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A B S T R A C T

Online smoking cessation communities help hundreds of thousands of smokers quit smoking and stay abstinent
each year. Content shared by users of such communities may contain important information that could enable
more effective and personally tailored cessation treatment recommendations. This study demonstrates a novel
approach to determine individuals' smoking status by applying machine learning techniques to classify user-
generated content in an online cessation community. Study data were from BecomeAnEX.org, a large, online
smoking cessation community. We extracted three types of novel features from a post: domain-specific features,
author-based features, and thread-based features. These features helped to improve the smoking status identi-
fication (quit vs. not) performance by 9.7% compared to using only text features of a post's content. In other
words, knowledge from domain experts, data regarding the post author's patterns of online engagement, and
other community member reactions to the post can help to determine the focal post author's smoking status, over
and above the actual content of a focal post. We demonstrated that machine learning methods can be applied to
user-generated data from online cessation communities to validly and reliably discern important user char-
acteristics, which could aid decision support on intervention tailoring.

1. Introduction

Smoking causes about 20% of all deaths in the United States [1].
The majority of smokers want to quit [2], and over 12 million turned to
the internet for information about quitting smoking in 2017 [3]. For
health promotion programs, it is important to provide tailored inter-
ventions, as they exert positive effects on health behavior change and
program participation [4–6]. Users are more likely to attend to content
they perceive as being personally relevant, and more likely to remain
engaged with interventions that they find satisfying or helpful in
achieving their goals. Tailored content is thought to elicit a greater
degree of cognitive processing [7,8] as it is more likely to be read,
understood, recalled, rated highly, and perceived as credible compared
to one-size-fits-all intervention content [8]. Tailored content may also
lead to longer and more robust engagement with an intervention

[9–12]. Specifically for smoking cessation, tailored information – de-
livered via print [13] and Internet interventions [14] – has been shown
to be effective in helping people quit. Development of automated de-
cision support tools that can accurately identify an individual's smoking
status will help designers of Internet cessation interventions better de-
liver tailored support.

Key constructs involved in tailoring are typically assessed at pro-
gram initiation or at coarse intervals tied to follow-up assessments
[8,15–17]. However, more fine-grained, dynamic tailoring may have
important treatment advantages [18]. Knowing when a smoker is
planning to quit could enable the timely presentation of skills training
content and additional support around a quit date; real-time response to
a slip could preclude a full-blown relapse; fluctuating levels of cravings
and confidence throughout the cessation process may be important to
acknowledge and respond to with varying intervention strategies and
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recommendations. Despite the intervention opportunities created by
the availability of such metrics, gathering such data from users through
traditional survey methods can create an unacceptable response
burden, be ignored by users, and/or cause them to abandon an inter-
vention.

An advantage of interventions delivered via the Internet, or Web-
based intervention support systems [19], is their ability to un-
obtrusively gather real-time data [20] that can be used to support this
kind of dynamic tailoring with minimal burden on the user. In parti-
cular, the proliferation of social networks and online communities re-
presents exciting opportunities for large-scale data analysis and inter-
vention design. Researchers have leveraged data from these online
platforms to study user engagement [21,22], predict population-level
health status (e.g., influenza) [23,24], and analyze individuals' offline
health status (e.g., depression and drug usage) [25,26].

Online communities for smoking cessation are used by thousands of
current and former smokers each year who post about their quitting
journey, their struggles in staying abstinent, and their achievements
and celebrations. Dynamic interventions that change over time in re-
sponse to a user's pattern of engagement and progress toward their
goals have been noted as a promising target for novel systems for be-
havior change [27–29]. To support decisions for such interventions,
important insights into a user's current “state” or potential treatment
needs may be discerned through user-generated content throughout
their engagement with an online community.

