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Abstract e To find k-nearest neighbors of a new instance,
should original feature space or classifier space be
Combining multiple classifiers (ensemble of classi- used?

fiers) to make predictions for new instances has shown . . . .
to outperform a single classifier. As opposed to us- © IS using class probability estimates better than just
ing the same ensemble for all data instances, recent classifiers’ predictions to find similar instances?

2 new ensembie s chosen from a pool of classiers * 13 SaSSiiers: performance on the vaidaion i
specifically for every new data instance. We propose '
a system for dynamic class prediction based on a new e Should all of the classifiers in the pool be used for
distance measure to evaluate the distance among data computing similarity between instances? If not,
instances. We first map data instances into a space de-  which criteria should be considered to eliminate
fined by the class probability estimates from a pool of certain classifiers?

two-class classifiers. We dynamically pick classifiers ]

(features) to be used and thenearest neighbors of a ¢ After neighbors are found, should we use them to
new instance by minimizing the distance between the ~ form an ensemble or to make a prediction?
neighbors and that instance in a two-step framework.

: -~ In Section 2, we summarize the earlier studies re-
Results of our experiments show that our measure is _ . ' s !
effective for findin% similar instances and our frame- garding ensemble of classifiers. In Sections 3 and 4, the

: P general structure of the system and its running time are
work helps making more accurate predictions. explained. In Sections 5 and 6, we explain proposed
Keywords: Classification, Dynamic Ensembles, Con- and baseline distance measures. We carry out sev-
fidence, Probability Estimates, Distance Measures, keral experiments to evaluate performance of our frame-
NN. work. The results are presented in Section 7. Finally,

Section 8 concludes the paper.

1 Introduction ) )

2 Literature Review
An ensemble of classifiers consists of a set of trained ) )
classifiers whose individual decisions are combined td=Ensembles have received great attention over the past
classify new instances. Most existing methods coniwo decades because averaging errors of multiple pre-
struct static ensembles, in which only one ensemble iglictors increases overall accuracy. Ensemble gener-
chosen from the pool and used for all new instancesation methods can use sampling to create different
Recently, there have been studies in which each newraining sets, use different training parameters for the
data instance is treated individually. Since different in-learning algorithm, or employ different learning al-
stances are often associated with different classificagorithms on the same training set to generate a di-
tion difficulties, it is hypothesized that using different verse set of classifiers (as there is no point in hav-
classifiers for the classification task rather than a singléng the same classifier multiple times). Some well-
static ensemble of classifiers can improve performance&nown algorithms for creating ensembles inclugig-
In this study, we propose a method to make dynami@ing (Breiman (1996))Boosting(Freund & Schapire
predictions to address the following questions: (1996)), Random Subspace Meth@do (1998)), and
: _ _ _ StackingWolpert (1992)). Recentlypverproduce and
Copyright ©2014, Austrgllan CompL_thr Society, Inc. This paper @®hoose strategyin which a large initial pool of can-
peared at the Australasian Data Mining Conference (AusDNI}0qigate classifiers is produced and then a classifier or
Brisbane, 27-28 November 2014. Conferences in ResearchPtd a subset of classifiers is selected, has been adopted in

tice in Information Technology (CRPIT), Vol. 158, Richi Nak; Xue - . . Lo
Li, Lin Liu, Kok-Leong Ong, Yanchang Zhao, Paul Kennedy, ERe- several studies (Didaci & Giacinto (2004), Dos Santos

production for academic, not-for-profit purposes perrdigeovided this €t @l. (2008), Giacinto & Roli (2001), Ko et al. (2008),
text is included. Woods et al. (1997), Zhang et al. (2006)).




Several factors contribute to the generalization abil-However, in KNORA-Union method classifiers that
ity of an ensemble. The first is the accuracy of the baseorrectly classify at least one of the neighbors are
classifiers. It is easy to verify that constructing an en-added to the ensemble and each classifier submits a
semble with the most accurate classifiers will result invote for each neighbor it classifies correctly to predict
good generalization error. However, since the classithe new instance. Following this approach, Cavalin
fiers require uncorrelated errors for the ensemble to bet al. adopt a hybrid framework and employ the confi-
effective, diversity among them is also important. In dence measure defined by Dos Santos et al. (2008) to
other words, combining accurate and diverse classifierbuild the ensembles. However, when the confidence
may boost the performance of an ensemble if they havealue is not enough, Cavalin et al. search for the “clos-
uncorrelated errors (Tumer & Ghosh (1996)). Mean-est” or “most similar” instance to the new instance in
while, posterior class probability estimates returned bythe validation set and assign its label to the new in-
classifiers have also been considered. For exampletance. Similarity measures are defined based on as-
confidence measures based on ensembles’ vote margéigned class labels. We agree that similarity should be
is proposed by Dos Santos et al. (2008) to improve thdased on base classifiers’ outputs as we will not gain
quality of their solutions or to be used as an input tomuch by using the same information (same feature set)
a meta classifier in Stacking (Menahem et al. (2009)used to train the classifiers. However, using predictions
Ting & Witten (1997)). of the classifiers alone will not provide enough infor-

Earlier studies regarding this dynamic scheme fo-mation to accurately define similarity between points.
cus on selecting a classifier based on different featureShe KNORA method (Ko et al. (2008)) has been im-
or different regions of the instances, depending on theroved by Vriesmann et al. (2012). To specify the local
similarities among them (Didaci et al. (2005), Didaci & region of a new data point, Vriesmann et al. investigate
Giacinto (2004), Giacinto & Roli (2001), Woods et al. the effects of using a different distance measure on ac-
(1997)). In dynamiclassifierselection, a single pre- curacy and conclude that the choice of distance mea-
dictor is chosen based on its likelihood to correctly pre-sure has no effect on the performance of KNORA. Fur-
dict the test pattern (Didaci et al. (2005)). For example thermore, different strategies for combining the infor-
dynamic classifier selection approaches based on estination obtained fronk neighbors of the new instance
mating local competence in selection regions definedand the output of KNORA are adopted. Based on the
by k-nearest neighbors, also known as thélearest experimental results, Vriesmann et al. suggest that ad-
Neighbor ¢&-NN) methodhave been proposed by Di- ditional information provided by thé-NN improves
daci et al. (2005), Didaci & Giacinto (2004), Giacinto the performance of KNORA.

