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Abstract. Detection, segmentation, and classification of spe- Detection and segmentation of an object does not mean
cific objects are the key building blocks of a computer vi- its identification. Many applications of image analysis re-
sion system for image analysis. This paper presents a unifiequire an object to be classified. For example, Dubuissah
model-based approach to these three tasks. It is based on ustroduced an algorithm to extract the contours of five types
ing unsupervised learning to find a set of templates specifiof moving vehicles (Dubuisson et al. 1996). They found
to the objects being outlined by the user. The templates arand segmented the vehicle contours using deformable tem-
formed by averaging the shapes that belong to a particulaplates, and classified the vehicle of interest by the class of
cluster, and are used to guide a probabilistic search througthe matched template. In this and other studies, segmenta-
the space of possible objects. The main difference from pretion is used to get shape information. We extend this idea to
viously reported methods is the use of on-line learning, idealise classification results to improve detection and segmen-
for highly repetitive tasks. This results in faster and moretation. A current trend in automatic object segmentation and
accurate object detection, as system performance improvedassification is the use of model-based methods to describe
with continued use. Further, the information gained throughexpected shapes (Duta et al. 1999). In this paper, we pro-
clustering and user feedback is used to classify the objectpose a model-based method for combining the three tasks of
for problems in which shape is relevant to the classification.automatic object detection, segmentation and classification.
The effectiveness of the resulting system is demonstrated on These three problems have been addressed with machine
two applications: a medical diagnosis task using cytologicalearning methods as a means for improving knowledge used
images and a vehicle recognition task. in the imaging process, and thus for producing more robust
software (Beymer and Poggio 1996; Draper 1997; Maloof et
Key words: detection, segmentation, incremental cluster-al. 1998). The main drawbacks of applied machine learning
ing, classification, unsupervised learning for these tasks are the need a large number of the training
set and the difficulty learning new patterns after the initial
training. Therefore, instead of gathering the entire data set
and re-learning it every time new data are collected, it is
more desirable to learn incrementally, based on examples
1 Introduction provided by the user while she is solving the problem. The
proposed system uses an on-line learning method ideal for
Three central tasks in image analysis are the detection, sedghly repetitive tasks such as morphological analysis of cy-
mentation, and classification of objects from given images!ological and histological images, in which many cells or cell
Detection of the location of objects of interest and segmenhuclei must be precisely outlined in many different images,
tation of their borders are the first steps of many imageand the shapes of the individual cells vary widely from one
analysis tasks, especially for quantitative analysis of objectssample to the next (Lee and Street 2000a). However, our
For instance, in medical images, the detection and segmer@pproach is not limited to medical domains. By using a very
tation of cells, organs, etc. play important roles in diagnosisgeneral shape model, our system can learn to segment and
and prognosis. Unfortunately, even with the aid of imageclassify a wide variety of objects. This versatility is demon-
analysis software, traditional manual analysis is tedious an@trated with a vehicle recognition task.
time consuming, especially in cases where a large number of The remainder of the paper is organized as follows. Sec-
objects must be specified. Thus the development of highlytion 2 reviews the background algorithms: the generalized
efficient and robust techniques to automatically and quicklyHough transform (GHT) and snake. Section 3 describes our
detect objects and segment their exact borders is an imposhape model and an uncertainty region. Section 4 describes
tant goal. the proposed system, including the learning of templates.
Experimental results in Section 5 show that the quality of
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segmentation produced using the proposed algorithm is com
parable to an exhaustive template search, and the comput
tion time is significantly reduced. Conclusions and future
work are presented in Section 6.

, Initialize a global accumulator G
for s = Min_Size to Max_Size

for & = 0 to 360 step r

2 Background .
Hough transform(s,8) with a local accumulator L

2.1 Platform: Xoyt for each pixel point (z,y) in L
The Xcyt program (Mangasarian et al. 1995; Wolberg et al.
1994) is a graphical computer program for diagnosing breast
cancer and predicting the course of the disease. It perform
analysis of cytological features based on a digital scan of Glz,y) = L(=,y)
a breast fine-needle aspirate, diagnosis of the image as b
nign or malignant along with an estimated probability of
malignancy, and a prediction of when the cancer is likely toaigorithm 1. Iterative GHT
recur for cancerous samples. The program has proven highly