To date, there have been relatively few studies of user-generated
content in online smoking cessation communities [30–37]. Previous
studies have primarily focused on the prevalence of specific topics of
discussion, rather than making person-level inferences about the au-
thor. Selby et al. [32] found that the most common theme of first posts
was from recent quitters who were struggling with quitting and seeking
support or advice. In a forum specifically for recent quitters, Burri et al.
[38] found that the most prevalent message type was “giving emotional
support” (i.e., messages of solidarity and encouragement) which were
replies to posts signaling emotional distress or relapse to smoking.
These studies provide an important foundation for understanding the
nature of online smoking cessation communities and the ways that
members interact and support each other, but many have relied on
manual coding of a fraction of the available content. Such an approach
cannot capture the complex, dynamic nature of online social ties, or
address the multi-faceted nature of large-scale social interactions in
online communities. Additionally, manual coding studies have often
relied on cross-sectional snapshots of network ties, sentiment, and
content that may obscure important changes over time.

Powerful computational methods have been used to mine large
volumes of user-generated content in other areas of health [39–45] and
have been used to discern smoking status from free-text clinical data in
electronic medical records [46,47] and medical discharge summaries
[48–50]. However, machine learning methods have only begun to be
applied to the rich, real-time user-generated data in online health
communities. Whereas classification of free-text from medical records is
useful for post-hoc observational studies, the ability to automatically
identify users' smoking status at a large-scale and in real-time would
help to guide treatment decisions via a post recommender system. For
example, post recommenders can push content about success stories
and coping with the urge to smoke to users who are still smoking, yet
prioritize posts about relapse prevention to those who recently quit.
Such a recommender system could also go beyond a user's immediate
status and consider their past trajectories. For example, the tailored
support provided to a user starting their first quit attempt should be
different from the tailored support provided to a user starting their 10th
quit attempt. In addition, machine-learning-based identifications of
smoking status, especially when used longitudinally, can help com-
munity managers decide if the design, management, or content of the
community need to be adjusted to achieve better outcomes for com-
munity members.

Mining user-generated content from an online smoking cessation
community presents several methodological challenges, but also some
unique opportunities. Compared to clinical data, the content of online
discussions may be quite “noisy” for a variety of reasons. Community
members may talk about a wider range of different topics than a clin-
ician recording a discharge summary, many of which may not relate
specifically to smoking or abstinence [32,38]. Indeed, off-topic posts
are quite common among mature online communities and are often a
hallmark of when an online community has evolved beyond an incep-
tion phase [43,51]. Noise may also stem from the fact that a post about
smoking status could refer to the author of the post or someone else in
the community (e.g., congratulating another user's abstinence). In ad-
dition, user-generated content often contains informal expressions (e.g.,
“Day 14 for me!”) or community vernacular (e.g., “DOF 145” meaning
145 Days of Freedom from smoking), which may be challenging to in-
terpret and code [52]. Despite these challenges, user-generated content,
along with the clickstream data and meta-data that accompany a user's
involvement in an online community, are easy to track and readily
available. To the extent that user-generated content typically represents
interactions among users, additional information about the original
post may be gleaned from the ways in which other users react to it. For
example, a blog post with many congratulatory replies/comments is
likely more indicative of the author's abstinence than a post with few
such comments. Using such novel features as classifier inputs, in ad-
dition to the text of users' posts, may improve performance over what
could be achieved by relying on text alone.

This study aimed to demonstrate the feasibility of using machine
learning classifiers to predict smoking status from user-generated con-
tent in an online cessation community by extracting novel features. This
study focused on classifying a user's smoking status, a key concept that
is often used to tailor smoking cessation treatment. We illustrate the
effectiveness of combining texts of a focal post with domain-specific
features, author features, and thread features in smoking status detec-
tion, and discuss other potential applications of this methodology.

Previous machine-learning-based studies on user-generated content
from online cessation communities aimed at finding social-support ca-
tegories [53] or distinguishing users' short-term quits from long-term
quits [54,55]. By contrast, in this study, we built predictive models that
sought to distinguish smokers who have quit from those who have not.
In addition, we identified quit status for all users who have posted.
While previous studies have been limited to investigating only users
who explicitly declared quit dates in user profiles [54,55], our approach
allows a larger proportion of users to be studied and reduces sampling
bias. The approach can be applied to other online cessation commu-
nities where explicit declarations of quit dates are unavailable, rarely
used, or unreliable (e.g., such a date may have been changed multiple
times by a user with more than one attempt). Overall, leveraging the
largely untapped wealth of information available in online communities
to identify users' smoking status in terms of “quit vs not” could inform
the development of more powerful interventions tailored in real-time
[56]. Also, doing so on all users who have posted, rather than a sub-
sample can have important clinical difference that substantially ex-
pands the potential impact of interventions based on this work.

