uk0

i ÞÞÞ
costi

;

8 k; k0 2 f1; . . . ; juijg; k 6¼ k0;

where costi is the cost of using test i.
All cost-based functions in the uncertainty family become

uncertainty reduction per dollar. For uncertainty reduction, we
need to compute the reduction of uncertainty from known
Please cite this article in press as: Chi C-L, et al. A decision suppo
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information v̄. The uncertainty of known information is defined
as UCðv̄Þ ¼ ð0:5� jhðdðv̄ÞÞ � 0:5jÞ. Cost-based minimum uncertain-
ty reduction is

f costMUðv̄[uiÞ ¼
UCðv̄Þ � ð0:5� jhðdðv̄[uk

i ÞÞ � 0:5jÞ
costi

;

8 k2f1; . . . ; juijg

We select the test with maximum f because we want to select
the test with maximum uncertainty reduction per dollar. Cost-
based expected uncertainty reduction is

f costEUðv̄[uiÞ

¼
UCðv̄Þ � ð

P
kð0:5� jhðdðv̄[uk

i ÞÞ � 0:5jÞ � FreqkÞ=
P

kFreqk

costi
;

and we want to find a test with the maximum f.
Similarly, cost-based IW expected uncertainty reduction is

f costIWEUðv̄[uiÞ

¼
UCðv̄Þ � ð

P
kð0:5� jhðdðv̄[uk

i ÞÞ � 0:5jÞ � CkÞ=
P

kCk

costi
:

3.4. The ODPF algorithm

Algorithm 1 summarizes the whole process. The input dataset
D consists of patients’ known information V, such as symptoms
and known results of tests, and delayed tests (or unknown
information) U. Initially, this study assigns all immediate tests to
V based on the definition of Turney [30]. When the result of Uj is
known, this test becomes known information. u is a confidence
threshold in the range of 0 to 0.5. Thus, 1 � u represents a
treatment threshold and u represents a no-test threshold. The
limitations of the [u, 1 � u] threshold structure, along with a
remedy, is discussed in Section 3.7.

Algorithm 1 (ODPF).

Input:

1 Data D, D ¼ V [U j, j2ftestsg, k2 data points

2 Threshold u and weight update g

3 Query v̄

Output:

1 Test sequence SEQ before u is met

2 Prediction

1: C = 1

2: UT = {tests}

3: SEQ ¼ ?

4: for j = 1. . .jtestsj do

5: ½î;h; d� ¼ ChooseClassi fierðD; v̄;C;UTÞ
6: UT ¼ UT=î and U ¼ U=U

î

7: v̄ ¼ v̄[ ū
î

and V ¼ V [U
î

8: IWk ¼ IWk � g; 8 k : u
kî
¼ ū

î

9: SEQ ¼ SEQ & î

10: if hðdðv̄ÞÞ< u or 1� hðdðv̄ÞÞ< u then

11: return ½hðdðv̄ÞÞ; SEQ �
12: end if

13: end for

14: return ½hðdðv̄ÞÞ; SEQ �
rt system for cost-effective diagnosis. Artif Intell Med (2010),
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ChooseClassifier (D; v̄;C;UT):

15: î ¼ 1

16: for i ¼ 1 . . . jUTj do

17: d ¼ GetPredictorðV [Ui;CÞ
18: h ¼ GetCalibrationFunctionðV [UiÞ
19: if f ðv̄[ ūiÞ> f ðv̄[ ū

î
Þ then

20: î ¼ i;h� ¼ h;d� ¼ d

21: end if

22: end for

23: return î;h�; d�

The query with known information v̄ activates the recommen-
dation process. We want the algorithm to recommend a test at
each step i after obtaining the previous test result ū

î�1
, and decide

when to stop. At termination, the output is the diagnostic decision
and the sequence of previously recommended tests.

In step 1, we set the instance weight (C) of each case to be the
same. Step 2 initializes the pool of unused tests (UT) to the set of all
tests, and step 3 initializes the test sequence (SEQ).

Steps 4–13 are the repeating processes for confident diagnosis
and test selection. Step 5 computes the best test î, the corresponding
calibration function h (Eq. (3)), and the decision function d (Eq. (2)).
Step 6 removes î from UT and removes U

î
from U. After the test value

of î is revealed, step 7 adds its value ū
î
to v̄ because the test result ū

î
has become known information for the query case. Also, the column
of training features U

î
will be added to V. We do not add or remove

data from the dataset D, but, in each iteration, we move a certain
feature from U to V. Step 8 updates instance weights. When the result
of the selected test for a training case k matches the query case, the
instance weight of k is updated. Step 9 appends test î to SEQ.

Steps 10–12 decide whether the prediction is confident enough.
If the answer is positive, the algorithm will return the diagnosis
and the test sequence. Otherwise, the process repeats until all tests
have been run.

For the test searching subroutine, step 15 assigns the first test as
the selected one. Then, steps 16–22 update the selection. In each
iteration, a trial dataset, which consists of training features (V,
corresponding to the known information of the query) and an
unused test feature (Ui), is used to train a decision function d (step
17) and a calibration function h (step 18).

