
Decision Support Systems 169 (2023) 113957

Available online 15 March 2023
0167-9236/© 2023 Elsevier B.V. All rights reserved.

Live streaming recommendations based on dynamic representation learning

Ge Gao a, Hongyan Liu a,*, Kang Zhao b

a Research Center for Contemporary Management, Key Research Institute of Humanities and Social Sciences at Universities, School of Economics and Management,
Tsinghua University, China
b Tippie College of Business, The University of Iowa, United States

A R T I C L E I N F O

Keywords:
Machine learning
Design science
Recommender systems
Consumer path

A B S T R A C T

As an emerging form of social media, live streaming services (e.g., Twitch and Clubhouse) allow users to interact
with hosts and peers in real time while enjoying shows or participating in discussions. These platforms are also
dynamic, with shows or discussions changing quickly inside a room and users frequently switching between
rooms. To improve user engagement and experience on such platforms, we design a new recommendation model
named Dynamic Representations for Live Streaming Rooms (DRIVER) to provide room recommendations.
Guided by the Integrated Framework for Consumer Path Modeling and the social affordance theory, DRIVER
infers dynamic representations of live streaming rooms by leveraging users’ behavior paths in entering, staying
in, and leaving rooms. One contribution of our model is a new and efficient dynamic learning framework to
model instantaneous and ever-changing inter-room relationships by considering individual users’ behavior paths
after leaving a room. Also supported by social affordance theory, another methodological novelty of our model is
to capture dynamic characteristics of a room by incorporating features of the current audience inside the room.
Experiments on real-world datasets from two different types of live streaming platforms demonstrate that
DRIVER outperforms state-of-the-art representation learning methods and sequential recommender systems. The
proposed method also has implications for recommender system design in other contexts, in which items are
characterized by users’ dynamic behavior paths and ongoing social interactions.

1. Introduction

Live streaming services represent a new type of online interactions
and have experienced rapid growth during the past few years, with
popular ones such as Twitch hosting nearly 150,000 rooms and
attracting an average of more than two million concurrent users each
day.1 In live streaming, a host or streamer can start a room (i.e., a feed or
channel on some platforms) to broadcast live shows to audience (e.g.,
Twitch and Tiktok) or initiate discussions among participants (e.g.,
Clubhouse). Unlike traditional social media (e.g., Twitter), TV programs
with separate social media presence or asynchronous video streaming
services (e.g., Youtube), the real-time social interactions among the
audience afforded by live streaming platforms mean that the current
audience inside a room is an indispensable part of characterizing the
room. Meanwhile, because shows and discussions in rooms change
quickly in live streaming, the audience can also leave a room for another
room at any time. Such importance of a room’s current audience and
highly dynamic user behaviors distinguish live streaming from other

forms of social media [1,2].
With tens of thousands of rooms streaming online simultaneously, it

is imperative for live streaming platforms to recommend rooms to users
to lower the search cost. Similar to recommender systems in social
networks and eCommerce [3–5], accurate room recommendations have
important business values for live streaming—they not only improve
users’ experience but also get hosts more engaged with the platform.
However, existing recommendation methods have not fully considered
nor leveraged the two key characteristics of live streaming we mention
below.

First, user behaviors are highly dynamic, and so are rooms and inter-
room relationships. Within a live streaming room, the host can stage
many different shows over time, including shows of different types and
styles, or even shows by guest performers. As a result, the characteristics
of rooms are highly dynamic. At the same time, audience members also
enter and leave rooms at a fast pace. For instance, in our real-world
dataset from a live singing platform, each user stays in one room for a
median of 2 min only and enters an average of 6.72 rooms during a day.

* Corresponding author at: School of Economics and Management, Tsinghua University, Beijing 100084, China.
E-mail addresses: gaog.18@sem.tsinghua.edu.cn (G. Gao), liuhy@sem.tsinghua.edu.cn (H. Liu), kang-zhao@uiowa.edu (K. Zhao).

1 https://twitchtracker.com/statistics.

Contents lists available at ScienceDirect

Decision Support Systems

journal homepage: www.elsevier.com/locate/dss

https://doi.org/10.1016/j.dss.2023.113957
Received 1 December 2021; Received in revised form 4 March 2023; Accepted 5 March 2023

mailto:gaog.18@sem.tsinghua.edu.cn
mailto:liuhy@sem.tsinghua.edu.cn
mailto:kang-zhao@uiowa.edu
https://twitchtracker.com/statistics
www.sciencedirect.com/science/journal/01679236
https://www.elsevier.com/locate/dss
https://doi.org/10.1016/j.dss.2023.113957
https://doi.org/10.1016/j.dss.2023.113957
https://doi.org/10.1016/j.dss.2023.113957
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dss.2023.113957&domain=pdf

Decision Support Systems 169 (2023) 113957

2

With such dynamic user behaviors in leaving and entering other rooms,
the characteristics of a room should be frequently updated when users
leave or enter the room. In contrast, most recommenders in e-Commerce
are designed for items whose features barely change or change slowly.

Moreover, along with the dynamic behaviors of the hosts and audi
ence, the sequential relationships among rooms are also dynamic.
Because the shows and the audience in a room change fast, users who
leave the same room at different time points may be attracted by
different rooms and have different subsequent paths. Thus, the re
lationships among rooms based on user paths also change frequently.
For instance, using one of the datasets used in our experiments from a
live singing platform, we construct daily room-room graphs by con
necting the room a user left with the room that this user subsequently
entered. As shown in Fig. 1, the similarities of each room’s relationships
with other rooms between every two consecutive days are widely scat
tered2—the mean and median of such similarities are only 0.54 and
0.56, respectively, with a standard deviation of 0.28. This empirical
evidence again highlights that inter-room relationships are dynamic
over time, and such instantaneous connections among rooms may pro
vide additional signals for room recommendations. However, while
some studies captured sequential patterns of items via Recurrent Neural
Networks (RNN) or constructed static graphs among items based on
users’ consumption paths and conducted graph learning with Graph
Neural Networks (GNN), the literature offers no solution for how to
model such instantaneous relationships among items, especially when
item characteristics are also changing dynamically.

Second, the current audience inside a live streaming room plays an
important role in characterizing the room. Through real-time social in
teractions, the audience in a room can influence not only peers but also
the host. For one thing, online chats, comments, and gifts from audience
members within a room can often be engaging and sometimes even
become a major attraction of the room to other users [6]. For another,
the effect of social interactions among audience members in a room goes
beyond the audience alone and may have a direct and real-time impact
on the performer and consequently the shows [2]. For example, a host
may change the content or style of her show after getting feedback from
the audience. Therefore, to characterize a live streaming room, we
should consider both features of the room itself and features of its cur
rent audience. Nevertheless, while some recommenders treat all the
users who have interacted with an item (e.g., shoppers who bought a
product) in the past as equally important [7–9], none has explicitly
emphasized the value of users who are currently interacting with an
item (i.e., the audience inside a live streaming room).

To incorporate these characteristics and address the challenges
associated with them, we propose a new recommendation model to
learn Dynamic Representations for Live Streaming Rooms (DRIVER).
Guided by the Integrated Framework for Consumer Path Modeling [10]
and social affordance theory [11], DRIVER takes advantage of users’
paths in entering, staying in, and leaving rooms to better capture dy
namic characteristics of users, rooms, and inter-room relationships.

To evaluate the performance of the proposed model, we conduct
comprehensive experiments on real-world datasets from two different
types of live streaming platforms. Comparisons with other state-of-the-
art recommendation models demonstrate that DRIVER provides the
best and robust performance in live streaming room recommendation.
Ablation studies reveal that both new components of DRIVER contribute
to the improved recommendation performance.

The novelty and contributions of this paper can be summarized as
follows. First, we propose DRIVER, a novel recommendation model for

live streaming platforms. The model’s general framework can be directly
adopted by different live streaming platforms, who can train the model
with their own data for recommendation tasks in their own services.
Compared to existing methods, DRIVER has the following merits.

• DRIVER captures inter-room relationships based on users’ behavior
paths in departing from one room and joining another, and it in
corporates such relationships into user-specific room recommenda
tions. Different from existing sequential learning methods based on
static item relationships or graph neural network models that are
computationally expensive, our approach represents a new method
for effectively and efficiently utilizing this kind of dynamic item
graph to improve recommendation performance.

• DRIVER explicitly models the audience currently in a room as the
room’s instantaneous features to better capture the room’s social
characteristics that influence users’ decisions. The model in
corporates such instantaneous features with the room’s cumulative
features to obtain a comprehensive and user-specific representation
of each room. This is the first effort to learn the dynamic represen
tation of an item by considering users who are currently interacting
with the item. Such representations are also updated when a new
user-item interaction occurs.