2. Data and methods

2.1. Source of data

The study involved data from BecomeAnEX.org, a publicly available
web-based smoking cessation program.1 BecomeAnEX was developed in
collaboration with the Mayo Clinic Nicotine Dependence Center [57]
and has had over 800,000 users register on the site since it was

1 The study protocol for these analyses was reviewed and approved by
Chesapeake Institutional Review Board (Pro00010302).
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launched in 2008. To register on BecomeAnEX, individuals must agree
to the site's Terms of Use and Privacy Policy. The Privacy Policy states
that 1) BecomeAnEX collects information about users and their use of
the site; 2) Information is used for research and quality improvement
purposes only; and 3) Personal information is kept confidential. Thus,
de-identified data from all registered users was available for analysis.
BecomeAnEX provides problem-solving and coping skills to quit
smoking, educates users about cessation medications, and facilitates
social support through a large online community. The online commu-
nity is comprised of thousands of current and former smokers who in-
teract via several asynchronous communication channels [58] (e.g.,
private messages, blogs, blog comments). Our analyses focused on blogs
and blog comments since they are the most popular communication
channels and typically comprise of longer and more elaborate posts
from users. Thus, our dataset includes 38,156 blog posts and 316,886
blog comments published by 5435 users in the BecomeAnEX commu-
nity between January 2012 to May 2015.

2.2. Domain expert annotations

Training and evaluating a machine learning classifier requires la-
beled data so that algorithms can learn differences between instances
from different classes. Specifically for this research, we need some posts
whose authors' smoking status is labeled. Thus we recruited five long-
standing members of the BecomeAnEX community as domain experts
with in-depth familiarity with community norms2 on how users “talk
about” smoking status. We randomly sampled 2120 community posts
(750 blog posts, 1370 blog comments) which were manually coded by
domain experts in accordance with an annotation guide. The random
sample was created by first sampling 120 posts for intensive reviews
and discussions during creation of the annotation guide, and then four
batches of 500 posts each (resulting in the full training set of 2120
posts).

The annotation process has been previously described [59]. Briefly,
each post was coded by two domain experts; a study team member
served as a tiebreaker for any posts where the two original coders
disagreed. Posts were coded for the author's smoking status at the time
the post was written. Available codes were “Clearly smoking,” “Clearly
not smoking,” or “Unclear.” Coders were instructed to use inference and
make their best guess based on the text and subtext of each post, but to
use the “Unclear” code whenever they did not feel confident that a
reliable judgment could be made. Table 1 shows example posts with
each label. Like many other online cessation communities, Beco-
meAnEX does not offer a structured way for users to declare their own
smoking status in their online profiles. However, the validity of the
manual annotations, as assessed by comparison with self-report data,
was high in previous work (initial Kappa=0.82, with disagreements
resolved by a third tie-breaking coder) [59].

In the current study, those manual annotations were recoded into a
binary scheme that emphasized accurate classification of abstinence.
“Clearly not smoking” posts were the positive class; “Clearly smoking”
and “Unclear” posts were combined into a single category serving as the
negative class, so that we have a binary classification problem. The two
classes were relatively balanced: the positive class constituting 48%
(n=1015) of all the annotated posts, including 44.4% among blogs,
and 55.6% among blog comments. The decision to select “Clearly not
smoking” as the positive class was based on treatment implications.
Specifically, accurately identifying when a smoker has begun a quit
attempt (i.e., their first instance of “Clearly not smoking”) would allow
a tailored intervention to provide them with relapse prevention sup-
port, which qualitatively differs from skills training support that is most
appropriate for smokers before they begin a quit attempt. Other

applications might be better served by focusing on identification of
“Clearly smoking” which could be achieved by adapting the methods
applied here.

