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Abstract—With different types of nodes and edges, heterogeneous networks have higher levels of
structural diversity than homogeneous networks. This paper proposes an unsupervised representation
learning model, named gs2vec, to address structural diversity of a node being connected to other types of
nodes via different types of edges in heterogeneous networks. The model measures a node’s structural
roles based on its numbers of neighboring nodes of different types. It also attempts to measure such
structural roles beyond the immediate neighborhood of each node by incorporating structural roles of
other nodes k-hop away. Experiments based on synthetic and empirical datasets show that gs2vec
outperforms state-of-the-art network representation learning models in heterogeneous network analysis
tasks such as node classification and node clustering.

 NETWORKS are natural ways to represent
relationships in a wide variety of real-world scenarios,
 such as social networks, citation networks,
telecommunication networks, and chemical reaction
networks. Homogeneous networks have one type of
nodes and one type of edges. By contrast,
heterogeneous networks consist of multiple types of
nodes and edges and can better capture the complex
relationships among different types of entities.

Corresponding author: Daniel D. Zeng
(dajun.zeng@ia.ac.cn)

Numerous studies have attempted to learn latent
representations of nodes based on structural proximity
to facilitate network inference tasks, such as node
classification [1]. The assumption is that a node’s
structural position in a network can decide its
functions or labels. In other words, a node’s
relationships with other nodes matter. However, the
majority of the network embedding research focused
on homogeneous networks [1] [2] [3]. The unique
challenge for network representation learning in
heterogeneous networks is due to the structural
diversity caused by multiple types of nodes and edges.
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Take a heterogeneous bibliographic network as an
example. A bibliographic network can have at least
three types of nodes, namely authors, papers and
topics. Edges can represent different types of
relationships, such as "authors write papers", "authors
cover topics", and "papers cite papers. Is one author
with four “topic” neighbors equivalent as another
author with four “publication” neighbors?

To overcome the challenge, we propose gs2vec, a
global-structure based unsupervised representation
learning method for heterogeneous networks. The goal
of gs2vec is to maximize the likelihood of the
structural proximity between nodes by comparing
their global structural characteristics in a
heterogeneous network. Figure 1 illustrates four
different heterogeneous networks, where different
shapes represent different node types. From the
perspective of structural similarity, node � is different
from nodes � , �� , and �� , because � connects with
oval and rectangular nodes, while the other three
nodes are all connected with oval and triangular nodes.
Meanwhile, � is more structurally similar with ��
than with �� because both � and �� have the same
numbers of neighbors of each type (two triangular
nodes and four oval nodes), while �� ’s neighbors
include four triangular nodes and two oval nodes.
Since this structural difference is presented by nodes’
structural characteristics beyond local neighborhood
where heterogeneous nodes and edges participated in,
we develop a global structure based proximity
evaluation strategy, which can quantify the structural
similarity of nodes regardless of their topological
distance.

In this paper, we first propose the concept of
heterogeneous network transformation, so that
different types of nodes in heterogeneous networks
share the same vector space. Second, we develop a
global heterogeneous structural proximity measure to
quantify the structural similarity of nodes and edges in
heterogeneous networks. Finally, we propose the
framework of gs2vec by utilizing a walk-based
method based on structural similarity of
heterogeneous network to construct node contexts,
and applying the Skip-Gram model [4] to learn node
embeddings.

Contributions of this paper are summarized below:
a) We formalize the node representation learning

problem based on the global structural similarity in
heterogeneous networks, and the objective is to learn
node embeddings that preserve nodes’ structure roles
in heterogeneous networks.

b) We develop an unsupervised network
embedding learning method, gs2vec, which can be
used for heterogeneous network analysis effectively.