effective in clinical practice, correctly diagnosing 97.6% of

new cases since 1993 and providing accurate and individuagippear_ We therefore determine that the image contains an
ized prognosis without Iymph node information (Street Zoqoiobject with the shape at templafe, centered on the peak
Wolberg et al. 1999). In this paper, we propose a Ie""m'”@looint at accumulator... In the IGHT, a global accumulator
algorithm to perform the morphological analysis of the Xcyt i gesigned whose every point has the highest value of all ac-
program, then extend our approach to more general shapesymuylators at that location. After performing GHT with each
successive template to fill the local accumulator, it compares
) ) each point in the local accumulator with the corresponding
2.2 Object Detection: GHT point in the global accumulator and stores the larger value.
) Still, the major problem of GHTSs, as with other template
The proposed system uses the Generalized Hough Trangnatching approaches, is the need to predefine templates to
form (GHT) (Ballard 1981) to detect the locations of objects represent shapes. If precise segmentation is necessary and
in an image. GHT is an extension of the Hough transformine gpjects’ shapes vary, many templates are needed, re-
(HT) (Hough 1962), a standard template matching algorithmyiring significant search time. To overcome this drawback,
for detecting complex patterns in images. To perform GHT,the proposed system clusters shapes and averages them as
each template is built as a displacement veatoof 6 inthe 5 prototype of the cluster (we use the terms “template” and
look-up table in advance, requiring the user to know exactly«prototype” interchangeably). In order to reduce the loss of
what shape will be encountered. Further, when the scale angecyracy due to reduction of time and space complexity,
orientation of an input shape are variant and unknown inye incorporate flexible templates using uncertainty concepts
advance, brute force is usually employed to enumerate alii ee and Street 2000c).
possible scalesS) and orientations®) of the input shape in
the GHT process. This adds two dimensions to the param-
eter space, thus requiring a 4D accumulatorg k(.S ©). 2.3 Segmentation: Shakes
This dramatically increases the execution time and leads to
sparsity in the accumulator, making the selection of stronglo segment the exact boundaries of objects, the proposed
matches more difficult. system uses an adaptive spline curve-fitting technique known
There have been several proposals to reduce the huges a snake (Kass et al. 1988). Snakes use an energy min-
memory storage capacity and computational time requiredmizing spline guided by external constraint forces and in-
for GHT (Kassim et al. 1999). An iterative approach to fluenced by image forces that pull it toward features such
GHT (IGHT) was proposed to eliminate the extra stor- as lines and edges. Snakes have been successful in perform-
age dimensions by finding the template that best approxing tasks such as edge detection, corner detection, motion
imates the shape of each object (see AlgoritA®) (Lee  tracking, and stereo matching.
and Street 1999). Assume that an image includes an ob- In the first application, the model is a closed curve that is
ject with unknown shape and that there are templatesattracted to strong edges in the image, and forms an arc in the
{T1,T»,T3,---,T;}, one of which closely approximates the absence of such edge information. The snakes are initialized
shape. We generatg accumulators{A;, Ay, As,---, A;}, using the results of IGHT that searches for ellipses of various
by performing the GHT with thg templates. When the im- sizes. Previous work (Lee and Street 1999; Street 2000) has
age includes a feature that closely matches the template, ttehown that the Xcyt system isolates the cell nuclei very
accumulator contains a peak value. Although every accumuwell using the combination of IGHT and snakes. The user
lator includes its own peak value, the sizes of the values arean then edit the resulting outline by dragging the boundary
different. If T, is the most closely approximated template, points to their desired location. The user may also remove
the highest peak point should appearA4gp. In other accu- an incorrect boundary, or draw a boundary on an undetected
mulators, widely distributed and comparatively low values object by hand, using the mouse to initialize the snake points.

if L(z,y) > G(,y),

)