Second, through extensive experiments, we demonstrate the perfor
mance gain of DRIVER over state-of-the-art recommendation models.
More importantly, we reveal the unique value of DRIVER’s design
principles–learning dynamic representations of items based on users’
behavior paths and current users’ characteristics–in supporting users’
decision-making in highly dynamic and social scenarios, such as live
streaming.

The remainder of this paper is organized as follows. Section 2 re
views previous studies related to our work as well as the empirical ev
idence and theories that guide our design. Section 3 formalizes the live
streaming room recommendation problem and describes the architec
ture of DRIVER. This is followed by a presentation of the experiment
setup and results in Section 4. Then, Section 5 explores models learned
by DRIVER and discusses why DRIVER works. Finally, Section 6 con
cludes this paper and discusses future research directions.

2. Background and related work

This section discusses related research to highlight the foundation
and novelty of the proposed DRIVER model. We first review recent de
velopments in machine learning methods for recommendation systems,
including (dynamic) representation learning, sequential recommenders,
and graph learning. After discussing their limitations in relation to the
task of live streaming recommendations, we then introduce the Inte
grated Framework for Consumer Path Modeling and social affordance
theory and explain how they guide our model design.

2.1. Representation learning for recommendations

In recent years, machine learning, especially deep learning, has
attracted great research interest and shown superior performance on
many problems, including recommendation systems [12]. As an
important and fruitful area of machine learning research, representation
learning [13] has been widely adopted for mining graph data [14]. In
the context of recommendation systems, representation learning based
models usually represent a user or an item with a latent vector to depict
the user’s preference or the item’s characteristics. This method allows us
to learn latent vectors (a.k.a., representations) for users and items to
represent their characteristics from only their historical interactions.
That means we can learn features of users and items without any explicit
features of them other than using IDs of users and rooms IDs as inputs.
Note that we use the terms “features” and “characteristics” inter
changeably in this paper.

2 Each daily room-room graph is a weighted directed graph. The weight of
the edge from room A to room B is the number of users leaving A and entering B
on that given day. The similarity of one room’s relationships with others be
tween two consecutive days is the Cosine similarity between this room’s vectors
from adjacency matrices of the two daily graphs.

G. Gao et al.

Decision Support Systems 169 (2023) 113957

3

Traditional recommendation systems based on representation
learning usually take users or items as static entities and learn static
representations for them, such as the approach used in the classic Matrix
Factorization model [7]. Although other recommenders have attempted
to simulate the interactions between users and items using more com
plex methods based on their representations, they are based on the same
assumption that these representations are static. However, static rep
resentations are not sufficient when user interests or item characteristics
change over time, such as in social media and online social networks
[15]. Therefore, dynamic representation learning methods have been
developed using two types of models: probabilistic models [16] and
RNN-based models [9]. The basic ideas of these two types of models are
similar: representations for users and items co-evolve when interactions
occur between them. There are also differences between them: Proba
bilistic models usually make some assumptions about the distribution of
user-item interaction occurrence time and leverage these representa
tions to calculate parameters of the distribution. In contrast, RNN-based
models learn representations to calculate the probability of interaction
occurrences directly. The latter usually shows better performance. For
instance, the recently proposed model JODIE [9] achieves better per
formance by adopting RNN to update users’ and items’ representations
and using a projection operation to model the temporal drift of these
representations.

Nevertheless, these approaches only model a user-item interaction
event as a one-time occurrence (e.g., purchasing a product) while
ignoring users’ subsequent behaviors after the start of the event. Spe
cifically, for live streaming rooms, these methods would only consider
users’ entrance into a room. Thus, existing dynamic representation
learning methods have two limitations when applied to live streaming
recommendations: (1) they do not track users who are currently staying
inside a room, and (2) they do not consider users’ behaviors after leaving
a room.

2.2. Sequential recommenders and graph neural networks

One stream of research that can potentially address the second lim
itation mentioned above is related to sequential recommendation sys
tems. Such recommenders assume that the order of users’ interactions
with items matters and leverage sequential patterns of such behaviors
for item recommendations [17]. Existing sequential recommenders
learn from sequential data with Markov Chain (MC) models or deep
learning models. Models based on MC usually estimate the transition
probability between items from users’ historical behavior sequences
[18], but usually makes a strong Markov assumption that only the
immediately last choice of a user directly determines her next action.
Among deep learning methods for sequential recommendations, RNN-
based models [9] use recurrent neural networks to handle the item
sequence and capture user’s preference. CNN-based models [19] take
advantage of convolutional operations to extract features from users’

historical behavior sequences. However, existing sequential recom
menders are designed with the assumption that users and items have
representations that are static or change very slowly. Thus, they cannot
be directly applied to dynamic scenarios such as live streaming, where
both users and rooms have characteristics that change quickly over time.

Another method for mining inter-item relationships is Graph Neural
Networks (GNN) [20], which can learn representations for a node in a
graph by recursively integrating its neighbors’ features. Existing
recommendation models based on GNN have been applied to item co-
occurrence graphs [21], user-item bipartite graphs [8], and social net
works among users [22]. However, GNN-based recommenders would
face significant computational challenges if structures of underlying
graphs change very frequently (e.g., on a minute basis, as in inter-room
graphs for live streaming). On one hand, transductive GNN models,
whether they are based on walks [23] or GCNs [24], are learned for a
specific graph and have to be re-learned whenever graph structures
change. On the other hand, although inductive GNN models [25] learn a
set of models or aggregation functions to generate node embeddings,
they still have low training efficiencies when the graph structure
changes at the pace of inter-room graphs in live streaming.

2.3. Empirical and theoretical support for DRIVER

Our literature survey reveals that no existing recommender system
accommodates the two key characteristics of live streaming—dynamic
user behaviors (entering and leaving rooms) and social interactions—at
the same time. As a new recommendation system for live streaming
rooms, DRIVER integrates different machine learning methods in a
novel way, and develops new components guided by empirical findings
of consumer behaviors and social affordance theory.

In the marketing literature, data that record a consumer’s spatial
movement, whether it is in a physical or virtual space, are referred to as
“path data”. Based on empirical findings from research on consumer
path data, the Integrated Framework for Consumer Path Modeling [10]
is proposed for this emerging area of research. According to the different
types of movements defined by the framework based on spatial config
urations, the paths of audience members (i.e., consumers of digital
content) in live streaming can be considered as non-physical and
discrete movements with a low degree of constraints, as users can move
freely between individual rooms in the virtual space. Therefore, we
adopted the framework to guide our design of DRIVER.

First, the framework highlighted that path data help to better un
derstand consumption behaviors [26], such as consumers’ paths to
purchases [27], so that business decisions can be optimized (e.g., store
layout or product recommendations) [28]. Motivated by the value of
consumer path data from empirical studies, DRIVER focuses on the dy
namic paths of the audience when entering and leaving rooms and uses
such path data in two ways: (1) It integrates JODIE [9] to update the
embeddings of both users and rooms after users’ entrance into rooms.

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0

25

50

75

100

125

150

Co
un

t

mean=0.54

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.2

0.4

0.6

0.8

1.0

CD
F

median=0.56

(b)

Fig. 1. The (a) histogram and (b) CDF (Cumulative Distribution Function) of similarities of inter-room relationship matrices between two consecutive days in the live
singing platform dataset.

G. Gao et al.

Decision Support Systems 169 (2023) 113957

4

This allows the representations of users and rooms to stay up to date
when user behaviors in live streaming are highly dynamic; (2) Extending
the idea of sequential recommenders and graph learning, it proposes a
novel and efficient way to capture dynamic inter-room relationships
based on user paths of joining another room after leaving one room.

Second, this framework also identified that social interactions among
individuals will affect their decisions of next movements [29]. DRIVER’s
emphasis on modeling the current audience inside a room is particularly
supported by such importance of social interactions. As a unique feature
of live streaming compared to other social media, real-time social in
teractions play important roles in improving user engagement, attract
ing more users, and improving revenue for live streaming platforms
[30–32]. Many hosts also adjust their shows based on their audiences’
real-time requests. Consequently, social interactions within a room can
affect the content generation process or even determine the content or
style of ongoing shows [2].

In fact, the value of social interactions for social media in general has
been supported by social affordance theory [11], which measures the
social capabilities provided by information systems. One key dimension
of social affordance is social interactivity, which affords the possibility
for users to interact with each other. Research has found that many users
join live streaming because of social interactivity [33,34], and hosts that
encourage social interactivity tend to be more popular [35].

