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One of the key problems in database marketing is the identification and profiling of households that are most
likely to be interested in a particular product or service. Principal component analysis (PCA) of customer

background information followed by logistic regression analysis of response behavior is commonly used by
database marketers. In this paper, we propose a new approach that uses artificial neural networks (ANNs)
guided by genetic algorithms (GAs) to target households. We show that the resulting selection rule is more
accurate and more parsimonious than the PCA/logit rule when the manager has a clear decision criterion.
Under vague decision criteria, the new procedure loses its advantage in interpretability, but is still more accurate
than PCA/logit in targeting households.
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1. Introduction
Due to the growing interest in micromarketing, many
firms devote considerable resources to identifying
households that may be open to targeted marketing
messages. The availability of data warehouses com-
bining demographic, psychographic, and behavioral
information further encourages marketing managers
to use database-based approaches to develop and
implement marketing programs.

Database marketers use different tools, depending
on what is known about particular households (Winer
2001). Routine mailings to existing customers are typ-
ically based on a statistical analysis of the household
purchase history (DeSarbo and Ramaswamy 1994,
Schmittlein and Petersen 1994, Bult and Wansbeek
1995, Rao and Steckel 1995, Berger and Nasr 1998,
Gönül and Shi 1998, Reinartz and Kumar 2000). Mar-
keting consultants often implement the so-called RFM
(recency, frequency, monetary) approach, which tar-
gets households using summary measures computed
from the customer’s purchase history (Schmid and
Weber 1998, David Sheppard Associates, Inc. 1999).

Mailings to households with no prior relationship
with the firm are based on the analysis of the relation-
ship between demographics and the response to a test

mailing of a representative household sample (David
Sheppard Associates, Inc. 1999). Given the large num-
ber of potential demographics available, data dimen-
sion reduction is an important factor in building a
predictive model that is easy to interpret, cost effec-
tive, and generalizes well to unseen cases. Commonly,
principal component analysis (PCA) of demographic
information (Johnson and Wichern 1992) is used to
prepare new variables for this type of analysis. These
new variables are then used as predictors in a logistic
regression on the test mailing responses.

However, PCA has some drawbacks, in terms of
both predictive modeling and dimensionality reduc-
tion. PCA does not take into account the relationship
between the independent and dependent variables
in the process of data reduction. Further, the result-
ing principal components from PCA can be diffi-
cult to interpret when the space of input variables
is huge. Finally, constructing principal components
still requires collection of all the original predictive
variables.

In this study, we propose a new approach to
building predictive models for identifying prospective
households. The new methodology combines genetic
algorithms (GAs) to choose predictive demographic
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variables with artificial neural networks (ANNs)
to develop a model of consumer response. ANNs
(Riedmiller 1994, Sarle 1994) and GAs (Goldberg 1989,
Yang and Honavar 1998, Krishna and Murty 1999)
have been widely used in machine learning, pattern
recognition, image analysis, and data mining. In par-
ticular, ANNs have been recognized as a relatively
new approach in finance and marketing applications
such as stock market prediction (Saad et al. 1998,
Pan et al. 1997), bankruptcy prediction (Wilson and
Sharda 1994), customer clustering (Gath and Geva
1988, Ahalt et al. 1990), and market segmentation
(Hruschka and Natter 1999, Balakrishnan et al. 1996).
In this work, we exploit the desirable characteris-
tics of GAs and ANNs to achieve two principal
goals of household targeting: model interpretability
and predictive accuracy. Our approach is different
from previous studies on direct marketing because of
our consideration of multiple objectives (Ling and Li
1998) and data reduction (Bhattacharyya 2000).

Data reduction of demographic information is per-
formed via feature selection in our approach. Feature
selection is defined as the process of choosing a subset
of the original predictive variables by eliminating fea-
tures that are either redundant or possess little predic-
tive information. If we extract as much information as
possible from a given data set while using the small-
est number of features, not only can we save a great
amount of computing time and cost, but we can also
build a model that generalizes better to households
not included in the test mailing. Reducing the dimen-
sionality of the input space tends to reduce overfitting
in the predictive model, especially for highly flexible
models like ANNs, thereby improving generalization.
Feature selection can also significantly improve the
comprehensibility of the resulting classifier models. In
database marketing applications, it is important for
managers to understand the key drivers of consumer
response. Even a complicated model—such as a neu-
ral network—can be more easily understood if con-
structed from only a few variables.

In our work, a specifically designed GA, the Evo-
lutionary Local Selection Algorithm (ELSA), is used
to search through the possible combinations of fea-
tures (Menczer et al. 2000a, Kim et al. 2000). Two qual-
ity measurements—hit rate (which is maximized) and
complexity (which is minimized)—are used to evalu-
ate the quality of each feature subset. ELSA performs
a local search in the space of feature subsets by eval-
uating genetic individuals based on both their quality
measurements and on the number of similar indi-
viduals in the neighborhood in objective space. The
bias of ELSA toward diversity makes it ideal for mul-
tiobjective optimization, giving the decision maker

a clear picture of Pareto-optimal solutions from which
to choose.1

The approach to feature selection considered in
our study is somewhat different from previous re-
search based upon the ELSA algorithm. For example,
Menczer et al. (2000a) applied ELSA to select the fea-
ture subset that returns the highest classification accu-
racy over all records. However, in our study, we eval-
uate individuals based on their ability to rank records
based on the estimated probability of belonging to a
target class, and to select the feature subset that max-
imizes classification accuracy over a predetermined
number of records (say, the top 20% of records with
highest probability of membership in the target class).
Feature selection with ELSA in the current study is
also different from Kim et al. (2000), in which the
main goal is to find the feature subset for constructing
optimized clusters, not classification accuracy.