2.3. Features of user-generated data for machine learning

Finding informative features to differentiate between positive and
negative classes is critical for the success of classifications. Our analyses
leveraged five sets of features to identify the smoking status for the
author of a focal post (Table 2). The first two sets are the standard text
feature sets derived from the text of a focal post. One is the unigram
features, in which we used the standard bag-of-words model and ex-
tracted 5600 unigrams after stop-word removal (e.g., removing “the”
and “at”) and stemming (e.g., converting “smoking” to “smoke”). These
are the most common features for most text mining problems [60] and
have been used to classify posts by users' short and long-term quit status
[54,55].3 The other one is the Doc2Vec feature set, a document em-
bedding technique that generates vector representations for documents
[61–63]. After varying the size of vectors from 100 to 400, we selected
200 as the best-performing vector size, so that each post was re-
presented with a vector of length 200. These two feature sets serve as
the baseline in our study.

While these standard text features are intuitive, they are generic for
most text classification tasks and do not take advantage of the specific
domain of smoking cessation. Therefore, our second set is made up of
domain-specific text features (i.e., selected phrases or n-grams that
community members use to report their own smoking status) compiled
from the study team. One such feature measures the use of various first-
person words, such as “I”, “me”, “my” and “mine”, which was included
to ensure a post referred to the author's own smoking status (e.g.,
“Today is my first day to a new and improved me”) instead of someone
else's smoking status (e.g., “Congratulations on 200 days of freedom!”).
In addition, posts often mention how long the author has been abstinent
(e.g., “14 Days of Freedom!”, “I quit 3 months ago.”). Therefore, we also
included the mention of timespan by creating a list of words for time
units, including “hour”, “day”, “week”, “month” and their possible
variations, such as “hrs” and “days”. This list allowed us to check the
usage of timespans by matching phrases in the formats of {numeric
values+ time unit}, such as “5 days”, “first month”, and “8 hrs”, or
{time unit+ numeric values}, such as “week 3” and “month 2”.

In addition to what is expressed within a focal post's own content,
characteristics of the author may also be important. On one hand,
higher levels of engagement in an online cessation community are often
associated with abstinence [58,64,65]. On the other hand, it may be
rare for a new member to report abstinence upon joining a community.
Therefore, our third feature set is comprised of author-based features
that capture the focal post authors' past community activities. For the
author of each post, we extracted their length of tenure as a community
member, the total number of posts published, and the total number of
visits to the community (based on clickstream logs). All three features
were calculated from the date a user joined the community until the

Table 1
Example posts with each label.

Post content Label

“Thank u all for ur support and info, the links I have checked out so
far already seem very helpful, so I can't wait to finish them all.
THE DECISION HAS BEEN MADE! I can beat this.;)”

Clearly
smoking

“As of today, I haven't smoked for 32 days!” Clearly not
smoking

“Thank you so much for the information.” Unclear

2 These domain experts who annotated posts are not co-authors of this paper,
and are different from co-authors who designed domain-specific features.

3We also tried to add bigrams of focal posts, but the F-measure and AUC of
our classifiers did not improve compared to using unigrams only.
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time the post was published, and they could vary for the same author if
s/he published more than one post over time.

Whereas these first three feature sets are about a focal post and its
author, the fourth set of thread-based features goes beyond the focal
post and examines the whole “thread” that the post belongs to. Previous
studies have shown that thread-based features can improve thread-level
classification [66], but have not leveraged them for post-level classifi-
cation. For each focal post, we first extracted basic features such as type
of the post (i.e., the original blog post or comments), number of words
in the post, how long the thread was active (i.e., the time difference
between the original blog post and the last comment), total number of
comments in the thread, and the number of unique users who con-
tributed to the thread.