RELATED WORKS
The past few years have witnessed rapid

development of network representation learning
approaches. Many methods were inspired by Skip-
Gram [4], a technique originally designed for
embedding texts. Treating nodes in a network as
“words”, several algorithms use random walks and
biased random walk to generate node sequences as
“sentences”, and then uses skip-gram to obtain
network embedding and learn high level proximities
[2]. These methods were designed for homogeneous
networks with one type of nodes and one type of

Figure 1. An example of four nodes (�, ��, ��, �) in four heterogeneous networks. Each node shape
represents a node type. Solid lines represent edge type 1 and dotted lines are for edge type 2.
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edges. Heterogeneous network representation learning
is an emerging research area. To model nodes and
edges of different types, most existing approaches
learn node embeddings via jointly minimizing the loss
over each node or edge type [5] [6], while some
methods for studying heterogeneous graph neural
networks have introduced attention mechanisms [7].

Methods mentioned above assumed that nodes are
closer to each other are similar in certain ways.
Besides similarity based on proximity, in many
networks, nodes that are not neighbors may also have
high similarity if they play similar structural roles in a
network. Such structural similarities have been
investigated for homogeneous networks [1], but have
not been incorporated into representation learning for
heterogeneous networks.

In this paper, we fill this gap by proposing a
global-structure-based heterogeneous network
embedding learning framework. Compared to models
for homogeneous networks, our method treats
different types of nodes and edges in different ways.
Further, gs2vec also differs from other heterogeneous
network embedding models in several ways. For
example, although metepath2vec [5] pays attention to
structure information in heterogeneous networks, it
focuses on a few types of hand-picked meta-paths to
learn nodal proximities. By contrast, gs2vec can
automatically capture the heterogeneous structural
similarity of nodes from a broader range of network
contexts, so that the learned structural similarity is not
limited by the topological distances between nodes in
a network. While optimization-based methods such as
HNE [8] attempted to optimize node embeddings to
maximize the similarity of adjacent nodes, it is
difficult to scale up to capture similarity beyond
immediate neighborhood, let alone structural
similarity.

It is also worth noting that there is also a stream of
network representation methods based on supervised
approaches. In these approaches, node embeddings are
learned to optimize their performance in a specific
task, such as node classification or link prediction
[7,9]. Compared to unsupervised approaches we
discussed above, supervised approaches often perform
better for the tasks they are optimized for, but they
also have two disadvantages: (1) they lack
generalizability--embeddings learned for one task may
perform poorly for another; (2) they need a large
amount of training data with ground truth, which may
not always exist or can be difficult to obtain. Thus in
this paper, we focus on unsupervised approaches,
which do not need labeled data and produce

embeddings that can be applied to different network
inference tasks.

GLOBAL STRUCTURE SPACE CONSTRUCTION

Transforming Heterogeneous Network
Representations
Definition 1. Heterogeneous network: A

heterogeneous network is defined as a graph � �
�ܸ�ǡܧ�ܸܧ�ǡ�, where each node � and each edge � are
associated with their type-mapping functions
� � �ܸ � ܸܧ and � � �ǡ � ǡܧ , respectively. ܸܧ �
��������������� and ǡܧ � ��������������� denote the
set of node types and edge types respectively, where
ܸܧ � ǡܧ � � � �   �.
The basic idea of our model is that when defining a

node’s structure role, and hence its embedding, the
type and number of its neighboring nodes are
important. In this paper, we also would like to
construct one vector space that can encode structure
characteristics of nodes, regardless of their types and
positions in the heterogeneous network. Thus we first
transform a heterogeneous network by encoding node
information in edges to capture more fined-grained
neighborhood information.

Specifically, for an edge � � ǡ , we represent it as
����� � ��������� , where �� and �� are nodes at both
ends of � . Then the type mapping function of ��
should be:

�� �� � � � �� �� �� �� (1)
Now we reconstruct heterogeneous network �

as �� � ܸ�ǡܧ�ܸܧ��ǡ�� , where edges are formulated as
triples to include node information, and edge types are
transformed accordingly as:

�ǡܧ � ×ܸܧ ×ܸܧ ǡܧ (2)
Where operator × means a Cartesian product

function so that ×ܸܧ ǡܧ � ��Ѐ�⯯�㖘Ѐ � ܸܧ � ⯯ � .�ǡܧ

Mapping Nodes to the Global Structure Space
After transforming a heterogeneous network, we

get a set of edge types that are also based on types of
nodes being connected. With such fine-grained edge
types, we can represent the structural characteristics of
nodes by simply mapping them into a vector space,
which we define as the “global structure space”.