& Roli (2001), Woods et al. (1997). However, unlike With KNORA, Ko et al. indicate that using neigh-
the k-NN algorithm, which uses the prediction values bor information of a new data point even for construct-
from k instances that are “closest” or “most similar” to ing an ensemble can prove useful. However, it has been
the new data instance, the prediction of the most comshown that using neighbors of a new data instance not
petent classifier in the region is used to make the decijust for constructing the ensemble but in fusion with
sion. that ensemble’s decision for that instance enhances the

Similar to the static classifier selection methods, theperformance (Cavalin et al. (2010), Vriesmann et al.
drawback of dynamic classifier selection methods is(2012)). In particular, Vriesmann et al. find the neigh-
that the choice of a single individual classifier over thebors of a new data instance based on the original fea-
rest depends on how much we trust in that classifier'dure space that is also used to train classifiers in the
performance. If that classifier makes an incorrect decipool. This indeed duplicates the information at hand
sion, we will not be able to correct that decision. There-and increases the performance of the system to a cer-
fore, a dynamic ensemble selection approach has bedrin point. Cavalin et al. address this issue by defining
proposed by later studies (Dos Santos et al. (2008)he similarity between instances based on classifiers’
Ko et al. (2008), Cavalin et al. (2010)). These stud-prediction on the validation and new data instances.
ies focus on dynamic ensemble selection rather than Blowever, classifiers’ probability estimates are more
single classifier selection to overcome this drawbackinformative compared to using the predictions alone.
Dos Santos et al. populate a set of candidate ensembl&is is because they provide information on not only
from a large initial pool of candidate classifiers, thenwhether the classifier assigns the same labels to these
choose an ensemble from that set for each new datmstances, but also how confidentit is with its decisions.
instance based on candidate ensembles’ confidence on
this instance. Dos Santos et al. define confidence ?.% p dF K
a measure of the ensemble, based on vote margin, a roposed Framewor

gigulﬁaag/ gn%eg%g?;i%\,/_ el objective after optimizing rhe prediction probability returned by a classifier can

Ko et al. propose a method which, for each newbe considered as a measure of proximity of a data in-
data instance, finds its neardsheighbors in the val- Stance to the decision boundary. This measure can
idation set using the original feature set, and dynami2€ used to compare multiple instances and to decide
cally chooses an ensemble based on the estimated af/nether that particular classifier considers those data
curacy of the classifiers in this local region of the newNStances similar. Our proposed framework consists of
data instance. Two different versions of this method ardW© main steps: a static step and a dynamic step. We
proposed by Ko et al. (2008) in terms of how classifiers'lUStrate both steps as a flow chart in Figure 1.
are chosen to form an ensemble for the new instance; " the static step (on the left in Figure 1), we have
KNORA-Eliminate and KNORA-Union. KNORA- & pool of classifiers¢ = (', ..., Cy, of size N, and
Eliminate uses the classifiers that correctly classify evVeé Map data instances into a new space defined by

ery instance in the local region of the new instance the class probability estimates from each classifier for



a given class labef,. Since we consider two-class distance between a new instance and the validation in-
problems, the choice of class label does not change owstance.
results. Next, we find each new instancésearest The dynamic step is composed of two main parts:
neighbors in the validation s&t, of sizeM, using this (1) reducing the classifier space; and (2) finding riew
space. Thesg neighbors, denoted by the sgt, can  neighbors of a new instance. Since predictions for val-
be considered as the data instances that, on average, tigation instances ankneighbors of a new instance are
classifiers agree are similar to the new instance. Thislready found in the static step, the running time of re-
step is referred to as “static” because, for all new in-ducing the space consists of calculating the confidence
stances, we consider the output of Allclassifiers in  of classifiers on the neighbor®(k x N)) and find-
the pool. ing the most confidenk classifiers Q(E x N)). The

In the dynamic step of our framework (on the right running time of the rest of the dynamic step can be ana-
in Figure 1), we use the results from the static steplyzed in a similar manner to the static st€p(f x E)).
to select a subset of classifiefs, of size E < N,  The overall running time of the whole system is domi-
from the original pool,C, that are suitable for clas- nated by the running time of the static stepkas. M
sifying a given new instance. Reducing the size ofandE < N.
the space is important because the number of classi-
fiers in our framework is large and (dis)similarity be- line Di M
comes less meaningful as the feature space dimension- BSaseline Distance Measures
ality increases. Our selection method favors classifier? : . . . .
that have high confidence in their predictions for the!l this section, we consider three different distance

neighbors identified in the static step (i.e. classifiers forn€asures for our baseline: Euclidean Distance, Tem-
which the predictions are away from thes decision plate Matching, and Oracle-Based Template Matching.

boundary): Confidence of a classifier,, on k neigh- g/\(/)olg)f itg]?jﬁhrgfgggfs are proposed by Cavalin et al.

bors is calculated as follows:
Zle Pr(0;.,|1) 5.1 Euclidean Distance

k We first consider the Euclidean Distance (ED) between
two data instances,andj, which can be expressed as:

Confc, =

whereo; ,, represents the label assigned to instarime

classifierC,, and Pfo; ,|i) represents the probability 5 5

estimate returned by the classifier for the assigned class Yot (PigFy)

label. In other words, the confidence of a classifier on ED;; = - D

k neighbors is the average of probability estimates re- . .

turned for the decisions. Most confidehtclassifiers Gij.r, =Fa(i) — Fa(j)

are chosen to form the reduced space. Reducing the .

size of the classifier set in this manner avoids the unstahere a data set consists of the feature Bet=

ble behavior that may occur near the decision boundariﬁFdW = 1,..., D} and Fy(i) represents the value of

of some classifiers. eaturely for data instance.

