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Abstract—This paper focuses on understanding the robustness
of a supply network in the face of a disruption. We propose a
decision support system for analyzing the robustness of supply
chain networks against disruptions using topological analysis, per-
formance measurement relevant to a supply chain context, and
an optimization for increasing supply network performance. The
topology of a supply chain network has considerable implications
for its robustness in the presence of disruptions. The system al-
lows decision makers to evaluate topologies of their supply chain
networks in a variety of disruption scenarios, thereby proactively
managing the supply chain network to understand vulnerabilities
of the network before a disruption occurs. Our system calculates
performance measurements for a supply chain network in the face
of disruptions and provides both topological metrics (through net-
work analysis) and operational metrics (through an optimization
model). Through an example application, we evaluate the impact
of random and targeted disruptions on the robustness of a supply
chain network.

Index Terms—Decision support, disruption, optimization,
robustness, simulation, supply chain network topology.

I. INTRODUCTION

THE MANAGEMENT of disruptions in modern supply
chain networks is a timely and relevant topic for both

managers and researchers alike. A disruption in a supply chain
is an unplanned and unanticipated event that disrupts the normal
flow of material [14]. Supply chains are inherently vulnerable to
disruptions because they are interconnected, global, and volatile
[4], [20], [47], [58]. A disruption may initially affect or disable
a few entities in the system, but its cascading effects may propa-
gate to many others, disrupting an entire system [24], [25], [42],
[43]. Prior research has noted that the cascading effects of a
disruption are difficult to understand in real-world settings [20].
Disruptions may impede the flow of people, goods, information,
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and funds with serious consequences, such as lost market share,
increased cost, or even company failure [9]. However, disrup-
tions do not always end in dire consequences [56]–[58]. The
outcome can be positively influenced by the robustness of the
supply chain. To increase robustness, it is appropriate to design
supply chain networks to be adaptable to different disruption
scenarios (i.e., different disruption types and their effects) [20],
[27], [28] and to have the ability to reconfigure or restructure
the network and redistributes flows in the face of changing con-
ditions [5], [24]. By considering multiple alternative networks,
robustness can be enhanced by analyzing the effects of possible
disruptions before they occur in different network configura-
tions [5] providing valuable network robustness insight [22],
[26] into supply chain performance [60].

Previous research has demonstrated the efficacy of a topolog-
ical approach to rewiring networks to enhance robustness [63],
[64]. Specifically, network robustness has been evaluated using
various topologies [53], and this work was extended with a new
robustness metric [64], and a new topological design approach
to supply chain networks [63]. One of the noted weaknesses in
previous work in network robustness in the face of supply chain
disruptions is the absence of network optimization techniques in
robustness analysis [63]. In this paper, we extend prior research
by developing a decision support approach that will allow sup-
ply chain managers to evaluate the robustness of different supply
chain network designs using both a topological approach and an
optimization approach [46], [53], [63]. In fact, there have been
recent calls for supply chain managers and researchers alike to
better understand the structure of the supply chain to determine
the ability to adapt and recover from supply chain disruptions
[24], [54].

In the context of this research, topology is the relative spatial
placement of nodes and their connections or links specifically
within the supply chain network (see [62] for a description and
discussion of network topologies). Here, we adopt the topo-
logical perspective and propose a framework for robustness
evaluation, including metrics for robustness and analysis us-
ing simulation, graph analysis, and optimization. The decision
support system (DSS) not only simulates various types of disrup-
tions and evaluates their impacts, but also allows users to con-
sider “what-if” scenarios by modifying the structure through the
rewiring of the supply chain network [37]. The DSS can config-
ure and rewire a supply chain network using models supported
by the system. Meanwhile, if network construction and rewiring
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models provided by the DSS are insufficient, a user can also pro-
vide different supply chain network topologies for evaluation.
In doing so, managers can evaluate different topological designs
for robustness against disruptions. In a supply network context,
the relationship between the network’s topology and robustness
in the presence of targeted and random attacks has been inves-
tigated using multi-agent model simulation, but the researchers
did not consider rewiring nodes nor identifying nodes that would
be most appropriate for fortification [37]. Therefore, our DSS
incorporates both operational and topological metrics into a de-
cision support tool to enable different ways to evaluate supply
network robustness using context of transshipments and logis-
tics in a supply chain.

This research contributes in two ways: first, through simu-
lation, the DSS allows users to evaluate the before and after
performance of a supply chain network given various types of
disruptions so that the network’s robustness against these dis-
ruptions can be analyzed. These disruptions may be random or
targeted to study the impact of disrupting a particular node in
varying topological models. This analysis will aid in identify-
ing supply chain nodes that should be fortified. Second, this
research provides a combination of topological metrics for sup-
ply chain networks that are relatively quick to calculate yet can
still accurately capture the performance of the network against
disruptions as well as network optimization based on network
topology. In doing so, this approach can provide both topologi-
cal metrics (through network analysis) and operational metrics
(through optimization). Topological metrics can accurately ap-
proximate the operational metrics, yet the former is much faster
to calculate than the latter, and thus enable quick robustness
evaluation of a large number of network designs or rewiring
schemes. Therefore, from a decision analysis perspective, topo-
logical metrics are quick to derive reasonable solutions to net-
work rewiring in the face of disruptions. The incorporation of
both the topology analyzer and the optimization solver allows
supply chains robustness to be examined.

