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A B S T R A C T   

As an emerging form of social media, live streaming services (e.g., Twitch and Clubhouse) allow users to interact 
with hosts and peers in real time while enjoying shows or participating in discussions. These platforms are also 
dynamic, with shows or discussions changing quickly inside a room and users frequently switching between 
rooms. To improve user engagement and experience on such platforms, we design a new recommendation model 
named Dynamic Representations for Live Streaming Rooms (DRIVER) to provide room recommendations. 
Guided by the Integrated Framework for Consumer Path Modeling and the social affordance theory, DRIVER 
infers dynamic representations of live streaming rooms by leveraging users’ behavior paths in entering, staying 
in, and leaving rooms. One contribution of our model is a new and efficient dynamic learning framework to 
model instantaneous and ever-changing inter-room relationships by considering individual users’ behavior paths 
after leaving a room. Also supported by social affordance theory, another methodological novelty of our model is 
to capture dynamic characteristics of a room by incorporating features of the current audience inside the room. 
Experiments on real-world datasets from two different types of live streaming platforms demonstrate that 
DRIVER outperforms state-of-the-art representation learning methods and sequential recommender systems. The 
proposed method also has implications for recommender system design in other contexts, in which items are 
characterized by users’ dynamic behavior paths and ongoing social interactions.   

1. Introduction 

Live streaming services represent a new type of online interactions 
and have experienced rapid growth during the past few years, with 
popular ones such as Twitch hosting nearly 150,000 rooms and 
attracting an average of more than two million concurrent users each 
day.1 In live streaming, a host or streamer can start a room (i.e., a feed or 
channel on some platforms) to broadcast live shows to audience (e.g., 
Twitch and Tiktok) or initiate discussions among participants (e.g., 
Clubhouse). Unlike traditional social media (e.g., Twitter), TV programs 
with separate social media presence or asynchronous video streaming 
services (e.g., Youtube), the real-time social interactions among the 
audience afforded by live streaming platforms mean that the current 
audience inside a room is an indispensable part of characterizing the 
room. Meanwhile, because shows and discussions in rooms change 
quickly in live streaming, the audience can also leave a room for another 
room at any time. Such importance of a room’s current audience and 
highly dynamic user behaviors distinguish live streaming from other 

forms of social media [1,2]. 
With tens of thousands of rooms streaming online simultaneously, it 

is imperative for live streaming platforms to recommend rooms to users 
to lower the search cost. Similar to recommender systems in social 
networks and eCommerce [3–5], accurate room recommendations have 
important business values for live streaming—they not only improve 
users’ experience but also get hosts more engaged with the platform. 
However, existing recommendation methods have not fully considered 
nor leveraged the two key characteristics of live streaming we mention 
below. 

First, user behaviors are highly dynamic, and so are rooms and inter- 
room relationships. Within a live streaming room, the host can stage 
many different shows over time, including shows of different types and 
styles, or even shows by guest performers. As a result, the characteristics 
of rooms are highly dynamic. At the same time, audience members also 
enter and leave rooms at a fast pace. For instance, in our real-world 
dataset from a live singing platform, each user stays in one room for a 
median of 2 min only and enters an average of 6.72 rooms during a day. 
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With such dynamic user behaviors in leaving and entering other rooms, 
the characteristics of a room should be frequently updated when users 
leave or enter the room. In contrast, most recommenders in e-Commerce 
are designed for items whose features barely change or change slowly. 

Moreover, along with the dynamic behaviors of the hosts and audi
ence, the sequential relationships among rooms are also dynamic. 
Because the shows and the audience in a room change fast, users who 
leave the same room at different time points may be attracted by 
different rooms and have different subsequent paths. Thus, the re
lationships among rooms based on user paths also change frequently. 
For instance, using one of the datasets used in our experiments from a 
live singing platform, we construct daily room-room graphs by con
necting the room a user left with the room that this user subsequently 
entered. As shown in Fig. 1, the similarities of each room’s relationships 
with other rooms between every two consecutive days are widely scat
tered2—the mean and median of such similarities are only 0.54 and 
0.56, respectively, with a standard deviation of 0.28. This empirical 
evidence again highlights that inter-room relationships are dynamic 
over time, and such instantaneous connections among rooms may pro
vide additional signals for room recommendations. However, while 
some studies captured sequential patterns of items via Recurrent Neural 
Networks (RNN) or constructed static graphs among items based on 
users’ consumption paths and conducted graph learning with Graph 
Neural Networks (GNN), the literature offers no solution for how to 
model such instantaneous relationships among items, especially when 
item characteristics are also changing dynamically. 

Second, the current audience inside a live streaming room plays an 
important role in characterizing the room. Through real-time social in
teractions, the audience in a room can influence not only peers but also 
the host. For one thing, online chats, comments, and gifts from audience 
members within a room can often be engaging and sometimes even 
become a major attraction of the room to other users [6]. For another, 
the effect of social interactions among audience members in a room goes 
beyond the audience alone and may have a direct and real-time impact 
on the performer and consequently the shows [2]. For example, a host 
may change the content or style of her show after getting feedback from 
the audience. Therefore, to characterize a live streaming room, we 
should consider both features of the room itself and features of its cur
rent audience. Nevertheless, while some recommenders treat all the 
users who have interacted with an item (e.g., shoppers who bought a 
product) in the past as equally important [7–9], none has explicitly 
emphasized the value of users who are currently interacting with an 
item (i.e., the audience inside a live streaming room). 

To incorporate these characteristics and address the challenges 
associated with them, we propose a new recommendation model to 
learn Dynamic Representations for Live Streaming Rooms (DRIVER). 
Guided by the Integrated Framework for Consumer Path Modeling [10] 
and social affordance theory [11], DRIVER takes advantage of users’ 
paths in entering, staying in, and leaving rooms to better capture dy
namic characteristics of users, rooms, and inter-room relationships. 

To evaluate the performance of the proposed model, we conduct 
comprehensive experiments on real-world datasets from two different 
types of live streaming platforms. Comparisons with other state-of-the- 
art recommendation models demonstrate that DRIVER provides the 
best and robust performance in live streaming room recommendation. 
Ablation studies reveal that both new components of DRIVER contribute 
to the improved recommendation performance. 

The novelty and contributions of this paper can be summarized as 
follows. First, we propose DRIVER, a novel recommendation model for 

live streaming platforms. The model’s general framework can be directly 
adopted by different live streaming platforms, who can train the model 
with their own data for recommendation tasks in their own services. 
Compared to existing methods, DRIVER has the following merits.  

• DRIVER captures inter-room relationships based on users’ behavior 
paths in departing from one room and joining another, and it in
corporates such relationships into user-specific room recommenda
tions. Different from existing sequential learning methods based on 
static item relationships or graph neural network models that are 
computationally expensive, our approach represents a new method 
for effectively and efficiently utilizing this kind of dynamic item 
graph to improve recommendation performance.  