Steps 19–21 use a function f to decide the best test. When test i

is better than test î, we record d* and h* of the new î. Step 23 returns
î, d*, and h* of the best test.

3.5. Speed-up strategy: inheritance

The ODPF algorithm uses a large number of classifiers to select
the best test (or sequence of tests). Training these classifiers is
computationally expensive. To reduce this problem, we allow a
query to be able to inherit classifiers trained from a previous query.
A new query case can always share the first group of classifiers to
identify the first test because C is 1 for all cases. After selecting the
first test, if the test result of the query is the same as a previous
query, the query can inherit classifiers from that previous query.

Fig. 4 illustrates the rule of inheritance. Unlike decision tree
algorithms, a node represents a group of classifiers that determine
the next test; one can also make a decision at this node. Instead of
explicit rules, the choice of test is driven by classifiers. Query 1 has
to train all classifiers for identifying tests. Test 5 is the first selected
test. After performing this test, we obtain the value 1 for test 5.
Next, test 6 is suggested by the second group of classifiers.

Query 2 can inherit the first group of classifiers. Test 5 was again
selected but the value is �1. Query 2 is ineligible to inherit any
more because lazy classifiers are trained specifically for a query.
Please cite this article in press as: Chi C-L, et al. A decision suppo
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Thus, a query (e.g., query 2) can inherit a classifier set only when all
previous tests and their values are exactly the same as a previous
query (e.g., query 1). Therefore, we have to train a new group of
classifiers (classifier set 3) for query 2 in order to identify the next
test. For query 3, not only is test 5 the first selected test but also the
value is the same as query 1. Thus, query 3 can inherit both groups
of classifiers from query 1.

3.6. Missing values

Missing values are common in medical datasets, especially
those recording diagnostic tests, because a physician will not run
tests considered to be unnecessary. Therefore, ODPF must adjust
for missing values in both training and validation. First, for
training, we impute a missing value using the class-conditional
mean of the feature (i.e., the mean feature value of all points within
the same class as the instance with the missing value).

Second, the C update depends on the proportion of the
matching value in the training set. For example, consider a test
with three possible values, 1, 2, and 3, whose proportions are 30%,
30%, and 40% in the training set. If the new test value of the query is
3, for example, each training instance with a missing value of this
feature can be updated, but the instance-weight multiplier
becomes 1 + (g � 1) � 40 %.

When we apply ODPF in an actual clinical setting, all test values
of a query (a new patient) are supposed to be missing, and we do
not have any problem for the query with missing values. However,
when validating ODPF, we need to slightly modify the query case
with some missing values in order to validate reasonably. When
some test values of a query are missing, we limit the selection of
tests to those without missing values. When a diagnosis is highly
uncertain, all available tests (without missing values) may not
allow one to cross a probability threshold. In this case, the
diagnosis must be made after receiving values of these available
tests.

3.7. Unbalanced data adjustment

In some situations (e.g., a rare disease), the separation surface of
the trained SVM will not correspond to a probability of 0.5.
Therefore, unequal thresholds, such as [u1, u2], may be better than
equal thresholds [u, 1–u].
rt system for cost-effective diagnosis. Artif Intell Med (2010),

http://dx.doi.org/10.1016/j.artmed.2010.08.001


C.-L. Chi et al. / Artificial Intelligence in Medicine xxx (2010) xxx–xxx 7

G Model

ARTMED-1139; No. of Pages 13
The definition of uncertainty also needs to change in an
unbalanced dataset. When a dataset is balanced, uncertainty is
determined using either 0 or 1 as a reference. In an unbalanced
dataset, uncertainty is decided using two given thresholds, instead
of a single offset from 0 to 1. In an unbalanced dataset, we are still
looking for a test with the smallest uncertainty in minimum
uncertainty and (IW-)expected uncertainty functions. The use of
asymmetrical [u1, u2] thresholds may be desired in situations
beyond the need to balance a skewed class distribution. For
example, one may desire a very high diagnostic confidence level
before initiating a treatment with significant side effects.

In the original defintion of uncertainty, the smallest uncertainty
is 0. In the new definition, when a test with some set of values
crosses the threshold, its computed value of uncertainty may be
less than 0. In this case, one can still identify the test with the
lowest value of uncertainty, and we still can use all speed-based
and cost-based test selection functions as described in Section 3.3.

3.8. Multi-class strategies

Many diagnosis problems involve a choice among several
candidate conditions instead of a single disease. We show that the
ODPF algorithm can be adjusted for multi-class decision problems.
Similar to binary problems, we wish to find a test that can approach
one possible outcome (class) most quickly. The difference is that
we are comparing several possible outcomes instead of two, but we
can still use the test-selection functions described in Section 3.3.
For example, in a binary problem, we are finding the test with the
smallest uncertainty from either end (probability 0 or 1, two
possible outcomes). In a multi-class problem, we are finding the
test with the smallest uncertainty for one of the outcomes.