Because interaction mechanisms differ in live streaming platforms,
directly capturing social interactions in a room would require the
analysis of text, image, voice, and/or video data using various compu
tationally expensive methods. Also, when shows are different (e.g.,
gaming vs singing), the way users interact and how their interaction
should be analyzed would vary as well. Therefore, DRIVER takes an
indirect yet much more generalizable approach to reflect the importance
of social interactivity and social affordance in live streaming—it ag
gregates features of current audience in a room into the room’s instan
taneous features, which are part of the room’s comprehensive
representation. Along with dynamic room representations based on all
users who have visited the room in the past, such an aggregation
explicitly captures the instantaneous social atmosphere within a room.
In addition, this new emphasis on the current audience also ensures that
users who spend more time in a room would have more chances to
contribute to the room’s characteristics than users who come and go
quickly. Such an approach can be easily adopted by most live streaming
platforms that allow real-time user interactions inside rooms.

Last, the framework also makes it clear that consumers are hetero
geneous, and so are their path decisions [36]. In online streaming, this
means that users may choose a room for different reasons. As a result,
DRIVER attempts to address such user heterogeneity by generating user-
specific room representations.

In sum, DRIVER dynamically updates the representations of users
and items upon users’ entrance into a room, explicitly captures social
interactions inside a room with its current audience, and efficiently
models the ever-changing inter-room relationships based on users’ new
destinations after leaving a room. The next section describes the model
in detail.

3. The proposed method

This section first present the intuition behind DRIVER with a toy
example and then provides a formal definition of the live streaming
recommendation problem. Finally, we introduce the framework of the
proposed DRIVER model, followed by detailed descriptions of each
module.

3.1. A toy example

Suppose a live streaming platform has two rooms 1 and 2. At time t1,
user A, B, C are in room 1 and user D, E are in room 2. Then user A leaves
room 1 and enters room 2, such that at time t2 (t2 > t1), room 1 has users

B and C, and room 2 has users A, D, and E. Fig. 2 depicts this example.
Then we can infer that (1) room 2 is able to attract user A because of
ongoing shows or the social atmosphere insider the room; and (2) there
exists certain relationship between the two rooms, such that other users
like A may also follow the same path (i.e., join room 2 after leaving room
1).

To capture such information, we use latent vectors to represent each
user, room, and room’s relationships with others. When a user leaves
one room and enters another, we update the representations for users
and rooms in three steps. For this toy example, after A joins room 2, we
first update user A’s vector by incorporating the vectors of room 2, user
D and user E, so that user A’s vector reflects the room that she likes and
users she wants to interact with. Then room 2’s vector is updated with
user A’s vector, so that the room’s vector represents users who enjoy it.
Finally, vectors of user A and room 2 are incorporated into room 1’s
relationship vector, so that the vector can represent the types of users
who would join room 2 after leaving room 1.

3.2. Notations and the problem definition

In a live streaming platform with user set U and room set M, our
model would learn latent vectors (i.e. representations) for each user u ∈

U and each room r ∈ M. Similar to other representation learning
methods, these latent vectors will be learned from the data and no
explicit features are required. Such a setup would only require users’
behaviors in entering and leaving rooms as the input data for the model.
This greatly improves the generalizability of the model, because such
behaviors are universal in almost all live streaming platforms, despite
the great variations in their streaming mechanisms and the types of
shows.

Representations for users include static features and dynamic fea
tures. We use one-hot vector u ∈ R|U| to denote u’s static features that do
not change over time. Let a d-dimension vector u(t) denote the user’s
dynamic features at time t, which is randomly initialized and will be
learned through our proposed model.

Similarly, room r’s static features are also denoted as one-hot vector
r ∈ R|M|. Different from users, a room’s dynamic features include two
parts: (1) user-specific comprehensive features sr

u(t) at time t for user u. It
incorporates the room’s cumulative features since its inception (denoted
as rc(t)), the room’s instantaneous features (denoted as ri(t)) reflected by
Ut

r, the set of users who are currently in room r, and user u’s dynamic
features u(t). (2) room’s relationship features re(t) that captures room r’s
dynamic relationships with other rooms at time t.

Interactions between users and rooms are represented as temporal
sequences of tuples enter(u,r, t), indicating user u’s entrance into room r
at time t, and leave(u,r,t), representing user u’s departure from room r at
time t. By tracing enter(u, r, t) and leave(u, r, t), we can get Ut

r, the set of
users in room r at time t.

Suppose user u leaves room r at time t and is ready to enter another
room at time t + Δt, DRIVER will predict which room u will enter. Given
a sequence of user-room interactions enter(u, r, t) and leave(u, r, t) until
time t, the model first predicts ̂su(t + Δt), the comprehensive features of
the room that user u is most likely to enter at time t + Δt. Then, top K
rooms whose comprehensive features right before t+Δt are most similar
to ŝu(t+Δt) will form the recommendation list to user u. Table 1 sum
marizes all the notations used in this paper and more explanations can
be found in Appendix A.

3.3. The general framework

Fig. 3 shows the general framework of DRIVER and pseudo-code is
provided in Appendix A. Overall, the model consists of two main mod
ules: the Representation Learning Module and the Predicting Module.

The Representation Learning Module consists of the Integrating
Component and the Updating Component. This module handles the

G. Gao et al.

Decision Support Systems 169 (2023) 113957

5

learning and updating of vector representations. Within this module,
both users’ and rooms’ dynamic representations are updated based on
users’ behavior paths of entering and leaving rooms. Upon user u’s
entrance into room r at time t, we will update the user’s dynamic fea
tures u(t−) with room r’s comprehensive and user-specific features for
user u,sr

u(t−). Such comprehensive features are obtained from the novel
Integrating Component. Meanwhile, the room’s cumulative features
rc(t−) are also updated with u(t−). Similar to the user-item co-updating
method introduced in JODIE [9], these two update operations aim at
tracking users’ and rooms’ characteristics with users’ paths of entering
rooms. Different from JODIE, which only considers the start of user-item
interactions (i.e., room entrance), DRIVER also includes feature updates
for the end of user-item interactions in users’ behavior paths: when user
u leaves room r′ at time t− and enters room r at time t, we will update
r′ e

(t−), which captures the relationship features of room r′ , based on user
u and room r. This allows the relationships between r′ and other rooms to
stay current in this dynamic environment. With the Integrating and

Updating Components, we can get real-time and dynamic representa
tions of users, rooms, and inter-room relationships.

The Predicting Module completes the prediction task to provide
recommendations. It takes as inputs representations of users, rooms, as
well as room-room relationships. Unlike many previous studies that
predict a score for each item, DRIVER directly predicts the compre
hensive features of the room that user u will enter at time t + Δt. We
provide details about the Updating and Integrating Components and the
Predicting Modules in subsequent subsections.

3.4. The updating component

To address users’ dynamic behaviors in live streaming, three types of
features need to be updated in our model: (1) users’ dynamic features,
(2) rooms’ cumulative features, and (3) rooms’ relationship features.
The first two are updated upon users’ entrance into rooms, while the last
type is updated based on users’ departure from rooms. Thus, the
Updating Component in DRIVER represents a novel design that in
corporates an instantaneous item graph into dynamic representation
learning, and does so in a computationally efficient way, for dynamic
user-item interactions that feature different types of behaviors in user
path data (i.e., entrance and departure in live streaming).

First, u(t) represents user u’s overall dynamic features. It is obtained
based on her historical path of all the rooms she has ever entered till time
t. The features will be updated each time this user enters a room. Because
users’ entrance into rooms form a natural temporal sequence, we choose
the widely used RNN method for this update. When user u enters room r
at time t,u’s dynamic features are updated by room r’s comprehensive
features sr

u(t−). Formally, when enter(u, r, t) occurs, u(t−) is updated as
specified in Eq. (1):

u(t) = RNNu(sr
u(t

−),u(t−)) (1)

where sr
u(t−) is the latest comprehensive features of room r for user u

before time t. This is obtained from the integrating component, which is
described in Section 3.5.

Second, room r’s cumulative features rc(t) capture the long-term
characteristics of the room such as the general content or style of
shows till time t. Similar to u(t−), rc(t−) for room r is updated using RNN,
each time user u enters room r at time t. Specifically, when the event
enter(u, r, t) occurs, rc(t−) is updated based on user u’s dynamic features
u(t−), as described in Eq. (2):

rc(t) = RNNr(u(t−), rc(t−)) (2)

To reduce the number of parameters to train, parameters of RNNu and
RNNr are shared among all users and rooms respectively. Fig. 4a illus
trates the procedure for updating u(t−) and rc(t−).

Third, a room’s relationship features capture its inter-room re
lationships with other rooms based on users’ paths after leaving this
room. When user u leaves room r′ at time t− and joins room r at time t,
we update r′ e

(t−), the relationship features for room r′ , with two types of
features: (1) rc(t), the cumulative features of room r, so that we can
capture characteristics of rooms that users choose after departing from
this room; and (2) user u’s dynamic features u(t). This design reflects

Fig. 2. The toy example of user A leaving room 1 and joining room 2. With the behavior of user A, the relationship between the two rooms will be updated.