Therefore, the purpose of this study is not to derive an optimal
design of a network, but show that topological metrics perform
quick and satisfactory evaluations of different designs. At the
same time, the high similarity between topological metrics and
operational metrics makes it possible for future studies to op-
timize a supply chain network based on topological metrics,
which are much faster to calculate. This provides prescriptive
analytics for supply chain robustness, so that users can quickly
evaluate many possible topological designs for large-scale sup-
ply chain networks.

The remainder of the paper flows as follows. Next, we intro-
duce supply chain network topologies, their nature, attributes,
and general constraints. This is followed by a description of
the architecture of our robustness decision support system. The
approach will generate a supply chain network based on a set
of parameters including source, sink, and transshipment nodes
as well as the number and strength of the edges connecting
the nodes. After the network generator, we describe the sce-
nario analyzer and disruption simulator where a disruption is
introduced into the supply chain network, randomly or directed,
based on decision maker preferences. In conjunction with the

scenario analyzer and disruption simulator is the performance
evaluator whose job is to provide metrics of the network. The
performance evaluator provides topological metrics and opti-
mized operational metrics. The topology analyzer of the perfor-
mance evaluator will provide topological metrics such as largest
connected component, characteristic path length the size of the
largest functional subnetwork, and average supply path length.
The optimization solver in the performance evaluator consid-
ers the flow through the network by accounting for total units
delivered (TUD) and average delivery cost (ADC). An exam-
ple application of the decision support system is presented to
illustrate the efficacy of the approach. Results are presented for
both random and targeted disruptions, and finally, we discuss
implications and conclude.

II. BACKGROUND

A. Supply Chain Disruptions

Supply chain disruptions are inevitable and they are varied.
Disruptions are both natural and man-made, and they have been
increasing in frequency and severity over the last decade [52].
Given the varied nature of disruptions and their unintended
consequences [3], [43], as well as the fact that, unless contained,
the disruptions will affect larger portions of the supply chain [3],
[10], [33], it is critical to develop robust strategies to mitigate
them.

B. Network Science and Robustness

The decision support method presented in this paper is
grounded in network science which is defined as “the study of
network representations of physical, biological, and social phe-
nomena leading to predictive models of these phenomena” [13].
There is a considerable body of knowledge existing for network
science in many domains such as transportation, telecommu-
nications, biological, social, and supply chain, and while there
is maturity in the field, there is also renewed and growing in-
terest [29]. We do not present a comprehensive review of the
literature, but we do draw from select domains and projects
to support our research questions and direction. For example,
researchers have used network science to draw insights into net-
work disruptions in road networks for emergency services [40],
telecommunication networks [23], spatial decision support sys-
tems and wireless communications [44], [45], and supply chain
networks [12], [18], [31], [58].

Within the domain of network science, robustness has been
studied in many fields such as finance [21], transportation [50],
and group decision making [38]. Bruneau et al. [6] define ro-
bustness as the strength of a system, which is measured by its
ability to resist damage or loss of functionality as a result of
an event. Robustness is one component that contributes to a
system’s resilience [6], [65], specifically by fostering pre-event
preparedness [66], and is particularly interesting in evaluating
networks’ ability to absorb disruptions [50]. In a supply chain
context, robustness is the ability to maintain normal operations
under different scenarios including the event of a disruption
[5], [27], [28]. A supply chain network that is robust should
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compensate for disruptions with minimal impact in perfor-
mance. One way to enhance the robustness of a supply chain
network is to investigate its ability to maintain operations in
the event of disruption by altering the structural level of the net-
work. Therefore, in order to have a robust supply chain network,
weak points or vulnerabilities in the system should be identified
before the disruption occurs [5].

C. Supply Network Topology

Supply chain networks are dynamic, being made up of inter-
acting entities with different roles, such as raw material suppli-
ers, manufacturers, logistics, warehouses, retailers, customers,
etc. Because supply chain networks involve collaboration of
partners sharing real-time and often incomplete information,
some have argued that these networks are complex adaptive
systems where they may change dynamically, causing the net-
working problems to be ill structured and behavior based, thus
making them difficult to be solved by analytical tools such as
mathematical programming [36], [51]. Although entities vary in
manifestation and application domains, we refer to them gener-
ically as network nodes. Topology and robustness have long
been studied for their interplay in mitigating attacks and fail-
ures [1], [8], [17], [37], [51]. A topology shows how the nodes
in a network are connected together by edges or links; in other
words, the topology is the structure of the network. For ex-
ample, in an (ER) random network model, new edges between
nodes are added randomly. Many real-world networks (e.g., so-
cial networks and some supply chain networks) have scale-free
topologies [2], [38], where the edges are added based on pref-
erential attachment: high-degree nodes are more likely to be
connected. Scale-free networks are very robust to random fail-
ures but are fragile to targeted attacks [37]. Additionally, supply
chain networks may exhibit small-world (commonly referred to
as six degrees of separation) characteristics where the nodes are
locally well connected [15], [59]. Small-world networks share
similar properties to random networks in regards to robustness
to failures [37]. Thus, robustness will vary depending upon the
model of topology.

Many previous topological robustness studies assumed that
nodes in networks are homogeneous in the sense that the differ-
ent roles of nodes are not considered. Yet, supply chain networks
are essentially heterogeneous with different types of nodes with
distinct roles, such as supply nodes, and distribution (or trans-
shipment) nodes. As a result, when helping managers evaluate
the robustness of various network topologies and redesign the
supply chain network in cases of disruptions, we need to take
node heterogeneity into consideration [63], [64]. In consider-
ing the topology of the supply chain network, we are mainly
focusing on the logistic nature of the network, and note that
supply chain networks are even more complex dealing with in-
terpersonal, economic, and sourcing relationships. However, as
per [3], the logistic nature of supply chains remains an area of
importance.