• DRIVER explicitly models the audience currently in a room as the 
room’s instantaneous features to better capture the room’s social 
characteristics that influence users’ decisions. The model in
corporates such instantaneous features with the room’s cumulative 
features to obtain a comprehensive and user-specific representation 
of each room. This is the first effort to learn the dynamic represen
tation of an item by considering users who are currently interacting 
with the item. Such representations are also updated when a new 
user-item interaction occurs. 

Second, through extensive experiments, we demonstrate the perfor
mance gain of DRIVER over state-of-the-art recommendation models. 
More importantly, we reveal the unique value of DRIVER’s design 
principles–learning dynamic representations of items based on users’ 
behavior paths and current users’ characteristics–in supporting users’ 
decision-making in highly dynamic and social scenarios, such as live 
streaming. 

The remainder of this paper is organized as follows. Section 2 re
views previous studies related to our work as well as the empirical ev
idence and theories that guide our design. Section 3 formalizes the live 
streaming room recommendation problem and describes the architec
ture of DRIVER. This is followed by a presentation of the experiment 
setup and results in Section 4. Then, Section 5 explores models learned 
by DRIVER and discusses why DRIVER works. Finally, Section 6 con
cludes this paper and discusses future research directions. 

2. Background and related work 

This section discusses related research to highlight the foundation 
and novelty of the proposed DRIVER model. We first review recent de
velopments in machine learning methods for recommendation systems, 
including (dynamic) representation learning, sequential recommenders, 
and graph learning. After discussing their limitations in relation to the 
task of live streaming recommendations, we then introduce the Inte
grated Framework for Consumer Path Modeling and social affordance 
theory and explain how they guide our model design. 

2.1. Representation learning for recommendations 

In recent years, machine learning, especially deep learning, has 
attracted great research interest and shown superior performance on 
many problems, including recommendation systems [12]. As an 
important and fruitful area of machine learning research, representation 
learning [13] has been widely adopted for mining graph data [14]. In 
the context of recommendation systems, representation learning based 
models usually represent a user or an item with a latent vector to depict 
the user’s preference or the item’s characteristics. This method allows us 
to learn latent vectors (a.k.a., representations) for users and items to 
represent their characteristics from only their historical interactions. 
That means we can learn features of users and items without any explicit 
features of them other than using IDs of users and rooms IDs as inputs. 
Note that we use the terms “features” and “characteristics” inter
changeably in this paper. 

2 Each daily room-room graph is a weighted directed graph. The weight of 
the edge from room A to room B is the number of users leaving A and entering B 
on that given day. The similarity of one room’s relationships with others be
tween two consecutive days is the Cosine similarity between this room’s vectors 
from adjacency matrices of the two daily graphs. 
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Traditional recommendation systems based on representation 
learning usually take users or items as static entities and learn static 
representations for them, such as the approach used in the classic Matrix 
Factorization model [7]. Although other recommenders have attempted 
to simulate the interactions between users and items using more com
plex methods based on their representations, they are based on the same 
assumption that these representations are static. However, static rep
resentations are not sufficient when user interests or item characteristics 
change over time, such as in social media and online social networks 
[15]. Therefore, dynamic representation learning methods have been 
developed using two types of models: probabilistic models [16] and 
RNN-based models [9]. The basic ideas of these two types of models are 
similar: representations for users and items co-evolve when interactions 
occur between them. There are also differences between them: Proba
bilistic models usually make some assumptions about the distribution of 
user-item interaction occurrence time and leverage these representa
tions to calculate parameters of the distribution. In contrast, RNN-based 
models learn representations to calculate the probability of interaction 
occurrences directly. The latter usually shows better performance. For 
instance, the recently proposed model JODIE [9] achieves better per
formance by adopting RNN to update users’ and items’ representations 
and using a projection operation to model the temporal drift of these 
representations. 

Nevertheless, these approaches only model a user-item interaction 
event as a one-time occurrence (e.g., purchasing a product) while 
ignoring users’ subsequent behaviors after the start of the event. Spe
cifically, for live streaming rooms, these methods would only consider 
users’ entrance into a room. Thus, existing dynamic representation 
learning methods have two limitations when applied to live streaming 
recommendations: (1) they do not track users who are currently staying 
inside a room, and (2) they do not consider users’ behaviors after leaving 
a room. 

2.2. Sequential recommenders and graph neural networks 

One stream of research that can potentially address the second lim
itation mentioned above is related to sequential recommendation sys
tems. Such recommenders assume that the order of users’ interactions 
with items matters and leverage sequential patterns of such behaviors 
for item recommendations [17]. Existing sequential recommenders 
learn from sequential data with Markov Chain (MC) models or deep 
learning models. Models based on MC usually estimate the transition 
probability between items from users’ historical behavior sequences 
[18], but usually makes a strong Markov assumption that only the 
immediately last choice of a user directly determines her next action. 
Among deep learning methods for sequential recommendations, RNN- 
based models [9] use recurrent neural networks to handle the item 
sequence and capture user’s preference. CNN-based models [19] take 
advantage of convolutional operations to extract features from users’ 

historical behavior sequences. However, existing sequential recom
menders are designed with the assumption that users and items have 
representations that are static or change very slowly. Thus, they cannot 
be directly applied to dynamic scenarios such as live streaming, where 
both users and rooms have characteristics that change quickly over time. 

Another method for mining inter-item relationships is Graph Neural 
Networks (GNN) [20], which can learn representations for a node in a 
graph by recursively integrating its neighbors’ features. Existing 
recommendation models based on GNN have been applied to item co- 
occurrence graphs [21], user-item bipartite graphs [8], and social net
works among users [22]. However, GNN-based recommenders would 
face significant computational challenges if structures of underlying 
graphs change very frequently (e.g., on a minute basis, as in inter-room 
graphs for live streaming). On one hand, transductive GNN models, 
whether they are based on walks [23] or GCNs [24], are learned for a 
specific graph and have to be re-learned whenever graph structures 
change. On the other hand, although inductive GNN models [25] learn a 
set of models or aggregation functions to generate node embeddings, 
they still have low training efficiencies when the graph structure 
changes at the pace of inter-room graphs in live streaming. 

2.3. Empirical and theoretical support for DRIVER 

Our literature survey reveals that no existing recommender system 
accommodates the two key characteristics of live streaming—dynamic 
user behaviors (entering and leaving rooms) and social interactions—at 
the same time. As a new recommendation system for live streaming 
rooms, DRIVER integrates different machine learning methods in a 
novel way, and develops new components guided by empirical findings 
of consumer behaviors and social affordance theory. 