Definition 2. Global structure space: the global
structure space � of a heterogeneous network � is
defined as a � dimensional real space �� , with a
corresponding node mapping function ��ܸ � � . In
this paper, we build the global structure space on top
of �ǡܧ . For node � � ܸ , its mapping function is then
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defined as � � � � ��
�  , where ��

� is the number of
edges of type � that � has and � � [��㖘ܧǡ�㖘].

Take heterogeneous networks in Figure 1 as an
example. There are three types of nodes and two types
of edges, so the number of edge types � � �ǡܧ �
3� × � � �8. For node � , there are two edges of
type 1 to connect it with two rectangular nodes, and
one edge of type 2 to connect it with one oval node.
Thus the vector representation of node w in the global
structure space can be written as a vector with a length
of 18:

���� � �����0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�0�
In fact, edges may not be possible among certain

two types of nodes. In addition, if � is undirected,
then the dimension of � can be reduced by half as the
type of edges from one type of node to another would
be the same no matter which node type is the source
node. In Figure 1, only 8 dimensions exist in the
undirected network G, namely (1,1,1) , (2,1,3), (1,1,2),
(2,1,2), (1,1,3), (1,2,3) , (1,3,3), and (1,2,2),
represented in the format of �� �� �
� � �� �� �� �� ). Thus we can reduce the global
structure space of � from 18 to 8 dimensions. For
example, node w has two edges with dimension (1, 1,
1) and one edge with dimension (2,1,3). Thus ���� �
�����0�0�0�0�0�0� . Such a novel and more fine-grained
vector representation of nodes will then be used in
subsequent calculation of structural proximity.

HETEROGENEOUS NETWORK
REPRESENTATION LEARNING BASED ON
GLOBAL STRUCTURE PROXIMITY

In a transformed heterogeneous network �� , the
structural proximity of nodes is treated to be
hierarchical and cope with increased neighborhood
sizes, capturing more refined notions of structural
proximity. Intuitively, two nodes that have the same
number of edges for each edge type are structurally
similar. In addition, if the two nodes’ neighbors also
have the same number of edges of the same edge type,
then they should be structurally more similar.

The level-k neighborhood of a node u in �� is the
set of nodes at a shortest distance of k (hop count)
from u, independent of edge types. As the structural
proximity of nodes should be hierarchical, we learn
the structural proximity between nodes level by level.
We start with how to measure structural proximity
between two nodes at level 0 in global structure space
�, then generalize it to the level k where k >0. Finally,

we show how to use node structural proximity at each
level to learn network representations.

Structural Proximity at Level 0
For node � in �� , there is only � itself at level 0.

Therefore, we only consider the structural similarity
of two nodes themselves at this level. In global
structure space � , the structural characteristics of �
are represented by its vector ���� in �. The similarity
of two nodes ���� can be intuitively defined as the
distance between two vectors ���� and ����:
���� � � � − ���� � � �� �ǡܧ ���

� − ��
����

�/�
(3)

where smaller distance means higher proximity.

Structural Proximity at Level k
Next we generalize the method of measuring

structural proximity with global structure space from
level 0 to level k.

Let �� � � ���� denotes the set of nodes at the k-
th level neighborhood of u in �� . Note that �0 � �
��� has only node � itself, and �� � contains u's
one-hop neighbors. Let Q�

� � f �� be the global
structure space of u at level k, where �� � �� � and
Q�
� ⊂ Q. We define P ����� as the proximity of two

Global Structure space �� and �� .Then the Global
Structure proximity of u and v at level k is defined as:

��
��� � � ��

����
� � �ǡܧ�� ����

��� �
�

�/�
(4)

where ����
��� denotes the proximity between u and �

at level k by dimension � in � . When k=0, ��
��� �

���� ��� ���0
��� = ��

� − ��
� . In other words, the proximity

between u and v at level k combines the difference
between u and v in each dimension of ��.