In addition, the content of neighboring posts may also help to
classify the focal post. All other posts and comments in the same thread
with a focal post were considered its neighboring posts. Compared to
posts in the negative class (i.e., no evidence of abstinence), a focal post
with a success story may be preceded and followed by different dis-
cussions. For instance, a focal post indicating the author's abstinence
status could be surrounded by other posts with similar discussions on
smoking status (e.g., “It has been 41 days since my last smoke… I have
been smoke-free because of the friends I've made here”), and/or con-
gratulatory posts (e.g., “Congrats to Mary for 50 days!”). However, if we
include every word or phrase that appears in neighboring posts, the
dimensionality of the feature set will increase greatly. Therefore, we
conducted feature selection for text features of neighboring posts. We
represented each neighboring post with frequency counts of unigrams.
Then, we created two groups of neighboring posts: neighbors of posi-
tive-class posts, and neighbors of negative-class posts. Comparing the
two groups of neighboring posts, we calculated information gain [67], a
popular feature selection method, and picked the top 100 unigrams. To
further highlight the discriminating power of each of the top-100 uni-
grams, we also proposed a class-discriminating term weighting scheme
inspired by prototypical words scoring [68]. Eq. (1) defines class-based
term frequency TFC, i, which represents term i's frequency among all
neighboring posts of class C (positive or negative). It is the fraction
between the total number of appearances of term i among all neigh-
boring posts of class C (TC, i) and the total number of neighboring posts
of class C (PC).
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If term i appears frequently in neighboring posts of the positive
class, but rarely in neighboring posts of the negative class, it will have
high TF+, i and low TF−, i, and thus high values in the between-class
term ratio Ri defined in Eq. (2). For example, “congrat”, the root form of
“congratulate” and so on, features a between-class term ratio of 3.11,
which suggests that a post containing the unigram “congratulate” and
its variants is approximately three times more likely to appear among
neighboring posts of a positive-class post than a negative-class post.
Meanwhile, the unigram “smoke” has a ratio of 1.19, which means the
term's frequency of appearance is nearly equivalent in the neighboring
posts of both classes. The between-class term ratio was calculated and

used as the weight for each of the top-100 unigrams from neighboring
posts in the feature set. We also would like to note that such feature
selection via between-class term ratio was only based on the training
set.

2.4. Evaluation of classifier performance

We evaluated the contributions of the feature sets listed in Table 2
to the classification of smoking status using 5 different models. Model 1
includes only standard unigram features of focal posts (Feature set 1)
and Model 2 is based only on Doc2Vec (Feature set 2). On top of the
better performing baseline model, Model 3 adds Feature set 3; Model 4
adds Feature sets 3 and 4; and Model 5 adds all the three new Feature
sets (3, 4, and 5). This approach allows us to quantify how much new
classification power is gained after adding one additional feature set.
Feature sets were added in the order of increasing levels of abstraction
from the focal post.

We used weighted F1-score and weighted AUC to evaluate the
performance of classification models with 10-fold cross validation. F1-
score is a harmonic mean of precision (the number of correct predic-
tions divided by the number of all predictions in that class) and recall
(the number of correct predictions divided by the number of actual
instances in that category). AUC (area under the ROC curve) measures
the probability that a positive sample is ranked higher than a negative
sample and provides robust measurements of classification performance
even in datasets with unbalanced class distributions. We selected six
different classification algorithms to represent distinct, classic ap-
proaches to machine learning and examined their performance: Naïve
Bayes, Logistic Regression, J48 decision tree, SVM (with polynomial
kernel), and AdaBoost with two weak leaners (DecisionStump and J48).

3. Results

3.1. Classifier performance

The performance of binary classification with various algorithms on
each of the four models is shown in Table 3 (F1 scores) and Table 4
(AUC values). Fig. 1 provides a visual comparison. Between two base-
line models, Model 1 outperforms Model 2 in 5 out of the 6 algorithms
we tried. Therefore, Models 3, 4, and 5 are based on adding new feature
sets to Model 1.

Overall, Feature sets 3, 4, and 5 that we proposed contribute to
better performance of the classifier compared to using only standard
Feature sets 1 or 2. The best overall performance across all the models
and algorithms is achieved by Model 5 with AdaBoost, using J48 as the
weak learner. That combination yields the best F1-score of 0.759, which
is 10.2% higher than the same algorithm's performance using only the
features in Model 1 (0.689). The difference is statistically significant

Table 2
Five feature sets in this study.