" Find peak values in G
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From the perspective of the learning method, this processubstituting the reference point @. Furthermore it is in-
creates a collection of positive examples of the shapes thatariant to translation through the use of an object-centered
this user would like to find and outline. coordinate system and to reflection through the use of the
reflected shape. Since each representation can be rotated,
scaled, and reflected, objects with the same shape but differ-
3 Modeling shapes ent sizes, orientations, and reflection can be modeled with
one template. However, due to the lack of the internal in-
In order to utilize or to extract the shape information of ob- formation, we limit ourselves to topologically simple shapes
jects in an image, a suitable method for representing shapé“a"th no holes, no multiple points at each angle, and no center
is needed. In order to use the shapes as input data of a learRUtside.
ing system, they must be positioned consistently on each of
the training examples such that a particular point always
represents that same part of the shape on each example. 3.2 Cluster and uncertainty region
Many different shape models have been proposed.
Among the numerous shape models that have been used iret a shapev = (v;),=1...,- A given set of N shapes,
learning approaches, the following are well known: momenty = {v!v?...v¥} will be partitioned intok clusters
invariants (Khotanzad and Hong 1990), a landmark-based P1,P?,...,P7} such that shapes within the same cluster
model (Ansari and Delp 1990), contour using critical ver- have a high degree of similarity, while shapes belonging to
tices (Mitzias and Mertzios 1994), an augmented weightediifferent clusters have a high degree of dissimilarity. Each
model attributed relational graph (Suganthan et al. 1997)0f these clusters is represented by a prototYBé)Czl”'j_
and snakes (Tabb et al. 1999). The proposed system learsipposeN. is the number of shapes in the clustelGiven
templates used in the look-up table of IGHT. Thus we needhe set of\. shapes in the clustey, the algorithm finds the
to find an appropriate shape model for incorporation intocentroid of clusters or the prototype® by averaging the
the IGHT look-up table. For example, those points shouldnormalized shapes that belong to the particular cluster,

be represented by the relationship with
oo (2VON - (2w
AN )N S

whereve is a shape included in the cluster

In order to model a shape we use a statistical shape model To measure the spread of a set of data around the center
generated from a training set dfi object descriptions O©f the data in the cluster, we use the standard deviatign (
(v¥)¥=1N_ An object descriptiony*, is simply a labeled A deviation is defined here as any distance from the average

set ofn points ¢F);=1...... of a distribution, the standard deviation is a measure of the
We adopt the centroid-radii model to represent the shapavidth of a distribution equal to the square root of the average

by a set of pointss(,) in polar coordinates (Gupta et al. ©Of the squared deviations. The standard deviatiot’6fin

1990; Chang et al. 1991; Lee and Street 2000b). Assuméhe clusterc, is defined as:

that OA is an arbitrary radius of the shape. In our algorithm,

pe =

<

3.1 Centroid-radii model

starting from OA and moving clockwise, we divide the circle o e So(ve —ve)?
into n equal arcs to place points around the boundary, with o(P9) =o(V) = N,
the regular interval bein@ degrees. So the shape can be
represented as a vector: (1)
V= (7”0“7'02;"'77"9") = M
N
wherery,, 1 < ¢ < n, is thei-th radius from the centroid i=1n

to the boundary of the shape afid= (2%9) i. The reflected

shape can be represented as: n Note that here the denomonator in (1)N&. Some re-

searchers us®,. — 1 instead ofV,... The use ofV,.—1 comes
V= (1o, ,To, 1y Toy)- from a data set where onlyy. — 1 data points are indepen-

The three representations in Fig. 1 ((b), (c) and (d)) ShOWdent. However in our shape learning all of our data, shapes,

how this model can facilitate multiresolution repres:entation.are independent and so we usg. For large samples

This model assumesis larger than 2. We wish to use only 1 1

as many points as necessary to adequately model the shape. N_1°N-

For example, the breast cancer cells for the first application N N

use 24 radii and the vehicles for the second application use Using the standard deviation, the uncertainty regian) (

36 radii. of the prototypeP¢ is calculated (Lee and Street 2000c):
In our system, shapes should be represented by the IGHT _ _ _ _ _

look-up table as a means to associate a displacement vectdf (P<) = ur(v®) = (v* £ mo (V%)) = (v;° £ mo (v:))i=1...n

r with_ a value of6. In additiqn to being an easy repre- 5nq the degree of the uncertainty is

sentation to understand and implement, this model can be

transformed ta, an element of the IGHT look-up table, by lur (V)| = 2mao (V©).
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Fig. 1. Shape representation

reference pixel is selected as an edge pixel. The results of
preprocessing steps are shown in Fig. 4.