Once the classifier subsé€t, is generated, the orig-

inal distance measure is reapplied to find a new set 06 2 Template Matching

neighbors)* for the new instance. This neighborhood .

is then used for the final classification of the instanceGiven a set of classifierl§ = {Cy,|n = 1,..., N},

the new instance is assigned to the class label mostemplate Matching (TM) considers the percentage of

common among it neighbors. classifiers, denoted by M; ;, that agree on the label
of test instanceé and validation instancg

4 Running Time Analysis N

TN, — 2on=1 Yiin
To analyze the running time of the system, we should 7 N
first evaluate the static and dynamic steps separately. 1, ifoin=0jn
The running time of the static step can be analyzed Yijn =930, otherwise.
in two parts: (1) forming the probability space; and ’
(2) finding & neighbors of a new instance. Forming whereo; ,, represents the label assigned to instajice
the probability space consists of getting pred|pt|onsby classifierC,, and; ;. represents whether classi-
for M validation instances froniV classifiers which fier C assigng the séﬁﬁ% label to instancesd j. It

takesO(M x N). This is a preprocessing step as : - P .
once thi(s space )is formed, it will remain same for all fOI!OWS thatthe_hlgheTMw, the more similar the pair
new data instances. Findiigneighbors requires get- ©f instancesi, j).

ting prediction for each new instance frow classi-

fiers (O(IV)), calculating distance between the new in-5.3  Oracle-Based Template Matching

stance and validation instance3((/ x N)), and fi- .

nally finding % instances that are closest to the new in-Oracle-based Template Matching (OTM) expands
stance Q(k x M)). Overall, the running time for this Upon TM by taking into account the correctness of clas-

static step i<0(M x N) which is for calculating the ~Sifiers on data instances. Specifically, when evaluating
the similarity of test instancéto validation instancg

For completeness, other selection methods are considegettion 7.7.
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Figure 1: An overview of the proposed framework: Static Stapthe left) and Dynamic Step (on the right)

using OTM, only those classifiers that correctly clas-i andj, denoted byPT M, ;, is calculated as the Eu-
sify j are considered. This measure is represented byglidean distance between them in this alternate feature

the quantityOT'M; ; as follows: space:
S Bison TN (o)’
OTMi,j ==~ PTMZ‘j _ n=1 \¥4,5,Cn
n=1 Aﬁ:j ’ N
ﬁ‘ ) N 1, if 0;,C,, = 0j,C, & 0j.Cc, = Iabey ¢z’,j,C,,, :PCn,i — PC,,,,j
43¢0 =00, otherwise. 3 _ .
_ where P, ; represents the probability estimate in the
- _J1, ifojc, = label; alternative feature space for data instanceSimilar
Vi 0, otherwise. to the ED, the pair of instanceg, j) with smallest

PTM; ; is considered to be most similar.
Similar to TM, a higher value a®T'M; ; indicates

greater similarity between instanceand;. 6.2 Probability-Based Template Matching with
Accuracy

6 Proposed Measures Probability-Based Template Matching with Accuracy

(PTMA) integrates the correctness of classifiers on val-

For our dynamic class prediction framework, we pro'hj]ation instancej. We focus on the probability esti-
pose two new distance measures: Probability-Basetes returned by the classifier for the correct class

Template Matching and Probability-Based Template|gpe| of the new and validation instances. This gives

Matching with Accuracy. These measures are dey foyr different cases as specified in the equation. To

scribed in detail below. avoid one case eliminating the effect of the other cases,
we re-scale all values to be betweeni].

6.1 Probability-Based Template Matching

Probability-Based Template Matching (PTM) maps
each data instance into an alternate feature space con-
structed by using the probability estimates of each clas-
sifier in the pool as the values of the features. As pre-
viously mentioned, for the two-class problems consid-
ered in this paper, the probability estimates are taken
with respect to a particular class label, and the choice
of label is arbitrary. The similarity between instances



Table 3: Summary of the data sets and classifiers

N 9 Data Set #Data Points  #Features  %Good Classifiers
Domeq (@ig.cn) ala 1605 119 100
PTMA,; ; =\| === australian 690 14 64.17
N diabetes 768 8 99.74
german 1000 24 100
2 |_PCn7i - Fc, |7 splice 1000 60 52.77
if 0i.c, = 0jc, = label; heart 269 13 59.44
1_P . p ) | liver disorder 345 6 79.46
| ) Chnyi Cn,j by sonar 208 60 54.04
_ if 0i,Cr, = 04,Cn #* |abelj breast cancer 683 10 97.14
i, Cn = p. . _p. ionosphere 351 34 88.75
| Cryi — LCh,j |7 mushrooms 8124 112 54.05
if 0; ¢ 0;c. = label; wla 2477 300 100
911 v P 7 P J rev 20242 47236 56.65
|1—Pe,i—Fe,,; |
if 0;,c, # 0j,c, 7 label;

. ) ) data. Each experiment was repeat®0 times, with
_ We llustrate how these measures differ with aeach run registering a unique seed value for the random
simple example. Tables 1 and 2 show, respectivelyhumber generator.
the assigned labels and the corresponding probabil- For each run, the data sets are randomly divided into
ity estimates for class labé| returned by classifiers three subsets such théi% of the instances is used to
Ciy.rs Cs. train classifiers20% is used for validation, and the re-
. . maining20% is used for testing. A pool afd00 classi-
Table 1: Assigned class labels by classifiers  fiers is then constructed for each data set using a com-
bination of bootstrap instance sampling (as in bagging)
G [ Ca [ Cn [ O | Co | Corfectiabe and random subspace selection on the training &et.
wml o |lnlelnlse I so doing, we ensure that the initial classifier pool is
vs | lo | I | | b | & Iy highly diverse. Finally, classifiers with an error rate
above50% are removed from the pool. The last col-
umn of Table 3 represents the percentage of the classi-