It should be noted that supply chain networks are inclusive
all the way from raw materials to finished goods and have many
stakeholders and multiple tiers. In this research, we focus on the

downstream components of a supply chain network related to
the distribution of goods. In this part of a supply chain network,
manufacturers, distributors and retailers are closely connected
and supply chain managers often have high levels of knowledge
and control over the network’s structure. Given the nature of
these supply chain networks, we limit the locus of control of
topology to nodes. Prior research has investigated the effects
of modifying links in the network to address disruptions (link-
based or link-focused modeling) [40], [50] as well as node-
based modeling [45], [61]. While supply chain managers are
aware of links in their networks, such as road, rail, and air be-
tween the nodes, they are more often concerned with the health
and well-being of the nodes in their networks such as suppli-
ers, distribution centers (DCs), and warehouses [7], [9], [32],
[54]. Even in supply chain network optimization problems, as-
sumptions are often made that do not reflect the reality of actual
supply chains. For example, there may not always be paths from
source to sink nodes [35] due to transshipment node failures, or
if a node fails in the supply chain, the network may not simply
be rerouted around that node because that specific node is es-
sential to adding value to the product or information traversing
the chain. Therefore, we focus on node-centric modifications to
improve or balance supply chain network robustness.

III. ARCHITECTURE OF A DECISION SUPPORT APPROACH FOR

ROBUSTNESS ANALYSIS

We adopt a framework for spatial decision support systems
(SDSS) proposed by Snediker et al. [48]. This framework,
shown in Fig. 1, aims at helping managers assess the robust-
ness of supply chain networks with different topologies when
exposed to disruptive events, so that they can make informed
decisions about their network design. The main components of
the system are the network generator, scenario analyzer, disrup-
tion simulator, performance evaluator, and a network database.
A user provides the network parameters and disruption scenar-
ios (data input) to the scenario analyzer (impact assessment),
which in turn invokes the network generator (scenario gener-
ation). The network generator creates a supply chain network
based on the input provided, and stores it in a network database.
The scenario analyzer also notifies the disruption simulator to
simulate disruption scenarios according to users’ requirements.
The scenario analyzer passes the disrupted network to the perfor-
mance evaluator (measurement comparison and testing), which
can provide two types of performance metrics: one is derived
only from network topologies and the roles of nodes; the other
is based on the optimization of supply flows across the network.
Lastly, the user may modify the supply chain network based on
test results (impact exploration and disruption mediation).

A. Network Generator

Given a set of parameters, this component generates a supply
chain network as specified by a user. The inputs include both
topological parameters and attributes of individual elements in
the network (as summarized in Table I). We will use the sim-
ple supply chain network in Fig. 2 as an example to illustrate
the input parameters. The network has three types of nodes:
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Fig. 1. Snediker et al. [48] framework for SDSS network scenarios.

TABLE I
INPUT AND OUTPUT PARAMETERS

Input Nodes Numbers of Supply, Distribution, and Demand Nodes
Supply/demand capacity
Throughput capacity
Geographical location (if available)

Edges Number of edges
Directions of different types of edges
Weights of edges (if available)

Parameters related to
network topologies

Scale-free Degree preference exponent (r)

The number of initial nodes
ER-random Connection probability
Small world Lattice pattern

Rewiring probability
Prioritized attachment for supply nodes Numbers of edges each type of node

can have
Degree preference parameter

Random Localized Rewiring Parameters for the original network
Rewiring probability

Hierarchical Numbers of edges each type of node
can have

Maximum connection
distance

Geographical distance (kilometers or miles) or graphical distance (number of hops)

Disruption models Elements to be disrupted Node or/and edge
Disruption type Random, targeted (with the metric for

importance), mixed, or user-defined.
Number of elements to be disrupted

Output Supply chain network
topology

Network adjacency matrix and the role of each node.

Topological performance metrics (size of the LFSN and average supply path length).
Supply chain network
performance

TUD

ADC
Flow of goods on each edge

1) warehouses (W); 2) DCs; and 3) retail stores (S). Ware-
houses act as supply nodes, stores are demand nodes, and DCs
are trans-shipment nodes. To build the network, one needs to
specify the number of nodes for each type, the number of edges,
and what is the network topology. In addition, each node is
associated with two types of capacities.

1) The supply/demand (S-D) capacity denotes how many
goods can be provided or consumed by a node. A supply
node has a positive S-D capacity as it provides goods to
the network; a demand node consumes goods provided

through the network and has a negative S-D capacity; and
a transshipment node has a zero S-D capacity.

2) The throughput capacity represents how many units of
goods a node can transfer to other nodes.

In other words, it is the capacity of a node to transfer goods
it received from upstream suppliers to downstream customers.
Users can specify the S-D and throughput capacities of a node on
the basis of its type, designated role, location, etc. The capacity
of a node may be increased at extra cost. Fig. 2 illustrates an
example of a supply chain network.
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Fig. 2. Simple supply chain network with three types of nodes: warehouses
(W), DCs, and stores (S).

As for edges, those between warehouses and DC/stores are
unidirectional to denote the one-way flow of goods, while those
between DCs and stores bidirectional. Edges are also assigned
weights that represent the cost of transporting goods over a
link in the physical world. The weight could depend on the
geographical distance between two nodes, the means of trans-
portation (by road, air, or sea), etc. Higher edge weight denotes
higher transportation cost on the edge.