4.2 Initializing templates

Initialization of the templates can proceed in one of two
X points at the same position on the template ways, depending on whetharpriori knowledge about the
¢ average pomt shapes is available. In the first application, the objects in
Fig. 2. (a) Spatter of points fr(_)m an aligned set of a templates (b) Flexiblequestion are human cell nuclei, which are more or less el-
template with uncertainty regions liptical in shape. Therefore we can initialize a set of elliptical
templates with different shapes. Since the algorithm is in-
variant to size, orientation and reflection, only one template
with each shape is created. The initial templates are created
gutomatically but could easily be drawn by the user. In the
second application, we assume no knowledge of the shapes,
so the initial templates are created by the user outlining the
first few objects with a mouse.

where, for our experiments, we used= 2.

Figure 2(a) shows the scattering of points in a cluster. It
can be seen that some of the points show little deviation ove
the training set, while others form a more diffuse collection.
Fig. 2(b) shows a flexible template containing uncertainty
areas, instead of just edges.

4 Description of the system 4.3 Detecting and segmenting objects

Figure 3 shows a flowchart of the proposed system. The sysEOr object detection, we use the IGHT algorithm which in-
tem consists of four parts: detecting, segmenting, clusteringorporates a flexible template with an averaged shape and an
and classifying. While these four parts are performed repeatincertainty region to an iterative approach by voting in ev-

edly, the system learns and gathers knowledge of shapes t/g8Y Position in the uncertainty region (Lee and Street 2000c).
user wants to find. Suppose thatfi, f,) is a flexible point in an uncertainty re-

gion and is a relative x-y coordinate from the point on the

template by traslating the polar coordinate. When each edge
4.1 Preprocessing images point in the image votes for the positions that could cor-

respond tory of the particular template, the corresponding

A preprocessing step is first applied to a given image. Thdlexible points vote proportionally to the certainty of the flex-

preprocessing first smoothes the intensity values across tHB!€ Points. We define the certainty of the flexible point to

image to diminish spurious effects that can be present i€ templates as:

a digital image as a result of a poor sampling. We use a D

median filtering algorithm with a % 3 median filter. The C(fz, fy) = max(l - ur(\7)|’0>’

Sobel edge detector is then used to detect steep gray-scale

gradients and determine their direction. The Sobel detecwhereC(f,, f,) is between 0 and 1 arld is the Euclidean

tor produces the approximate absolute gradient magnituddistance between the point on the template and the flexible
at each point in an input gray-scale image, and thus intropoint in the uncertainty region.

duces weighted incrementing of the accumulator in GHT.  The algorithm proceeds as follows. Given an image and
Then, edge thinning is performed, which locates the locala set of templates, a global accumulator:G/) is initialized.
maxima of the gradient magnitudes. This reduces the numFor each scaleS) and orientation ®) of each template, a
ber of edge components so that further analysis is facilitatedocal accumulator L, y) is initialized, and the IGHT algo-
The reference pixel is compared to a neighborhood of adjarithm shown in Algorithm 2 is performed for every edge
cent pixels located in vertical, horizontal and two different point (z., y.) in the image.

diagonal directions. When the value of the reference pixel During the clustering of shapes in the training set, the
is greater than or equal that of the neighborhood pixels, thalgorithm defines an uncertainty region on an average shape.



K.-M. Lee, W.N. Street: Model-based detection, segmentation and classification for image analysis using on-line shape learning

Set of Images Class Labels

Preprocessing
Set of Templates
lSEGMENTING . CLASSIFYING

[ Segmented Objects} [Objects Classifications}

Fig. 3. Flowchart of the automatic system

-_—

Fig. 4. Preprocessing

Using this information, the proposed algorithm updates firstchoose to search only for objects with a particular classifi-
an average point and then the corresponding flexible pointscation. This is discussed in Section 4.5.

For each new image, IGHT is performed using the exist- A snake is then initialized for each object using the tem-
ing set of templates. After IGHT, the highest values in theplate points and runs to convergence. After an object has
global accumulator are found to define the location of anbeen correctly outlined by a snake, this segmented shape is
object and the shape of the templat¢hat closely matches considered to be best-matched with the template
the object. When a high peak point is selected, it is usually
located the top of a plateau. Thus the neighbors of the peak
point are also high values. These high-valued neighbors max.4 Clustering shapes
be selected as high peak points in the next selection, result-
ing in the selection of templates for one object. In order toA shapev is considered similar to anotharif and only if v
avoid this situation, the appropriate templatés overlaid  andu differ by no more than a small value, Formally, the
onto the image at the appropriate rotation angle and the aredifference between two shapes can be defined as follows:
of the global accumulator that is included in the template _
is eliminated. This process is repeated until a user-defined dp(v,u) = [lv —ul,
number of objects has been located, or until the match scoreghere|-||, is, e.g., the Manhattap€1), Euclidean=2), or
degrade below an adjustable threshold. max (p=0o) norm. In our experiments, we use the Manhattan

Although we are trying to match templates to objects,norm. In other words, two shapes are considered similar if
there is no object that perfectly matches the templates.