Table 1
A list of notations used in this paper.

Notations Description

u and r The static features of user u and room r respectively
u(t) The dynamic features of user u at time t
rc(t) The cumulative features of room r at time t
ri(t) The instantaneous features of room r at time t
re(t) The relationship features of room r at time t
sr

u(t) The comprehensive features of room r at time t for user u
t− The timestamp right before time t
Ut

r The set of users who are in room r at time t
enter(u, r, t) User u enters room r at time t
leave(u, r, t) User u leaves room r at time t
ŝu(t + Δt) The predicted comprehensive room features for user u at time t + Δt

Fig. 3. The general framework of DRIVER.

G. Gao et al.

Decision Support Systems 169 (2023) 113957

6

user heterogeneity as we discussed in the previous section: different
users may make different choices after leaving the same room. For
example, after watching a show about rock music, some users may want
shows on hip-hop while other users may switch to shows on jazz.
Overall, by including next room’s features and user’s features in this
update procedure, r′ e

(t) can characterize the type of rooms different
users have chosen after leaving room r′ .

One potential issue with this type of update is computational
complexity. Note that the representations of users and rooms are
continuously updated as soon as a user enters a room. This means the
update of r′ e

(t−) must be done at the same pace to make real-time rec
ommendations possible. However, most existing methods, such as CNN-
or GNN-based models, rely on recursive and global computation on the
whole item graph to capture the relationships among items after multi-
epoch training on each new graph [37]. With the frequent changes to the
room graph for live streaming, such an approach would incur high time
complexity. To address this problem, we choose to update r′ e

(t−) with
the average pooling operation, which can be calculated incrementally
with high efficiency. Specifically, when user u is the (N + 1)-th user who
leaves room r′ , and she subsequently enters room r, the update of r′ e

(t−)
is defined as Eq. (3) and illustrated in Fig. 4b, where cat is the concat
enation operation of vectors.

r′ e
(t) = (r′ e

(t−) × N + cat(u(t), rc(t)))/(N + 1) (3)

3.5. The integrating component

Supported by the Integrated Framework for Consumer Path
Modeling and social affordance theory, DRIVER integrates room’s cu
mulative features and instantaneous features into a comprehensive and
user-specific representation. In this way, the representation also
explicitly captures social interactions within a room via instantaneous
characteristics of room r’s current audience, who could have great in
fluence on the overall social atmosphere inside the room and even the
style of ongoing shows. This subsection describes how the integrating
component (1) obtains a room’s instantaneous features ri(t−) by aggre
gating its current audience’s/users’ features and (2) integrates the cu
mulative and instantaneous features into the comprehensive features
sr

u(t−). Fig. 5 depicts the architecture of the integrating component.
As shown in Fig. 5, a room’s instantaneous features are generated by

aggregating dynamic features of users who are in the room. This is
because individuals currently inside a room can serve as a good proxy
for the social interactions and atmosphere of the room. Then, a room’s
instantaneous features are combined with its cumulative features to
generate its comprehensive features. Specifically, to obtain instanta
neous features ri(t−) for room r, we aggregate the dynamic features of
each user u′

∈ Ut−
r (the set of users who are currently in room r just

before t), as defined in Eq. (4).

ri(t−) = Aggu′ ∈Ut−
r
(u′

(t−)) (4)

where Agg is the aggregation function and u′

(t−) is learned in the
updating component. Different aggregation operations can be used here.

With both cumulative features rc(t−) and instantaneous features
ri(t−) for a room, we will aggregate them into room’s comprehensive
features specifically for user u. The reason we generate such user-specific
room representations is again to address user heterogeneity—different
users may have different levels of preferences over the same room’s
cumulative and instantaneous features: One user may favor the overall
show content of a room (mainly reflected by its cumulative features from
audience members’ historical paths) while another user may value its
current social atmosphere (mainly reflected by its instantaneous fea
tures from the current audience). Such preferences could also vary from
one room to another. Therefore, to generate the comprehensive features
of a room in a personalized way, we leverage the widely used attention
mechanism [38] to capture users’ attention levels to a room’s cumula
tive and instantaneous features. Formally, we get a room’s compre
hensive user-specific features with the following equations:

oc
ur = σ(wc⋅cat(u(t−), rc(t−))+ b1) (5)

oi
ur = σ(wi⋅cat(u(t−), ri(t−)) + b2) (6)

ac
ur = exp

(
oc

ur

)/(
exp
(
oc

ur

)
+ exp

(
oi

ur

))
(7)

ai
ur = 1 − ac

ur (8)

sr
u(t

−) = ac
ur × rc(t−) + ai

ur × ri(t−) (9)

Eqs. (5)–(8) get the relative weights of a room’s cumulative and
instantaneous features and Eq. (9) combines these features according to
these weights to generate room r’s comprehensive user-specific features
specifically for user u. wc,wi ∈ R2×d, b1, b2 ∈ R are all learnable param
eters, and σ is the sigmoid function.

3.6. The predicting module

With all the representations learned above, when user u leaves room
r at time t, DRIVER first predicts the comprehensive features of the room
she will prefer right before she chooses a room at time t + Δt. Here we
also adopt the projection operation proposed in JODIE [9] to model the
potential temporal drift of user’s characteristics (i.e., the change of
users’ dynamic features over time). The projection operation first con
verts time difference into a time-context vector and then scales the user’s
dynamic features u(t):

û(t+Δt) = (1+(wt × Δt)) ⊙ u(t) (10)

where the learnable parameter wt ∈ Rd is used to convert time difference
into the time-context vector, 1 is a vector whose entries are all 1 and ⊙ is
the element-wise product.

For user u, the Predicting Module takes three types of features as
inputs. Naturally, the first type is about the user, including û(t + Δt), the

Fig. 4. The update process for u(t−) and rc(t−) (in panel a) and r′ e
(t−) (in panel b).

G. Gao et al.

Decision Support Systems 169 (2023) 113957

7

user’s dynamic features projected at the prediction time, and her static
feature u. The second type is about the room r that u just left. Because
dynamic features of the room are already incorporated into u’s dynamic
representations when she enters the room (via the Updating Component
described in Section 3.4 and illustrated in Fig. 4a), we only include the
room’s static feature r as a direct input to the prediction. The last type is
about relationships of rooms based on users’ sequential behaviors. If
user u just leaves room r, then re(t), which captures r’s relationships with
other rooms, is also fed into the prediction. Formally, when user u leaves
room r at time t, the Predicting Module takes û(t+Δt), u, r and re(t) as
inputs and predicts ̂su(t+Δt) as defined in Eq. (11), where Ws is a matrix
to be learned.

ŝu(t+Δt) = Ws⋅cat(û(t+Δt),u, re(t), r) (11)

To train this predictive model, we define the Mean Square Error between
the predicted comprehensive features for user u and the comprehensive
features of the room that u actually entered as the loss function (see Eq.
(12)). We also add the magnitudes of feature updates for users and
rooms into Eq. (12) to ensure that these dynamic features are updated
smoothly. λu and λr are hyper-parameters. The minimization problem
can be solved with gradient descent.

L =
∑

(u,r,t)
‖ŝu

(

t

)

− sr
u

(

t

)

‖
2
2

+λu‖u
(
t
)
− u
(
t−
)
‖

2
2 + λr‖rc(t

)
− rc(t−

)
‖

(12)

The prediction outcome enables us to calculate the Euclidean distance
between actual representations to each room and the prediction. Rooms
are then ranked by such distance in an ascending order (i.e., in the
descending order of similarity with the prediction). Top K rooms from
the ranked list will be recommended to user u as candidates for her next
room.

4. Experiments and results

We conduct experiments on real-world datasets from two different
types of online streaming platforms and compare the performance of the
proposed DRIVER model with other state-of-the-art recommendation
models. Then, we use ablation studies to demonstrate that each new
component of DRIVER contributes to its performance. Sensitivity ana
lyses also show the robustness of DRIVER’s performance.

4.1. Datasets

The first dataset, Live-Singing, is from a popular live streaming
platform dedicated to online singing, with services in North America and
South Asia.3 Hosts can start live-singing rooms, and other users can enter
to watch others’ performance or even sing a song if they want to. The
dataset contains 26,604 users’ interactions with 936 rooms between
June 3rd and June 23th, 2019. The second dataset, HuaJiao, is from a
large-scale live streaming platform in China.4 Compared to Live-Singing,
HuaJiao features more diverse shows of singing, dancing, gaming, etc.
The dataset contains 20, 000 users’ interactions with 1,000 rooms from
Feb 1st to Feb 28th,2018. Summary statistics of the two datasets are listed
in Table 2, where an “interaction” between a user and a room refers to
the user’s entrance into or departure from the room. Note that the two
datasets were used separately to train two different DRIVER models, one
for each platform.