The network generator supports various strategies to con-
struct networks with many different topologies. It also allows a
user to modify the topology of an existing supply chain network
through various adjustment strategies. It can generate networks
with standard models, such as ER-random, scale-free, and small
world. More importantly, it also allows users to state specific re-
quirements when constructing a supply chain network [59]. For
example, the user can specify that each demand node connects
to at least two distribution nodes, or that a supply node can han-
dle no more than ten distribution nodes. Further, the design of a
supply chain network often faces some practical constraints. In
some supply chain networks, a demand node may have to con-
nect to a distribution node that is geographically more proximate
than another distant distribution node. Thus, this generator also
makes it possible to enforce an upper limit on the geographical
distance that an edge can span in a supply chain network, so that
the resulting network has fewer long-distance hops and reflects
a more realistic supply chain. Table I summarizes the input and
output parameters of our decision support system. It is worth
noting that supporting network models listed in Table I are not
comprehensive nor are real-world supply chains limited to those
listed. For example, it is rare to find a supply chain network that
is totally random. However, by allowing users to access these
models, the system gives decision makers options for what-if
analysis without being overwhelming. However, as described in
our literature review, the models and parameters listed in Table I
are most salient and pertinent for supply chain networks.

B. Scenario Analyzer and the Disruption Simulator

The scenario analyzer lies at the center of our architecture. It
receives inputs such as supply chain network topologies and
settings for simulating disruptions and other scenarios. The

analyzer will invoke the disruption simulator to simulate dis-
ruptions to the supply chain network. The disruption simula-
tor receives the disruption settings as input, such as the type
of disruption (random/targeted/mixed/user-defined), the num-
ber of nodes/edges to be removed, and the strategy for selecting
important targets, etc. Then it simulates these disruptions by
removing nodes or edges from the network. The output of the
disruption simulator is the disrupted network.

When disruptions are random, each node and/or edge has the
same failure probability. These random disruptions might be ac-
cidental such as earthquakes, fires, or power outages. They may
be unexpected economic events like the dot com bubble burst
or a bankruptcy. In order to simulate these random disruptions,
we randomly remove nodes or edges from the supply network.
When a node is removed, the connected edges to that node are
also removed. In contrast to random disruptions, targeted dis-
ruptions are directed at critical system entities such as network
hubs. The criticality of a node may be measured by its impor-
tance in a network through measures such as degree, closeness,
and betweenness [39]. In addition to random and targeted dis-
ruption scenarios, users may manually define how to remove
nodes or edges from a supply chain network.

C. Performance Evaluator

As its name suggests, the performance evaluator is responsi-
ble for evaluating the performance of a supply chain network
after disruptions. It interacts with two other modules, each pro-
viding one set of performance metrics: the topology analyzer fo-
cuses on network topologies and generates topological metrics;
the optimization solver formulates and solves an optimization
problem to find operational metrics based on the optimal supply
flows. We will illustrate how the two sets of performance met-
rics relate to each other in the case study later. After disruptions,
the performance of a supply chain network usually deteriorates.
The less its performance deteriorates, the more robust the supply
chain network is. By comparing the values of a network’s per-
formance metrics before and after a disruption, the performance
evaluator helps users gain insights into the network’s robustness
against disruptions.

D. Topology Analyzer

Topological metrics have been used by many network studies
to evaluate the robustness of a network [37]. The most important
include the size of the largest connected component, clustering
coefficient, and characteristic path length [37], [51]. The largest
connected component of a network is the largest subnetwork
where there exists a path between any pair of nodes. The char-
acteristic path length is the average shortest path length between
all pairs of nodes. Clustering coefficient captures the nature of
small-world networks in that the probability of the nearness of
two nodes is related to the nearness of a third to the first two [37].
In the context of supply chain networks, topological metrics can
also be good indicators of network performance [26].

Taking the topology of a supply chain network (weighted or
unweighted) and the role of each node in the network as inputs,
this approach provides two topological metrics that extend the
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Fig. 3. Sample supply chain network (W for supply nodes, DC for distribution
nodes, S for demand nodes, and directions of edges represent the flow of goods).

two aforementioned topological metrics [63], [64]. The first
metric is the size of the largest functional subnetwork (LFSN).
A functional subnetwork is also a connected component but it
must have at least one supply node (e.g., a warehouse) in it. The
larger the size of the LFSN is, the better the connectivity of the
network is. The second metric is the average supply path length
[63]. Instead of finding the path length between all node pairs
as in characteristic path length, the average supply path length
only considers shortest paths between all supply-demand nodes
pairs, because these paths are more important for supply flows
in a network. The smaller the value is; the easier supplies can
be delivered from supply nodes to demand nodes. For example,
in the supply chain network in Fig. 3, the LFSN contains 4
nodes: W1, DC1, S1, and S2. The average supply path length is
(2 + 1)/ 2 = 1.5 as only S1 and S2 can access a supply node
(with shortest path lengths 2 and 1, respectively).

Our topological metrics actually serve as a heuris-
tic/approximation to operational metrics that can only be ob-
tained after NP-hard optimization. The two topological metrics
can be calculated in polynomial time. For example, finding the
LFSN can be done through a breadth-first or depth-first search
with a worst-case time complexity of O(|E| + |V |), where |E|
is the number of edges and |V| is the number of nodes in the
network. Finding the characteristic path length has a worst-case
time complexity of O(|V |3) when using the Floyd–Warshall
algorithm [21], or O(|E||V | + |V |2 log |V |) when using the
Dijkstra’s algorithm [16]. Since a supply chain network often
has many more demand nodes than supply nodes, the complex-
ity for calculating the average supply path length can usually be
further reduced.