In our approach, the input features selected by
ELSA are used to train an artificial neural network
that predicts “buy” or “not buy.” Using informa-
tion from households with an observed response, the
ANN is able to learn the typical buying patterns of
customers in the data set. The trained ANN is tested
on an evaluation set, and a proposed model is evalu-
ated both on the hit rate and the complexity (number
of features) of the solution. This process is repeated
many times as the algorithm searches for a desir-
able balance between predictive accuracy and model
complexity. The result is a highly accurate predictive
model that uses only a subset of the original features,
thus simplifying the model and reducing the risk of
overfitting. Because the algorithm identifies variables
with no predictive value, it also provides useful infor-
mation on reducing future data collection costs.

This paper is organized as follows. In §2, we ex-
plain ELSA in detail. In §3, we describe the struc-
ture of the ELSA/ANN model, and review the feature
subset selection procedure. In §4, we present experi-
mental results of both the ELSA/ANN and PCA/logit
model algorithms. Using test-mailing responses on
insurance policies, we show that there is a trade-off
between model interpretability and predictive accu-
racy. In particular, we obtain both high model inter-
pretability and high predictive accuracy only when
the firm is specific about the way model forecasts
will be used to select households in future mail-
ings. In contrast, interpretability must be sacrificed
to preserve predictive accuracy when the firm is
vague about its selection rule. In §5, we discuss three
important issues: interpretability, time complexity,
and scalability of the ELSA/ANN approach. Section 6

1 Pareto-optimal solutions are a group of solutions that are supe-
rior to others in at least one objective quality. We define this more
formally in §2.3.



Kim et al.: Neural Network Approach Guided by Genetic Algorithms
266 Management Science 51(2), pp. 264–276, © 2005 INFORMS

concludes the paper and provides suggestions about
future research directions.

2. Evolutionary Local Selection
Algorithm (ELSA)

2.1. Local Selection
ELSA is a variation of evolutionary (or genetic) algo-
rithms, motivated by artificial life models of adap-
tive agents in ecological environments (Menczer and
Belew 1996). The point of departure between ELSA
and traditional GAs is the observation that reproduc-
tion and selection, like other processes of biological
organisms, are locally mediated by the environment
in which the agents are situated.

In a standard evolutionary algorithm, an individual
(that is, a candidate solution) is selected for reproduc-
tion based on how its fitness compares to that of other
individuals. In ELSA, an individual agent may die,
reproduce, or neither, based on an endogenous energy
level that fluctuates via interactions with the environ-
ment. The energy level is compared against constant
thresholds for reproduction and survival. An indi-
vidual’s energy is increased based on its fitness, and
decreased based on the number of agents with similar
fitness. This local selection scheme naturally enforces
the diversity of the population. It also makes ELSA
appropriate for multiobjective optimization problems,
as fitness can be measured—and energy allocated—
separately along each objective.

The following subsection briefly describes the ELSA
implementation for the feature selection problem.
A more extensive discussion of the algorithm and its
application to Pareto optimization problems can be
found elsewhere (Menczer et al. 2000a, b).

2.2. ELSA Algorithm Details
Figure 1 outlines the ELSA algorithm at a high level
of abstraction. The representation of an agent consists
of D bits, with each of the bits indicating whether the
corresponding feature is selected or not (1 if a feature
is selected, 0 otherwise). Each agent in the population
is first initialized with some random solution and an
initial reservoir of energy.

Mutation is the main operator used to explore the
search space. At each iteration an agent produces one
mutated clone to be evaluated. The clone is identical
to its parent except for one mutated bit (that is, one
feature either added or removed). The agent competes
for energy based on its multidimensional fitness and
the proximity of other agents in the solution space.

In each iteration of the algorithm, an agent explores
a candidate solution (the mutated clone). The agent
collects �E from the environment and is taxed with

Figure 1 ELSA Pseudocode

initialize population of agents, each with energy θ/2
while there are alive agents and for T iterations

for each energy source c
for each v (0 .. 1)

Ec
envt(v) ← 2vEc

tot
endfor

endfor
for each agent a

a′ ← mutate(clone(a))
for each energy source c

v ← Fitness(a′, c)
∆E ← min(v, Ec

envt(v))
Ec

envt(v) ← Ec
envt(v) − ∆E

Ea ← Ea + ∆E
endfor
Ea ← Ea − Ecost

if (Ea > θ)
insert a′ into population

Ea′ ← Ea/2
Ea ← Ea − Ea′

else if (Ea < 0)
remove a from population

endif
endfor

endwhile

Note. In each iteration, the environment is replenished and then each living
agent executes the main loop. In sequential implementations, the main loop
calls agents in random order to prevent sampling effects. We stop the algo-
rithm after T iterations.

a constant cost Ecost �Ecost < �� for this “action.” The
net energy intake of an agent is determined by its
fitness. This is a function of how well the candidate
solution performs with respect to the criteria being
optimized. However, the energy also depends on the
state of the environment. The environment corre-
sponds to the set of possible values for each of the cri-
teria being optimized.2 We imagine an energy source
for each criterion, divided into bins corresponding to
its values. So, for criterion fitness Fc and bin value
v, the environment keeps track of the energy Ecenvt�v�
corresponding to the value Fc = v. Further, the envi-
ronment keeps a count of the number of agents Pc�v�
having Fc = v. The energy corresponding to an action
(alternative solution) a for criterion Fc is given by

Fitness�a c�= Fc�a�

Pc�Fc�a��
� (1)

Candidate solutions receive energy only inasmuch
as the environment has sufficient resources; if these
are depleted, no benefits are available until the envi-
ronmental resources are replenished. Thus, an agent
is rewarded with energy for its high fitness values,
but also has an interest in finding unpopulated niches
in objective space, where more energy is available.

2 Continuous objective functions are discretized.
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The result is a natural bias toward diverse solutions
in the population.

In the selection part of the algorithm, each agent
compares its current energy level with a fixed thresh-
old �. If its energy is higher than �, the agent repro-
duces: The mutated clone that was just evaluated
becomes part of the population, with half of its par-
ent’s energy. When an agent runs out of energy, it is
killed.