In the marketing literature, data that record a consumer’s spatial 
movement, whether it is in a physical or virtual space, are referred to as 
“path data”. Based on empirical findings from research on consumer 
path data, the Integrated Framework for Consumer Path Modeling [10] 
is proposed for this emerging area of research. According to the different 
types of movements defined by the framework based on spatial config
urations, the paths of audience members (i.e., consumers of digital 
content) in live streaming can be considered as non-physical and 
discrete movements with a low degree of constraints, as users can move 
freely between individual rooms in the virtual space. Therefore, we 
adopted the framework to guide our design of DRIVER. 

First, the framework highlighted that path data help to better un
derstand consumption behaviors [26], such as consumers’ paths to 
purchases [27], so that business decisions can be optimized (e.g., store 
layout or product recommendations) [28]. Motivated by the value of 
consumer path data from empirical studies, DRIVER focuses on the dy
namic paths of the audience when entering and leaving rooms and uses 
such path data in two ways: (1) It integrates JODIE [9] to update the 
embeddings of both users and rooms after users’ entrance into rooms. 
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Fig. 1. The (a) histogram and (b) CDF (Cumulative Distribution Function) of similarities of inter-room relationship matrices between two consecutive days in the live 
singing platform dataset. 
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This allows the representations of users and rooms to stay up to date 
when user behaviors in live streaming are highly dynamic; (2) Extending 
the idea of sequential recommenders and graph learning, it proposes a 
novel and efficient way to capture dynamic inter-room relationships 
based on user paths of joining another room after leaving one room. 

Second, this framework also identified that social interactions among 
individuals will affect their decisions of next movements [29]. DRIVER’s 
emphasis on modeling the current audience inside a room is particularly 
supported by such importance of social interactions. As a unique feature 
of live streaming compared to other social media, real-time social in
teractions play important roles in improving user engagement, attract
ing more users, and improving revenue for live streaming platforms 
[30–32]. Many hosts also adjust their shows based on their audiences’ 
real-time requests. Consequently, social interactions within a room can 
affect the content generation process or even determine the content or 
style of ongoing shows [2]. 

In fact, the value of social interactions for social media in general has 
been supported by social affordance theory [11], which measures the 
social capabilities provided by information systems. One key dimension 
of social affordance is social interactivity, which affords the possibility 
for users to interact with each other. Research has found that many users 
join live streaming because of social interactivity [33,34], and hosts that 
encourage social interactivity tend to be more popular [35]. 

Because interaction mechanisms differ in live streaming platforms, 
directly capturing social interactions in a room would require the 
analysis of text, image, voice, and/or video data using various compu
tationally expensive methods. Also, when shows are different (e.g., 
gaming vs singing), the way users interact and how their interaction 
should be analyzed would vary as well. Therefore, DRIVER takes an 
indirect yet much more generalizable approach to reflect the importance 
of social interactivity and social affordance in live streaming—it ag
gregates features of current audience in a room into the room’s instan
taneous features, which are part of the room’s comprehensive 
representation. Along with dynamic room representations based on all 
users who have visited the room in the past, such an aggregation 
explicitly captures the instantaneous social atmosphere within a room. 
In addition, this new emphasis on the current audience also ensures that 
users who spend more time in a room would have more chances to 
contribute to the room’s characteristics than users who come and go 
quickly. Such an approach can be easily adopted by most live streaming 
platforms that allow real-time user interactions inside rooms. 

Last, the framework also makes it clear that consumers are hetero
geneous, and so are their path decisions [36]. In online streaming, this 
means that users may choose a room for different reasons. As a result, 
DRIVER attempts to address such user heterogeneity by generating user- 
specific room representations. 

In sum, DRIVER dynamically updates the representations of users 
and items upon users’ entrance into a room, explicitly captures social 
interactions inside a room with its current audience, and efficiently 
models the ever-changing inter-room relationships based on users’ new 
destinations after leaving a room. The next section describes the model 
in detail. 

3. The proposed method 

This section first present the intuition behind DRIVER with a toy 
example and then provides a formal definition of the live streaming 
recommendation problem. Finally, we introduce the framework of the 
proposed DRIVER model, followed by detailed descriptions of each 
module. 

3.1. A toy example 

Suppose a live streaming platform has two rooms 1 and 2. At time t1, 
user A, B, C are in room 1 and user D, E are in room 2. Then user A leaves 
room 1 and enters room 2, such that at time t2 (t2 > t1), room 1 has users 

B and C, and room 2 has users A, D, and E. Fig. 2 depicts this example. 
Then we can infer that (1) room 2 is able to attract user A because of 
ongoing shows or the social atmosphere insider the room; and (2) there 
exists certain relationship between the two rooms, such that other users 
like A may also follow the same path (i.e., join room 2 after leaving room 
1). 

To capture such information, we use latent vectors to represent each 
user, room, and room’s relationships with others. When a user leaves 
one room and enters another, we update the representations for users 
and rooms in three steps. For this toy example, after A joins room 2, we 
first update user A’s vector by incorporating the vectors of room 2, user 
D and user E, so that user A’s vector reflects the room that she likes and 
users she wants to interact with. Then room 2’s vector is updated with 
user A’s vector, so that the room’s vector represents users who enjoy it. 
Finally, vectors of user A and room 2 are incorporated into room 1’s 
relationship vector, so that the vector can represent the types of users 
who would join room 2 after leaving room 1. 

3.2. Notations and the problem definition 

In a live streaming platform with user set U and room set M, our 
model would learn latent vectors (i.e. representations) for each user u ∈

U and each room r ∈ M. Similar to other representation learning 
methods, these latent vectors will be learned from the data and no 
explicit features are required. Such a setup would only require users’ 
behaviors in entering and leaving rooms as the input data for the model. 
This greatly improves the generalizability of the model, because such 
behaviors are universal in almost all live streaming platforms, despite 
the great variations in their streaming mechanisms and the types of 
shows. 

Representations for users include static features and dynamic fea
tures. We use one-hot vector u ∈ R|U| to denote u’s static features that do 
not change over time. Let a d-dimension vector u(t) denote the user’s 
dynamic features at time t, which is randomly initialized and will be 
learned through our proposed model. 

Similarly, room r’s static features are also denoted as one-hot vector 
r ∈ R|M|. Different from users, a room’s dynamic features include two 
parts: (1) user-specific comprehensive features sr

u(t) at time t for user u. It 
incorporates the room’s cumulative features since its inception (denoted 
as rc(t)), the room’s instantaneous features (denoted as ri(t)) reflected by 
Ut

r, the set of users who are currently in room r, and user u’s dynamic 
features u(t). (2) room’s relationship features re(t) that captures room r’s 
dynamic relationships with other rooms at time t. 

Interactions between users and rooms are represented as temporal 
sequences of tuples enter(u,r, t), indicating user u’s entrance into room r 
at time t, and leave(u,r,t), representing user u’s departure from room r at 
time t. By tracing enter(u, r, t) and leave(u, r, t), we can get Ut

r, the set of 
users in room r at time t. 