The initial representation of node u at level k in
dimension � of �� is a real set �����

� � ��
� , where

t� �� � � and ��
� � � � . The number of elements in s

is equal to the number of nodes in �� � , and
elements in set s are not ordered. The task of calculate
�����
��� depends on the proximity between sets ����

� and ����
� ,

but there are two challenges: (1) the two sets could
contain different numbers of elements and (2)
elements are not ordered in each set.

To calculate ����
��� , we adopt FastDTW [10] to

compute the similarity between two sequences:
����
��� � �ܧ����� ����

� �����
� (5)

where ����
� is the positive ordered version of

elements in set ����
� .
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FastDTW is a dynamic time warping algorithm
that to find the shortest warp path between two times
series that may have different lengths. In each greedy
search step of FastDTW, the method needs to define a
unit cost between two adjacent elements � in time
series A and � in time series B to determine where the
next shortest path is. Since elements of sequence A
and B represent numbers of edges in our model, we
adopt the following cost function:

� a�� � a−�
min �����

(6)

Finally, in order to unify ���� and p�
��� , we change

Equation (3) into the following format:

���� � � �� �ǡܧ �
��
�−��

�

min ���
����

��
���

�/�

(7)

Contexts of Nodes
The usage of levels allows us to impose a hierarchy

to measure structural similarity. Let �� ��� denote
the structural distance between nodes � and � when
considering their k-hop neighborhoods on all edge
types. Note that the k-hop neighborhood of node �
includes all nodes whose shortest distance to � is less
than or equal to k (i.e., at level k or less for �). Such a
distance is defined as:

�� ��� � ��−� ��� � p�
���, where �−� � 0 (8)

Note that by definition, �� ��� is non-decreasing
with regard to k and is applicable only when both �
and � have nodes at level k, although it does not
require the presence of all edge types at level k.

With the structural distance between u and � at
each hop, we can construct a context graph between
nodes in �� and generate the context for each node. To
do this, we adopt struc2vec [1], which was originally
proposed for homogeneous networks. struc2vec
constructs a multilayer weighted graph that encodes
the structural similarity between nodes. Each layer is a
weighted undirected and complete graph with edge
weight between nodes defined as

�� ��� � �− ����.���� � 0���� (9)
where number of layers K is the diameter of �.
To generate contexts for nodes, struc2vec uses bias

random walks according to edge weights that are
based on structural similarity between nodes. When
walking in the same layer, the probability of stepping
from node � to node � is proportional to their edge
weight:

�� ��� � �� ���

��ܸ
�≠�

�� ����
(10)

To walk between different layers, the method first
defines a weight function for each node � in layer k to

its corresponding node in layer k-1 and layer k+1 they
exist.
w ������� � log �� � � � �� � 0���� − � (11)

w �����−� � ��� � ���.�
where ����� is the number of edges that are

incident to u and have weight larger than the average
edge weight of the complete graph in layer k. Then the
probabilities for a walk to move between two layers at
node u are defined as:

�� ������� � w �������
w ������� �w �����−�

(12)

�� �����−� � � − �� ������� (13)
The contexts of each node generated with

struc2vec can then be used as the input of the skip-
gram model to learn node embeddings.

EXPERIMENTS
In this section, we evaluated the performance of

gs2vec by comparing it with several state-of-the-art
unsupervised representation learning methods in
different network analysis tasks.

Baseline methods we include in experiments are:
(1) DeepWalk [2], which uses local information
obtained from truncated random walks to learn latent
representations; (2) Struc2vec [1], which discovers
structural embeddings at different scales through a
sequence of walks on a multi-layered graph; (3)
Role2vec [3] which uses a flexible notion of attributed
random walks to capture structural similarity (roles);
(4) Metapath2vec [5], which learns embeddings for all
types of nodes in heterogeneous networks by
following a predefined meta-path scheme; and (5)
HiWalk [6] which learns embeddings for nodes whose
types are predefined in heterogeneous networks.