Table 2: Class probabilities (fér) by classifiers fiers with less thaBi0% error rate in the generated pool
of classifiers.
Ci [ [ Cs [ Ca | G, In the following sections, we first analyze the static
v1 8'33 gg; 8'33 8@2 8'32 step. In Section 7.2, we perform an experiment to set
v | 046 | 043 | 053 | 088 | 090 the value oft for baseline and proposed (dis)similarity

measures. Then, we compare the effectiveness of

._these measures to find the closksteighbors to make
We calculate the relevant measures for data inyhe predictions in Section 7.2. In Section 7.3, we

stances, va, vz below: investigate whether the classifier-based feature space
can improve th&KkNORAmethod results. In addition,
T My, v = 0.80, TMy,,0; =040 we choose the appropriate distance measure for the
OT My, v, = 1.00, OT My, »; = 0.66 KNORAbefore comparing it with the static step.
PTM,, ., = 0.83, PTM,, ,, =0.19 Once our comparison for the static step is done, we

turn our attention to the dynamic step. We first deter-
mine the optimal reduced space size in Section 7.4. In
Section 7.5, we examine the contribution of the dy-
namic step in our framework in addition to the static
step, while we compare the dynamic step against com-
mon benchmarks in Section 7.6. We then explore vari-
ous strategies in evaluating the dynamic step in Section

PTMA,, ,, =094, PTMA,, ,, =0.11

We conclude that; andv, are more similar than
v1 andws, according to both TM and OTM measures.
However,v; andvs are considered more similar in-
stances according to our PTM and PTMA measures

Therefore, considering only the assigned labels to de7 7. Finally, in Section 7.8, we compare the perfor-

termine similarity may lead to incorrect decisions. This mance of the dynamic step against that of the ensem-

is especially true for instances that are closer to the d oy
cision boundary of a classifier, as the classifier providee'?Ies formed by the classifiers for the reduced space.

less confidence in its prediction for those instances. _ _ _
7.1 Evaluation of Size of Neighborhood

7 Experimental Setup and Results The number of neighbors considered for each similar-
ity measure is crucial. As a preprocessing step, we per-
In our experiments, we usk3 data sets with varying form an experiment in whiclk is varied over the odd
numbers of features and data instances retrieved frormtegers froml to 25 to find the optimal value. In this
the LIBSVM website (Chang & Lin (2011)). A sum- step, for each run of a data set, we predict the valida-
mary of the data sets and the classifiers generated fdion instances using training instances and decide for
each is presented in Table 3. which &£ value maximum accuracy is obtained. Table
The programming code was written in MATLAB 4 shows the best value for each similarity measure,
and LIBSVM (Chang & Lin (2011)) was used to con- averaged over all of the runs. We find that the value of
struct RBF kernel SVM classifiers. The training pa- —; — 3
rameters were chosen such that classifiers overfit the Due to its size, onlyL 00 classifiers are generated for tfoy data set.




k is smaller for the OTM and PTMA measures. A pos-7.3 Comparisons againsKkNORA method
sible explanation is that these two measures take int . . . .
account the correctness of the decision associated Wit%ur proposed framework in Section 3 in both static and
the validation instances. Consequently, a small neighdynamic steps finds nearest neighbors of a new in-
borhood of validation instances is sufficient to correctly Stance. However, unlikéNORAinstead of using them
classify the new instance. to form an ensemble of classifiers it uses neighbors’ la-
bels to make predictions. In this section, we perform
. imilari experiments to compare our static step agdiNDRA
Table 4: Besk value for each similarity measure methods. In additiortKNORAuses Euclidean distance

Data Set T™ OTM ED  PTM  PTMA measure to find the neighbors of a new instance and the
ala 96 33 1424 908 1.42 choice of distance measure had no effect on the perfor-
australian 934 15 1214 1124 146 mance oKNORA(Vriesmann et al. (2012)). However,
breasicancer| 9.06 166 514 7.74  1.08 the measures considered by Vriesmann et al. (2012)
diabetes 11.14 3.22 13.34 12.3 2.66 b d findi di . h . |

german 1452 352 1408 1368 128 are based on finding distance in the original feature
heart 748 156 1332 7.06 186 space. We extend Vriesmann et al. (2012) to analyze
ionosphere | 9.64 216 284 934 112 the effectiveness 0KNORAIn classifier-based space
ver.disorder| 1002 2.2 902 1212 382 and find best distance measure ®KINORA methods
mushrooms 9.56 1 1 10.48 1 bef f h . . 8

rev 165 49 194 16 362 efore we perform the comparison against static step
sonar 594 112 186 826  1.22 of our framework.

splice 3.46 1.16  10.02 5.48 1

wla 1.34 1 2.2 1.34 1

7.3.1 Evaluating Similarity Measures for KNORA

KNORA-Eliminate and KNORA-Union are imple-

7.2 Evaluation of Different Distance Measures mented using the measures discussed in Sections 5 and

i i . 6: TM, OTM, ED, PTM, and PTMA. A pairwise t-
After the besk value is deter:m”’]ed.for each of the sim- test ate = 0.05 was performed to compare PTM and
ilarity measures presented in Section 5, we perform expTMA against other measures. Entries in tables 7 and 8
periments to assess the accuracy of these measuresrpresent the number of wins, ties, and losses, respec-
classifying new data instances. These experiments Usgely, of the proposed measures against the baseline
thek-NN algorithm to define the neighborhood for and measures (as well as PTMA against PTM) KiMORA
classify each new instance based on the validation inmethods for 13 datasets considered here KO RA-
stances deemed to be similar. Table 5 summarizes theliminate PTMA is always superior to the other mea-
results of these experiments: we report mean and staryres. However, PTM seems to be more suitable for
dard deviation of accuracy fror00 runs in parenthe-  smallerk values. PTM performs better than other mea-
ses, respectively. Entries highlighted in bold in the ta-syres fork NORA-Union Interestingly, PTMA per-
ble indicate the best accuracy achieved for that data S%rms Considerab'y worse Compared to others. As are-
From these results, it is clear that, on average, PTMAgy|t of this experiment, we can conclude thaN O R A
achieves better performance than the other measuresperforms well in a classifier based space especially