Feature set Description

1 Standard text features (unigrams) of focal post content
2 Doc2Vec features from focal post content
3 Domain-specific features from focal post content
4 Author-based features of focal posts
5 Thread-based features of a focal post's thread

Table 3
Weighted F1-scores (10-fold CV) for different models with different algorithms
(the highest values are in bold for each algorithm, and standard deviations are
in parentheses).

Algorithms Model 1 Model 2 Model 3 Model 4 Model 5

Naïve Bayes 0.670
(0.03)

0.578
(0.03)

0.672
(0.03)

0.678
(0.03)

0.621
(0.03)

Logistic regression 0.612
(0.03)

0.699
(0.03)

0.618
(0.03)

0.608
(0.04)

0.645
(0.04)

J48 decision tree 0.669
(0.03)

0.557
(0.03)

0.692
(0.03)

0.707
(0.03)

0.705
(0.03)

SVM (Poly-Kernel) 0.704
(0.02)

0.692
(0.03)

0.720
(0.03)

0.730
(0.03)

0.744
(0.03)

AdaBoost
(DecisionStump)

0.705
(0.03)

0.551
(0.03)

0.717
(0.03)

0.744
(0.03)

0.755
(0.03)

AdaBoost (J48) 0.689
(0.03)

0.608
(0.03)

0.716
(0.03)

0.731
(0.03)

0.759
(0.03)
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with p-value < 0.001 in a paired t-test. Model 5 with AdaBoost (J48)
also has the best precision (0.759), recall (0.759) and accuracy (75.9%),
all approximately 7% higher than those from Model 1, which has a
precision of 0.690, a recall of 0.690, and an accuracy of 69.0% (p-
value < 0.001 in a paired t-test). With DecisionStump as the weak
learner, Model 5 with AdaBoost has the best AUC of 0.837, 8.1% higher
than that from Model 1 (0.774) (p-value < 0.001 in a paired t-test).

These comparisons indicate that the novel features we proposed
(Feature sets 3, 4, and 5) provide valuable signals that improve the
detection of smoking status.

In addition to Models 3, 4 and 5, where feature sets were added
accumulatively, we also compared the predictive power of the 3 new
feature sets when each is used alone for smoking status classification
(Fig. 2). For comparison, we also included in Fig. 2 the performance of
the baseline Feature set 1 (i.e., Model 1), along with the best-per-
forming Model 5, which incorporates all the 5 feature sets. We did not
include Model 2 because its performance is almost dominated by Model
1. Compared to the standard Feature set 1 (Model 1), Feature set 3 has
similar performance: it has better F1-score with 3 of 6 algorithms and
better AUC with 2 algorithms, even though this feature set only ex-
amines the appearance of a few domain-specific phrases, instead of all
unigrams. Not surprisingly, Feature set 4, which only contains in-
formation about the author of each focal post, has the lowest F1-score
across the 6 algorithms, and only outperforms the AUC of Feature set 1
with 2 algorithms. Feature set 5, which does not consider the content of
a focal post at all, still has a better F1-score and AUC than Feature set 1
with 1 algorithm.

3.2. Abstinence status among all community members

We also applied the best-performing classification model (AdaBoost
with DecisionStump on Model 5) to the remaining 352,922 blog posts

Table 4
Weighted AUC (10-fold CV) for different models with different algorithms (the
highest values are in bold for each algorithm, and standard deviations are in
parentheses).

Algorithms Model 1 Model 2 Model 3 Model 4 Model 5

Naïve Bayes 0.718
(0.03)

0.640
(0.03)

0.723
(0.03)

0.720
(0.03)

0.724
(0.03)

Logistic regression 0.631
(0.04)

0.737
(0.03)

0.639
(0.04)

0.628
(0.05)

0.700
(0.04)

J48 decision tree 0.667
(0.03)

0.559
(0.04)

0.686
(0.04)

0.699
(0.04)

0.695
(0.04)

SVM (Poly-Kernel) 0.703
(0.02)

0.693
(0.03)

0.719
(0.03)

0.729
(0.03)

0.743
(0.03)

AdaBoost
(DecisionStump)

0.774
(0.03)

0.613
(0.03)

0.780
(0.03)

0.827
(0.02)

0.837
(0.02)

AdaBoost (J48) 0.755
(0.03)

0.643
(0.03)

0.779
(0.03)

0.809
(0.03)

0.828
(0.03)

Fig. 1. Comparing the performance of different models with different algorithms using F1 scores (a), and AUC (b).
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and comments. A total of 181,321 posts written by 3240 users indicated
that the author was not smoking at the time of the post. This analysis
suggests that 60% of users (3240/5435) who authored a blog or blog
comment wrote at least one post indicating a period of abstinence.