There are several algorithms for solving multi-class problems
[43] using SVMs. We use the adapted one-against-all method as the
base classifiers. Assuming n possible classes (candidate conditions),
we need to train n � 1 classifiers with n � 1 sets of labels. Each set of
labels indicates whether or not a record belongs to a specific class.
Each class corresponds to a set of labels except for one class.1 If the
decision function of only one class is greater than zero, this class is
the predicted class. If the decision function of all classes are less than
zero, the majority class is the predicted class. When there is more
than one class with decision function greater than zero, the
predicted class is the class with the highest predicted probability.

3.9. Data sources

3.9.1. Datasets for diagnosis

We apply the ODPF algorithm to heart disease and thyroid
datasets. Both datasets are obtained from the UCI machine learning
repository [44].

Heart disease dataset [45]: This analysis sample included 303
consecutive patients (mean age 54 years, 68% male) who were
referred for coronary angiography at the Cleveland Clinic between
May 1981 and September 1984. No patient had a history of prior
myocardial infarction or known valvular disease or cardiomyopa-
thy. All patients received a history and physical examination,
resting electrocardiogram, and laboratory studies as part of their
routine evaluation. Study patients also underwent exercise stress
testing, myocardial perfusion imaging, and cardiac fluoroscopy as
part of a research protocol. The dataset included 4 clinical variables
(age, sex, chest pain type, and systolic blood pressure), 2 laboratory
variables (serum cholesterol and fasting glucose), and resting
electrocardiographic variables (ST segment depression >0.05 mV
or T-wave inversions, probable or definite left ventricular
hypertrophy based on Estes’ criteria). The diagnosis of coronary
1 In this project, we choose the majority class.
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artery disease was defined by the presence of >50% narrowing of
one or more coronary arteries on angiography. All coronary
angiograms were interpreted by a cardiologist who was blinded to
non-invasive test results.

The heart disease dataset came from Cleveland Clinic Founda-
tion and was provided by the principal investigator Robert Detrano
of the V.A. Medical Center, Long Beach and Cleveland Clinic
Foundation. In this experiment, the dataset was downloaded from
the Statlog project; 6 data points were discarded because of
missing class values and 27 data points were retained in case of
dispute [46], at the UCI machine learning repository. Originally,
there were four different types of disease in this dataset. In this
project, the classification task is simply to distinguish the presence
of disease (all four types) from its absence. The dataset does not
have missing values. The proportion of patients with disease in the
dataset is 44.4%.

Thyroid disease dataset [47]: This analysis sample consists of
3772 cases which were referred to the Garvan Institute of St.
Vincent’s Hospital, Sydney, Australia for diagnostic evaluation
starting in late 1984. The dataset includes 11 clinical attributes,
which were abstracted from data provided by the referring
physician (age, sex, pregnancy, goiter, tumor, hypopituitarism,
use of thyroid or antithyroid medication, history of thyroid
surgery, complaint of malaise, psychological symptoms), and up
to six test results (including TSH, T3, TT4, T4U, free thyroxine
index, and TBG) requested by the referring physician. Final
diagnosis of hyperthyroidism, hypothyroidism, or euthyroid
status was based on interpretation of all available clinical and
laboratory data by a qualified endocrinologist (or in some cases,
an expert system designed to diagnose thyroid disease). We
follow Turney’s paper [30] using four tests (TSH, T3, TT4, and T4U)
because costs are provided for only those tests. The resulting
dataset does not include missing values. The proportion of cases
with hypothyroidism and hyperthyroidism is 2.5 and 5.1%,
respectively.

3.9.2. Datasets for prediction of future risk

We have also performed an analysis of two additional datasets
in order to show the potential applicability of the ODPF method in
predicting the future risk of disease or adverse events with fewer
tests by determining an optimum patient-specific sequence. Both
datasets are also obtained from the UCI machine learning
repository [44]. These datasets are briefly described below:

Pima Indians diabetes dataset [48]: The dataset was collected by
the National Institute of Diabetes and Digestive and Kidney
Diseases. All subjects were females at least 21 years old of Pima
Indian heritage. The dataset includes 6 clinical variables (age,
diabetes pedigree function, body mass index, triceps skin fold
thickness, diastolic blood pressure, and number of pregnancies)
and two tests (glucose tolerance test and serum insulin test) to
classify the risk of diabetes. The proportion of subjects who
developed diabetes is 34.9%.

Hepatitis dataset [49]: The dataset includes 14 clinical attributes
(age, sex, patient on steroids, antiviral therapy, fatigue, malaise,
anorexia, hepatomegaly, palpable firmness of liver, palpable
spleen, presence of spider veins, ascites, presence of varices, and
liver histology), laboratory tests (bilirubin, alkaline phosphotase,
aspartate aminotransferase, albumin, and protime), and the
prognostic outcome of disease (live or die). The proportion of
subjects who died during follow-up is 20.7%.

4. Results

In this section, we show results in heart disease, thyroid,
diabetes, and hepatitis datasets. All features are discretized based
on the Fayyad and Irani method [50] implemented in ROSE [51]. All
rt system for cost-effective diagnosis. Artif Intell Med (2010),
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results were generated from RBF-SVM and averaged over five 10-
fold cross-validation (CV) runs. We use the 10-fold CV to replace
leave-one-out [52] in order to benefit from inheritance as
described in Section 3.5. In other words, each data point is a
query that can share classifiers with another query in the same
testing fold. The probability transformation function (Eq. (3)) was
trained in 3-fold CV runs.