We also perform pairWise t-tests @% Significance with our proposed measures.
level) to compare the proposed distance measures with
the baseline measures, with the results tabulated ifaple 7: Pairwise t-test: comparison of (dis)similarity

Table 6. Entries are specified &8,,x2,23) which [neasures for KNORA-Eliminate
represents (wins,ties,losses) of the proposed methods

against the baseline measures ovet alflata sets. For BTV VS, PTMAVS.

example, when compared to the TM measure, the PTM& T™ O™ ED T™M O™ ED __ PIM
measure performs statistically significantly betterfor6 1 | 67.1) (634 @73)] (715 (53) (625 (634)
data sets and worse for 1 data set. For the rest of the? | 081 (142 (353 (724 (643 @14 619
data sets, the differences between two measures is no 25:5:5 27:3:3; Esieiz; E7:3:3; 27:3:5 Egjgjzg 2713:5
statistically significant. PTM, TMand ED usethesame 9 | (46,3) (643 (652)| (553) (823) (913 (7.51)
distance measure but in different spaces. As demon-11 | (436) (625 (7.42) (562) (7.33) (1012  (931)
strated by the pairwise t-test results for the PTM mea- 13 Ejgg; Eggg; gjg; Eggg; Eg‘g‘zg giﬂ; Eﬂﬁg
sure against the TM and ED measures, the use of the17 | 435 (17) (841) (652 (535 @1L11) (1111)
class probability space improves accuracy over eitheris | (445 (517 841 (751 (35 (11,1,1) (10,2,1)
the class prediction space or the original feature space,g; gé,ig Eigg 8,‘3&; 882,8; Eggg; Eﬁﬁ; Eﬁﬁ;
even without consideration of the classifiers’ accura- L o e i . o o
cies for the validation instances. Based on the resultg2> 274 (@36 641 (1030 (.24 (1111 1120
for the PTMA measure against the PTM measure, we

can conclude that integration of the classifier accuracy

into the distance measure further improves accuracy. 7.3.2  Static Step vskNORA

Table 6: Pairwise t-test results for dis/similarity mea- Since the size of an ensemble used to make predictions

sures for each new instance changes KINORAEIliminate
and -Union methods, we analyze the performance of
TM _ OTM ED PTM KNORAEIliminate and Union against th&tatic step
PTM [ (661 (823 (10,30) - of our framework. We explore wheth&rNN (Static
PTMA | (7.3.3) (553) (832) (634) Step) is better thakNORAafter neighbors are found

by using the proposed measures since the experiments



Table 5: Average accuracy and its standard deviation fdsicidlarity measures

Data Set ™ OTM ED PTM PTMA
ala (79.65,1.34) _ (76.18, 10.63) (78.92, 1.28)(81.11, 2.01) (77.54, 1.04)
australian (85.21,2.84)  (84.2,5.22)  (85.76,3.03) (85.54, 2.93(86.06, 2.70)
breastcancer | (96.26,2.43)  (96.03,4.64)  (96.13,1.67) (96.54, 1.49(96.82, 1.38)
diabetes (71.03,11.74)  (52.8,20.31)  (72.04,3.26) (74.15, 3.87)75.36, 2.50)
german (71.35,1.21)  (71.9,1.12)  (71.16,2.07)(72.72,1.79) (71.46, 0.92)
heart (81.96,5.16)  (82.97,4.76)  (80.68,5.36) (80.83, 5.56)83.08, 5.12)

ionosphere | (90.93,12.01) (82.48,22.58) (80.71,5.93)  (93.74, 2.79J94.04, 2.49)
liver_disorder | (69.14, 6.15)  (71.06,5.71) (58.09,5.71) (69.14,5.11)  (70.45, 4.09)

mushrooms | (99.75,0.09)  (99.67,0.08)  (98.56,0.05) (100, 0) (100, 0)

rev (86.77,16.49)  (55.51,17.08) (90.54,0.51)  (96.93, 0.38J97.04, 0.26)
sonar (83.16,5.84) (85.83,5.63) (72.15,7.73) (82.87,6.65) (77.42, 6.54)
splice (69.05,7.92)  (66.25,9.03)  (65.76, 3.82)(77.55, 4.84) (53.5, 0.96)
wila (97.18,0.27)  (92.91,0.14)  (97.19,0.43) (97.17,0.41) .X870.15)