Suppose user u leaves room r at time t and is ready to enter another 
room at time t + Δt, DRIVER will predict which room u will enter. Given 
a sequence of user-room interactions enter(u, r, t) and leave(u, r, t) until 
time t, the model first predicts ̂su(t + Δt), the comprehensive features of 
the room that user u is most likely to enter at time t + Δt. Then, top K 
rooms whose comprehensive features right before t+Δt are most similar 
to ŝu(t+Δt) will form the recommendation list to user u. Table 1 sum
marizes all the notations used in this paper and more explanations can 
be found in Appendix A. 

3.3. The general framework 

Fig. 3 shows the general framework of DRIVER and pseudo-code is 
provided in Appendix A. Overall, the model consists of two main mod
ules: the Representation Learning Module and the Predicting Module. 

The Representation Learning Module consists of the Integrating 
Component and the Updating Component. This module handles the 
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learning and updating of vector representations. Within this module, 
both users’ and rooms’ dynamic representations are updated based on 
users’ behavior paths of entering and leaving rooms. Upon user u’s 
entrance into room r at time t, we will update the user’s dynamic fea
tures u(t− ) with room r’s comprehensive and user-specific features for 
user u,sr

u(t− ). Such comprehensive features are obtained from the novel 
Integrating Component. Meanwhile, the room’s cumulative features 
rc(t− ) are also updated with u(t− ). Similar to the user-item co-updating 
method introduced in JODIE [9], these two update operations aim at 
tracking users’ and rooms’ characteristics with users’ paths of entering 
rooms. Different from JODIE, which only considers the start of user-item 
interactions (i.e., room entrance), DRIVER also includes feature updates 
for the end of user-item interactions in users’ behavior paths: when user 
u leaves room r′ at time t− and enters room r at time t, we will update 
r′ e

(t− ), which captures the relationship features of room r′ , based on user 
u and room r. This allows the relationships between r′ and other rooms to 
stay current in this dynamic environment. With the Integrating and 

Updating Components, we can get real-time and dynamic representa
tions of users, rooms, and inter-room relationships. 

The Predicting Module completes the prediction task to provide 
recommendations. It takes as inputs representations of users, rooms, as 
well as room-room relationships. Unlike many previous studies that 
predict a score for each item, DRIVER directly predicts the compre
hensive features of the room that user u will enter at time t + Δt. We 
provide details about the Updating and Integrating Components and the 
Predicting Modules in subsequent subsections. 

3.4. The updating component 

To address users’ dynamic behaviors in live streaming, three types of 
features need to be updated in our model: (1) users’ dynamic features, 
(2) rooms’ cumulative features, and (3) rooms’ relationship features. 
The first two are updated upon users’ entrance into rooms, while the last 
type is updated based on users’ departure from rooms. Thus, the 
Updating Component in DRIVER represents a novel design that in
corporates an instantaneous item graph into dynamic representation 
learning, and does so in a computationally efficient way, for dynamic 
user-item interactions that feature different types of behaviors in user 
path data (i.e., entrance and departure in live streaming). 

First, u(t) represents user u’s overall dynamic features. It is obtained 
based on her historical path of all the rooms she has ever entered till time 
t. The features will be updated each time this user enters a room. Because 
users’ entrance into rooms form a natural temporal sequence, we choose 
the widely used RNN method for this update. When user u enters room r 
at time t,u’s dynamic features are updated by room r’s comprehensive 
features sr

u(t− ). Formally, when enter(u, r, t) occurs, u(t− ) is updated as 
specified in Eq. (1): 

u(t) = RNNu(sr
u(t

− ),u(t− )) (1)  

where sr
u(t− ) is the latest comprehensive features of room r for user u 

before time t. This is obtained from the integrating component, which is 
described in Section 3.5. 

Second, room r’s cumulative features rc(t) capture the long-term 
characteristics of the room such as the general content or style of 
shows till time t. Similar to u(t− ), rc(t− ) for room r is updated using RNN, 
each time user u enters room r at time t. Specifically, when the event 
enter(u, r, t) occurs, rc(t− ) is updated based on user u’s dynamic features 
u(t− ), as described in Eq. (2): 

rc(t) = RNNr(u(t− ), rc(t− )) (2)  

To reduce the number of parameters to train, parameters of RNNu and 
RNNr are shared among all users and rooms respectively. Fig. 4a illus
trates the procedure for updating u(t− ) and rc(t− ). 

Third, a room’s relationship features capture its inter-room re
lationships with other rooms based on users’ paths after leaving this 
room. When user u leaves room r′ at time t− and joins room r at time t, 
we update r′ e

(t− ), the relationship features for room r′ , with two types of 
features: (1) rc(t), the cumulative features of room r, so that we can 
capture characteristics of rooms that users choose after departing from 
this room; and (2) user u’s dynamic features u(t). This design reflects 

Fig. 2. The toy example of user A leaving room 1 and joining room 2. With the behavior of user A, the relationship between the two rooms will be updated.  

Table 1 
A list of notations used in this paper.  

Notations Description 

u and r The static features of user u and room r respectively 
u(t) The dynamic features of user u at time t 
rc(t) The cumulative features of room r at time t 
ri(t) The instantaneous features of room r at time t 
re(t) The relationship features of room r at time t 
sr

u(t) The comprehensive features of room r at time t for user u 
t− The timestamp right before time t 
Ut

r The set of users who are in room r at time t 
enter(u, r, t) User u enters room r at time t 
leave(u, r, t) User u leaves room r at time t 
ŝu(t + Δt) The predicted comprehensive room features for user u at time t + Δt  

Fig. 3. The general framework of DRIVER.  
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user heterogeneity as we discussed in the previous section: different 
users may make different choices after leaving the same room. For 
example, after watching a show about rock music, some users may want 
shows on hip-hop while other users may switch to shows on jazz. 
Overall, by including next room’s features and user’s features in this 
update procedure, r′ e

(t) can characterize the type of rooms different 
users have chosen after leaving room r′ . 