E. Optimization Solver

While topological metrics are easy to calculate, they only con-
sider the network topology and omit many real-world constraints
that supply chain networks usually face, such as capacities of a
supply node and a distribution node. They are also based on con-
cepts from graph theories and may be unintuitive to some supply
chain network managers. Thus, the optimization solver provides
operational metrics—another set of performance metrics based
on the flow optimization in a supply chain network.

TUD is the total number of units of a good delivered from
supply nodes to demand nodes in the network. It reflects whether
demand nodes in the supply chain network can obtain their req-
uisite supplies. It is not equal to the total supplies nor total
demand. Only demand that is met by supplies through a supply
chain network will count as TUD. A higher TUD means a su-
perior performance. For example, in the supply chain network

in Fig. 3, stores S1 and S2 can access goods from warehouse
W1, but S3 has no access to any warehouse. Thus, TUD is the
number of goods transported from W1 to meet the total demand
of S1 and S2.

In contrast to TUD, ADC measures how much the delivery of
one unit of goods costs. Clearly, a lower delivery cost indicates
better performance of the supply chain network. In our experi-
ment, we calculated TUD and AUC for all the whole network,
even though it may be fragmented into isolated subnetworks
after disruptions.

While there are often many ways to deliver goods through a
supply chain network, finding the optimal one with the lowest to-
tal cost can be modeled as a capacitated transshipment problem
[55], which can be solved using flow optimization techniques.

We formalize the flow optimization of a supply chain network
as the following integer programming (IP) model (see Table I
summarized the key parameters in the model).

Model 1: Flow optimization of the supply chain network

Min TotalCost = c(i, j) ∗ f(i, j) + cadd(i) ∗ add(i)

Subject to
∑

j
f(i, j) ≤ sdc(i) +

∑
j
f(j, i) ∀ i

∑
j
f(i, j) ≤ tc(i) + add(i) ∀ i

f(i, j) = 0, if node i and j are not

direct neighbors in the network.

f(i, j) integer ∀ i, j

where
i and j nodes in the network;
f(i, j) flow on an edge or link from i to j;
c(i, j) the cost of transporting one unit of goods from node

i to node j;
sdc(i) supply/demand capacity of node I;
tc(i) throughput capacity of node I;
add(i) the extra throughput capacity that node i adds;
cadd(i) the cost for node i to add one extra unit of goods to

its throughput capacity.
The objective function of the IP problem is the total cost of

goods delivery for the supply chain network. f(i, j) is the volume
of goods transported from node i to j. Constraint 1 enforces the
input-output flow balance at all nodes as the total output from
node i cannot exceed the sum of node i’s capacity sdc(i) and the
total input to i. Constraint 2 enforces the limit on throughput
capacity of any node. The total flow through node i to other
nodes cannot exceed its throughput capacity tc(i). A node can
also add extra throughput capacity add(i), with the cost of cadd(i)
per unit of extra capacity. By allowing extra throughput capacity
we can ensure that, as long as the total supply is greater than
the total demand, and the network remains connected, there
will be a feasible solution to the IP. Constraint 3 relates to the
network structure: if nodes i and j are not direct neighbors in the
supply chain network, they cannot forward any goods to each
other directly. This formulation can be solved with a standard
optimization package. Also, this model will have no feasible
solution if the supply chain network or subnetwork does not
even have any supply node, as there will be no flow of supplies
in such networks. It does not guarantee to meet the demand
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Fig. 4. Screenshot of the network graph of the supply chain.

of every demand node either. In other words, after disruptions,
even though a demand node is still somehow connected to a
supply node, its demand may not be completely satisfied due
to the loss of supply nodes. Similarly, a supply node may end
up with excessive supplies that cannot be delivered to demand
nodes.

It is worth noting that our work focuses on topological de-
signs. Thus, the aforementioned IP model is about optimization
at the strategic level. Similar to previous work on strategic-level
optimizations, the IP model does not consider specific rules
or constraints, such as sourcing, inventory management, trans-
portation mode/carrier selections [49].

IV. IMPLEMENTATION

The architecture has been implemented in a decision support
system. Graph analysis and visualization are handled by the
Java Universal Network/Graph Framework [41]. The optimiza-
tion solver is based on GAMS. It takes input files, solves the
IP problem, and returns the optimization results. In addition,
the network generator also integrates a program that retrieves
the geographical distance between two U.S. street addresses
or zip codes. Distance retrieved by the program is used to as-
sign the weight of edges, and to inform the topological design
or rewiring of supply chain networks. Fig. 4 shows a screen-
shot of the network graph as rendered by the system. It shows
how warehouses (gray squares), DCs (white squares), and retail
stores (white circles) are connected. An edge shows the direc-
tion (denoted with arrows) and the amount (with line width) of
supply flows between two nodes. More information of nodes or
edges will show in a pop-up menu when right-clicking them.
In addition to the values of supply chain network performance
metrics before and after simulated disruptions, Fig. 4 only shows
very basic information of the supply chain network being an-

alyzed. It includes a snapshot of the network topology, node
information, the direction and amount of supply flows.

The primary motivation to develop the decision support sys-
tem as described is to demonstrate a reusable framework that
may be adapted by decision makers to analyze networks that
are varied in structure and complexity. Specifically, by mod-
ifying the network through a topological approach, decision
makers can quickly evaluate the network robustness under vari-
ous scenarios without determining the optimal solution for each
scenario, similar to the strength of heuristics for quickly locat-
ing the global optimal solution region in complex non-linear
optimization problems.