Table 8: Pairwise t-test: comparison of (dis)similarity
measures for KNORA-Union

E PTM vs. PTMA vs.
E ~7\ 3 ™ OTM ED ™ OTM ED PTM
. 7 A 1 G.7.1) (634 (364 (715 (53 (7,15 (634
A i 3 | (7600 (652 (57.1) (265 (454) (256) (166)
: e 5 | (5800 (661 (57.1)| 247 (355 (265 (238)
4 7 (5,80 (481 (391) (247 (7.4 (265 (1,57)
g \ ~ 9 (5,800 (481) (66,1) (1,57 (1.84) (274 (1,57)
e E e 11 | (3,10,0) (4,6,3) (490) (247) (265 (256) (1,57)
— 13| 391 (562 (580)| (157 (L75 (256) (1,57)
P B 2 § W & & 45 ir 9@  H @& 15| (571 (481 (481)] (1,57) (175 (274) (157
Neighborhood Size, k 17| (39,1 (391 (57.1) (1,66) (1,75 (2.8,3) (1,57)
) 19 | (310,00 (481 (57.1) (1,75) (1.84) (2.8,3) (1,6,6)
PTMvsTM e PTMVEOTM PTMvsSED 21 (4,8,1) (4,8,1) (5’7’1) (1,8,4) (1,8,4) (2,5,6) (1,6,6)
23| (391) (292 (562) (1,75) (1,7.5) (256) (1,7.5)
2 25 | (31000 (1,11,1) (571} (1,93 (1,93 (274) (L75)
= 7 Table 9: Pairwise t-test: KNORA methods vs. static
/ step
g F
= .4 KNORA-E vs. KNORA-U vs.
E - = S/ k | PIMS__PTIMAS| PTM-S _PTMAS
3 < g e T [ @210  @G37] @210 @37
= \/,.»\ S 3 | (12100  (337)| (44  (346)
2 ~ 5 | (1L,1,11)  (319)] (644  (337)
N 0 7 | (0,2,11) (3.2.8)| (5,4,4) (3,4,6)
. " - 9 | (0,2,11) (3.1,9)| (5,3,5) (3,4,6)
Neighborhood Size, k 11 (0,1,12) (311!9) (4’4v5) (3’5v5)
—PTMAVSTM —PTMAVSOTM PTMAVSED PTMAVSPTM 13 (0'1’12) (3’1’9) (5’3'5) (3’3'7)
15| (0412  (229)| (445  (346)
17 | (0,1,12) (2,1,10)| (4,2,7) (3,4,6)
Figure 2: Comparisons of proposed measures against 19 | (0112)  (21,10) (427 (355
other dis/similarity measures for KNORA Eliminate o Egﬂg Egﬂgg Ejg;g ggg
25 | (0,1,12) (2,1,10)| (4,3,6) 3,3,7)

in Section 7.3.1 indicate th&NORAperforms better

with PTM and PTMA measures compared to ED, TM, 7.4 Evaluating Reduced Space Size in Dynamic
and OTM. Table 9 show the t-test performed to com- Step

pare KNORAand k-NN in classifier-based probabil- o )

ity space. Figure 4 illustrates the difference betweerlt was shown that the marginal improvementin the per-
the number of time&NORAoutperforms and under- formance of an ensemble diminishes for sizes beyond
performs against static step of our framework. For in-25 (Breiman (1996)). In this section, we validate and
stance, fork = 1 and distance measure PTM, static refine this assumption by investigating the effects of the
step of our framework outperformiORAEliminate  reduced space size on the performance of our frame-
for 10 datasets and under-performs fodataset. Fo ~ work. Experiments are run with for reduced space
datasets, there is a tie. So, for= 1 the Figure 4 shows sizes,E, in increments of over the range of0 to 50,

1 — 10 = —9. The results in Table 9 and in Figure 4 and the results are tabulated in Table 10. Overall, as
show that static step 4NN with PTM or PTMA—  shown in the table, the choice of the reduce space size
outperformKNORAEliminate and -Union with PTM  has minimal effect on the performance of the frame-
or PTMA. work. Therefore, for the experiments in Sections 7.5—

7.7, the size of the reduced space is ke@bat
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Figure 4: Comparison of Static Step with KNORA
methods

° A\ (termed PTM-S and PTMA-S). Further, an important
4 result is that PTMA-D performs at least as well as
: PTM-S and PTMA-S. However, PTM-D performs sig-

= = o nificantly worse than PTM-S and PTMA-S. When the
N\ = ek > classifiers for the reduced space are chosen, it is aimed

to find expert classifiers on the neighbor instances and

the results from this experiment clearly shows that ex-
pert classifiers can be identified by considering not just
the confidence but also the accuracy of the classifiers
on the neighbors which explains the change in the per-
formance of PTMA-D and PTM-D.

Figure 3: Comparisons of proposed measures against Taple 12: Pairwise t-test: dynamic vs. static steps
other dis/similarity measures for KNORA Union

Difference between # of wins and losses

Neighborhood Size, k

e PTM AVS TM PTMAvsOTM PTMAVSED PTMAVsPTM

L . . ED PTM-S PTMA-S
Table 10: Pairwise t-test: dynamic vs. static steps PTMD | 841 (1,84 (340
across reduced space siZe) ( PTMA-D | (1021) (634) (580)

PTM-D vs. PTMA-D vs.
E PTM-S PTMA-S | PTM-S PTMA-S )
0] 07.6) @370 | 644 (@63 7.6 Dynamic Step vs. Common Benchmarks
15 | (0,8,5) (3.3,7) | (5.4.4) (5,7,1) . .
20| (0,94) (346) | (634) (58,0) We also compared the performance obtained with our
52 8’2’3 gg% Eggg Eggg; framework against the common benchmarks. The
3| 274 (436 | 634 (580) baseline benchmarks considered here are:
P ((oo,fdfls)) ((j:‘;g; 5212123 Eg:g:g; e Use of the best classifier from s&t
0| 193 @54 | G44) (@90 e Use of the25 best-performing classifiers from set