4.2. Benchmark methods and experimental settings

We choose a variety of recommendation methods as benchmark
methods. All of the seven benchmark methods are intorduced below,
including one classic matrix factorization model, two static representa
tion learning models based on deep learning, three sequential recom
mendation models, and one dynamic representation learning method.

• MF-BPR[7] is a classic matrix factorization recommendation algo
rithm that learns latent vectors for both users and items with the BPR
criterion.

• NGCF[39] is a static representation learning model which leverages
multi-layer GNN to learn representations from user-item interaction
graph with the BPR loss.

Fig. 5. The Integrating Component.

Table 2
Basic statistics of datasets.

#users #rooms #interactions density #interactions per
day

Live-
Singing

26,604 936 921,332 0.0370 46,067

HuaJiao 20,000 1,000 1,726,592 0.0863 61,664

3 Due to a non-disclosure agreement, we cannot disclose the name of the
platform.

4 https://www.huajiao.com.

G. Gao et al.

https://www.huajiao.com

Decision Support Systems 169 (2023) 113957

8

• LightGCN[8] is an extension of NGCF. It drops the non-linear
transformations when conducting GNN and claims better
performance.

• SR-GNN[21] is a GNN-based sequential recommendation model
that captures the relationships among items (i.e., rooms in our case)
in the same session.

• TiSASRec[40] is a sequential recommendation model based on self-
attention. Both the sequential patterns and time intervals between
every two items in interaction sequences are considered in this
model.

• SSE-PT[41] is another sequential recommendation model which
captures user-specific sequential patterns using self-attention.

• JODIE[9] is a state-of-the-art dynamic presentation learning model
for sequential recommendations. It jointly learns and updates user
and item representations upon user-item interactions.

All the models are trained 30 times with different random seeds to
get a stable result, and the average performance is shown. We use the
commonly used metrics MRR, NDCG, and Recall to evaluate the
recommendation performance. Details about their calculations are in
Appendix B. To ensure reproducibility, we follow guidelines in [42–44]
and provide details of our model and experiments in Appendix B and C.
The code and a simulated dataset are available at https://github.com/
GarrettGaoge/DRIVER.

4.3. Results

Table 3 summarizes the average performance of all models on the
test set. The best performer for each measure is shown in bold. The last
row shows the relative improvement of DRIVER compared to the best
benchmark model and whether the improvement is statistically signifi
cant (with paired t-tests and *** indicates p-value < 0.001).

As Table 3 shows, the proposed DRIVER model dominates the
benchmark methods on all performance measures for both datasets.
Among benchmark methods, those that learn only static representations
for users and rooms, such as MF-BPR, NGCF, and LightGCN, generally
have lower performance. Sequential recommenders, such as SR-GNN,
TiSASRec, and SSE-PT, have better performance because they consider
sequential patterns based on users’ paths of entering and leaving rooms.
However, although session information or self-attention are used in
these methods to capture time sequences, they still rely on static
representations.

JODIE is the state-of-the-art dynamic representation learning model

that continuously updates the representations of users and rooms when
users enter rooms. Its good performance among benchmark methods
highlights the benefits of learning dynamic representations when user-
item/room interactions occur at a very high pace, as in live streaming
platforms. However, JODIE does not consider users’ paths after leaving a
room. Moreover, JODIE treats all historical paths of users equally and
does not capture social interactions among current audience members
within a room. Thus, DRIVER’s better performance compared to JODIE
demonstrates the value of considering two unique characteristics of live
streaming: dynamic inter-room relationships and the importance of so
cial interactions in a room. Overall, DRIVER’s better performance than
benchmark methods demonstrates that our approach to capturing users’
behavior paths of entering, staying in, and leaving rooms are effective.

Moreover, we also evaluate DRIVER’s performance for diverse types
of shows in HuaJiao. The results show that DRIVER’s better performance
over JODIE is consistent across all the 8 types of shows in the HuaJiao
dataset–the improvement in MRR ranges from 3.81% (for show type
Fun) to 11.16% (for show type Knowledge Sharing). Appendix D shows
more details about the heterogeneity of the two live streaming platforms
and the datasets used.

4.4. Ablation studies

As we mentioned earlier in this paper, DRIVER incorporates two new
components to capture unique characteristics of live streaming: dynamic
inter-room relationships and instantaneous features of rooms. To eval
uate how each of the two new components contributes to DRIVER’s
performance, we conduct ablation studies for two variations of DRIVER.
The first variation (DRIVER1) removes rooms’ relationship features, i.e.,
re(t), and substitutes them with comprehensive features of the last room
that a user visited when doing prediction in Eq. (11). The second vari
ation (DRIVER2) removes rooms’ instantaneous features based on the
current audience and user-specific comprehensive features. Instead,
rooms are only represented by cumulative features as in JODIE. Table 4
compares the performance of the two variations with that of the full
DRIVER model, along with two strong benchmark methods, TiSASRec
and JODIE.

According to Table 4, the removal of each component leads to
deteriorating performance compared to the full DRIVER model. At the
same time, both variations still outperform the two strong benchmark
methods. These results indicate that each of the two new components
makes meaningful contributions in improving DRIVER’s performance
over benchmark methods. (*** means the result is different from

Table 3
Performance comparison.

MRR Recall@5 Recall@10 NDCG@5 NDCG@10

Live-Singing MF-BPR 0.2995 0.4372 0.5746 0.3901 0.4340
NGCF 0.3033 0.4487 0.5776 0.3954 0.4373
LightGCN 0.3964 0.4815 0.5884 0.4420 0.4733
SR-GNN 0.4595 0.5383 0.6332 0.4617 0.4925
TiSASRec 0.5067 0.6371 0.7294 0.5227 0.5527
SSE-PT 0.4581 0.6217 0.7258 0.4807 0.5144
JODIE 0.5130 0.6652 0.7366 0.5395 0.5627
DRIVER 0.5488

(±0.0023)
0.6989
(±0.0017)

0.7896
(±0.0016)

0.5721
(±0.0021)

0.6015
(±0.0020)

Improvement 6.97%*** 5.06%*** 7.19%*** 6.05%*** 6.90%***

HuaJiao MF-BPR 0.2138 0.3149 0.4169 0.3297 0.3579
NGCF 0.2134 0.3150 0.4145 0.3296 0.3566
LightGCN 0.3847 0.3332 0.4138 0.3824 0.3948
SR-GNN 0.4237 0.4696 0.5120 0.4240 0.4376
TiSASRec 0.4574 0.5709 0.6391 0.4719 0.4940
SSE-PT 0.4147 0.5086 0.5889 0.4211 0.4470
JODIE 0.4568 0.5769 0.6396 0.4751 0.4955
DRIVER 0.4982

(±0.0010)
0.6006
(±0.0025)

0.6513
(±0.0045)

0.5138
(±0.0012)

0.5303
(±0.0018)

Improvement 8.93%*** 4.11%*** 1.83%*** 8.15%*** 7.01%***

G. Gao et al.

Decision Support Systems 169 (2023) 113957

9

DRIVER according to paired t-tests with p-value < 0.001, ** means p-
value < 0.01)

4.5. The robustness of performance

An important hyper-parameter for DRIVER is the dimension of vector
representations. Our experiments above use 128 as the dimension. To
check if DRIVER offers robust performance when different dimensions
are used, we vary the dimensions and compare DRIVER’s performance
on both datasets in Fig. 6. We can see that the performance is not sen
sitive to the change of representation dimensions.

Besides this hyper-parameter, we also evaluate whether DRIVER’s
performance is robust to different amount of training data. For both
datasets, we train DRIVER based on various length of training peri
ods—2 days to 20 days for Live-Singing and 6 days to 26 days for
HuaJiao—and use the remaining data for testing. Fig. 7 shows the per
formance of DRIVER compared to the benchmark methods on dataset
Live-Singing and we get similar results in HuaJiao (corresponding fig
ures are shown in Appendix E).

The sensitivity analyses reveal two interesting findings. First,
DRIVER outperforms all other models with different amounts of data on
both datasets. In other words, DRIVER’s performance improvement over
other methods is robust against changes in training data size—while
having more training data is generally beneficial, having less training
data does not cause great drops in DRIVER’s performance. Second,
DRIVER needs much less training data to achieve the same level of
performance. For example, on the Live-Singing dataset, DRIVER trained
with only 2 days of data performs better than other models trained with
20 days. On the HuaJiao dataset, to get comparable MRR with DRIVER
trained with 6 days of data, benchmark methods need 20 or more days of
data. This highlights the value of the additional signals DRIVER lever
ages from user path data to make recommendations.

Overall, the sensitivity analyses demonstrate the robustness of
DRIVER’s performance to hyper-parameter values and training data
sizes. Such properties are highly desirable for the real-world adoption of
a recommender system.