Instead of being constant, the population size is
maintained dynamically over the iterations and is
determined by the carrying capacity of the environ-
ment, depending on the costs incurred by any action,
and on the replenishment of resources, both described
below (Menczer et al. 2000b). The population size is
also independent of the reproduction threshold, �,
which only affects the energy stored by the popula-
tion at steady state.

When the environment is replenished with energy,
each criterion c is allocated an equal share of energy:

Ectot =
pmaxEcost

C
 (2)

where C is the number of criteria considered. This
energy is apportioned in linear proportion to the val-
ues of each fitness criterion, so as to bias the popula-
tion toward more promising areas in objective space.
Note that the total replenishment energy that enters
the system at each iteration is pmax ·Ecost, which is inde-
pendent of the population size p, but proportional
to the parameter pmax. This way, we can maintain p
below pmax on average, because in each iteration the
total energy that leaves the system, p ·Ecost, cannot be
larger than the replenishment energy.

2.3. Feature Selection with ELSA vs. Standard GA
Feature selection with standard GAs has been widely
applied for various applications and has shown some
success. However, a standard GA can handle only a
single evaluation criterion. This is a considerable dis-
advantage when decision makers need to take into
account multiple objectives simultaneously. For exam-
ple, in our study, we consider two principal quality
measures, model interpretability and predictive accu-
racy, in evaluating each feature subset. Note that often
these measures can be in conflict; no single criterion
for feature selection is best for every application (Dy
and Brodley 2000).

The most common approach in a standard GA
framework for considering multiple objectives is to
linearly combine them into one evaluation criterion in
a subjective manner (Ishibuchi and Nakashima 2000,
Opitz 1999, Yang and Honavar 1998). However, this
approach cannot capture nonlinear trade-offs among
criteria. More importantly, this approach may not
be useful for the decision maker because only she

can determine the relative weights of criteria for her
application.

To provide a clear picture of the trade-offs among
the various objectives, feature selection has been for-
mulated as a multiobjective or Pareto optimization
problem. A number of multiobjective extensions of
evolutionary algorithms have been proposed in recent
years (Deb and Horn 2000). Most of them, such as
the Niched Pareto Genetic Algorithm (Horn 1997),
employ computationally expensive selection mecha-
nisms like fitness sharing (Goldberg and Richardson
1987) and Pareto tournaments to favor dominat-
ing solutions and to maintain diversity. Instead,
ELSA maintains diversity over multiple objectives by
employing a more efficient local selection scheme.

In ELSA, we evaluate each feature subset in
terms of multiple objectives. Formally, each solu-
tion si is associated with an evaluation vector F �si�=
�F1�si� � � �  FC�si��, where C is the number of quality
criteria. One solution s1 is said to dominate another
solution s2 if ∀c� Fc�s1� ≥ Fc�s2� and ∃c� Fc�s1� > Fc�s2�,
where Fc is the cth criterion, c ∈ �1 � � �C�. Neither solu-
tion dominates the other if ∃c1 c2� Fc1�s1� > Fc1�s2�
Fc2�s2� > Fc2�s1�. We define the Pareto front as the set
of nondominated solutions. In feature selection as a
Pareto optimization problem, the goal is to approxi-
mate as well as possible the Pareto front, presenting
the decision maker with a set of high-quality solutions
from which to choose. Non-Pareto solutions will not
be considered because they are inferior to those in the
Pareto front by definition.

Local selection naturally enforces the diversity of
the population by evaluating agents based on both
their quality measurements and the number of sim-
ilar individuals in the neighborhood in the objective
space. Therefore, ELSA can gradually search for new
feature subsets that are more promising, but have not
yet been explored. Because identifying predictive fea-
ture subsets requires an extensive search for new and
better solutions, the maintenance of diversity within
the population is more important than a speedy con-
vergence to the optimum. This bias toward explo-
ration also results in a more complete picture of the
Pareto front, giving the decision maker more infor-
mation with which to judge the trade-offs among the
various objectives.

Another advantage of ELSA is its minimal central-
ized control over agents. By relying on local selection,
ELSA minimizes the communication among agents
(e.g., the ranking of agent fitness relative to the other
agents), which makes the algorithm efficient in terms
of computational time and scalability (Menczer et al.
2000a). In this application, however, the computation
time is dominated by the training of the individuals
rather than the evolutionary mechanism.
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3. ELSA/ANN Model for Customer
Targeting

Our predictive model of household buying behavior
is a hybrid of the ELSA and ANN procedures. In this
approach, ELSA identifies relevant consumer descrip-
tors that are used by the ANN to forecast consumer
choice. We focus here on the structure of the approach
and the criteria used to select an appropriate predic-
tive model.

3.1. Structure of the ELSA/ANN Model
The model setup is shown in Figure 2. ELSA searches
for a set of feature subsets and passes them to an
ANN. The ANN extracts predictive information from
each subset and learns the patterns using a randomly
selected 2/3 of the training data. Once an ANN learns
the data patterns, the trained ANN is evaluated on
the remaining 1/3 of the training data, and returns
two evaluation metrics, Faccuracy and Fcomplexity, to ELSA.
It is important to note that in both the learning
and evaluation procedures, the ANN uses only the
selected features.

Based on the returned metric values, ELSA biases
its search direction to maximize the two objectives.
This routine continues until the maximum number of
iterations is attained. All evaluated solutions over the
generations are saved into an offline solution set with-
out comparison to previous solutions. In this way,
high-quality solutions are maintained without affect-
ing the evolutionary process.