One potential issue with this type of update is computational 
complexity. Note that the representations of users and rooms are 
continuously updated as soon as a user enters a room. This means the 
update of r′ e

(t− ) must be done at the same pace to make real-time rec
ommendations possible. However, most existing methods, such as CNN- 
or GNN-based models, rely on recursive and global computation on the 
whole item graph to capture the relationships among items after multi- 
epoch training on each new graph [37]. With the frequent changes to the 
room graph for live streaming, such an approach would incur high time 
complexity. To address this problem, we choose to update r′ e

(t− ) with 
the average pooling operation, which can be calculated incrementally 
with high efficiency. Specifically, when user u is the (N + 1)-th user who 
leaves room r′ , and she subsequently enters room r, the update of r′ e

(t− )
is defined as Eq. (3) and illustrated in Fig. 4b, where cat is the concat
enation operation of vectors. 

r′ e
(t) = (r′ e

(t− ) × N + cat(u(t), rc(t)))/(N + 1) (3)  

3.5. The integrating component 

Supported by the Integrated Framework for Consumer Path 
Modeling and social affordance theory, DRIVER integrates room’s cu
mulative features and instantaneous features into a comprehensive and 
user-specific representation. In this way, the representation also 
explicitly captures social interactions within a room via instantaneous 
characteristics of room r’s current audience, who could have great in
fluence on the overall social atmosphere inside the room and even the 
style of ongoing shows. This subsection describes how the integrating 
component (1) obtains a room’s instantaneous features ri(t− ) by aggre
gating its current audience’s/users’ features and (2) integrates the cu
mulative and instantaneous features into the comprehensive features 
sr

u(t− ). Fig. 5 depicts the architecture of the integrating component. 
As shown in Fig. 5, a room’s instantaneous features are generated by 

aggregating dynamic features of users who are in the room. This is 
because individuals currently inside a room can serve as a good proxy 
for the social interactions and atmosphere of the room. Then, a room’s 
instantaneous features are combined with its cumulative features to 
generate its comprehensive features. Specifically, to obtain instanta
neous features ri(t− ) for room r, we aggregate the dynamic features of 
each user u′

∈ Ut−
r (the set of users who are currently in room r just 

before t), as defined in Eq. (4). 

ri(t− ) = Aggu′ ∈Ut−
r
(u′

(t− )) (4)  

where Agg is the aggregation function and u′

(t− ) is learned in the 
updating component. Different aggregation operations can be used here. 

With both cumulative features rc(t− ) and instantaneous features 
ri(t− ) for a room, we will aggregate them into room’s comprehensive 
features specifically for user u. The reason we generate such user-specific 
room representations is again to address user heterogeneity—different 
users may have different levels of preferences over the same room’s 
cumulative and instantaneous features: One user may favor the overall 
show content of a room (mainly reflected by its cumulative features from 
audience members’ historical paths) while another user may value its 
current social atmosphere (mainly reflected by its instantaneous fea
tures from the current audience). Such preferences could also vary from 
one room to another. Therefore, to generate the comprehensive features 
of a room in a personalized way, we leverage the widely used attention 
mechanism [38] to capture users’ attention levels to a room’s cumula
tive and instantaneous features. Formally, we get a room’s compre
hensive user-specific features with the following equations: 

oc
ur = σ(wc⋅cat(u(t− ), rc(t− ))+ b1) (5)  

oi
ur = σ(wi⋅cat(u(t− ), ri(t− )) + b2) (6)  

ac
ur = exp

(
oc

ur

)/(
exp
(
oc

ur

)
+ exp

(
oi

ur

))
(7)  

ai
ur = 1 − ac

ur (8)  

sr
u(t

− ) = ac
ur × rc(t− ) + ai

ur × ri(t− ) (9)  

Eqs. (5)–(8) get the relative weights of a room’s cumulative and 
instantaneous features and Eq. (9) combines these features according to 
these weights to generate room r’s comprehensive user-specific features 
specifically for user u. wc,wi ∈ R2×d, b1, b2 ∈ R are all learnable param
eters, and σ is the sigmoid function. 

3.6. The predicting module 

With all the representations learned above, when user u leaves room 
r at time t, DRIVER first predicts the comprehensive features of the room 
she will prefer right before she chooses a room at time t + Δt. Here we 
also adopt the projection operation proposed in JODIE [9] to model the 
potential temporal drift of user’s characteristics (i.e., the change of 
users’ dynamic features over time). The projection operation first con
verts time difference into a time-context vector and then scales the user’s 
dynamic features u(t): 

û(t+Δt) = (1+(wt × Δt)) ⊙ u(t) (10)  

where the learnable parameter wt ∈ Rd is used to convert time difference 
into the time-context vector, 1 is a vector whose entries are all 1 and ⊙ is 
the element-wise product. 

For user u, the Predicting Module takes three types of features as 
inputs. Naturally, the first type is about the user, including û(t + Δt), the 

Fig. 4. The update process for u(t− ) and rc(t− ) (in panel a) and r′ e
(t− ) (in panel b).  
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user’s dynamic features projected at the prediction time, and her static 
feature u. The second type is about the room r that u just left. Because 
dynamic features of the room are already incorporated into u’s dynamic 
representations when she enters the room (via the Updating Component 
described in Section 3.4 and illustrated in Fig. 4a), we only include the 
room’s static feature r as a direct input to the prediction. The last type is 
about relationships of rooms based on users’ sequential behaviors. If 
user u just leaves room r, then re(t), which captures r’s relationships with 
other rooms, is also fed into the prediction. Formally, when user u leaves 
room r at time t, the Predicting Module takes û(t+Δt), u, r and re(t) as 
inputs and predicts ̂su(t+Δt) as defined in Eq. (11), where Ws is a matrix 
to be learned. 

ŝu(t+Δt) = Ws⋅cat(û(t+Δt),u, re(t), r) (11)  

To train this predictive model, we define the Mean Square Error between 
the predicted comprehensive features for user u and the comprehensive 
features of the room that u actually entered as the loss function (see Eq. 
(12)). We also add the magnitudes of feature updates for users and 
rooms into Eq. (12) to ensure that these dynamic features are updated 
smoothly. λu and λr are hyper-parameters. The minimization problem 
can be solved with gradient descent. 

L =
∑

(u,r,t)
‖ŝu

(

t

)

− sr
u

(

t

)

‖
2
2

+λu‖u
(
t
)
− u
(
t−
)
‖

2
2 + λr‖rc( t

)
− rc( t−

)
‖

(12)  

The prediction outcome enables us to calculate the Euclidean distance 
between actual representations to each room and the prediction. Rooms 
are then ranked by such distance in an ascending order (i.e., in the 
descending order of similarity with the prediction). Top K rooms from 
the ranked list will be recommended to user u as candidates for her next 
room. 

4. Experiments and results 

We conduct experiments on real-world datasets from two different 
types of online streaming platforms and compare the performance of the 
proposed DRIVER model with other state-of-the-art recommendation 
models. Then, we use ablation studies to demonstrate that each new 
component of DRIVER contributes to its performance. Sensitivity ana
lyses also show the robustness of DRIVER’s performance. 

4.1. Datasets 

The first dataset, Live-Singing, is from a popular live streaming 
platform dedicated to online singing, with services in North America and 
South Asia.3 Hosts can start live-singing rooms, and other users can enter 
to watch others’ performance or even sing a song if they want to. The 
dataset contains 26,604 users’ interactions with 936 rooms between 
June 3rd and June 23th, 2019. The second dataset, HuaJiao, is from a 
large-scale live streaming platform in China.4 Compared to Live-Singing, 
HuaJiao features more diverse shows of singing, dancing, gaming, etc. 
The dataset contains 20, 000 users’ interactions with 1,000 rooms from 
Feb 1st to Feb 28th,2018. Summary statistics of the two datasets are listed 
in Table 2, where an “interaction” between a user and a room refers to 
the user’s entrance into or departure from the room. Note that the two 
datasets were used separately to train two different DRIVER models, one 
for each platform. 