5. Discussions

While interpreting deep learning models and vector representations
learned from such models remains a challenge, we dig deeper into our
model to see what it learns. This helps us better understand if the model
learns what we intend for it to learn, ensure that the performance gain
from DRIVER is not accidental, and validate our model design guided by
empirical evidence and theory. Using the Live-Singing dataset, our in
vestigations focus on the two novel components of DRIVER: the incor
poration of the current audience into the learning of room
representations and the dynamic representations of inter-room
relationships.

First, when generating comprehensive features for a room, DRIVER
aggregates the room’s cumulative features and instantaneous features
with the attention mechanism (Eq. (9)). The attention learned for a user
would indicate how much this user values a room’s overall character
istics (represented by ac

ur) versus its instantaneous atmosphere (repre
sented by ai

ur). Thus, we calculate users’ attention on each room’s
instantaneous features (ai

ur) when they choose rooms in the testing
period and analyze attention values from two perspectives. From the
perspective of users, we calculate each user’s averaged attention ai

u on
room’s instantaneous features ai

u = Meanr∈M(u)(ai
ur), where M(u) is the

set of all the rooms user u has entered and Mean is the function to get the
mean value. Larger ai

u means user u usually cares more about rooms’
social interactions and atmosphere (i.e., reflected by its current audi
ence), and vice versa. ai

u(∀u ∈ U) has a mean of 0.53 and a standard
deviation of 0.01.

Similarly, from the perspective of rooms, we average the attention to
rooms’ instantaneous features across users ai

r = Meanu∈U(r)(ai
ur), where

U(r) is the set of all the users who have entered room r. The mean and
standard deviation of ai

r(∀r ∈ M) are 0.52 and 0.01 respectively. Because
the relative weights of a room’s cumulative and instantaneous features
ac

ur and ai
ur sum up to 1, results from both perspectives show that most

users do take the current audience in a room as an important factor,
sometimes even slightly more important than the room’s long-term

Table 4
Ablation study results.

MRR Recall@5 Recall@10 NDCG@5 NDCG@10

Live-Singing TiSASRec 0.5067 0.6371 0.7294 0.5227 0.5527
JODIE 0.5130 0.6652 0.7366 0.5395 0.5627
DRIVER1 0.5205*** 0.6896*** 0.7896*** 0.5471*** 0.5796***
DRIVER2 0.5460*** 0.7006** 0.7878 0.5702*** 0.5984***
DRIVER 0.5488 0.6989 0.7896 0.5721 0.6015

HuaJiao TiSASRec 0.4574 0.5709 0.6391 0.4719 0.4940
JODIE 0.4568 0.5769 0.6396 0.4751 0.4955
DRIVER1 0.4981 0.5981*** 0.6409*** 0.5143 0.5282***
DRIVER2 0.4863*** 0.5890*** 0.6387*** 0.5022*** 0.5183***
DRIVER 0.4982 0.6006 0.6513 0.5138 0.5303

Fig. 6. The performance of DRIVER with different dimension of vector representations on two datasets—Live-Singing (left) and HuaJiao (right).

G. Gao et al.

Decision Support Systems 169 (2023) 113957

10

characteristics, when choosing which room to enter. In other words, as
we have shown in our ablation analyses, it is indeed valuable to capture
characteristics of a room’s current audience as a proxy for its social
interactions when learning the room’s representations.

As we discussed above, live streaming features high dynamics in
user-room interactions and our model is designed to capture such dy
namics. Therefore, our second investigation into the model explores if
representations learned by DIRVER are indeed dynamic, including
rooms’ cumulative features rc, instantaneous features ri, and inter-room
relationship features re. To measure the dynamics in a room’s features,
we first calculate cosine similarities between all pairs of rooms’ features
at time tb, the beginning of the testing period. For example, Eq. (13)
calculates simc

r1 ,r2
(tb), the similarity between room r1’s and r2’s cumu

lative features at tb, where the superscript T means the transpose of a
vector and ‖⋅‖2 is the second-norm. The similarity between their
instantaneous features simi

r1 ,r2
(tb) and the similarity between their rela

tionship features sime
r1 ,r2

(tb) are calculated in a similar way. Then for
each room r, we can find three sets of top K similar room
s—TKc

r(tb),TKi
r(tb) and TKe

r(tb), based on similarities on cumulative,
instantaneous and relationship features at tb respectively.

simc
r1 ,r2

(tb) =
rc

1(tb)
T ⋅rc

2(tb)

‖rc
1(tb)‖2 × ‖rc

2(tb)‖2
(13)

Following the same procedure, we can find inter-room similarities be
tween rooms at time te, the end of the test period, and identify room r’s
three sets of top K similar rooms—TKc

r(te),TKi
r(te) and TKe

r(te), based on
similarities on cumulative, instantaneous and relationship features at te
respectively.

Then by comparing a room’s top K similar rooms at the beginning
and end of the testing period, we can reveal the dynamics in rooms’
representations over the 7-day period. Take the comparison of top K
similar rooms based on cumulative features as an example. For room r,
we calculate the Jaccard Coefficient JCc

r between TKc
r(tb) and TKc

r(te). A
higher Jaccard Coefficient means a room’s top K similar rooms based on
cumulative features do not change much. Jaccard Coefficients for
instantaneous features (JCi

r) and relationship features (JCe
r) can be

calculated in a similar way. Table 5 shows the means and standard de
viations for Jaccard Coefficients with K = 5 and K = 10, while Fig. 8
draws the distributions of Jaccard Coefficients over rooms.

For the three types of features and two K values, the mean Jaccard
Coefficients are all below 0.15. Also, more than 600 out of 936 rooms

Fig. 7. Performance of different models with different training sets on Live-Singing.

G. Gao et al.

Decision Support Systems 169 (2023) 113957

11

have Jaccard Coefficients lower than 0.1. In other words, a room’s top K
similar rooms experience radical changes during the 7-day period. These
results demonstrate that representations learned by DRIVER are indeed
very dynamic over time, which reflects one of the key characteristics of
live streaming rooms. Moreover, as one would expect, instantaneous
features have lower similarities than cumulative and relationship fea
tures. This is because instantaneous features are based directly on a
room’s current audience, which is the most dynamic aspect of a room.

6. Conclusions and future work

This paper proposes DRIVER, a novel dynamic representation
learning model for recommending rooms in live streaming platforms.
Guided by the Integrated Framework for Consumer Path Modeling and
social affordance theory, the proposed model addresses two unique and
important features of live streaming—the value of the current audience
within a room and the dynamic inter-room relationships when users
switch rooms frequently. The model designs two novel components to
learn and update dynamic representations for both users and rooms
based on users’ behavior paths of entering, staying in, and leaving
rooms. Three types of dynamic features of a room are learned: cumu
lative features based on users’ entrance into rooms in the past, instan
taneous features based on the audience members who are currently in a
room, and relationship features reflected in users’ subsequent behavior
paths after leaving a room. With these representations, we leverage the
features of users and rooms as well as inter-room relationships to predict
which room a user will choose next.

Through extensive experiments on datasets from two real-world live
streaming platforms, we demonstrate the improved performance of
DRIVER and summarize the main findings as follows:

Table 5
Means and standard deviations of Jaccard Coefficients for top K similar rooms at
the beginning and end of the testing period of Live-Singing.

K = 5 K = 10

Mean Standard
Deviation

Mean Standard
Deviation

Cumulative Features 0.12 0.22 0.13 0.21
Instantaneous

Features
0.08 0.14 0.09 0.13

Relationship Features 0.12 0.26 0.11 0.20

0.0 0.2 0.4 0.6 0.8 1.0
Jaccard Similarity Coefficient

0

100

200

300

400

500

600

Fr
eq

ue
nc

e

K=5

0.0 0.2 0.4 0.6 0.8 1.0
Jaccard Similarity Coefficient

0

100

200

300

400

500

600
Fr
eq

ue
nc

e

K=10

(a) Cumulative Features

0.0 0.2 0.4 0.6 0.8 1.0
Jaccard Similarity Coefficient

0

100

200

300

400

500

600

Fr
eq

ue
nc

e

K=5

0.0 0.2 0.4 0.6 0.8 1.0
Jaccard Similarity Coefficient

0

100

200

300

400

500

600

Fr
eq

ue
nc

e

K=10

(b) Instantaneous Features

0.0 0.2 0.4 0.6 0.8 1.0
Jaccard Similarity Coefficient

0

100

200

300

400

500

600

Fr
eq

ue
nc

e

K=5

0.0 0.2 0.4 0.6 0.8 1.0
Jaccard Similarity Coefficient

0

100

200

300

400

500

600

Fr
eq

ue
nc

e

K=10

(c) Relationship Features

Fig. 8. Distributions of Jaccard Coefficients for top K similar rooms at the beginning and end of the testing period of Live-Singing.