A Synthetic Graph
We first evaluate our method on a synthetic graph

we create (Figure 2(a)). We generate the graph with
different types of nodes, whose labels indicate each
node’s structural role. Our goal is to evaluate if our
method can recover nodes’ structural roles. In this
graph, different shapes represent different types of
nodes and structurally equivalent nodes have the same
color. For example, nodes 9, 10, 11, 13 and 14 are
considered equivalent in their structure roles.
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To evaluate if gs2vec can learn vector
representations that capture the structural equivalence
mentioned above, we show embeddings learned by
our method along with benchmark methods in Figure
2 (b-g). Note that it is not straightforward to visualize
high-dimensional vectors like our node embeddings.
Thus we adopt t-SNE [11], a non-linear
dimensionality reduction algorithm, to reduce the
dimension of node embeddings to 2, and use the 2-D
position of each node to represent its embedding. The
results reveal that DeepWalk [2] and Hiwalk [6]
cannot learn structural equivalence for this network,
most likely because they were not designed to detect
heterogeneous structural roles. Metapath2vec [5]
learns node characteristics on specific meta-paths (like
A-B-A) and cannot capture structural roles on a more
global level. Struc2vec [1] and Role2vec [3] cannot
capture heterogeneous structural roles as they consider
all nodes in complete graph as the similar nodes. The
proposed gs2vec achieves the best results by
effectively generating embeddings where nodes with
the same color are close to each other and far from
nodes with different colors.

Node Classification
Datasets. We chose BZR-MD [13] and AIDS [14]

as the empirical datasets in the following node
classification and node clustering experiments. The
two data sets consist of molecular compounds which
are converted into heterogeneous chemical networks
in a straightforward manner by representing atoms as

nodes and the covalent bonds as edges. The
heterogeneous chemical networks contain a number of
subgraphs. Usually the subgraphs are small and
isolated from each other, so it is difficult to evaluate
the structural proximity of nodes through conventional
methods. However, by mapping nodes to the global
structure space (as discussed in Section 3), our
proposed method can easily capture nodal structural
proximity.

BZR-MD data set is a chemical compound dataset.
Nodes correspond to atoms and edges refer to
chemical bonds. Node types include C, N, O, F, C1, S,
P, and Br. Edge types include single, double, triple or
aromatic. We use node types as node labels for multi-
class classification. To test the effectiveness of the
global structure on network representations, we
randomly selected 80 subgraphs from the BZR-MD
dataset to construct two subsets of data, named as
BZR-MD-part1 and BZR-MD-part2, with 40
subgraphs in each dataset. These two data sets
represent two typical chemical compound structures.

Figure 2. (a)A synthetic graph, where shapes represent node types and colors indicate nodes’ structural
roles， along with 2D latent vector representations of nodes learned by (b) DeepWalk, (c) struc2vec,
(d)Role2vec, (e) Metapath2vec, (f)Hiwalk, and (g) gs2vec, and the horizontal axis and the vertical axis
represent values in the first dimension and the second dimension, respectively. Parameters used for all
methods: number of walks per node: 40, walk length: 20, skip-gram window size: 10.

Table 1. Details for the two datasets from the four
data sets, |TE’| is the dimensions of transformed
network

Dataset BZR-
MD-part1

BZR-
MD-part2

AIDS1 AIDS2

Nodes 874 897 1028 2907
Edges 957 979 1110 3161
|TE’| 4 3 2 2
Node Label 6 8 7 7
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The AIDS dataset consists of graphs representing
molecular compounds. Nodes are labeled with the
number of the corresponding chemical symbol and
edges by the valence of the linkage. We selected two

sets of subgraphs from the AIDS data set to construct
two subsets of data by the scale of the subgraphs:
AIDS1 and AIDS2. AIDS1 consists of all subgraphs
containing nodes number between 25 and 30, while

Table 2. Multi-class node classification results (� stand standard deviations) for the four data sets with
different TR. Bold fonts indicate the best performer in each column.