Therefore, plateaus sometimes occr near the center of @(V.u) = > |v; —u;| <e @
poorly matched object. These plateaus cause difficulty in h d . diir¥ and Y in th
choosing the highest peak point. When a plateau appeary/1€révi andu; %re _p0|r|1ts (or radiiy} %r_]ﬁ ri)int er:wo
we choose the center of the plateau as the highest value. Tsdﬁa_pes. _To avoid simple orientation differences, the com-
achieve this, peak sharpening is performed as preproces@a/ison is performed at 16 different rotations, and the final
ing for the peak finding step. This peak sharpening proces Istance |s_def|ned to be t'he minimum of these distances.
increases the value at the center of the plateaus. h_e similarity thresholde, is set empirically and can be
An important aspect of the proposed method is the us@dlul\ited by tSIe user. q vsi v in sianal and
of probabilistic search to guide the order in which template, Many problems in data analysis, especially in signal an
matches are attempted. As the images are processed, the p{B123€ Processing, require the unsupervised grouping of data
gram records the number of times each template has matchd@i© @ Set of clusters or regions. The structural relationships
an object. This allows us to search first for the object shape etween individual data points have to be detected in an

that were most common in previous images. By searchin%nsupewised fashion. Fig. 5 shows the clustering process
first for the objects that we are most likely to find, we sig- raphically. In our on-line shape learning, we use a modified

nificantly reduce the expected time required, since not al ifference by considering uncertainty regions. The difference

templates will appear in every image. A user might alsoagt}’gﬁgc\/: new shapeand a templater can be calculated
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for each radius r;, 1 < ¢ < n, of the template
Compute a voted position (z},y;)
(@}, y) = (Te,Ye) + (Sricos(© + 6;), Sr;sin(© + 6;)), where 6; is 322 x

Update the value in the local accumulator L by:

L(zl,ul) = L(z}, 4}) + |g(ze, ve)|, where g(ze, ye) is the gradient value at the edge point
for each flexible point (fs,, fy;). 1 <1 < F;, where F; is the number of flexible points at the
radius r;

Compute a voted position, (zf,yy), of the flexible point:

($f,yf) = (a:lmy;) + (fivz’fyl)

Update the position in the local accumulator:

L(zs,y7) = L(zs,y5) + C(fa), fyr) X |8(Te, ve)

Algorithm 2. Iterative GHT using flexible templates

d(v,u) = Z_si |v; — Shapes segmented
5 = 2loi —uif  Accept
b ur@)l =

Average template

) e

If u; is in the uncertainty region af, s; is between O to 1 and  'nitial template
the distance is scaled down. df is out of the uncertainty
region of v, s; is larger than 1, increasing the measured
distance. If there are several similar templates, the template
with the minimum difference is selected.

If the shapeu is most similar to the template and the
distance is less thae u is added to the cluster of shapes
represented by that template and the template updated
usingu, to make a new templaté,

_ Nv+u
CON+1T
The standard deviation of the new templatg,is:

o) =/ MV 0

wherew = o2(V) + (V' — V)2. problem of isolating cell nuclei from heterogeneous tissue

If the new shape is not similar to any templates, a neWfor dissection and genetic analysis. Such tissue may contain

template is created with the new shape and the number df°t d|scTaseId and lhealthy C%”S n (tjhe sar“e s_ampltf.IHovx-
clustersk, is increased. Thus, after training on a collection EVE€r: molecular analysis may depend on collecting a “clean

of shapes, each template represents a cluster of shapes gpgmple of all diseased or all healthy cells for comparison
are nearby one another in the shape space. purposes. Further, the user should not be expected to wait

for the system to locate objects that are not desired for the

particular experiment.