Among all the evaluated subsets, we choose for fur-
ther evaluation the set of candidates that satisfy a
minimum hit-rate threshold. With these chosen can-
didates, we start a more rigorous selection procedure,
10-fold cross-validation. In this procedure, the train-
ing data are divided into 10 nonoverlapping groups.
We train an ANN using the first nine groups of train-
ing data and test the trained ANN on the remain-
ing group. We repeat this procedure until each of the
10 groups is used as a test set once. We then take

Figure 2 The Structure of the ELSA/ANN Model
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Note. ELSA searches for a good subset of features and passes them to an
ANN. The ANN calculates the “goodness” of each subset and returns two
evaluation metrics to ELSA.

the average of the accuracy measurements over the
10 folds and call it an intermediate accuracy. We repeat
the 10-fold cross-validation procedure five times and
average the five intermediate accuracy estimates. We
call this the estimated accuracy through the following
sections.

Note that evaluating candidates through cross-
validation is computationally expensive. However,
this is necessary to have an accurate estimate of actual
hit rate of candidate solutions. If we select a solution
without cross-validation or other rigorous testing, our
chosen solution may or may not perform well on
unseen data. Therefore, trade-offs between computa-
tional cost and accurate estimation should be consid-
ered in advance as a part of experimental design. This
notion raises an open question about the effectiveness
of cross-validation on the performance of a chosen
solution.3 However, our main focus in this study is
to introduce a new methodology for customer target-
ing and to compare the proposed algorithm to oth-
ers. Further, we use the same cross-validation routine
for all the algorithms compared. Therefore, we leave
the sensitivity analysis of cross-validation to future
research.

For evaluation purposes, we select a single best
solution in terms of both estimated accuracy and com-
plexity. We subjectively decided to pick a solution
with the minimal number of features at the marginal
accuracy level.4 Once we decide on the best solution,
we train the ANN using all the training data with
the selected features only. The trained model is then
used to rank the potential customers (the records in
the evaluation set) in descending order of purchase
probability, as predicted by the ANN. We finally select
the top x% of the prospects and calculate the actual
accuracy of our model using the actual choices of the
evaluation-set households.

3.2. Evaluation Metrics
We define two heuristic evaluation criteria, Faccuracy
and Fcomplexity, to evaluate selected feature subsets.
Each objective, after being normalized into 25 inter-
vals to allocate energy, is maximized by ELSA.

Faccuracy. The purpose of this objective is to favor
feature sets with a higher hit rate. Each ANN takes
a selected set of features to learn data patterns and
predicts which potential customers will actually pur-
chase the product. In our application, we define two
different measures, F 1

accuracy and F 2
accuracy for two differ-

ent experiments. Experiment 1 assumes that the man-
agers can specify in advance the rule to be used in

3 The authors thank an anonymous referee for pointing out this
issue.
4 If other objective values are equal, we prefer to choose a solution
with small variance.
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selecting households for mailings. We select the top
20% of potential customers in descending order of the
probability of purchasing the product and compute
the ratio of the number of actual customers, AC, out
of the chosen prospects, TC. We calculate F 1

accuracy as
follows:

F 1
accuracy =

1
Z1

accuracy

AC

TC
 (3)

where Z1
accuracy is an empirically derived constant to

normalize F 1
accuracy.

In Experiment 2, we consider a generalization of
Experiment 1. We first divide the range of customer
selection percentages into 50 intervals with equal
width (2%) and measure accuracy at the first m inter-
vals only.5 At each interval i ≤ m, we select the top
(2 · i)% of potential customers in descending order of
the probability of purchasing the product and com-
pute the ratio of the number of actual customers, ACi,
out of the total number of actual customers in the
evaluation data, Tot. We multiply by the width of the
interval and sum those values to get the area under
the lift curve over m intervals. Finally, we divide by m
to get our final metric, F 2

accuracy. We formulate it as
follows:

F 2
accuracy =

1
Z2

accuracy

1
m

m∑

i=1

ACi
Tot

· 2 (4)

where Tot= 238, m= 25, and Z2
accuracy is an empirically

derived constant to normalize F 2
accuracy.

Fcomplexity. This objective is aimed at finding par-
simonious solutions by minimizing the number of
selected features as follows:

Fcomplexity = 1− d− 1
D− 1

 (5)

where d and D represent the dimensionality of the
selected feature set and of the full feature set, respec-
tively. Note that at least one feature must be used.
Other things being equal, we expect that lower com-
plexity will lead to easier interpretability of solutions,
as well as better generalization.

4. Application
The proposed ELSA/ANN methodology is applied to
the prediction of households interested in purchas-
ing an insurance policy for recreational vehicles (RVs).
To benchmark the new procedure, we contrast the

5 This could be justified in terms of costs to handle the chosen
prospects and the expected accuracy gain. As we select more
prospects, the expected accuracy gain will go down. If the marginal
revenue from an additional prospect is much greater than the
marginal cost, however, we could sacrifice the expected accuracy
gain. Information on mailing cost and customer value was not
available in this study.

performance of the ELSA/ANN methodology to an
industry-standard logit approach that summarizes
household background information using principal
components analysis. We evaluate the ELSA/ANN
approach using two experiments. In Experiment 1, we
inform the algorithm of the way in which the predic-
tive model will be used by managers to select house-
holds for a direct mail solicitation. In Experiment 2,
we leave this information vague. We show that the
new approach provides improvements in forecasting
accuracy, but that model complexity is contingent on
the amount of information about the managerial deci-
sion rule.

4.1. Data Description
The data are taken from a solicitation of 9,822 Euro-
pean households to buy insurance for an RV. These
data, taken from the CoIL 2000 forecasting competi-
tion (Kim and Street 2000), provide an opportunity
to assess the properties of the ELSA/ANN procedure
in a customer-prospecting application.6 In our analy-
sis, we use two separate data sets: a training set with
5,822 households and an evaluation set with 4,000
households. The training data are used to calibrate
the model and to estimate the hit rate expected in the
evaluation set. Of the 5,822 prospects in the training
data set, 348 purchased RV insurance, resulting in a
hit rate of 348/5822= 5�97%. From the manager’s per-
spective, this is the hit rate that would be obtained if
solicitations were sent out randomly to consumers in
the firm’s database.