G. Gao et al.

Decision Support Systems 169 (2023) 113957

12

First, in live streaming, both hosts and audience enjoy the freedom of
choosing what they perform and watch respectively, leading to ever-
changing relationships among rooms. The incorporation of such dy
namic inter-room relationships based on the Consumer Path Modeling
helps DRIVER to improve its performance in room recommendation
tasks.

Second, live streaming platforms enable various types of social in
teractions between the audience or between a host and the audience.
Inspired by the social affordance theory, DRIVER’s approach to repre
senting the social atmosphere inside a room with characteristics of its
current audience can also help to generate more accurate room
recommendations.

These findings have important implications for the design of
recommendation systems in live streaming platforms and beyond. First,
with highly dynamic host and audience behaviors in live streaming
platforms, room recommendation systems should take into consider
ation the dynamic properties of users and rooms, as well as the social
atmosphere inside rooms. Designers of room recommendation systems
can adopt DRIVER’s framework, yet train and tweak the model with
their own data. In addition, because DRIVER is designed as a general
izable model without considering platform-specific features, different
platforms can also extend DRIVER to incorporate unique characteristics
of their services to further improve its performance. Such improvements
in room recommendations can help live streaming platforms reduce
users’ search costs and offer a greater entertainment experience,
allowing users and hosts to get more engaged. This can result in financial
and non-monetary benefits for both platforms and their customers.

Second, methodologically, the implications of the DRIVER model are
not limited to live streaming recommendations only. DRIVER’s perfor
mance for live streaming recommendations highlights that learning
dynamic item representations and directly aggregating users’ features
are feasible ways to model dynamic user-item and users’ social in
teractions in cyberspace. We believe DRIVER can also be extended to
other contexts where real-time social interactions among users are
important for item properties or user-item interactions occur at a fast
pace.

There are also several interesting directions for further work. For
example, many live streaming platforms allow users to follow each other
and form an explicit social network, which could provide valuable in
formation to better understand user behaviors and recommend rooms.
In addition, this study uses characteristics of the current audience as a
proxy for social interactions inside a room, as this enables generalization
to different live streaming platforms and rooms with different types of
shows. When making room recommendations for a specific live
streaming platform or a specific type of show, investigating fine-grained
behaviors of the audience members inside a room, such as the nature,
volume, and content of their interactions with each other and the host
(e.g., virtual gifting, meme, and sentiment of comments) should also
help to better capture the social atmosphere inside a room. Similarly,
adding more static features for each room (e.g., the text description of
each room) and dynamic features related to the audio and video content
of ongoing shows should also improve the performance of room rec
ommendations and help to address the cold-start problem. However, the
extraction of these features and their contributions to recommendation
performance may depend heavily on the specifics of the live streaming
platform and the types of shows being hosted in rooms. We also noticed
that all the recommendation models we evaluated, including DRIVER,
work better for Live-Singing than for HuaJiao. We conjecture that the
performance difference is due to HuaJiao’s higher diversity in the types
of shows, hosts, and audience, making it a more challenging platform to
use one model for all room recommendations. It would be interesting to
analyze factors that lead to lower performance by so many different
recommendation models, but this would require a systematic investi
gation that goes beyond just two live streaming platforms. Another di
rection for future research would be to train and evaluate our model
with more diverse datasets from other types of live streaming platforms,

so that we can better validate its performance for the general task of
room recommendations for live streaming.

CRediT authorship contribution statement

Ge Gao: Methodology, Software, Validation, Investigation, Writing-
original-draft, Visualization. Hongyan Liu: Conceptualization, Meth
odology, Resources, Writing-review-editing, Supervision, Project-
administration, Funding-acquisition. Kang Zhao: Conceptualization,
Methodology, Writing-review-editing, Supervision, Project-
administration.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

We promised to provide our codes on GitHub with a synthetic dataset
after this paper is accepted.

Acknowledgements

This work was supported in part by the National Social Science Major
Program with Grant No. 20&ZD161. Due to space limitation, we move
appendix to the online Supplementary materials.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, athttps://doi.org/10.1016/j.dss.2023.113957.

References

[1] Z. Lu, H. Xia, S. Heo, D. Wigdor, You watch, you give, and you engage: A study of
live streaming practices in china, in: Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, CHI ’18, Association for Computing
Machinery, New York, NY, USA, 2018, pp. 1–13.

[2] Kaja J. Fietkiewicz, Katrin Scheibe, Information behavior on social live streaming
services****, J. Inf. Sci. Theory Pract. 4 (2016) 6–20.

[3] Z. Li, X. Fang, X. Bai, O.R.L. Sheng, Utility-Based Link Recommendation for Online
Social Networks, Manage. Sci. 63 (2016) 1938–1952.

[4] R. Mishra, P. Kumar, B. Bhasker, A web recommendation system considering
sequential information, Decis. Support Syst. 75 (2015) 1–10.

[5] M. Zihayat, A. Ayanso, X. Zhao, H. Davoudi, A. An, A utility-based news
recommendation system, Decis. Support Syst. 117 (2019) 14–27.

[6] E. Yu, C. Jung, H. Kim, J. Jung, Impact of viewer engagement on gift-giving in live
video streaming, Telematics Inform. 35 (2018) 1450–1460.

[7] S. Rendle, C. Freudenthaler, Z. Gantner, L. Schmidt-Thieme, Bpr: Bayesian
personalized ranking from implicit feedback, in: Uncertainty in Artificial
Intelligence, Mchine Lerning Lb, Universiy of Hideshei, Montreal, Quebec, Canada,
2009, pp. 452–461.

[8] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, M. Wang, Lightgcn: Simplifying and
powering graph convolution network for recommendation, in: Proceedings of the
43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’20, Association for Computing Machinery, New York,
NY, USA, 2020, pp. 639–648.

[9] S. Kumar, X. Zhang, J. Leskovec, Predicting dynamic embedding trajectory in
temporal interaction networks, in: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD ’19,
Association for Computing Machinery, New York, NY, USA, 2019, pp. 1269–1278.

[10] S.K. Hui, P.S. Fader, E.T. Bradlow, Path Data in Marketing: An Integrative
Framework and Prospectus for Model Building, Mark. Sci. 28 (2008) 320–335.
Publisher: INFORMS.

[11] S. O’Riordan, J. Feller, T. Nagle, A categorisation framework for a feature-level
analysis of social network sites, J. Decis. Syst. 25 (2016) 244–262.

[12] N. Chaudhuri, G. Gupta, V. Vamsi, I. Bose, On the platform but will they buy?
Predicting customers’ purchase behavior using deep learning, Decis. Support Syst.
149 (2021), 113622.

[13] Y. Bengio, A. Courville, P. Vincent, Representation learning: A review and new
perspectives, IEEE Trans. Pattern Anal. Mach. Intell. 35 (2013) 1798–1828.

[14] W. Wen, D. Zeng, J. Bai, K. Zhao, Z. Li, Learning embeddings based on global
structural similarity in heterogeneous networks, IEEE Intell. Syst. (2020), 1–1.

G. Gao et al.

https://doi.org/10.1016/j.dss.2023.113957
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0005
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0005
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0005
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0005
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0010
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0010
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0015
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0015
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0020
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0020
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0025
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0025
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0030
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0030
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0035
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0035
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0035
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0035
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0040
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0040
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0040
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0040
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0040
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0045
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0045
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0045
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0045
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0050
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0050
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0050
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0055
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0055
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0060
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0060
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0060
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0065
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0065
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0070
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0070

Decision Support Systems 169 (2023) 113957

13

[15] Y. Song, N. Sahoo, E. Ofek, When and How to Diversify—A Multicategory Utility
Model for Personalized Content Recommendation, Manage. Sci. 65 (2019)
3737–3757.

[16] Y. Wang, N. Du, R. Trivedi, L. Song, Coevolutionary latent feature processes for
continuous-time user-item interactions, in: Proceedings of the 30th International
Conference on Neural Information Processing Systems, NIPS’16, Curran Associates
Inc., Red Hook, NY, USA, 2016, pp. 4554–4562.

[17] E. Liebman, M. Saar-Tsechansky, P. Stone, The Right Music at the Right Time:
Adaptive Personalized Playlists Based on Sequence Modeling, MIS Q. 43 (2019)
765–786.

[18] S. Rendle, C. Freudenthaler, L. Schmidt-Thieme, Factorizing personalized markov
chains for next-basket recommendation, in: Proceedings of the 19th International
Conference on World Wide Web, WWW ’10, Association for Computing Machinery,
New York, NY, USA, 2010, pp. 811–820.

[19] J. Tang, K. Wang, Personalized top-n sequential recommendation via convolutional
sequence embedding, in: Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining, WSDM ’18, Association for
Computing Machinery, New York, NY, USA, 2018, pp. 565–573.