We used over-sampling of the minority class [53] to balance
each dataset according to the proportion of positive to negative
cases. For example, for a dataset with 95% positive cases, we used
the ratio 1/19 to balance the positive and negative classes.

In our cost analyses, we apply a group discount when other tests
belonging to the same group have already been requested. For
example, blood-related tests have a group price because they share
the cost of phlebotomy.

We used g = 1.4 for constructing lazy SVM classifiers. The
parameter was determined by predictive performance. For instance,
the total accuracies of g = 1, 1.4, 1.8 in Probability Contribution and
minimum Uncertainty functions are [0.837, 0.8407, 0.8185] and
[0.8556, 0.8593, 0.8333], respectively. SVM classifiers turn into lazy
SVM classifiers when g is greater than 1. With an appropriate g, the
predictive performance of lazy learning can be improved.

We discuss our results in detail using the heart disease dataset.
We demonstrate the multi-class result on the thyroid dataset with
the minimum uncertainty function and report aggregated results
of diabetes and hepatitis using all LSFS functions.
Table 1
Speed-based ODPF. The treatment and no-test threshold is [0.85, 0.15]. The accuracy

significantly better or worse than baseline, respectively (a= 5%).

Functions Statistics ite0 ite1 ite2 ite3

ProbContr Correct 238 146 77 109

Total 265 180 83 120

Accuracy 0.89811 0.81111 0.92771 0.90833

Total accuracy = 0.834; average test = 4.16+; cost savings = 53.13+%

minUC Correct 238 374 146 129

Total 265 416 157 153

Accuracy 0.898 0.899 0.930 0.843

Total accuracy = 0.852+; average test = 2.89+; cost savings = 49.59+%

expUC Correct 238 186 218 97

Total 265 220 232 111

Accuracy 0.898 0.845 0.940 0.874

Total accuracy = 0.8393; average test = 3.51+; cost savings = 51.52+%

IWexpUC Correct 238 188 210 100

Total 265 220 223 114

Accuracy 0.898 0.855 0.942 0.877

Total accuracy = 0.839; average test = 3.53+; cost savings = 51.23+%

Table 2
Cost-based ODPF. The treatment and no-test threshold is [0.85, 0.15]. The accuracy of the

better or worse than baseline, respectively (a= 5%).

Functions Statistics ite0 ite1 ite2 ite3

ProbContr Correct 238 89 70 104

Total 264 111 79 113

Accuracy 0.902 0.802 0.886 0.920

Total accuracy = 0.831; average test = 4.45+; cost savings = 53.38+%

minUC Correct 238 35 82 71

Total 265 43 93 77

Accuracy 0.898 0.814 0.882 0.922

Total accuracy = 0.827�; average test = 4.7311+; cost savings = 54.09+%

expUC Correct 238 59 84 88

Total 265 66 101 106

Accuracy 0.898 0.894 0.832 0.830

Total accuracy = 0.831; average test = 4.40+; cost savings = 54.97+%

IWexpUC Correct 238 57 81 92

Total 265 67 93 110

Accuracy 0.898 0.851 0.871 0.836

Total accuracy = 0.830; average test = 4.43+; cost savings = 54.64+%

Please cite this article in press as: Chi C-L, et al. A decision suppo
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Our baseline (or ‘‘standard’’) in each case is a classifier trained
with all available tests from from the dataset. ODPF aims to
identify the minimum set of tests. We show the comparison of the
number of tests, costs, and accuracies between all functions and
baseline in the following subsections.

4.1. Heart disease dataset

Fig. 5 summarizes the process to evaluate the model. We train
and predict for each query patient (A). If a prediction does not cross
either the treatment or no-test threshold, more testing is needed
(from B to C). We can utilize several different test selection
functions in C, e.g., minimum uncertainty. One test will be
appended to the sequence each time once goes through the A,B,C,A
cycle. If the prediction crosses either threshold, a diagnosis is made
(D) and validated.

Tables 1 and 2 summarize the diagnosis accuracy and cost
savings of four evaluation functions. The notation ite1 to ite9
of the baseline that trained with 9 tests is 0.8407. + or � indicates that ODPF is

ite4 ite5 ite6 ite7 ite8 ite9

127 71 45 50 44 219

152 82 50 62 51 305

0.83553 0.86585 0.9 0.80645 0.86275 0.71803

36 34 16 17 13 147

47 38 26 23 13 212

0.766 0.895 0.615 0.739 1 0.693

77 55 37 26 20 179

97 62 50 32 23 258

0.794 0.887 0.740 0.813 0.870 0.694

79 53 37 30 19 178

100 62 51 37 21 257

0.790 0.855 0.725 0.811 0.905 0.693

baseline that trained with 9 tests is 0.8407. + or� indicates that ODPF is significantly