4.5 Classifying objects Cellular morphometry is often used to diagnose diseases
such as cancer. For instance, the Xcyt system was originally

The ability to classify objects in an image plays an importantdesigned to diagnose breast tissue as benign or malignant

role in the projected applications of this system. Consider thébased on derived nuclear features such as area, perimeter,

N

New template

—

Fig. 5. The clustering of shapes
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Fig. 6. Classification of the breast cancer nuclei. The cells in each row belong to the same class: Benign, Malignant, and Undefined

Table 1. Benign/Malignant counts for various template scales and shapes

o Al templates
Scale 10 1.2 1.4 16 18 20 22 24 26
Shape N P e e e 10
[ - ) { } £ E
T1 4/0 10/1 19/4 0/0 0/24 0/5 0/0 0/0 0/0 . -t s PR el

T2 4/0 29/0 19/18 0/0 0/12 0/8 0/0 0/2 0/2
T3 6/1 28/8 5/16 0/0 0/8 0/2 0/0 0/0 0/0 - mMisT 1 T4 1 TIE4) 1 TH(E) | TR(19)
T4 0/3 0/4 0/1 0/0 0/1 0/0 0/0 0/0 0/0

T5 3/8 0/6 0/0 1/71  0/0 0/0 0/0 0/0 0/0 . -

OO C AR O
and smoothness (Wolberg et al..1994). We thereforetake th | 1som | @ | woe 4 19m | Tiom
approach that size and shape information already gathere
in the clusters may be able to solve classification problems ok | cancel

The classification method proceeds as follows. As 0b- gz iy 1
jects are isolated by the user, they may be given a clas
label. This requires a training phase in which an expert use
is available. A count is maintained of the number of objects
from each class that are represented in each c_Iuster. The?ﬁ‘stances, for example T3 with size 1.6, or has the same
counts are stored based on the scale facto_r; for_ instance, Taumber of instances for multiple classes, for example T5
ble 1 shows the sqales and counts for the first five tgmplateﬁlith size 1.6, we consider the object to be “Undefined”.
in Fig. 7 for experiment 1. There are two numbers in achagier 4 few training images in our experiments, the “Unde-
entry: the first one is the number of benign cells matchinggineq” class happens rarely.
the template, and the second one is the number of malignant
cells.

As the training proceeds, the system is able to classify5
new objects based on the majority class of the matching
template. We saved counts by shape, size and the corre-
sponding class. As table 1 shows, size is a more important”
factor than shape for cell classification. However, it is very . L .
flexible depending on the application. This simple instance-The algorithm was tested on cytological images from fine-
based learning scheme further improves the speed of the€edle biopsies of breast masses, the same images used to
detection algorithm in cases where only a particular class of@n the original Xcyt systerh.The images are gray-scaled
object is desired. For instance, if a user wants only malignantVith 640x480 pixel spatial resolution. These images are
cells, the template search procedure will order the template§lassified as benign or malignant on a per-sample basis; no
based on the probability of malignancy, rather than on theclassification is available for individual cell nuclei. There-

raw count of matched cells. Templates that match mosﬂ)jore in these results we consider all nuclei in benign images
benign cells will not be used until later in the search, event©® be benign and all nuclei in malignant images to be malig-
if their shapes were more common in previous images. nant. This assumption is reasonable but not entirely accurate,

Figure 6 shows examples of cell segmentation and clas=7 - Some of these images are available at
sification. The fifth cell in the second row is segmented by ;- qoi | ar . bi z. ui owa. edu/ pub/ st r eet / i mages/ .
T2 with size 1.8 and so is classified as a malignant cell acThis version of the Xcyt system can be found at

cording to Table 1. If the matching template has no trainecdhtt p: // dol | ar. bi z. ui owa. edu/ “street/ xcyt/ xcyt. ht m

F::'ig. 7. Learned set of cell templates

Experimental results

1 Cytological images
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2
@ 107 1 g’ ]
g |
[=%
5 S
9] 7 @
Qo Qo
E g
z p4
—— All trained templates —— All trained templates
—©— Majority templates —©— Majority templates
—7— Benign templates —&— Malighant templates
100 L L 1 Il Il Il Il Il Il 100 L L L L L 1 I I I
1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19
Number of trained images Number of trained images

Fig. 8. Number of templates searched

Table 2. Inter-cluster distance between templates of all nuclei that might be encountered. The learning system
T1 T2 T3 T4 7T5 T6 T7 T8 T9 T10 builds a set of templates as it is used; the curve labelled “All

T1 0 2036 346 5576 70.07 4157 4357 546 493 515 (trained templates” shows the numbeY.j of these trained

T2 0 226 39.68 54.28 49.59 52.27 60.53 59.61 53.55 Shapes in Fig. 7 at all possible scales. After an initial ramp-

T3 0 2352 3596 6526 66.95 70.93 73.87 56.75 ING Up period, these numbers grow very slowly at a level
T4 0 2626 8533 8857 88.29 93.84 769 Aapproximately an order of magnitude below the original set
TS 0 96 1012 98.85 104.67 9044 Of templates.