V. EXAMPLE APPLICATION

A. Settings

To demonstrate the applicability of our approach, we use an
example of a west coast, retailer distribution network to show
how the system can help a firm’s managers to evaluate the ro-
bustness of different supply chain network topologies against
disruptions. The example application demonstrates how infor-
mation provided by the system can help a decision maker evalu-
ate the robustness of a real-world supply chain network against
disruptions, and how adjustment to the network can change its
robustness. However, although the example network has a de-
gree distribution similar to those of scale-free networks, the goal
is not to show a scale-free network’s robustness against random
or targeted disruptions. The network consists of 184 nodes:
2 warehouses, 7 DCs, and 175 stores. The edges of the net-
work are directed and weighted. To make the case study more
realistic, we do not allow the flow of goods from stores to ware-
houses, or from DCs to warehouses. The geographical distance
(in miles) between two nodes will serve as the edge weight if
they are connected. Table II lists key parameters for the example
application of the retail supply chain network.

Using the west coast retailer’s supply chain network prefer-
ences, we simulate the following distribution network: First, two
warehouses are interconnected. Second, DCs are randomly con-
nected to either the first or second warehouse and to two other
DCs. Third, each store is preferentially attached to a DC(s)
within 300 miles. Lastly, 10% of all stores may connect directly
to a warehouse. Fig. 5 shows the degree distribution of the net-
work. The network does not feature a perfect power-law degree
distribution. Instead, it is a combination of two power-law de-
gree distributions with some hierarchical features that lead to
the polarization in node degrees. Stores that are lower in the
hierarchy have degrees ranging from one to three and follow the
power-law distribution (shown on the left in the figure). Alterna-
tively, DCs and warehouses are generally higher in the hierarchy
with degrees greater than 12. These warehouse and DC nodes
also reflected in a power-law distribution (shown on the right
in the figure). Although the network lacks nodes with degrees
in between those of stores and DCs/warehouses, it still fea-
tures a small number of hub nodes and many low-degree nodes,
which is a key feature of scale-free networks. Fig. 5 shows the
complementary cumulative degree distribution of the west coast
retailer’s distribution network for our example application.
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TABLE II
KEY PARAMETERS FOR THE EXAMPLE APPLICATION OF A RETAIL SUPPLY CHAIN NETWORK

Parameter Description Parameter Values for the Case Study

sdc(i) Supply/demand capacity of a warehouse, DC or Store 1000 for warehouse; 0 for DC; –10 for store
tc(i) Throughput capacity of a warehouse, DC or Store 1000 for Warehouse; 300 for DC; 100 for store
c(i, j) Cost of transporting goods $ 0.01 per mile per unit
cex(i) Cost of using extra throughput capacity at any node $ 0.10 per unit
dmax Maximum rewiring distance 300 miles

Fig. 5. Complementary cumulative degree distribution of the retailer’s distri-
bution network.

As an example of getting different topologies of the distribu-
tion network, we let the DSS adjust the topology of the network
using random localized rewiring (RLR) [64]. It represents a
preemptive strategy to adjust supply chain network structures
to improve robustness against possible disruptions. Basically,
RLR iterates through all edges in a supply chain network, dis-
connects an edge from one of its nodes with a rewiring proba-
bility pr , and reconnects the empty end of the edge to another
node within the rewiring radius dmax. A higher pr value leads to
more rewiring, while a lower dmax imposes more control over
the rewiring process. RLR represents a heuristic strategy to ad-
just the topology of a supply chain network. The full rewiring
algorithm was discussed in [64]. In the context of supply chain
networks, rewiring represents the adjustment of supply delivery
between entities in a supply chain network. For example, a re-
tailer who used to receive goods from a DC switches to another
nearby DC. In this case study, we used two different rewiring
probabilities pr = 0.25 and pr = 0.5 and set the rewiring ra-
dius dmax = 300 miles.

To evaluate the robustness of the original and rewired distri-
bution networks, we simulated random and targeted disruptions.
Adhering to previous research [1], for targeted disruptions, node
degree was used to indicate the importance of a potential target
node, because node degree is simpler to determine. Because of
their multiple connections, high-degree nodes often have high
visibility [30]. Centrality measures (e.g., betweenness, close-
ness, and eigenvector centrality) are more difficult for attackers
to obtain because they require greater knowledge of the net-
work’s topology. For both types of disruptions, we removed 3
DCs (out of 7), one at a time between each observation. After
one DC is removed, the degree of each node is updated. For
targeted disruptions, we removed the highest degree DC left in

Fig. 6. Flowchart of the simulation experiments.

the network. During the process of node removal, we tracked
the two sets of performance metrics for the original and rewired
networks. Fig. 6 shows the logic of the simulation experiments.
Fig. 7 illustrates the networks’ responses to random disruptions
(with an average of 30 runs). Fig. 8 shows the networks’ re-
sponses to targeted disruptions (with an average of 30 runs).

B. Results

The performance of the original and the rewired distribution
networks (with two different rewiring probabilities) under both
random and targeted disruptions are shown in Figs. 7 and 8.
The horizontal axis shows the number of removed DCs, and
the vertical axis the performance metrics. For each disruption
scenario, two sets of performance metrics (i.e., four metrics) are
illustrated. For the original distribution network (pr = 0), its
size of the LFSN and TUD deteriorate very fast, especially in
targeted disruptions, because the network is easily fragmented
by disruptions and many stores’ access to warehouses is lost.
Meanwhile, for those stores that can still access supplies, the
network is able to maintain low average path length and ADC
in both types of disruptions, because nodes in the network gen-
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Fig. 7. Various networks’ responses to random disruptions. (a) Size of the LFSN. (b) Average supply path length. (c) TUD. (d) ADC.