C with majority voting

7.5 Comparison of Dynamic and Static Steps

This experiment is performed to evaluate the gain
achieved by having the dynamic step as part of ounn addition, we used “Modified Best Improvement” al-
framework. Even though the running time of our sys-gorithm to find the best ensemble of sizeover the
tem is dominated by the static step, for the dynamicyalidation set. Since it can be impractical to evaluate
_steptrt]he_nfelghb(t)_rhoodtqf a ge%/v msﬁnce;sfreﬁ{led tuséll (Y) possible ensembles, as required for the tradi-
ing the information retrieved from the static step to .. 9 » ; .
form the *Reduced Space” and a new set of neighborg e SCCrRICRac) 90T, et or
IS tound. ese cacuiations require some additionag;ge - sjots in the ensemble, each of tNe— £ unused
tlm$§tﬂzgtgfr;%§yféecmohpare the results from the stati lassifiers is, in turn, substituted into that slot, and the
and dynamic steps for both the PTM and PTMA dis- ccuracy of the ensemble is re-evaluated. The classifier
tance measures. In Table 11, we report mean and staffat Provides the best ensemble performance is perma-
dard deviation of accuracy from00 runs in paren- 1enty assigned to the slot, and the displaced classi-
theses, respectively. As observed in these two table%er Is returned to the pool of unused classifiers. This
the dyﬁamic step for the PTM and PTMA measuresP/OCESS is then repeated for the next classifier slot in
the ensemble until all slots have been processed. We
(hereafter referred to as PTM-D and PTMA-D, reSPeC herform an experiment in whicH is set t025 to find
E:vgly) consistently mf;tpegforms the SLat'C step f(cj)r therthe best ensemble on the validation set for a given data
ED Measire, even for daia sets uhere It inderpelt "Tabies 13 and 14 compare the performance of our
proposed measures against these benchmarks in terms

e Use of a single SVM classifier trained on all of the
training data.



Table 11: Average accuracy and its standard deviation istdtec and dynamic steps

Data Set ED PTM-S PTMA-S PTM-D PTMA-D
ala (78.92,1.28) (81.11,2.01) (7754, 1.04) (79.37,2.08) (79.69, 1.63)
australian (85.76,3.03) (85.54,2.93) (86.06,2.7) (85.43,2.79) (85.79, 2.81)
breastcancer | (96.13,1.67) (96.54, 1.49) (96.82,1.38) (96.63,1.49) (96.82, 1.37)

diabetes (72.04,3.26)  (74.15,3.87)  (75.36,2.5)  (74.39, 3.57{75.51, 2.58)
german (71.16,2.07) (72.72,1.79) (71.46,0.92) (71.65,1.87) (71.89, 1.26)
heart (80.68,5.36)  (80.83,5.56) (83.08,5.12) (80.33,5.45) (82.95, 4.92)

ionosphere | (80.71,5.93) (93.74,2.79)  (94.04, 2.49)(94.13, 2.64)  (94.13, 2.47)
liver_disorder | (58.09,5.71)  (69.14, 5.11) (70.45,4.09) (68.62,5.71) (70.49, 4.52)

mushrooms | (98.56,0.05) (100, 0) (100,0) (100, 0) (100, 0)
rev (90.54,0.51)  (96.93, 0.38) (97.04,0.26) (96.93,0.37) (97.03, 0.26)
sonar (72.15,7.7) (82.87,6.65) (77.42,6.5 (82.68,5.82) (80.77, 6.15)
splice (65.76,3.82) (77.55,4.84) (53.5,0.96) (75.85,4.06)  (55.22,1.2)
wila (97.19,0.43) (97.17,0.41) (97.13,0.15) (96.79, 0.58)97.19, 0.24)

of average accuracy and pairwise t-test results, respec-
tively. From these tables, we conclude that PTMA
outperforms all of the benchmarks. Even PTM, a ba-
sic distance measure in the probability space, performs
better than any of these benchmarks.

Table 14: Pairwise t-test: dynamic step vs. benchmark
methods

as the absolute difference between the probability
estimate returned by the classifier for the correct
class label and the 5 decision boundary.

e Minimum Distance (MinDist):
chooses classifiers that minimize the average dis-
tance between a test instance and its neighbors.

This strategy

Table 15: Pairwise t-test: dynamic vs. static steps un-

Best Classifier Best25 Single SVM  BestEns H i
TV 1200 742) ©23 @72 der different strategies

PTMA-D (12,1,0) (9.3.1) (83.2) (9.3.1) S S
Version PTM-S PTMA-S| PTM-S PTMA-S
LA 1,7,5) (4,4,5) (4,5,4) (2,6,5)
7.7 Evaluating Different Strategies for Dynamic i aeevar Eg:g:;g Eﬁ:;g ggf{; 8;3
Step LA+CI (0,6,7) (4,2,7) (2,6,5) (1,7,5)
MinDist 067 (427 | (355  (L7.5)

As described in the previous section, our proposed
framework takes into account the class prediction prob-
abilities assigned to the-nearest neighbors found in ¢

Table 15 lists the pairwise t-test results for each
. ~ these classifier selection strategies against the static
the static step to choose the classifiers whose outpul§ep of our framework. As observed in the table, none
will be used for generating the reduced probability 5 these strategies yield improved accuracy over the
space for the dynamic step. In this section, we investisiaic step. In contrast, the selection strategy discussed

gate different strategies for choosing a subset of classiy, section 7.5 does improve performance over the static

fiers from the original pool to be used in the dynamic

step when the PTMA measure is used. Intuitively, this

step. In addition to the selection strategy presented eafan pe understood because of the complementary na-
lier, five alternate strategies are also implemented:  tres of the classifier selection method, which favors

e Local Accuracy (LA): Classifiers which cor-
rectly classify at least one of tHeneighbors are
added toC’. If |C’| > 25, then we consider only
the 25 top-performing classifiers.

high levels of confidence, and the similarity measure,
which favorssimilar levels of confidence. Further,

while the PTM and PTMA measures achieve improved
performance by considering instance classification as
a continuous range of probabilities rather than as dis-

e LA +Accya: This strategy is similar to LA; crete labels-thereby being able to recognize the sim-
however, if|C'| < 25, additional classifiers are ilarity of two instances close to but on opposite sides
selected to reach a size2if. These classifiers are 0f the decision boundary—the area near the decision
chosen from the best-performing classifiers on theboundary still reflects uncertainty regarding the nature
validation instances that are not alreadyin of the new instance. Therefore, especially refining the