T6 0 38.44 26.79 36.96 37.83 The curve labelled “Majority templates” shows the re-
T7 0 3579 3503 5084 Sult of searching the templates in order of their frequency
T8 0 3585 37.83 in previous images. After sorting the set of templates de-
To 0 52 55 pending on the search method, we applied 5 templates at

once. Whenever the result degrades, next 5 templates are
used. The search is stopped when a result equivalent in seg-
Table 3 Intra-cluster distance between a template and shapes in its corremantation accuracy to searching all the learned templates
sponding cluster is reached. This results in a 50% reduction in the number
TL T2 T3 T4 T5 T6 T7 T8 T9 TIi0 of necessary templates. Finally, the templates were ordered
17.67 20 2122 16 29 25098 2561 24.38 17.12 27.42 based on their classification, e.g., templates with the highest
probability of being benign were searched first on the be-
nign test image. This reduces the necessary search time, in-
dicating that the instance-based classification method is able
to classification noise. In particular, images from malignantto distinguish reasonably wel_l.be'gweer.] nu_clel types, even
; o . though the ground truth classifications in this problem were
samples almost certainly contain some benign cells. xtremely noisy. This bodes well for future applications on

t Flgtur_e .7 sh%vs_ the exanT1pIe Ste.t oftter;:plates ConSttrUCte(Eeterogeneous tissue in which a trained expert will be avail-
atter training Images. 10 estimaté how compact antyp, s for the training phase. In addition, the user can reduce
well §eparated the (_:Iusters are, we calculate_:d two distanc arch time even further, by choosing specific templates or
(Davies and Bouldin 1979): inter-cluster distance amongy, ohoosing a preferred size.

templates (Table 2) and intra-cluster distance between a tem- Segmentation performance was measured as follows

plate and objects in the corresponding cluster (Table 3). MOStyo test images (one benign, Fig. 9(a), and one malignant,
templates are well clustered, having a Iarger.mter—cluster d'.SFig. 9(b)) were set aside and used for segmenting and classi-
tances fr'om any cher templatgs than the intra-cluster dis ing automatically with all trained templates after training

tance. Since the inter-cluster distance (26.26) between T very image. We used two measures to evaluate the perfor-

and T5 is smaller than the intra-distance T5 (29), T5 is clus- ; . P P
tered so loosely that some objects in T5 are is difficult tomance of the algorithm: sensitivity and predictive accuracy.

Sensitivity is the likelihood that a nucleus will be detected
separate from T4.

. S when it has been marked by an expert. Predictive accuracy
The system was trained on a sequence of training image

alternating between benign and malignant. Fig. 8 shows th?s defined as the likelihood that a template match is actually

'S NGssociated with a nucleus segmented by an expert. A well-
number of templates that hf.id to be_ searche_d ona I09’"’mthm'gegmented nucleus is declared when the segmented shape is
scale. The search was carried out in four different ways. Th

L . . isually similar to the exact nucleus boundary. Thus, a well-
or|g|nal IGHT algqut_hm was performed with a constant, pre- segmented nucleus is assumed to have a shape accuracy of
Qeflned set of elllptllcal templates. These vary S|gnn‘.|cantlyvery close to 100%. Fig. 10 (a) and (b) shows that as the
in size and shape in an attempt to capture the basic shape

making the classification problem particularly difficult due
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Fig. 9. Test images (reduced by 50%) segmented using all trained templates after training 20 images
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Fig. 10. Segmentation performance: Sensitivity and predictive accuracy for experiment 1

system is trained on more images, its ability to Correct|yTabIe4. Confusion matrix for well-segmented cells on 10 test images

segment the cells in the test images increases. In short, after Predicted Class

a brief training phase, the new system has comparable acCtfrue Class Benign  Malignant

racy to the original system, and achieves this performancgenign 175 26

in an order of magnitude less time per image. _ Malignant 28 90
We tested 10 more images, 5 benign and 5 malignant;

with templates obtained after training 20 images. Since it

is typically required to segment a few dozen cells for diag- i o »

nosis and prognosis, we use the predictive accuracy of th&fter a few images, the classification rate stabilizes at 88%

segmentation method on the first 50 outlined nuclei (in thefor the benign image and 65% for the malignant image.

case of the benign images) or at 80% sensitivity (in the case 1able 4 shows the counts for well-segmented cells us-

of the malignant images). For 408 more cells in the 10 im-IN9 the Table 1 templates obtained from 20 training images.