Fig. 8. Various networks’ responses to targeted disruptions. (a) Size of the LFSN. (b) Average supply path length. (c) TUD. (d) ADC.
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TABLE III
COMPARING THE TWO SETS OF PERFORMANCE METRICS

Disruption Scenarios Distribution Networks Correlation Coefficient (p-values)

Size of the LFSN versus TUD Average Supply Path Length versus ADC

Random disruptions Original 0.9925 (0.0075) 0.9913 (0.0087)
Rewired (Pr = 0.25) 0.9993 (0.0007) 0.9944 (0.0056)
Rewired (Pr = 0.5) 0.9989 (0.0011) 0.9955 (0.0045)

Targeted disruptions Original 0.9997 (0.0003) 0.9528 (0.0472)
Rewired (Pr = 0.25) 0.9999 (0.0001) 0.9969 (0.0031)
Rewired (Pr = 0.5) 0.9993 (0.0007) 0.9969 (0.0031)

erally follow a hierarchical structure. Stores connect only to
DCs or warehouses and not to each other. Therefore, if a store
still has access to warehouses after disruptions, it means the
closest warehouse is either an immediate neighbor or two hops
away from the store. This is more obvious when three DCs are
removed in targeted disruptions: the values of average supply
path length and ADC actually decrease, because the possible
long paths between supply and demand nodes have been elimi-
nated after the removal of high-degree DCs.

Meanwhile, rewired networks perform better in terms of size
of the LFSN and TUD. With a higher pr , the two metrics also
have greater values. For instance, in the rewired network with
pr = 0.5, even after 3 important DCs fail, the distribution net-
work only sees a drop of 6% in the size of the LFSN and a
drop of 11% in TUD. As a trade-off, the average supply path
length and delivery cost are higher than for the original net-
work. This is because the distance between warehouses and
stores is longer in this rewired network than in the more hierar-
chical original network. Note that the two rewiring probabilities
are simply examples demonstrating the efficacy of the DSS.
The choice of the two probabilities was to show the power of
the topological component of the DSS compared to the tra-
ditional operational optimization and not to compare differ-
ent distributions. Admittedly, rewiring a supply chain network
may dramatically increase costs. Thus, as in any simulation,
the closer to real-world values and probability distributions a
decision maker can get, the greater the accuracy our DSS can
provide in evaluating supply chain robustness. See [63], [64] for
comparative analyses of re-wiring given different levels of risk
probabilities.

As Figs. 7 and 8 suggest, comparing the robustness of these
distribution networks using topological and operational metrics
leads to similar conclusions. There is actually a high level of
similarity between performance metrics provided by the topol-
ogy analyzer and metrics from the optimization solver. In fact,
as Table III shows, the trend in the size of the LFSN is very
similar to that in TUD, and average supply path length resem-
bles ADC. In other words, the topological metrics, which can be
calculated in polynomial time, can closely approximate opera-
tional metrics, which are usually NP-hard optimizations. Thus,
the topology analyzer can be used by managers to get a quick
yet relatively accurate estimate of the robustness of a supply
chain network. The existence of both the topology analyzer
and the optimization solver is a desirable feature: the topol-
ogy analyzer is handy when the manager needs to evaluate a

very large supply chain network in a real-time fashion or com-
pare a large number of possible topological designs of a supply
chain network; the optimization solver is more appropriate when
an in-depth analysis of a supply chain network’s robustness is
necessary.

C. Discussion

Such analysis can help a manager better understand this trade-
off in rewiring distribution networks. In the case of supply chain
applications such as the example presented in this paper, re-
wiring represents the adjustment of supply delivery between
entities in a supply network. To find the appropriate topology
for a distribution network, a manager has to balance performance
metrics based on the firm’s potential disruption scenarios, ro-
bustness requirements, and financial considerations. Consider
the results in Fig. 7, a manager faced with a prospect of two
targeted disruptions might observe that when pr = 0.5, TUD
is 268 units more than if pr = 0. Thus, assuming a profit of
$10 per unit, the profit increases by $2680. On the other hand,
the delivery cost goes up by $0.80 per unit for all the 1633
units delivered, adding $1306 to the total cost. Hence, there is
a net benefit of $1374 to rewire the network with pr = 0.5.
Other disruption cases may be similarly evaluated. Table III
summarizes the results of the example application, comparing
the performance metrics of random and targeted disruptions on
the original and rewired supply chain networks. It is worth not-
ing that robustness can mean different things to different people
and is very context dependent making it very hard to general-
ize. To one manager, it could mean maximizing units delivered
at any cost, while to another it may mean attaining the high-
est rate of delivery subject to a maximum cost. In practice, it
is mostly achieved, not in isolation, but by striking a balance
between conflicting priorities usually through trial and error.
Our interactive DSS tool makes this task easier for the manager
to accomplish by allowing her to consider alternative scenarios
quickly and easily, and then selecting the best topology that
satisfies her constraints. Our contribution lies in developing a
methodology for understanding robustness in supply chain net-
works and demonstrating how it can be applied in real-world
settings.

VI. CONCLUSION

Supply chain networks are highly vulnerable to disruptions
[20]. Recognizing the importance of topology as one of the key
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determinants for supply chain robustness, we proposed a DSS
to evaluate the robustness of different supply chain network
topologies against disruptions. The architecture consists of a
scenario analyzer, a network generator, a disruption simulator,
and a performance evaluator. The network generator produces
different topologies using various network building and adjust-
ment strategies. The disruption simulator applies different types
of random and targeted disruptions to a supply chain network.
The robustness of a supply chain network against disruptions
can be measured by two modules in the performance evaluator.