4.2. Benchmark methods and experimental settings 

We choose a variety of recommendation methods as benchmark 
methods. All of the seven benchmark methods are intorduced below, 
including one classic matrix factorization model, two static representa
tion learning models based on deep learning, three sequential recom
mendation models, and one dynamic representation learning method. 

• MF-BPR[7] is a classic matrix factorization recommendation algo
rithm that learns latent vectors for both users and items with the BPR 
criterion.  

• NGCF[39] is a static representation learning model which leverages 
multi-layer GNN to learn representations from user-item interaction 
graph with the BPR loss. 

Fig. 5. The Integrating Component.  

Table 2 
Basic statistics of datasets.   

#users #rooms #interactions density #interactions per 
day 

Live- 
Singing 

26,604 936 921,332 0.0370 46,067 

HuaJiao 20,000 1,000 1,726,592 0.0863 61,664  

3 Due to a non-disclosure agreement, we cannot disclose the name of the 
platform.  

4 https://www.huajiao.com. 
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• LightGCN[8] is an extension of NGCF. It drops the non-linear 
transformations when conducting GNN and claims better 
performance.  

• SR-GNN[21] is a GNN-based sequential recommendation model 
that captures the relationships among items (i.e., rooms in our case) 
in the same session.  

• TiSASRec[40] is a sequential recommendation model based on self- 
attention. Both the sequential patterns and time intervals between 
every two items in interaction sequences are considered in this 
model.  

• SSE-PT[41] is another sequential recommendation model which 
captures user-specific sequential patterns using self-attention.  

• JODIE[9] is a state-of-the-art dynamic presentation learning model 
for sequential recommendations. It jointly learns and updates user 
and item representations upon user-item interactions. 

All the models are trained 30 times with different random seeds to 
get a stable result, and the average performance is shown. We use the 
commonly used metrics MRR, NDCG, and Recall to evaluate the 
recommendation performance. Details about their calculations are in 
Appendix B. To ensure reproducibility, we follow guidelines in [42–44] 
and provide details of our model and experiments in Appendix B and C. 
The code and a simulated dataset are available at https://github.com/ 
GarrettGaoge/DRIVER. 

4.3. Results 

Table 3 summarizes the average performance of all models on the 
test set. The best performer for each measure is shown in bold. The last 
row shows the relative improvement of DRIVER compared to the best 
benchmark model and whether the improvement is statistically signifi
cant (with paired t-tests and *** indicates p-value < 0.001). 

As Table 3 shows, the proposed DRIVER model dominates the 
benchmark methods on all performance measures for both datasets. 
Among benchmark methods, those that learn only static representations 
for users and rooms, such as MF-BPR, NGCF, and LightGCN, generally 
have lower performance. Sequential recommenders, such as SR-GNN, 
TiSASRec, and SSE-PT, have better performance because they consider 
sequential patterns based on users’ paths of entering and leaving rooms. 
However, although session information or self-attention are used in 
these methods to capture time sequences, they still rely on static 
representations. 

JODIE is the state-of-the-art dynamic representation learning model 

that continuously updates the representations of users and rooms when 
users enter rooms. Its good performance among benchmark methods 
highlights the benefits of learning dynamic representations when user- 
item/room interactions occur at a very high pace, as in live streaming 
platforms. However, JODIE does not consider users’ paths after leaving a 
room. Moreover, JODIE treats all historical paths of users equally and 
does not capture social interactions among current audience members 
within a room. Thus, DRIVER’s better performance compared to JODIE 
demonstrates the value of considering two unique characteristics of live 
streaming: dynamic inter-room relationships and the importance of so
cial interactions in a room. Overall, DRIVER’s better performance than 
benchmark methods demonstrates that our approach to capturing users’ 
behavior paths of entering, staying in, and leaving rooms are effective. 

Moreover, we also evaluate DRIVER’s performance for diverse types 
of shows in HuaJiao. The results show that DRIVER’s better performance 
over JODIE is consistent across all the 8 types of shows in the HuaJiao 
dataset–the improvement in MRR ranges from 3.81% (for show type 
Fun) to 11.16% (for show type Knowledge Sharing). Appendix D shows 
more details about the heterogeneity of the two live streaming platforms 
and the datasets used. 

4.4. Ablation studies 

As we mentioned earlier in this paper, DRIVER incorporates two new 
components to capture unique characteristics of live streaming: dynamic 
inter-room relationships and instantaneous features of rooms. To eval
uate how each of the two new components contributes to DRIVER’s 
performance, we conduct ablation studies for two variations of DRIVER. 
The first variation (DRIVER1) removes rooms’ relationship features, i.e., 
re(t), and substitutes them with comprehensive features of the last room 
that a user visited when doing prediction in Eq. (11). The second vari
ation (DRIVER2) removes rooms’ instantaneous features based on the 
current audience and user-specific comprehensive features. Instead, 
rooms are only represented by cumulative features as in JODIE. Table 4 
compares the performance of the two variations with that of the full 
DRIVER model, along with two strong benchmark methods, TiSASRec 
and JODIE. 

According to Table 4, the removal of each component leads to 
deteriorating performance compared to the full DRIVER model. At the 
same time, both variations still outperform the two strong benchmark 
methods. These results indicate that each of the two new components 
makes meaningful contributions in improving DRIVER’s performance 
over benchmark methods. (*** means the result is different from 

Table 3 
Performance comparison.    

MRR Recall@5 Recall@10 NDCG@5 NDCG@10 

Live-Singing MF-BPR 0.2995 0.4372 0.5746 0.3901 0.4340 
NGCF 0.3033 0.4487 0.5776 0.3954 0.4373 
LightGCN 0.3964 0.4815 0.5884 0.4420 0.4733 
SR-GNN 0.4595 0.5383 0.6332 0.4617 0.4925 
TiSASRec 0.5067 0.6371 0.7294 0.5227 0.5527 
SSE-PT 0.4581 0.6217 0.7258 0.4807 0.5144 
JODIE 0.5130 0.6652 0.7366 0.5395 0.5627 
DRIVER 0.5488 

(±0.0023) 
0.6989 
(±0.0017) 

0.7896 
(±0.0016) 

0.5721 
(±0.0021) 

0.6015 
(±0.0020) 

Improvement 6.97%*** 5.06%*** 7.19%*** 6.05%*** 6.90%***        

HuaJiao MF-BPR 0.2138 0.3149 0.4169 0.3297 0.3579 
NGCF 0.2134 0.3150 0.4145 0.3296 0.3566 
LightGCN 0.3847 0.3332 0.4138 0.3824 0.3948 
SR-GNN 0.4237 0.4696 0.5120 0.4240 0.4376 
TiSASRec 0.4574 0.5709 0.6391 0.4719 0.4940 
SSE-PT 0.4147 0.5086 0.5889 0.4211 0.4470 
JODIE 0.4568 0.5769 0.6396 0.4751 0.4955 
DRIVER 0.4982 

(±0.0010) 
0.6006 
(±0.0025) 

0.6513 
(±0.0045) 

0.5138 
(±0.0012) 

0.5303 
(±0.0018) 

Improvement 8.93%*** 4.11%*** 1.83%*** 8.15%*** 7.01%***  
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DRIVER according to paired t-tests with p-value < 0.001, ** means p- 
value < 0.01) 

4.5. The robustness of performance 

An important hyper-parameter for DRIVER is the dimension of vector 
representations. Our experiments above use 128 as the dimension. To 
check if DRIVER offers robust performance when different dimensions 
are used, we vary the dimensions and compare DRIVER’s performance 
on both datasets in Fig. 6. We can see that the performance is not sen
sitive to the change of representation dimensions. 