5 malignant images, with all trained templates, we achievedd€s, we achieved 83.07% as an average classification cor-

78.19% (319 cells) as an average segmentation correctned§ctness: 87.06% in the 201 benign cells and 76.27% in
80.4% in the benign images and 74.68% in the malignanth® 118 malignant cells. Another measurement of classifica-

images. tion performance is the ROC curve showing sensitivity and

Classification accuracy was also measured on the two testPecificity. Sensitivity is the probability that a nucleus will
images (Fig. 9) as the training preceded. Fig. 11 shows thadpe correctly classified as malignant, and specificity is the
as the system is trained on more and more images, its abilitffaction of those without the disease correctly identified as

to correctly classify the nuclei in the test images increasesPenign. Fig. 12 shows that as the system is trained on more
images, its ability to correctly classify cells in the 10 test im-
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1 . .

Figure 14 shows the segmentation results from 15 test
= " images. The outlines of the vehicles were accurately iden-
208l -, ] tified and 13 of the 15 vehicles were correctly classified.
@ L The fourth middle image was mistaken for a station wagon,
& because the contrast along the front side of the van is sharp
So.6f ] and it forms a corner. The fifth bottom image was classified
§ gl K as a van because the template matched the shadow at the
i el bottom of the station wagon instead of the edge along the
Qo041 1 bottom body of the van. The bottom row of Fig. 14 shows
G K P4 our system has reflection invariance.
go'z ," f"f = After training 20 images | | 6C lusi df K
= 1 ,f’ - - - After training 16 images onclusions and future wor

MSRe ‘== After training 10 images . .
ol w w w w This paper presents a model-based system to aid the detec-
0 0.2 0.4 0.6 0.8 1 ; ; P ; ;
tion, segmentation and classification of objects being out-

False-Positive Fraction (1-Specificity) . .
lined. The system can automatically or manually extract the

Fig. _1_2._C|assificatic_)n performance on 10 test images: Sensitivity and 1‘shape of objects in the given images. The system demon-
specificity for experiment 1 . . .
strates dramatic improvements in the time needed to perform
template-matching when compared to exhaustive search,
ithout sacrificing the quality of the result. The system can
e initialized on-line, removing the requirement for a pre-
defined set of templates. Finally, our results show that the
Fize and shape features are sufficient for accurate object clas-
sification. The system provides useful user interfaces: selec-
tion of a specific prototype for classification, selection of a
size factor, etc.
o This paper also introduces an incremental learning
5.2 ehicle images scheme for large-scale image analysis tasks. The extracted
shapes are clustered by our on-line learning algorithm. The
The goal of this experiment is to extend the domain ofprototype of a cluster is calculated by averaging shapes in
the proposed system. The system for finding vehicles washe cluster. This learning approach was chosen for its sim-
trained on 25 color images. These images are classified gdicity and extensibility. Its primary function in this phase is
automobile, military tank, pickup track, van, and station to guide the template search. However, it is certainly plausi-
wagon, and each class has 5 training images. ble that future applications will require other features, such
Figure 13 shows the set of vehicle templates, startingas chromaticity and second-order size and shape features,
with no knowledge of the shapes. After training 25 images,to classify the objects sufficiently well. These features can
there are two templates for tank (templates 2 and 3), pickumlso be collected and stored for each cluster. At that point, a
trucks (4 and 5) and station wagons (7 and 8). Since therenore sophisticated classification method such as an artificial
were no heterogeneous templates, classification is unambigumeural network, could be added to include these features in
ous for all detected objects. the classification.

ages increases. The area under the curve (AUC) estimates
the ability to correctly classify malignant cells from benign

cells (Bradley 1997). AUC after training 20 images (0.7618)
is larger than that after training 10 images (0.5006) and tha
after training 16 images (0.6852).
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Fig. 14. Segmentation and classification of vehicle image
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