The evaluation data are used to validate the pre-
dictive models. Our predictive model is designed to
return the top x% of customers in the evaluation
data set judged to be most likely to buy RV insur-
ance. The model’s predictive accuracy is examined by
computing the observed hit rate among the selected
households. It is important to understand that only
information in the training data set is used in devel-
oping the model. Data in the evaluation data set are
used exclusively for forecasting.

In addition to the observed RV insurance policy
choices, each household’s record contains 93 addi-
tional variables, containing information on both
sociodemographic characteristics (Variables 1–51) and
ownership of various types of insurance policies
(Variables 52–93). Details are provided in Table 1.
The sociodemographic data are based upon postal
code information. That is, all customers living in
areas with the same postal code have the same

6 We use a data set on consumer responses to a solicitation for
“caravan” insurance policies. A “caravan” is similar to an RV in the
United States. For more information about the CoIL competition
and the CoIL data sets, refer to http://www.dcs.napier.ac.uk/coil/
challenge/.
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Table 1 Household Background Characteristics

Feature ID Feature description

1 Number of houses owned by residents
2 Average size of households
3 Average age of residents
4–13 Psychographic segment: successful hedonists, driven growers,

average family, career loners, living well, cruising seniors,
retired and religious, family with grownups, conservative
families, or farmers

14–17 Proportion of residents with Catholic, Protestant, other, and
no religion

18–21 Proportion of residents of married, living together, other
relation, and singles

22–23 Proportion of households without children and with children
24–26 Proportion of residents with high, medium, and lower

education level
27 Proportion of residents in high status
28–32 Proportion of residents who are entrepreneur, farmer, middle

management, skilled laborers, and unskilled laborers
33–37 Proportion of residents in social class A, B1, B2, C, and D
38–39 Proportion of residents who rented home and owned home
40–42 Proportion of residents who have 1, 2, and no car
43–44 Proportion of residents with national and private health service
45–50 Proportion of residents whose income level is <$30,000;

$30,000–$45,000; $45,000–$75,000; $75,000–$123,000;
>$123,000; and average

51 Proportion of residents in purchasing-power class
52–72 Scaled contribution to various types of insurance policies

such as private third party, third-party firms, third-party
agriculture, car, van, motorcycle/scooter, truck, trailer,
tractor, agricultural M/C, moped, life, private accident, family
accidents, disability, fire, surfboard, boat, bicycle, property,
social security

73–93 Scaled number of households holding insurance policies for
the same categories as in scaled contribution attributes

sociodemographic attributes. The insurance firm in
this study scales most sociodemographic variables on
a 10-point ordinal scale (indicating the relative like-
lihood that the sociodemographic trait is found in
a particular postal code area). This 10-point ordi-
nal scaling includes variables denoted as “propor-
tions” in Table 1. For the purposes of this study, all
these variables were regarded as continuous. The psy-
chographic segment assignments (Attributes 4–13),
however, are household specific and are coded into
10 binary variables.

In our subsequent discussion, the word feature
refers to one of the 93 variables listed in Table 1. For
example, the binary variable that determines whether
or not a household falls into the “successful hedo-
nist” segment is a single feature. Accordingly, in the
feature selection step of the ELSA/ANN model, the
algorithm can choose to use any possible subset of
the 93 variables in developing the predictive model.

4.2. Experiment 1
In Experiment 1, we maximize the hit rate when
choosing the top 20% potential customers as in Kim
and Street (2000). We select the top 20% of customers

in the evaluation data set using the model created
by the ELSA/ANN procedure. The actual choices
of these households provide a measure of the hit
rate. For comparison purposes, we implemented a
principal component analysis (PCA) of the house-
hold background characteristics followed by a logis-
tic regression of the insurance policy choice data.
PCA is analogous to our feature selection procedure
to reduce data dimension. The logistic regression is,
in fact, an example of a very simple ANN. The
PCA/logit approach is commonly used by industry
consultants in developing household selection rules.

We also implemented an intermediate model,
ELSA/logit, for comparison purposes. The ELSA/
logit model is different from ELSA/ANN in the sense
that it uses only one hidden node.7 We use the same
criterion to select the final solution of ELSA/logit as
is done in ELSA/ANN. The motivation behind the
ELSA/logit model is the decomposition of the accu-
racy gain of ELSA/ANN into two sources: feature
selection and response function approximation. The
difference in results between PCA/logit and ELSA/
logit can be attributed to characteristics of feature
selection, while the difference in results between
ELSA/logit and ELSA/ANN can be attributed to
the greater flexibility of ANN in approximating the
response model.

Before discussing results, we first briefly summa-
rize our implementation of the PCA/logit bench-
mark model in Figure 3. We selected 22 principal
components. This is the minimum required to explain
more than 90% of the variance in the training set. To
get the estimated hit rate, we implement 10-fold cross-
validation on the training set, as shown in Figure 4. In
the cross-validation procedure, the scores of the PCs
are estimated using different portions of the data each
time to get the estimated hit rate.

We set the values for ELSA parameters in the
ELSA/ANN and ELSA/logit models as follows:
Pr�mutation� = 1�0, pmax = 1000, Ecost = 0�2, � = 0�3,
and T = 2000. In both models, we select the single
solution that has the highest expected hit rate among
those solutions that use less than 10% of the available
featues. (This criterion was adopted to restrict atten-
tion to models that are relatively parsimonious.) We
evaluated each model on the evaluation set. Table 2
first shows the estimates of the actual hit rates of three
different models based on five replications of 10-fold
cross-validation.