Besides this hyper-parameter, we also evaluate whether DRIVER’s 
performance is robust to different amount of training data. For both 
datasets, we train DRIVER based on various length of training peri
ods—2 days to 20 days for Live-Singing and 6 days to 26 days for 
HuaJiao—and use the remaining data for testing. Fig. 7 shows the per
formance of DRIVER compared to the benchmark methods on dataset 
Live-Singing and we get similar results in HuaJiao (corresponding fig
ures are shown in Appendix E). 

The sensitivity analyses reveal two interesting findings. First, 
DRIVER outperforms all other models with different amounts of data on 
both datasets. In other words, DRIVER’s performance improvement over 
other methods is robust against changes in training data size—while 
having more training data is generally beneficial, having less training 
data does not cause great drops in DRIVER’s performance. Second, 
DRIVER needs much less training data to achieve the same level of 
performance. For example, on the Live-Singing dataset, DRIVER trained 
with only 2 days of data performs better than other models trained with 
20 days. On the HuaJiao dataset, to get comparable MRR with DRIVER 
trained with 6 days of data, benchmark methods need 20 or more days of 
data. This highlights the value of the additional signals DRIVER lever
ages from user path data to make recommendations. 

Overall, the sensitivity analyses demonstrate the robustness of 
DRIVER’s performance to hyper-parameter values and training data 
sizes. Such properties are highly desirable for the real-world adoption of 
a recommender system. 

5. Discussions 

While interpreting deep learning models and vector representations 
learned from such models remains a challenge, we dig deeper into our 
model to see what it learns. This helps us better understand if the model 
learns what we intend for it to learn, ensure that the performance gain 
from DRIVER is not accidental, and validate our model design guided by 
empirical evidence and theory. Using the Live-Singing dataset, our in
vestigations focus on the two novel components of DRIVER: the incor
poration of the current audience into the learning of room 
representations and the dynamic representations of inter-room 
relationships. 

First, when generating comprehensive features for a room, DRIVER 
aggregates the room’s cumulative features and instantaneous features 
with the attention mechanism (Eq. (9)). The attention learned for a user 
would indicate how much this user values a room’s overall character
istics (represented by ac

ur) versus its instantaneous atmosphere (repre
sented by ai

ur). Thus, we calculate users’ attention on each room’s 
instantaneous features (ai

ur) when they choose rooms in the testing 
period and analyze attention values from two perspectives. From the 
perspective of users, we calculate each user’s averaged attention ai

u on 
room’s instantaneous features ai

u = Meanr∈M(u)(ai
ur), where M(u) is the 

set of all the rooms user u has entered and Mean is the function to get the 
mean value. Larger ai

u means user u usually cares more about rooms’ 
social interactions and atmosphere (i.e., reflected by its current audi
ence), and vice versa. ai

u(∀u ∈ U) has a mean of 0.53 and a standard 
deviation of 0.01. 

Similarly, from the perspective of rooms, we average the attention to 
rooms’ instantaneous features across users ai

r = Meanu∈U(r)(ai
ur), where 

U(r) is the set of all the users who have entered room r. The mean and 
standard deviation of ai

r(∀r ∈ M) are 0.52 and 0.01 respectively. Because 
the relative weights of a room’s cumulative and instantaneous features 
ac

ur and ai
ur sum up to 1, results from both perspectives show that most 

users do take the current audience in a room as an important factor, 
sometimes even slightly more important than the room’s long-term 

Table 4 
Ablation study results.    

MRR Recall@5 Recall@10 NDCG@5 NDCG@10 

Live-Singing TiSASRec 0.5067 0.6371 0.7294 0.5227 0.5527 
JODIE 0.5130 0.6652 0.7366 0.5395 0.5627 
DRIVER1 0.5205*** 0.6896*** 0.7896*** 0.5471*** 0.5796*** 
DRIVER2 0.5460*** 0.7006** 0.7878 0.5702*** 0.5984*** 
DRIVER 0.5488 0.6989 0.7896 0.5721 0.6015        

HuaJiao TiSASRec 0.4574 0.5709 0.6391 0.4719 0.4940 
JODIE 0.4568 0.5769 0.6396 0.4751 0.4955 
DRIVER1 0.4981 0.5981*** 0.6409*** 0.5143 0.5282*** 
DRIVER2 0.4863*** 0.5890*** 0.6387*** 0.5022*** 0.5183*** 
DRIVER 0.4982 0.6006 0.6513 0.5138 0.5303  

Fig. 6. The performance of DRIVER with different dimension of vector representations on two datasets—Live-Singing (left) and HuaJiao (right).  
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characteristics, when choosing which room to enter. In other words, as 
we have shown in our ablation analyses, it is indeed valuable to capture 
characteristics of a room’s current audience as a proxy for its social 
interactions when learning the room’s representations. 

As we discussed above, live streaming features high dynamics in 
user-room interactions and our model is designed to capture such dy
namics. Therefore, our second investigation into the model explores if 
representations learned by DIRVER are indeed dynamic, including 
rooms’ cumulative features rc, instantaneous features ri, and inter-room 
relationship features re. To measure the dynamics in a room’s features, 
we first calculate cosine similarities between all pairs of rooms’ features 
at time tb, the beginning of the testing period. For example, Eq. (13) 
calculates simc

r1 ,r2
(tb), the similarity between room r1’s and r2’s cumu

lative features at tb, where the superscript T means the transpose of a 
vector and ‖⋅‖2 is the second-norm. The similarity between their 
instantaneous features simi

r1 ,r2
(tb) and the similarity between their rela

tionship features sime
r1 ,r2

(tb) are calculated in a similar way. Then for 
each room r, we can find three sets of top K similar room
s—TKc

r(tb),TKi
r(tb) and TKe

r(tb), based on similarities on cumulative, 
instantaneous and relationship features at tb respectively. 

simc
r1 ,r2

(tb) =
rc

1(tb)
T ⋅rc

2(tb)

‖rc
1(tb)‖2 × ‖rc

2(tb)‖2
(13)  

Following the same procedure, we can find inter-room similarities be
tween rooms at time te, the end of the test period, and identify room r’s 
three sets of top K similar rooms—TKc

r(te),TKi
r(te) and TKe

r(te), based on 
similarities on cumulative, instantaneous and relationship features at te 
respectively. 