[20] W.L. Hamilton, R. Ying, J. Leskovec, Inductive representation learning on large
graphs, in: Proceedings of the 31st International Conference on Neural Information
Processing Systems, NIPS’17, Curran Associates Inc., Red Hook, NY, USA, 2017,
pp. 1025–1035.

[21] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, T. Tan, Session-based recommendation
with graph neural networks, in: The Thirty-Third AAAI Conference on Artificial
Intelligence, vol. 33, AAAI Press, 2019, pp. 346–353.

[22] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, D. Yin, Graph neural networks for
social recommendation, in: The World Wide Web Conference, WWW ’19,
Association for Computing Machinery, New York, NY, USA, 2019, pp. 417–426.

[23] B. Perozzi, R. Al-Rfou, S. Skiena, DeepWalk: Online Learning of Social
Representations, in: Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, ACM, New York,
NY, USA, 2014, pp. 701–710.

[24] M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks on
graphs with fast localized spectral filtering, in: Proceedings of the 30th
International Conference on Neural Information Processing Systems, NIPS’16,
Curran Associates Inc., Red Hook, NY, USA, 2016, pp. 3844–3852.

[25] W.L. Hamilton, R. Ying, J. Leskovec, Inductive representation learning on large
graphs, in: Proceedings of the 31st International Conference on Neural Information
Processing Systems, Curran Associates Inc., Long Beach, California, USA, 2017,
pp. 1025–1035.

[26] A.L. Montgomery, S. Li, K. Srinivasan, J.C. Liechty, Modeling Online Browsing and
Path Analysis Using Clickstream Data, Mark. Sci. 23 (2004) 579–595. Publisher:
INFORMS.

[27] J. Li, A. Abbasi, A. Cheema, L.B. Abraham, Path to Purpose? How Online Customer
Journeys Differ for Hedonic Versus Utilitarian Purchases, J. Mark. 84 (2020)
127–146.

[28] A.P. Vrechopoulos, R.M. O’Keefe, G.I. Doukidis, G.J. Siomkos, Virtual store layout:
an experimental comparison in the context of grocery retail, J. Retail. 80 (2004)
13–22.

[29] J.J. Argo, D.W. Dahl, R.V. Manchanda, The Influence of a Mere Social Presence in a
Retail Context, J. Consum. Res. 32 (2005) 207–212.

[30] Y. Deng, J.J. Hou, X. Ma, S. Cai, A dual model of entertainment-based and
community-based mechanisms to explore continued participation in online
entertainment communities, Cyberpsychol. Behav. Soc. Netw. 16 (2013) 378–384.

[31] L. Suárez, C. Thio, S. Singh, Attachment styles, motivations, and problematic use of
massively multiplayer online games, Int. Proc. Econ. Dev. Res. 53 (2012) 45–49.

[32] L. Gu, A.L. Jia, Player activity and popularity in online social games and their
implications for player retention, in: 2018 16th Annual Workshop on Network and
Systems Support for Games (NetGames), 2018, pp. 1–6.

[33] M. Sjöblom, M. Törhönen, J. Hamari, J. Macey, The ingredients of Twitch
streaming: Affordances of game streams, Comput. Hum. Behav. 92 (2019) 20–28.

[34] Z. Hilvert-Bruce, J.T. Neill, M. Sjöblom, J. Hamari, Social motivations of live-
streaming viewer engagement on Twitch, Comput. Hum. Behav. 84 (2018) 58–67.

[35] K. Zhao, Y. Hu, K. Hong, J. Westland, Understanding Characteristics of Popular
Streamers on Live Streaming Platforms: Evidence from Twitch.tv, J. Assoc. Inf.
Syst. (2020).

[36] G.D. Harrell, M.D. Hutt, J.C. Anderson, Path analysis of buyer behavior under
conditions of crowding, J. Mark. Res. 17 (1980) 45–51.

[37] J. Li, H. Dani, X. Hu, J. Tang, Y. Chang, H. Liu, Attributed network embedding for
learning in a dynamic environment, in: Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management, CIKM ’17, Association
for Computing Machinery, New York, NY, USA, 2017, pp. 387–396.

[38] S. Chaudhari, V. Mithal, G. Polatkan, R. Ramanath, An attentive survey of attention
models, ACM Trans. Intell. Syst. Technol. 12 (2021).

[39] X. Wang, X. He, M. Wang, F. Feng, T.-S. Chua, Neural graph collaborative filtering,
in: Proceedings of the 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR’19, Association for Computing
Machinery, New York, NY, USA, 2019, pp. 165–174.

[40] J. Li, Y. Wang, J. McAuley, Time interval aware self-attention for sequential
recommendation, in: Proceedings of the 13th International Conference on Web
Search and Data Mining, WSDM ’20, Association for Computing Machinery, New
York, NY, USA, 2020, pp. 322–330.

[41] L. Wu, S. Li, C.-J. Hsieh, J. Sharpnack, Sse-pt: Sequential recommendation via
personalized transformer, in: Proceedings of the 14th ACM Conference on
Recommender Systems, RecSys ’20, Association for Computing Machinery, New
York, NY, USA, 2020, pp. 328–337.

[42] J. Dodge, S. Gururangan, D. Card, R. Schwartz, N.A. Smith, Show your work:
Improved reporting of experimental results, in: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
Association for Computational Linguistics, Hong Kong, China, 2019,
pp. 2185–2194.

[43] Y. Tian, J. Ma, Q. Gong, S. Sengupta, Z. Chen, J. Pinkerton, L. Zitnick, Elf opengo:
An analysis and open reimplementation of alphazero, in: International Conference
on Machine Learning, PMLR, 2019, pp. 6244–6253.

[44] M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B. Hutchinson, E. Spitzer,
I.D. Raji, T. Gebru, Model cards for model reporting, in: Proceedings of the
conference on fairness, accountability, and transparency, 2019, pp. 220–229.

Ge Gao is a Ph.D. candidate in School of Economics and Management, Tsinghua Univer
sity. He earned his Bachelor in Dalian University of Technology. His research focuses on
information systems and data mining. His current research is about the design of recom
mender systems with the consideration of social and psychological factors.

Hongyan Liu is a professor at School of Economics and Management, Tsinghua University.
She received her PhD degree in management science from Tsinghua University. Her cur
rent research interests include data/text mining, machine learning, personalized recom
mendation, social computing and computer vision. She has published many papers in
journals such as MISQ, ISR, INFORMS JOC, ACM TODS, ACM TOIS, and IEEE TKDE, and in
conferences such as VLDB, ICDE, SIGKDD, ICDM, SDM, CIKM and ICIS.

Kang Zhao is an Associate Professor of Business Analytics at Tippie College of Business,
The University of Iowa. His current research focuses on data science and social computing,
especially the mining, predictive modeling, and simulation of social, business, and
collaboration networks. His research has been featured in public media from more than 25
countries. He also served as the Chair for INFORMS Artificial Intelligence Section
2014–2016. He earned his Ph.D. from Penn State University.

G. Gao et al.

http://refhub.elsevier.com/S0167-9236(23)00032-5/h0075
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0075
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0075
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0080
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0080
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0080
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0080
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0085
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0085
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0085
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0090
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0090
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0090
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0090
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0095
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0095
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0095
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0095
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0100
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0100
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0100
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0100
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0105
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0105
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0105
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0110
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0110
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0110
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0115
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0115
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0115
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0115
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0120
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0120
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0120
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0120
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0125
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0125
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0125
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0125
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0130
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0130
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0130
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0135
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0135
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0135
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0140
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0140
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0140
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0145
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0145
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0150
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0150
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0150
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0155
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0155
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0165
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0165
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0170
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0170
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0175
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0175
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0175
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0180
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0180
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0185
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0185
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0185
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0185
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0190
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0190
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0195
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0195
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0195
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0195
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0200
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0200
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0200
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0200
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0205
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0205
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0205
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0205
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0210
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0210
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0210
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0210
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0210
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0210
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0215
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0215
http://refhub.elsevier.com/S0167-9236(23)00032-5/h0215

	Live streaming recommendations based on dynamic representation learning
	1 Introduction
	2 Background and related work
	2.1 Representation learning for recommendations
	2.2 Sequential recommenders and graph neural networks
	2.3 Empirical and theoretical support for DRIVER

	3 The proposed method
	3.1 A toy example
	3.2 Notations and the problem definition
	3.3 The general framework
	3.4 The updating component
	3.5 The integrating component
	3.6 The predicting module

	4 Experiments and results
	4.1 Datasets
	4.2 Benchmark methods and experimental settings
	4.3 Results
	4.4 Ablation studies
	4.5 The robustness of performance

	5 Discussions
	6 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A. Supplementary data
	References