ite4 ite5 ite6 ite7 ite8 ite9

152 68 67 64 44 226

181 77 74 80 55 316

0.840 0.883 0.905 0.800 0.800 0.715

203 73 53 83 21 258

223 90 62 118 24 355

0.910 0.811 0.855 0.703 0.875 0.727

218 70 79 40 32 214

230 88 105 49 40 300

0.948 0.795 0.752 0.816 0.800 0.713

214 68 78 42 35 216

227 86 106 49 43 304

0.943 0.791 0.736 0.857 0.814 0.711

rt system for cost-effective diagnosis. Artif Intell Med (2010),
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represents the number of delayed tests obtained by patients. Ite1
represents only 1 test performed, while ite4 represents 4 tests
performed. Ite0 is the situation where a diagnosis (prediction) is
made without obtaining any delayed tests. The sequence of tests of
patients may vary, so we cannot show actual test sequences (e.g.
[test5, test3, test1, . . .]) of all patients in these aggregated results.
Results in these two tables are predictive results at different
stopping points in the test sequence.

The stopping point for patients varies because the number of
tests needed to diagnose is based on the individual patient. Some
patients need few tests while others need many to support a
diagnostic decision. Thus, patients may stop with any number of
tests, and we summarized the aggregated results in ten strata (ite0
to ite9). When testing is stopped, we add one to the Total row, and
compare the prediction (or diagnosis) with its class label (which
shows whether the diagnosis is correct or not) at this stopping
point. If the prediction is correct, one will be added to the Correct
row. The percentage of correct predictions is shown in the
Accuracy row. Total accuracy is the expected accuracy of all strata.
‘‘Average test’’ is the average number of tests used, and cost savings
is the average cost saving of unused tests for all patients.

These two tables also show the accuracy of diagnosis in each
iteration. Some patients do not need to receive any testing (ite0),
but other patients need to receive all tests (ite9). The groups in ite0
to ite9 correspond to patients with increasing difficulty of
diagnosis. In other words, when a case stops early, its predictive
probability is far away from the separation surface and satisfies the
stopping criterion. On the other hand, the patients in ite9 remain
close to the separation surface. Thus, the accuracies for early
diagnosis patients tend to be high (ite0 to ite8).

For patients who remain in the ite9 group, one still needs to
make a diagnosis for these patients once all available tests have
been exhausted. As these patients are difficult to diagnose, the
diagnostic accuracy for the ite9 group is low. Interestingly, the
threshold plays the role of a filter by keeping patients in the
appropriate stratum.

Both tables use + and � to indicate whether a number is
significantly better or worse than the baseline, in which all tests
were performed (a = 5%). The accuracy of the baseline is 0.8407.
Although total accuracies of most functions are lower than
baseline, the differences except for the cost-based minimum
uncertainty (minUC) function are not significant. However, the
accuracy of minUC function (0.852) is significantly better than the
baseline. Average number of tests and cost savings of all functions
are significantly better than the baseline. The number of tests
required ranged from 2.89 to 4.73 while most cost savings are more
than 50%. In general, speed-based strategies diagnose with fewer
tests than cost-based strategies, and cost-based strategies save
more cost than speed-based strategies.

Fig. 6 compares accuracies of three thresholds that use the
minimum uncertainty strategy. The x-axis represents the stopping
points. Standard refers to the baseline classifier that is trained with
all tests. A larger threshold has greater accuracy in all strata.
However, total accuracies for thresholds 0.75, 0.85, and 0.95 are
0.813, 0.852, and 0.847, respectively. In other words, a higher
threshold does not always result in higher total accuracy. This is
attribute to the effect of early diagnosis.

Fig. 7 summarizes the frequency of testing across the three
thresholds. Many patients can be diagnosed early (i.e., before
exhausting all tests). As expected, the barrier of a higher threshold
results in fewer patients being diagnosed early. Therefore, more
patients remained until ite9 when the threshold is higher. Total
accuracy is an expected accuracy which results from the
combination of accuracy and frequency in each stratum. The
accuracies of early diagnostic strata (ite0 to ite8) are generally
high, but the accuracy for ite9 is low. A very high threshold such as
Please cite this article in press as: Chi C-L, et al. A decision suppo
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0.95 forces many patients to stay until ite9 and largely reduces the
total accuracy. Although accuracies of most strata of an overly high
threshold, such as 0.95, are higher, overall reduction (ite9) in the
number of patients who are assigned a diagnosis outweighs this
improvement (ite0 to ite8). Therefore, careful selection of an
appropriate threshold helps to improve total accuracy. The
fluctuation of accuracies in Fig. 6 also results from early diagnosis,
which results in small sample size from strata ite4 to ite8.

The relationship between effectiveness and costs is shown in
Fig. 8. We compare random, minimum uncertainty, and cost-based
expected uncertainty. Random is the baseline strategy in which
testing sequences are randomly created. This baseline allows the
examination of the amount of contribution due to feature-
selection strategies (i.e., minimum uncertainty and cost-based
expected uncertainty). Random still benefits from the confident
prediction structure because the threshold still determines the
stopping point. Therefore, many tests can still be saved. For
example, when the threshold is 0.85, the system uses 3.68 tests
with a total accuracy of 0.827.