BZR-MD-part1 TR Deepwalk struc2vec role2vec metapath2vec HiWalk gs2vec

Micro-F1(%)

10% 68.34 79.49 71.81 75.96 69.83 91.41� �.39
30% 72.39 85.56 74.63 75.89 71.77 94.49� �.00
50% 74.00 88.15 74.44 75.40 72.74 95.18� 0.8�
70% 74.6 89.09 75.34 75.68 73.70 95.59� �.33
90% 78.85 91.84 78.62 78.97 78.16 95.92� 0.7�

Macro-F1(%)

10% 16.13 26.54 17.14 14.38 14.75 57.39� 6.9�
30% 16.12 44.34 15.81 14.38 14.60 66.79� 3.�7
50% 15.44 50.63 16.24 14.32 14.23 70.06� 4.��
70% 15.78 54.50 15.17 14.35 14.22 72.82� 4.�6
90% 15.01 53.15 14.69 14.70 14.61 70.64� 7.6�

BZR-MD-part2 TR Deepwalk struc2vec role2vec metapath2vec HiWalk gs2vec

Micro-F1(%)

10% 63.81 79.87 70.47 67.58 74.55 89.94� �.64
30% 70.77 86.04 73.00 69.67 75.35 94.41� 0.77
50% 73.17 87.67 73.62 73.06 75.01 94.53� 0.56
70% 73.56 88.17 73.82 74.15 75.19 94.42� �.37
90% 73.19 88.70 73.75 74.20 74.42 95.61� �.�0

Macro-F1(%)

10% 11.93 24.93 12.40 10.67 11.28 48.37� 3.78
30% 12.55 37.97 12.19 10.74 10.79 54.66� �.45
50% 11.87 38.12 12.36 10.71 10.77 56.11� 3.�8
70% 11.66 40.30 11.19 10.72 10.64 55.35� 5.�0
90% 11.51 38.09 12.11 10.66 10.64 54.69� 6.74

AIDS1 TR Deepwalk struc2vec role2vec metapath2vec HiWalk gs2vec

Micro-F1(%)

10% 65.15 74.65 71.12 74.34 69.64 80.13� �.�5
30% 68.98 77.42 72.87 74.22 70.16 84.34� �.4�
50% 73.19 77.76 72.77 73.98 71.80 84.83� �.06
70% 76.04 80.85 73.87 73.79 72.67 86.81� �.0�
90% 74.76 79.76 74.15 77.23 72.29 87.32� 4.4�

Macro-F1(%)

10% 11.04 16.96 11.38 9.47 10.51 24.01� 5.36
30% 11.35 25.93 11.51 9.46 11.08 36.73� 5.0�
50% 10.96 29.29 11.40 9.44 11.07 42.01� �.85
70% 11.23 30.44 12.06 9.43 10.91 39.64� 3.5
90% 10.36 27.50 11.50 9.68 10.24 36.16� 6.8�

AIDS2 TR Deepwalk struc2vec role2vec metapath2vec HiWalk gs2vec

Micro-F1(%)

10% 53.42 88.35 57.7 61.87 53.59 88.93� 0.7�
30% 62.02 89.39 59.81 62.1 56.31 90.82� 0.43
50% 65.34 89.72 61 61.59 57.62 91.08� 0.39
70% 67.76 90.39 60.64 61.08 58.5 91.33� 0.77
90% 69.83 89.52 60.79 61.66 59.41 91.27� �.09

Macro-F1(%)

10% 13.87 39.7 13.46 9.54 13.07 41.77� 0.74
30% 14.79 41.13 12.83 9.56 12.89 42.44� 0.55
50% 15.29 41.61 12.19 9.51 12.43 42.74� 0.39
70% 16.06 42.34 11.63 9.46 11.97 43.11� 0.70
90% 16.83 41.19 11.42 9.51 11.64 43.2� 0.70

Authorized licensed use limited to: The University of Iowa. Downloaded on September 13,2021 at 22:05:17 UTC from IEEE Xplore.  Restrictions apply. 



1541-1672 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/MIS.2020.3027677, IEEE Intelligent Systems

Department Head

8 IEEE Intelligent Systems

AIDS2 consists of the subgraphs containing nodes
number more than 60, in which the subgraphs are
much larger than those in AIDS1. These two data sets
also represent two typical chemical compound
structures. More details of the data sets are given in
Table 1.