» ) static step with PTMA measure to favor high classifica-

e Conditional LA (C + LA): For this strategy, we tion confidence on the neighbors while still considering

only consider the classifiers with 50% accuracy  the full range of class label probabilities, as is done in

in the neighborhood. If there is no such classifierthe dynamic step, further improves the accuracy of our
found, then the label for a new instance is assignedramework. However, none of the strategies proposed
randomly. If there are more thalb classifiers, in this section removes the uncertainty associated with
then we consider more accurate classifiers in  the decision boundary, and therefore they do not offer
the region. improved performance.

e LA + Closeness (LA+ CI): If the total number ] o
of classifiers which correctly classify at least one 7.8 Dynamic Step vs. Classifiers in the Reduced
of the k neighbors is less thath, we also add the Space
classifiers which are close to making the correc

decision on the neighbors. Closeness is define he reduced space technique of our framework can be

considered a dynamic ensemble selection method. In-



Table 13: Average accuracy and its standard deviation factimark methods and dynamic step

Data Set Best Classifier Best 25 Single SVM Best Ens PTM-D PTMA-D
ala (75.50,2.33)  (78.06,1.05) (75.40,0.78) (77.11,1.10) .3792.08) (79.69,1.63)
australian (75.93, 6.64) (84.95,3.03) (82.07,2.94) (85.33,2.87) .4852.79) (85.79,2.81)
breastcancer | (94.80, 2.19) (96.45,1.40)  (95.80,1.40)  (96.50, 1.47) .6961.49) (96.82, 1.37)
diabetes (65.94, 2.05) (65.12,0.38)  (73.95,2.66)  (75.01,2.90) .3943.57) (75.51,2.58)
german (69.89, 0.6) (70.01,0.01)  (70.37,1.22)  (71.31,1.15) @311.87) (71.89,1.26)
heart (72.96, 6.76) (80.85,5.30)  (73.28,5.71)  (80.89,5.21) .3805.45) (82.95,4.92)

ionosphere | (91.80,3.63)  (93.27,3.03)  (92.19,3.09)  (93.21, 2.84j94.13, 2.64)  (94.13, 2.47)
liver_disorder | (63.03,6.25)  (64.22,3.86) (71.13,4.71) (68.57,4.28) (68.62,5.71)  (70.49, 4.52)

mushrooms | (99.76,0.62)  (99.97,0.51)  (99.99,0.01)  (99.99,0.01) (100, 0.0) (100, 0.0)
rev (95.17,1.61)  (97.03,0.26) (97.17,0.25) (97.05,0.24) (96.93,0.37)  (97.03, 0.26)
sonar (72.28,7.73)  (79.54,6.81)  (73.85,6.26)  (80.71, 6.5082.68, 5.82) (80.77, 6.15)
splice (55.37,3.61)  (56.68,1.44) (56.185,1.22) (56.83, 1.98(75.85, 4.06) (55.22, 1.22)
wila (97.10,0.18)  (97.11,0.12)  (97.16,0.25)  (97.13,0.16) .7960.58) (97.19,0.24)

stead of performing-NN in this reduced space, those
classifiers can be used to form an ensemble to mak
predictions on the new instance. We performed this ex
periment with several ensemble and neighborhood siz
values, & andk) respectively. As mentioned in Sec-
tion 7.7, we employed different strategies to choose the
classifiers to form the reduced space (i.e.dlgpamic
ensemble). Figures 5 - 8 are plotted based on the dif
ference between the number of wins and losses of dy
namic step of our framework against dynamic ensem
ble selection strategy for a givéh, E) pair.

Neighborhood Size, k

Reduced Space Size, E

7.8.1 Dynamic Step vsMax-ConfidenceEnsemble T I

Figures 5 and 6 summarize the comparison results be- ) ]

tween dynamic framework (with PTM/PTMA) against Figure 6: Comparison of Dynamic Step (PTMA-D)
classifiers chosen to form the reduced space per theggainst the ensemble formed using the classifiers in the
confidence on thé neighbors chosen in the static step. reduced space per MaxConf strategy

Figure 5 show that for PTM measure &f > 7 and

E > 11 our dynamic framework performs at least as )

well as using theE classifiers that form the reduced 7.8.2 Dynamic Step vs Local Accuracy Based Se-
space. According to Figure 6, Dynamic Framework is lection Methods

still better than the ensemble built by using the classi-

fiers that are chosen to form the reduced space bas ﬂwe local accuracy based classifier selection methods
on their high confidence on the neighbors of a tes?I atare used for reducing the space in the dynamic step

instance. Dynamic framework with PTMA does not of our framework performed similarly. We present re-

dominate the ensemble as strongly as PTM does but fU/ts for theLA method in Figures 7 and 8. PTM-D

almost always performs at least as well as the ensemQerforms worse or similar to dynamic ensemble gener-
ble ated based on local accuracy. However, PTMA-D per-

forms particularly better for smalldr values. Change
in ensemble size seems to have no effect in the perfor-
mance of PTMA-D.

Neighborhood Size, k

Neighborhood Size, k

1
103 5 7 9 m B 15 ¥ 18 W B B ¥ 9 N B B 3T W 4 &8 & &g 9

Reduced Space Size, E

B-12-8 W-8-4 W-40 m0-4 W4T

Figure 5: Comparison of Dynamic Step (PTM-D) — e
against the ensemble formed using the classifiers in th_
reduced space per MaxConf strategy

Figure 7: Comparison of Dynamic Step (PTM-D)
against the ensemble formed using the classifiers in the
reduced space per LA strategy



accordingly. Alternatively, we could instead consider
the probability for each class label of each classifier as
an orthogonal dimension of the probability space and
calculate the Euclidean distance in this space. How-
ever, this approach increases the size of the space by a
factor equal to the number of class labels, which makes
the distance between two instances less meaningful.

Neighborhood Size, k
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