In Fig. 8, we demonstrate that cost savings and probability
threshold are negatively related. As expected, both strategies have
more cost savings and higher total accuracies than random. In
general, cost savings and total accuracy are a trade-off. Surpris-
ingly, the minUC strategy provides more cost savings, especially
rt system for cost-effective diagnosis. Artif Intell Med (2010),
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when the threshold is higher. For example, when the cost savings is
50%, the accuracy for minUC is 85.1% while the accuracy for
costExpUC is 83.4%. The cost savings of the speed-based strategies
comes from using a small number of tests that are usually
expensive but strong predictors.2 However, the cost savings of the
cost-based strategies results from careful selection of tests. The
selection prefers inexpensive tests with acceptable diagnostic
power or powerful tests with reasonable cost. This result suggests
that using expensive tests at the outset may be preferable in some
situations. When the sequences are optimized, patients may be
diagnosed more quickly and accurately, and more cost can be
saved.

Confident prediction not only improves accuracy but also
sensitivity and specificity. Figs. 9 and 10 show sensitivity and
specificity of each stratum for the minUC strategy. Both figures
show that sensitivity and specificity for higher thresholds are
better. Similar to accuracy, early diagnosis results in fluctuation of
the curve. Standard represents sensitivity or specificity of the
classifier trained with all tests. Similar to accuracy, confident
prediction boosts both sensitivity and specificity for patients who
are diagnosed early.

4.2. Thyroid dataset

The thyroid dataset is highly unbalanced and has three classes,
normal (92.5%), hyperthyroid (5.1%), and hypothyroid (2.5%).
Tables 3 and 4 show confusion matrices of thyroid dataset from
baseline (the classifier trained with all features) and ODPF using
the function of minimum uncertainty.

For both tables, the third to fifth columns show predicted class
frequencies of hypothyroid, hyperthyroid, and normal. The last
column, matched rate, is the proportion of correct predictions
among all predictions in the same true class. For example, in Table
3, the matched rate of hypothyroidism is 250/465 = 0.538.
Similarly, the third to fifth rows show true class frequencies.
The predicted-matched rate is the proportion of correctness of a
predicted class among all true classes in the same prediction. For
example, the predicted-matched rate of hypothyroid is 250/
389 = 0.643. Total accuracy is the percentage of correctly classifies
cases.

Comparing these two tables, most predicted performance
indices are better than the baseline. The average number of tests
2 In most cases, the selection starts from expensive and powerful tests. In some

cases, an inexpensive test is preferred in the beginning depending on the known

information before taking any tests.
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and total cost of baseline are 4 and 53.81 (Table 3). In this dataset,
we force the algorithm to give at least one test to all patients to
improve prediction. On average, ODPF uses 1.07 tests and the total
cost is 23.37 (cost savings 56.6%), both of which are significantly
better than the baseline.

4.3. Application of the ODPF method in predicting future risk of

disease and adverse events

To determine whether ODPF can be extended to applications of
diagnostic tests for prognosis and risk stratification, we performed
an analysis of diabetes and hepatitis datasets.

Tables 5 and 6 show the aggregated results of all strata for the
diabetes and hepatitis datasets. For the purpose of demonstration,
we use [0.75, 0.1] and [0.75, 0.08] as treatment and no-test
thresholds for diabetes and hepatitis datasets, respectively. The
first column of all tables shows all functions including speed-based
methods and cost-based methods, and the following columns are
accuracy, sensitivity, specificity, area under the ROC curve (AUC),
cost, and average number of tests.

Standard is the baseline classifier that was trained with all
features. Only the hepatitis dataset has missing values. Missing
values are imputed using the class-conditional mean of a feature.
Average tests and costs are computed based on tests and costs
actually used and spent. Thus, the average number of tests in the
rt system for cost-effective diagnosis. Artif Intell Med (2010),
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Table 4
Total confusion matrix of ODPF (minimum uncertainty). The treatment and no-test thresholds for both hyperthyroid and hypothyroid are [0.85, 0.02]. + or � indicates that

ODPF is significant better or worse than baseline, respectively (a= 5%).

Predicted class

Hypothyroid Hyperthyroid Normal Matched rate

True class Hypothyroid 352 99 14 0.7570+

Hyperthyroid 78 818 59 0.8565+

Normal 136 108 17,196 0.9860�

Predicted matched rate 0.622� 0.798+ 0.996+

Total accuracy: 0.974+; cost: 23.37 (56.6%+ saving); average number of tests: 1.07+

Table 3
Confusion matrix of the baseline.

Predicted class

Hypothyroid Hyperthyroid Normal Matched rate

True class Hypothyroid 250 200 15 0.538

Hyperthyroid 54 681 220 0.713

Normal 85 108 17,247 0.989

Predicted matched rate 0.643 0.689 0.987

Total accuracy: 0.964; cost: 53.81 (0% saving); average number of tests: 4

Table 5
Diabetes summary. The treatment and no-test threshold is [0.75, 0.1]. + or � indicates that ODPF is significant better or worse than baseline, respectively (a= 5%).