Experimental settings. We perform multi-class
node classification experiments on the four datasets.
First, the embeddings of nodes are learned using
gs2vec and the other baseline models. Then node
embeddings become feature used to train supervised
classifiers based on logistic regression with one-class-
vs-the-rest classification. We randomly divide nodes
into the training set and the testing set based on a
certain ratio of training data (denoted as training ratio-
TR). For both datasets, we vary TR from 10% to 90%,
and repeat this process 10 times for each TR.
Parameters for all methods set as follow: Embedding
dimensions =128, number of walks per node= 40,
walk length= 20, skip-gram window size= 10. For
Metapath2vec, we choose all possible 2-hop paths in
the datasets (like A-B-A) as the meta-paths.
Results. Table 2 reports the average performance

measured in the multi-class node classification
experiment by both Macro-F1 and Micro-F1 for the
four datasets. Numbers in bold represent the best
performer in each column.
For data sets BZR-MD-part1 and BZR-MD-part2,

gs2vec outperforms benchmark methods on each
training set. With 10% of all nodes as training data
(TR=10%) of BZR-MD-part1 dataset, for example,
gs2vec achieves improvements of 116-299% in
Macro-F1 and 15-34% in MicroF1 over benchmarks，
while for BZR-MD-part2 with 10% of nodes as
training data, gs2vec achieves improvements of 94-
353% over benchmarks in Macro-F1 and 13-41% in
Micro-F1. As TR increases, our method’s
performance also improves as one would expect, and
it still outperforms all benchmark methods.
Results for data sets AIDS1 and AIDS2 are similar

to the cases of BZR-MD-part1 and BZR-MD-part2,
which gs2vec outperforms benchmark methods on
each training set. With 10% of all nodes as training
data (TR=10%) of AIDS1 dataset, gs2vec achieves
improvements of 42-154% in Macro-F1 and 7-23% in
Micro-F1 over benchmarks, while for AIDS2 with
10% training data, gs2vec achieves improvements of
5-338% over benchmarks in Macro-F1 and 0.6-66%
in Micro-F1. The performance of the proposed
method is consistent across different TR. Overall,

gs2vec can improve node classification performance
on all the four datasets.

In addition, methods designed specifically for
heterogeneous networks, such as Metapath2vec [5]
and HiWalk[6], and methods designed specifically for
learning structural similarity in networks, such as
Role2vec [3] and struc2vec [1], generally have better
performance than DeepWalk [2], which was designed
for homogeneous networks. This highlights the
importance of considering structural heterogeneity
when learning node representations. Meanwhile,
gs2vec can outperform existing heterogeneous
network representation methods because our method
combines heterogeneity of nodes and edges with
structural similarity beyond immediate neighborhood.
Our method’s superior performance over all
benchmarks with low TRs is highly desirable when
labeled data is scarce.

Node Clustering
We also demonstrate how node embeddings

learned with gs2vec can help with node clustering in
heterogeneous networks. We remove node label and
examine if our clustering can put nodes with the same
label in the same cluster. The embeddings learned by
each method are input to a clustering model based on
the classic k-means algorithm. The number of clusters
is the same as the number of node types. Clustering
results are evaluated with normalized mutual
information (NMI). Figure 3 shows the clustering
results for the four Datasets. With data sets BZR-MD-
part1 and BZR-MD-part2, gs2vec outperforms all the
benchmark methods by a large margin: improvements
of 131%-2900% on BZR-MD-part1 and 23%-2600%
on BZR-MD-part2. With data set AIDS1, gs2vec
achieves improvements of 36%-1800%. With data set
AIDS2, gs2vec achieves highly competitive, if not
better, results with struc2vec. The experimental results
show that gs2vec is effective in unsupervised network
analysis tasks.
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CONCLUSION
In this paper, we propose gs2vec, a novel method

to learn network representations for heterogeneous
networks based on structural similarity at a global
level. Experiment results show that gs2vec excels in
capturing node structural characteristics from
heterogeneous networks and has superior performance
in node classification and node cluster tasks where
node labels are more dependent on their structural
roles or identities in a heterogeneous network. Our
results highlight that structural roles of nodes have
important implications in learning node
representations for the heterogeneous network.
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