Then by comparing a room’s top K similar rooms at the beginning 
and end of the testing period, we can reveal the dynamics in rooms’ 
representations over the 7-day period. Take the comparison of top K 
similar rooms based on cumulative features as an example. For room r, 
we calculate the Jaccard Coefficient JCc

r between TKc
r(tb) and TKc

r(te). A 
higher Jaccard Coefficient means a room’s top K similar rooms based on 
cumulative features do not change much. Jaccard Coefficients for 
instantaneous features (JCi

r) and relationship features (JCe
r) can be 

calculated in a similar way. Table 5 shows the means and standard de
viations for Jaccard Coefficients with K = 5 and K = 10, while Fig. 8 
draws the distributions of Jaccard Coefficients over rooms. 

For the three types of features and two K values, the mean Jaccard 
Coefficients are all below 0.15. Also, more than 600 out of 936 rooms 

Fig. 7. Performance of different models with different training sets on Live-Singing.  
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have Jaccard Coefficients lower than 0.1. In other words, a room’s top K 
similar rooms experience radical changes during the 7-day period. These 
results demonstrate that representations learned by DRIVER are indeed 
very dynamic over time, which reflects one of the key characteristics of 
live streaming rooms. Moreover, as one would expect, instantaneous 
features have lower similarities than cumulative and relationship fea
tures. This is because instantaneous features are based directly on a 
room’s current audience, which is the most dynamic aspect of a room. 

6. Conclusions and future work 

This paper proposes DRIVER, a novel dynamic representation 
learning model for recommending rooms in live streaming platforms. 
Guided by the Integrated Framework for Consumer Path Modeling and 
social affordance theory, the proposed model addresses two unique and 
important features of live streaming—the value of the current audience 
within a room and the dynamic inter-room relationships when users 
switch rooms frequently. The model designs two novel components to 
learn and update dynamic representations for both users and rooms 
based on users’ behavior paths of entering, staying in, and leaving 
rooms. Three types of dynamic features of a room are learned: cumu
lative features based on users’ entrance into rooms in the past, instan
taneous features based on the audience members who are currently in a 
room, and relationship features reflected in users’ subsequent behavior 
paths after leaving a room. With these representations, we leverage the 
features of users and rooms as well as inter-room relationships to predict 
which room a user will choose next. 

Through extensive experiments on datasets from two real-world live 
streaming platforms, we demonstrate the improved performance of 
DRIVER and summarize the main findings as follows: 

Table 5 
Means and standard deviations of Jaccard Coefficients for top K similar rooms at 
the beginning and end of the testing period of Live-Singing.   

K = 5 K = 10  

Mean Standard 
Deviation 

Mean Standard 
Deviation 

Cumulative Features 0.12 0.22 0.13 0.21 
Instantaneous 

Features 
0.08 0.14 0.09 0.13 

Relationship Features 0.12 0.26 0.11 0.20  
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(a) Cumulative Features
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(b) Instantaneous Features
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(c) Relationship Features

Fig. 8. Distributions of Jaccard Coefficients for top K similar rooms at the beginning and end of the testing period of Live-Singing.  
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First, in live streaming, both hosts and audience enjoy the freedom of 
choosing what they perform and watch respectively, leading to ever- 
changing relationships among rooms. The incorporation of such dy
namic inter-room relationships based on the Consumer Path Modeling 
helps DRIVER to improve its performance in room recommendation 
tasks. 

Second, live streaming platforms enable various types of social in
teractions between the audience or between a host and the audience. 
Inspired by the social affordance theory, DRIVER’s approach to repre
senting the social atmosphere inside a room with characteristics of its 
current audience can also help to generate more accurate room 
recommendations. 

These findings have important implications for the design of 
recommendation systems in live streaming platforms and beyond. First, 
with highly dynamic host and audience behaviors in live streaming 
platforms, room recommendation systems should take into consider
ation the dynamic properties of users and rooms, as well as the social 
atmosphere inside rooms. Designers of room recommendation systems 
can adopt DRIVER’s framework, yet train and tweak the model with 
their own data. In addition, because DRIVER is designed as a general
izable model without considering platform-specific features, different 
platforms can also extend DRIVER to incorporate unique characteristics 
of their services to further improve its performance. Such improvements 
in room recommendations can help live streaming platforms reduce 
users’ search costs and offer a greater entertainment experience, 
allowing users and hosts to get more engaged. This can result in financial 
and non-monetary benefits for both platforms and their customers. 

Second, methodologically, the implications of the DRIVER model are 
not limited to live streaming recommendations only. DRIVER’s perfor
mance for live streaming recommendations highlights that learning 
dynamic item representations and directly aggregating users’ features 
are feasible ways to model dynamic user-item and users’ social in
teractions in cyberspace. We believe DRIVER can also be extended to 
other contexts where real-time social interactions among users are 
important for item properties or user-item interactions occur at a fast 
pace. 

There are also several interesting directions for further work. For 
example, many live streaming platforms allow users to follow each other 
and form an explicit social network, which could provide valuable in
formation to better understand user behaviors and recommend rooms. 
In addition, this study uses characteristics of the current audience as a 
proxy for social interactions inside a room, as this enables generalization 
to different live streaming platforms and rooms with different types of 
shows. When making room recommendations for a specific live 
streaming platform or a specific type of show, investigating fine-grained 
behaviors of the audience members inside a room, such as the nature, 
volume, and content of their interactions with each other and the host 
(e.g., virtual gifting, meme, and sentiment of comments) should also 
help to better capture the social atmosphere inside a room. Similarly, 
adding more static features for each room (e.g., the text description of 
each room) and dynamic features related to the audio and video content 
of ongoing shows should also improve the performance of room rec
ommendations and help to address the cold-start problem. However, the 
extraction of these features and their contributions to recommendation 
performance may depend heavily on the specifics of the live streaming 
platform and the types of shows being hosted in rooms. We also noticed 
that all the recommendation models we evaluated, including DRIVER, 
work better for Live-Singing than for HuaJiao. We conjecture that the 
performance difference is due to HuaJiao’s higher diversity in the types 
of shows, hosts, and audience, making it a more challenging platform to 
use one model for all room recommendations. It would be interesting to 
analyze factors that lead to lower performance by so many different 
recommendation models, but this would require a systematic investi
gation that goes beyond just two live streaming platforms. Another di
rection for future research would be to train and evaluate our model 
with more diverse datasets from other types of live streaming platforms, 

so that we can better validate its performance for the general task of 
room recommendations for live streaming. 
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