In terms of the actual hit rate, all three models
work very well. Even the model with lowest actual hit
rate (PCA/logit) is 2.3 times better than the hit rate
expected by mailing to these households at random

7 ELSA/ANN models use
√
nodein hidden nodes, where nodein rep-

resents the number of input nodes.
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Figure 3 The Implementation Procedure of the PCA/Logit Model

Apply PCA on training data Dtrain

Determine appropriate number of PCs, n

Reduce the dimensionality of Dtrain using n PCs,

creating D
′
train

Perform logistic regression on D
′
train and save β̂i

and α̂ where i = 1, · · · , n.
Reduce the dimensionality of evaluation data Deval

using n PCs, creating D
′
eval

Calculate p(not buy) for each record in D
′
eval using

p =
exp(α̂+

∑n

i=1
β̂i·PCi)

1+exp(α̂+
∑n

i=1
β̂i·PCi)

Select 20% of records, R, with lowest p
for each selected record r

if r is an actual customer

counter = counter + 1
endif

endfor
Hitrate = counter/R

(5.97%). The model generated by the ELSA/ANN
procedure returns the highest actual hit rate. (The
difference of the estimated hit rates between the
PCA/logit and the ELSA/ANN models is statisti-
cally significant at � = 0�05.) As noted earlier, the
difference in actual hit rate between PCA/logit and
ELSA/logit provides an estimate of the accuracy gain
that comes from the ELSA feature selection procedure.
The difference in actual hit rate between ELSA/logit
and ELSA/ANN provides an estimate of the accu-
racy gain that comes from the additional flexibil-
ity that ANN provides in approximating the true
response function. In this application, both aspects of
the ELSA/ANN procedure contribute equally to the
improved accuracy of the model.

Figure 4 The Implementation Procedure of Cross-Validation for the
PCA/Logit Model

Divide training data Dtrain into 10 equal-sized subsets

for each subsets Dtrain[i], i = 1, · · · , 10
Define Dtrain[i]c = Dtrain - Dtrain[i]
Apply PCA on Dtrain[i]c, and select n PCs

Reduce the dimensionality of Dtrain[i]c using n PCs

Do logistic regression on reduced Dtrain[i]c

Reduce the dimensionality of Dtrain[i] using n PC scores

Calculate p(not buy) using the formula in Figure 3

Pick 20% of records, R[i], with lowest p
for each selected record r

if r is an actual customer

counter[i] = counter[i] + 1
endif

endfor
endfor

Hitrate =
∑10

i=1
counter[i]/

∑10

i=1
R[i]

Note. We used the same number of PCs, n= 22, as we did in Figure 3.

Table 2 Results of Experiment 1

Evaluation set
Training set

Model (# features) Hit rate (%)± s.d. (%) # Correct Hit rate (%)

PCA/logit (22) 12.83± 0.498 109 13.63
ELSA/logit (6) 15.73± 0.203 115 14.38
ELSA/ANN (7) 15.92± 0.146 120 15.00

Note. The hit rates from the three different models are shown as percentages
with standard deviation. The column marked “# Correct” shows the number
of actual customers who are included in the chosen top 20%. The number
in parentheses represents the number of selected features except for the
PCA/logit model, where it represents the number of PCs selected.

We also compare ELSA/ANN to an ANN without
feature selection to check if feature selection simpli-
fies the model at the expense of sacrificing predic-
tive accuracy. This is interesting because it has been
strongly assumed that more information leads to a
better predictive model. However, our experiments
indicate otherwise. The average accuracy of a single
ANN from 10 independent runs on the evaluation
set is 13.62% ± 0.314%, which is significantly lower
than that of the ELSA/ANN procedure. We attribute
this to the fact that the ELSA/ANN model can elim-
inate noisy features that are negatively correlated
with other predictive features and thus deteriorate the
overall performance of a final model. Therefore, it is
not the quantity, but the quality, of information that
makes a better predictive model.

Judging the interpretability of a model is neces-
sarily subjective. An advantage of the ELSA/ANN
approach is that predictive features are clearly high-
lighted. In contrast, the PCA/logit model uses
all of the features in constructing the principal
component scores. We show the seven features that
the ELSA/ANN procedure selected in Table 3.

With the exception of the “Average Family” psycho-
graphic segment, all other features are reports of the
insurance-buying behavior of the household’s postal
code area. The feature reporting car insurance makes
considerable sense, given the fact that the firm is
soliciting households to buy insurance for RVs. Fur-
ther evaluation shows that prospects with at least
two insured autos are the most likely RV purchasers.
Moped policy ownership is justified by the fact that
many people carry their mopeds or bicycles on the
back of RVs. Those two features are selected again by

Table 3 Selected Features by ELSA/ANN in Experiment 1

Feature type Selected features

Demographic features “Average Family” psychographic segment

Behavioral features Amount of contribution to third-party policy,
car policy, moped policy, and fire policy, and
number of households holding third-party
policies and social security policies
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Figure 5 Lift Curves of Three Models That Maximize the Hit Rate when Targeting the Top 20% of Prospects
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the ELSA/logit model.8 Using this type of informa-
tion, we are able to build a potentially valuable profile
of likely customers (Kim and Street 2000).

In general, the results are in line with marketing
science work on customer segmentation, which shows
that information about current purchase behavior is
most predictive of future choices (Rossi et al. 1996).
The fact that the ELSA/ANN model used only seven
features for customer prediction also implies that the
firm could reduce data collection and storage costs
considerably. This is possible through reduced storage
requirements (86/93 ≈ 92�5%) and the reduced labor
and data transmission costs.

We also compare the three models in terms of
lift curves.9 Figure 5 shows the cumulative hit rate
over the top 2 ≤ x ≤ 100% prospects. Clearly, our
ELSA/ANN model is the best when the firm selects

8 The other four features selected by the ELSA/logit model are con-
tribution to bicycle policy and fire policy, and number of trailer
policies and lorry policies.
9 Lift is defined as the percentage of all buyers in the database who
are in the group selected for a direct mail solicitation. Under ran-
dom sampling, the lift curve is a 45-degree line starting at the origin
of the graph.

the top 20% of prospects for a direct mail solic-
itation. However, the performance of ELSA/ANN
and ELSA/logit over all targeting percentages was
worse than that of PCA/logit. This occurs because our
solution is specifically designed to optimize the hit
rate when managers select the top 20% of prospects.
In contrast, the PCA/logit model is estimated without
any knowledge of how model forecasts will be used
in decision making. This observation motivated a sec-
ond experiment in which we attempt to improve the
performance of the ELSA/ANN model over a greater
range of decision rules.