Functions Accuracy Sensitivity Specificity AUC Cost (save%) Average tests

Standard 0.735 0.721 0.743 0.828 38.29 (0) 2

ProbContr 0.735 0.728+ 0.739� 0.827� 27.80 (27.4)+ 1.474+

minUC 0.735 0.727+ 0.739� 0.827� 27.81 (27.4)+ 1.474+

expUC 0.735 0.724 0.741� 0.827 30.04 (21.5)+ 1.578+

expIWUC 0.735 0.722 0.742� 0.827� 29.97 (21.7)+ 1.576+

ProbContr_Cost 0.735 0.728+ 0.738� 0.827� 27.82 (27.3)+ 1.475+

minUC_Cost 0.735 0.728+ 0.738� 0.827� 27.76 (27.5)+ 1.472+

expUC_Cost 0.734� 0.722 0.741� 0.827 29.98 (21.7)+ 1.576+

expIWUC_Cost 0.734� 0.722 0.741� 0.828 30.00 (21.7)+ 1.577+

Table 6
Hepatitis summary. The treatment and no-test threshold is [0.75, 0.08]. + or � indicates that ODPF is significant better or worse than baseline, respectively (a= 5%).

Functions Accuracy Sensitivity Specificity AUC Cost (save%) Average tests

Standard 0.819 0.744 0.839 0.863 24.78 (0) 4.213

ProbContr 0.817 0.675� 0.854+ 0.857 16.37 (33.9)+ 2.688+

minUC 0.817 0.675� 0.854+ 0.856 15.96 (35.6)+ 2.622+

expUC 0.819 0.700� 0.850+ 0.859 15.94 (35.7)+ 2.635+

expIWUC 0.830+ 0.744 0.852+ 0.859 14.05 (43.3)+ 2.394+

ProbContr_Cost 0.817 0.675� 0.854+ 0.857 16.35 (34.0)+ 2.689+

minUC_Cost 0.817 0.675� 0.854+ 0.855 15.90 (35.9)+ 2.628+

expUC_Cost 0.819 0.700� 0.850+ 0.858 15.98 (35.5)+ 2.645+

expIWUC_Cost 0.830+ 0.744 0.852+ 0.859 14.06 (43.3)+ 2.395+
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baseline of hepatitis is not an integer (4.213, see Table 6). We do
not know the order of tests used in this database. When taking
group discount into account, there may be more than one set of
costs for a patient, and we take the minimum one for the baseline.

Although only two tests are involved in diagnosing diabetes, not
all of them all required. All functions can reduce test cost from
21.5% to 27.5% while using an average number of tests ranging
from 1.472 to 1.578. Most accuracies are close to baseline, while
cost and average number of tests are all significantly better with
the ODPF method compared to baseline.

AUC can be improved because of the feature selection, but AUC
can also degrade significantly due to early diagnosis. AUC is
computed from predicted probabilities and corresponding labels of
patients in all strata. However, treatment (or no-test) thresholds
may stop us from improving probabilities. For example, consistent
test results usually can further improve predicted probability, but
ODPF stops further testing when the current probability is confident
Please cite this article in press as: Chi C-L, et al. A decision suppo
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enough. Therefore, the limitation of improving predicted probability
can degrade AUC, especially when the threshold is not high.

The hepatitis dataset includes many missing values. Although
both baseline and ODPF are trained and tested with the same
dataset, the uses of the dataset are not exactly equal for two
reasons. First, missing values influence the test selection method.
In order to train an SVM classifier, we impute missing data. The
dataset for the baseline is fully imputed in the training and testing
data. In ODPF, we still can impute missing values for training data
and update C based on the rule as described in Section 3.6.
However, for the query case, we do not impute missing values for
the query. Instead, we avoid selecting tests with missing values. In
other words, the selection of a test with strong potential to pass the
threshold can be prohibited because the test feature value is
missing in the query case.

Second, missing values influence the reporting of performance.
A test with a missing value for a query case will be moved to the
rt system for cost-effective diagnosis. Artif Intell Med (2010),
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end of the test sequence, and it is marked as N/A because we do not
use it. Such a query case will be either early diagnosis or needing
more tests than those available. Most cases are in the first
situation, and a few of them are in the second. The performance
indices of the second situation are reported based on the last test
without a missing value. These query cases are forced to attain a
diagnosis on account of running out of tests with recorded values.
In other words, their diagnoses are not ready but have to be made.
The above two reasons may degrade the performance of all
functions slightly.

Table 6 shows that specificity, number of tests, and cost savings
of all functions of the hepatitis dataset are significantly better than
the baseline. In this experiment, both expIWUC and cost-based
expIWUC have the highest diagnostic performance and the largest
cost reduction among all functions.

Previous results suggest that either sensitivity or specificity can
be higher in ODPF. The either-or relationship can be adjusted by
tuning g (see Algorithm 1) or the balance of positive to negative
classes based on diseases.

5. Conclusion

This paper presents a novel expert-system construction
technique, the ODPF algorithm, which can speed up diagnosis
and reduce cost without loss of diagnostic performance (or
sometimes, with better performance). Based on our results, cost
and the number of diagnostic tests are significantly reduced while
predicted performance indices are close to or better than the
baseline.