1) The optimization solver finds the optimal way to route
goods through pre- and post-disruption supply chain net-
works by solving an optimization model based on an IP
formulation. The optimization outcome provides key op-
erational metrics such as TUD, ADC, and the flow of
goods between nodes.

2) The topology analyzer efficiently finds performance met-
rics through network topologies and the heterogeneous
roles of nodes.

The different roles of supply chain nodes are modeled to
represent real-world supply chains. Thus, the DSS’s ability to
provide the two sets of performance metrics further improves
its power in evaluating different topological designs of supply
chain networks, and those networks’ abilities to perform at a
desired level in the presence of disruptions.

It is desirable to have both topology analyzer and the op-
timization solver within a decision support tool like the one
we proposed for two reasons: First, it offers two different use
cases for managers to evaluate the performance of their dis-
tribution networks against disruptions. The topology analyzer
useful when a manager needs to evaluate the post-disruption
performance of a large distribution network in real time or to
compare the post-disruption performance of a large number
of possible topological designs of a supply distribution net-
work. The optimization solver is more appropriate if an in-
depth analysis of a supply distribution network’s robustness is
necessary. This is because computing topological metrics from
the topology analyzer (polynomial time) is much faster than
finding an optimal solution from the optimization solver (NP-
hard). Using the topology analyzer also makes it possible for
managers to use this tool beyond their own distribution net-
work, because it is easier to collect data for an inter-form supply
chain network’s topology than operational data at different firms
(e.g., delivery cost and capacities of other firms). With topol-
ogy analyzer metrics, a manager can get an estimation of how
the firm’s supply chain network would perform if a disruption
occurs.

We demonstrated the efficacy of our decision support sys-
tem through an example application of a retailer’s distribution
network. Managers can perform scenario analysis and use this
DSS to evaluate how different topologies affect the robustness
of a supply chain network. Decision makers can perform stress
tests of their supply chains through “what if” analyses by build-
ing and modifying supply chain networks [9], [11]. By doing
so, decision makers should be able to ask questions like “what
is the effect on our network when this node goes down?” or
“what happens when an unexpected (random) disruption oc-
curs?” These stress tests compare the performance of supply

chain networks under multiple topologies and disruption events,
which will enable decision makers to increase the network ro-
bustness. Although a firm does not often build a supply chain
network from scratch, they do make frequent adjustments to
respond to today’s dynamic global markets [34] and launch new
initiatives in rebuilding their supply chain networks [19]. Thus,
our DSS also allows a manager to adjust the topology of an
existing supply chain network in many ways and analyze the
effect of doing so.

In addition, this approach also enables managers to study how
varying other parameters in a supply chain network will influ-
ence its robustness. Managers often underestimate or simply
ignore the potential impact of disruptions in their supply chains.
This DSS offers an interactive visualization, measurement, and
optimization of the influence of disruptions and their mitigation
through topological design. For instance, a user may specify
a range of values or statistical distributions for supply/demand
capacities, throughput capacities, as well as transportation and
distribution costs. The performance evaluator can generate dif-
ferent weighted networks and optimization models for these
parameter values and evaluate the different “what-if” scenarios
corresponding to them. Also, by analyzing the removal of which
nodes/edges produces the most impact, a manager can identify
the most critical entities that should be fortified or protected.
This decision support system fills a research gap in robustness
and supply chain network design [9], [11].

A limitation of this research is the lack of automation in
selecting the ideal topology. However, this limitation is partly
due to the ontology of supply chain networks. While it would
be ideal to allow the DSS to select the optimal network, very
often network nodes and edges are selected for reasons that fall
outside of linear parameters. For example, a specific supplier
may or may not be selected based on some past experience
or organizational knowledge. Organizations have been burned
by single source suppliers, and create policies such as never
to have less than two sources. It may also be that there is a
strong personal relationship that exists between the decision
makers of a supplier-customer business relationship that affects
the topology of the network in spite of the inherent risks. Thus,
we believe that a DSS as an aid for decision makers is the
most appropriate approach to this complex problem. Instead
of deriving the optimal topology based on the mathematical
programming components of the DSS, we choose to provide a
set of alternatives and let the decision maker perform what-if
analysis with the DSS. The complex nature of human decision
making with subtle and often non-explicit constraints is what
continues to drive the need for decision support systems over
completely automated decision systems. Another limitation of
this research is the focus on node-centric models. Supply chain
networks may also suffer from disruptions in the links between
nodes, such as rail strike, highway closure, air delay or closure
due to weather or strike. Thus, supply chain managers would
benefit by not only evaluating node failures, but also specifically
link failures. There has been research in this area, specifically in
the transportation domain [40], [50], and supply chain networks
would benefit from these models as well. Finally, this research
is limited to the context of transshipment and logistics, and thus
is not generalizable to all networks.
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For future research, we would like to add additional con-
straints to the IP model in the optimization solver such as upper
limits on the capacities of nodes or flows along edges to ob-
serve their effect on supply chain network performance and
robustness. It would also be interesting to investigate supply
chain network robustness via a link-based approach as well as
measuring the assortativity of the network [15]. Additionally,
as robustness is one component for resiliency, we envision an
enhanced decision support system that would measure a supply
chain network’s ability to recover to pre-disruption performance
levels as well as the rate of recovery [62]. Lastly, real-time event
management would allow decision makers the ability to quickly
respond to disruptions, and thereby reduce the impact of the
disruptions.
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