4.3. Experiment 2
In this experiment, we search for the solution that
best maximizes the accuracy defined in a more global
sense. The algorithm is designed to maximize the area
under the lift curve, up to the top 50% of potential
customers. Logically, the best solution from Experi-
ment 1 is not necessarily the best solution in the more
generalized environment of Experiment 2. In fact,
our results are consistent with this observation. We
also implemented the PCA/logit and the ELSA/logit
model again for comparison purposes. We first show
the generalized procedure of PCA/logit to get the
estimated accuracy in Figure 6.
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Figure 6 The Generalized Implementation of the PCA/Logit Model

Apply PCA on training data Dtrain
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1+exp(α̂+
∑n
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for each i = 1 to intnum

x = intwidth · i
Select x% records with lowest p
for each selected record r

if r is an actual customer

counter = counter + 1
endif

endfor
Hitrate = counter/Tot
Accuracy = Accuracy +Hitrate ∗ intwidth

endfor
Accuracy = Accuracy/intnum

Note. We use n = 22 (as in Experiment 1), intnum = 25, intwidth = 2, and
Tot = 238.

The ELSA/ANN and ELSA/logit models are ad-
justed to maximize the overall area under the lift
curve over the same intervals as in PCA/logit. Be-
cause this new experiment is computationally much
more expensive, we take a slightly different approach
to choose the final solutions of ELSA/ANN and
ELSA/logit. We used twofold cross-validation esti-
mates of all solutions and set the values of the
ELSA parameters identically with the previous exper-
iment, except pmax = 200 and T = 500. Following the
approach used in Experiment 1, we initially exam-
ined only those predictive models having less than
10% of the total set of predictive variables. Interest-
ingly, this criterion resulted in an ELSA/ANN model
(not shown) with worse predictive performance than
PC/logit. We then recomputed the predictive mod-
els, choosing the best solutions having less than half

Table 4 Summary of Experiment 2

% Selected

Model (# features) 5 10 15 20 25 30 35 40 45 50

PCA/logit (22) 20.06 20.06 16.04 13.63 12.44 11.20 10.81 10.22 9�87 9.38
ELSA/logit (46) 23.04 18.09 15.56 13.79 12.13 12.04 10.97 10.54 10�03 9.53
ELSA/ANN (44) 19.58 17.55 16.40 14.42 13.13 11.96 10.97 10.40 9�98 9.64

Note. The hit rates of three different models are shown over the top 50% of prospects.

of the original features. Our intuition was that a
less parsimonious ELSA/ANN model might domi-
nate PC/logit. Indeed, we found this to be the case.
Results of Experiment 2 are summarized in Table 4
and in Figure 7.

Table 4 shows that the ELSA/ANN model has
higher hit rates than PCA/logit over the solicitation
range between 15% and 50% of total households. In
particular, ELSA/ANN is best when choosing 15%,
20%, 25%, and 50% of the targeting points, and tied
for the best at 30%, 35%, and 45%. The overall perfor-
mance of ELSA/logit is better than that of PCA/logit.
We attribute this to the fact that both models benefit
from the ELSA feature selection methodology.

The lift curves in Figure 7 show that ELSA/ANN
has much-improved global characteristics relative to
Experiment 1. However, we note that there are costs
associated with this improved performance. First, the
hit rate of ELSA/ANN at the 20% solicitation rate
is now lower than in Experiment 1 (14.42% versus
15.00%). Second, the well-established parsimony and
interpretability of the models selected by ELSA/ANN
in Experiment 1 is largely lost in Experiment 2.
We attribute this partially to the fact that different
selection points may have related but different opti-
mal subsets of features. Correlation among features
seems to contribute to the loss of parsimony. For
instance, a particular variable related to insurance
policy ownership that is part of the optimal subset
at a 20% selection rate could easily be replaced by
a different, correlated feature at 30%. It should be
noted that the ELSA/ANN model is superior to the
PCA/logit model in the sense that ELSA/ANN works
with feature subsets, while PCA/logit always requires
the whole feature set to construct PCs.

These aspects of the solution provide strong evi-
dence that there exists a key trade-off in building
a predictive model. By focusing on a specific deci-
sion scenario (as in Experiment 1), we are able to
construct a procedure that is parsimonious and has
superior predictive performance. When the decision
scenario is more ambiguous (as in Experiment 2),
we can improve predictive performance over a broad
range, but sacrifice model interpretability.
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Figure 7 Lift Curves of Three Models That Maximize the Area Under Lift Curve when Targeting Up to Top 50% of Prospects
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Note. In practice, we optimize over the first 25 intervals which have the same width, 2%, to approximate the area under the lift curve.

5. Interpretability, Time Complexity,
and Scalability

We have shown that our ELSA/ANN model is a
promising approach to database-based marketing
programs. In this section, we address three important
issues that should be considered before applying
the ELSA/ANN approach to real-world market-
ing programs: interpretability, time complexity, and
scalability.

The ELSA/ANN model improves the interpretabil-
ity of the resulting classifier by constructing a parsi-
monious set of input variables that drive the response.
We noted in our empirical work that the variables
selected to predict insurance-buying behavior are
largely consistent with the view that past-purchase
information is effective in forecasting future buying
behavior. By itself, the ELSA/ANN model has lim-
ited capability to explain why the chosen features
predict customers’ response to a specific marketing
campaign. This is due to the fact that the under-
lying classifier (an ANN) is essentially a black-box
algorithm.