The ODPF algorithm builds upon existing diagnostic methods,
such as probability revision and the use of probability thresholds.
ODPF allows diagnosis to be more individualized, i.e., individual
test sequence construction, the selection of the next test based on
pretest probability, the potential effect of the next test, and lazy
learning methods.

Three elements work together in ODPF: lazy learning, confident
diagnosis, and LSFS. Lazy learners are adapted based on patient
results; thus, the predictive models become more individualized
when more test results are known. Confident diagnosis determines
whether or not to diagnose based on a probability threshold. LSFS
is the mechanism for selecting the best test sequence that is most
likely to approach the threshold. It can eliminate the need for many
tests, as further tests may be unnecessary once the probability of
disease crosses the selected threshold. Our method requires
sufficient confidence in making a diagnosis before deciding to
forgo any diagnostic tests. The total process relies on probabilities
of disease before and after taking each test. The choice of the most
promising test also relies on examining a range of probabilities
associated with possible test results. Thus, one can ‘‘guess’’ the
most promising test based on a range of predicted post-test
probabilities. In highly uncertain cases, the patient may still
receive all tests when no single test is sufficiently powerful to
exceed the threshold probability for diagnosis.

ODPF is an ML-based expert system which can avoid the
bottleneck of knowledge elicitation. The algorithm can learn
clinical knowledge directly from a given dataset with minimum
human input. The only knowledge required is the cost of each
test, probability thresholds, and the multiplier g for lazy
learning. A suitable g may result in improvement of both cost
and diagnostic performance. An appropriate treatment (or no-
test) threshold can help to identify the best trade-off between
cost and diagnostic accuracy.

Limitations of this study are described below. First, all patients
in the heart disease dataset received three non-invasive cardiac
tests and complete clinical and ECG data were collected for these
patients. As not all patients in clinical practice would be expected
Please cite this article in press as: Chi C-L, et al. A decision suppo
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to receive a comprehensive battery of non-invasive tests, the
projected reduction in number of diagnostic tests ordered (and the
associated costs) attributable to use of the ODPF algorithm may be
optimistic. In fact, this limitation applies to most datasets in our
analysis (except for the hepatitis dataset). Second, we did not
evaluate the recommended sequences of diagnostic tests selected
by the ODPF algorithm to determine whether these test sequences
would be clinically acceptable to practicing physicians. To address
this issue, one may set appropriate constraints (identified by
clinician experts) to create viable test sequences in clinical
practice. Third, the source dataset includes patients who were
referred to a single center for diagnostic evaluation, and it is
unclear how the ODPF algorithm would perform in an unselected,
contemporaneous samples of patients with suspected CAD or
thyroid disease.

In practice, a physician may need to obtain more tests to
confirm diagnosis when the post-test probability marginally
crosses the threshold. ODPF can also assist the decision of
identifying the most effective or cost-effective test by using an
appropriate LSFS function. We acknowledge that ODPF is designed
to identify the minimum number of diagnostic tests needed to
exceed a pre-determined probability threshold, but that other non-
probabilistic considerations (e.g., the consequences of incorrect
diagnosis, clinician regret) tend to determine whether additional
testing is pursued in practice.

ODPF is a decision-support tool that shows disease probabilities
and actively identifies the minimum set of tests most likely to
confirm a diagnosis. ODPF needs input from users in several ways.
Thresholds are the decision cut-points for ODPF and have to be
determined based on the real-world situation. When no confident
diagnosis can be made (i.e., no disease probability cross a
threshold), physicians need to make the final diagnosis based on
the final probability estimate. Human input can also be incorpo-
rated in the form of a manual override of the test choice, including
rules that lead the test selection. For example, a certain test might
be required under certain conditions.

Most datasets in this study have binary outcomes. Clinical
practice, however, is often more complex. For example, a patient
who presents with chest pain may have one of several possible
diseases (e.g, myocardial infarction, pulmonary embolism, chest
wall pain, etc.). Our future work aims to apply ODPF in more
complex clinical settings, especially in the emergency department
where the speed of diagnosis is of critical importance. Sometimes,
a physician may order several tests simultaneously instead of one
test at a time. Prediction of the contribution of genetic tests is a
very interesting problem since these tests are expensive, and we
can apply this algorithm to determine if one needs genetic tests
and which tests. We will also evaluate different search methods to
find the most promising group of diagnostic tests. One possibility is
to use the minimum entropy function as an objective. This more
general choice would reward tests that increase the ‘‘spread’’ of the
posterior probabilities in general, as opposed to focusing on the
most promising classes, as our uncertainty measures do.

In this project, we used a ‘‘0/1 function’’ to update instance
weights; the training instances either match the query or they do
not. We chose this function because we aimed to demonstrate the
feasibility of using the lazy learning strategy to improve prediction.
Alternatively, one could use a distance measure to compute
instance weights, which would obviate the need to discretize
continuous values. In future work, we plan to integrate a distance
measure, possibly together with expert knowledge on the
importance of individual tests, into the instance-weight mecha-
nism. In addition, we plan to explore incorporating instance
weights into the probability contribution function, or computing
the posterior expectation given the known information of the
query case in the expected uncertainty function.
rt system for cost-effective diagnosis. Artif Intell Med (2010),
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