In discussing model interpretability, it is useful to
keep in mind a key trade-off in developing a predic-
tive model. From the standpoint of firm profitabil-
ity, the marketing manager should always use the
model with the highest predictive accuracy, even if it

is based upon an ANN structure. The superior perfor-
mance of ELSA/ANN in our empirical work suggests
that the proposed model will be a useful predictive
tool. However, in explaining the model to a manager,
it may be necessary to undertake additional work
(say, using regression or decision trees) to understand
more fully how the procedure works. The advantage
of the ELSA/ANN algorithm is that the number of
features that must be considered in this additional
work is severely constrained. The reduction of the fea-
ture space aids managers by focusing attention on a
small number of key inputs, and aids the researcher
by allowing a relatively simple post hoc analysis. The
parsimony of the ELSA/ANN optimal feature set is a
major step forward in model interpretability.

Another important aspect related to the inter-
pretability is whether or not independent runs of the
ELSA/ANN model result in the same feature subsets.
Like other GAs, ELSA is a stochastic algorithm. There-
fore, it is very likely that we will observe different
feature subsets from each run of ELSA. This is due to
the fact that strong correlations typically exist among
the input variables that are available to the researcher.
For example, “contribution to car policies” is highly
correlated with “number of car policies,” so that one
of these features could easily substitute for the other
in a given model. However, even if different feature
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subsets were selected by ELSA, we would expect that
performance in terms of the estimated hit rate would
be stable. This claim is supported by the small stan-
dard deviation (0.146%) of the hit rate, as estimated
by cross-validating the training set.

In terms of time complexity, the ELSA/ANN model
is expensive. This is mainly because the ELSA/ANN
model is an example of the wrapper approach to
feature selection that evaluates many different mod-
els and finally selects the best model from evaluated
models. Typically, the time complexity of ELSA/ANN
is k times more expensive than that of models without
feature selection (e.g., a single ANN with the com-
plete set of features), where k represents the num-
ber of models evaluated in ELSA/ANN. The fact
that the ELSA/ANN model is computationally expen-
sive raises the question of whether the ELSA/ANN
approach can be applied to much larger data sets.

To study the scalability of our approach, we applied
the ELSA/ANN algorithm to a large database con-
taining information on donations to a national veter-
ans organization.10 These data are large in terms of
record size (95,412 and 96,367 records for learning and
evaluation purposes, respectively) and in terms of
the dimensionality of the feature space (481 fields of
numerical and categorical features). We first prepro-
cess the data to eliminate all multicategorical fields,
resulting in 406 features. To scale the method to a
data set of this size, we use a small sample of avail-
able records for feature selection because the most
computationally expensive procedure in the wrap-
per approach is feature selection. We therefore divide
the training data set into two parts: one with a ran-
domly chosen 5,412 records with which to select rele-
vant features through our ELSA/ANN approach, and
the other with the 90,000 remaining records to train
the ANN with the chosen feature subset. Finally, we
apply the trained ANN to an evaluation data set
(96,367 records) to compute the hit rate after selecting
the top 20% of customers based on their probability
of donating money.

For the feature selection process, we set the values
of the ELSA parameters identically with Experiment 2
except T = 2000. Our experiment took about 40 hours
on a Window XP machine with an Intel Pentium 4
processor at 2.2 GHz and 512 MB system memory.
Based on accuracy estimates, we chose the solution
with less than 10% of the original features that has
the highest estimated accuracy. The chosen solution
has 40 features and returns an average hit rate of
8.19% based on 10 independent runs on the evalua-
tion data set, increasing by 19.3% the hit rates of sin-
gle ANN with the complete set of features (average

10 The data are publicly available at http://kdd.ics.uci.edu/
databases/kddcup98/kddcup98.html.

hit rate 6.87%). Because previous published studies on
this data set attempted to maximize the net revenue
rather than the hit rate of the fund-raising campaign,
direct comparison of results is not possible. Neverthe-
less, this example demonstrates that the ELSA/ANN
approach developed here can be adapted for the anal-
ysis of large customer databases.

6. Conclusion
In this paper, we presented a novel approach for
customer targeting in database marketing. We used
an evolutionary algorithm, ELSA, to search for pos-
sible combinations of features and an artificial neu-
ral network (ANN) to score customers. When the
decision rule was precise, the overall performance of
ELSA/ANN was superior to the industry standard
PCA/logit model in terms of both accuracy and inter-
pretability. However, this superiority in interpretabil-
ity is confined to specific decision conditions defined
during model development and calibration. Under a
more general decision scenario, ELSA/ANN yielded
a more accurate model over a broad selection per-
centage range at the cost of increasing the number of
predictive features in the specification.

One of the clear strengths of the ELSA/ANN ap-
proach is its ability to construct predictive models
that reflect the direct marketer’s decision process.
Unlike a standard statistical approach like PC/logit,
the ELSA/ANN procedure can be easily modified to
take into account different objectives. With informa-
tion of campaign costs and profit per additional actual
customer, a direct marketer could use ELSA/ANN to
choose the best selection point where expected total
revenue is maximized. In this way, it would be pos-
sible to determine the type of decision rule that the
marketer should adopt, both in terms of solicitation
percentage as well as predictive rule. Because all mail-
ing lists do not have the same potential for the mar-
keter, this approach would allow a predictive model
and solicitation-mailing rule to be customized as the
firm’s database changes.

Our work also provides additional evidence that
there exist strong dependencies between model speci-
fication and managerial decision making. When man-
agers are clear about how a model will be used,
the analyst can construct a highly specialized model
that does better than general approaches (such as
PC/logit). When managers are vague, a less parsimo-
nious model can be constructed that does better under
some region of the decision space. The ELSA/ANN
approach provides a new tool in which these trade-
offs can be understood in the context of direct mail
marketing applications.
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