4. Discussions and conclusions

This proof-of-concept study demonstrated the effectiveness of a new
approach to automatically detect individuals' smoking status from
large-scale data in an online smoking cessation community. Our ap-
proach went beyond the traditional approach that only examines the
content of a user's post. Instead, we incorporated into the machine-
learning-based classifier domain-specific features related to an online
smoking cessation community, author-specific features related to pat-
terns of user online engagement, and thread-specific features that sig-
naled abstinence. Adding these novel features improved the classifier's
performance by approximately 10% and pointed to the importance of
incorporating domain knowledge, considering characteristics of the
author along with preceding and subsequent posts in detecting the
smoking status of a focal post's author.

To our knowledge, this is the first study to use a machine learning
approach to detect the smoking status of users as “quit vs not” from
individual posts in an online smoking cessation community. Compared
to previous studies that identified individual health status by mining
UGCs [25,26], this work further highlights the value of combining

insights from domain experts, especially in the extraction of domain-
specific features, and computational methods. Our approach is also the
first to examine “neighboring posts” to leverage semantic connections
between UGCs. Experiment results reveal that contents from such
neighboring posts do contribute to the performance of smoking status
identifications.

The proposed approach also has the potential to be applied to online
communities about other addictions. In a different online community
for another type of addiction, users' vocabulary may change, which
means some domain-specific features could vary and may need to be
updated with the help of frequent community users or via reading
UGCs. Nevertheless, the other three types of features—text features of
focal posts, author-based features, and thread-based features are all
available in most online communities. For example, most online com-
munities allow user to interact with each other via posting. No matter
whether such interactions occur in the form of posts in the same
threaded discussion or comments to the same blog post, they semanti-
cally connect UGCs, making it possible to leverage content of “neigh-
boring” posts in the mining of a focal post.

This work also provides an exciting foundation for the development
and evaluation of real-time interventions in online smoking cessation
communities via personalized post recommendations. Such real-time
tailoring can be directly integrated into the online platform through
which the intervention is delivered. For example, a user whose post
indicates that she is still preparing for a quit attempt could benefit from

Fig. 2. Comparing the performance of using one of the 3 new feature sets in smoking status classification using F1-score (a) and AUC (b).
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receiving recommendations on skills training exercises or community
content about what to expect during the first few days of a quit attempt.
For another user who publishes a post to claim her abstinence, the
community can recommend others' posts on how to cope with with-
drawal and adjust to living smoke free to avoid relapse. As a proof-of-
concept, this study focused on identifying smoking status from user-
generated content. However, our approach could also be applied to
other important drivers of cessation that may be amenable to real-time
intervention. For example, knowing a smoker's attitudes toward or in-
tent to use a medication [30] may present opportunities to dispel
common myths and misperceptions [69–71] and encourage adherence
[72]. Recent innovations in computer-tailored health communication
systems have combined implicit data derived from user actions (e.g.,
website page views) with explicit data collected via user self-report to
empirically tailor content [28,73]. We are not aware of any work to
mine user-generated content from an online health community to drive
a tailored intervention.

Another noteworthy finding is that among users who posted, 60%
indicated at least one period of abstinence. Although some posts ex-
plicitly mentioned the duration of abstinence, our classification scheme
of smoking status does not readily map to traditional outcome assess-
ments (e.g., 7-day point prevalence [74]). From this perspective, the
classification of “quit vs. not” may best represent an indicator of a thus-
far-successful quit attempt. Future research will need to develop ma-
chine classification methods to mine user-generated content to identify
the duration of abstinence, and to infer such duration for posts that do
not include such time spans.

Several limitations of this work are worth noting. First, this ap-
proach is only applicable to community members who contribute
content. Historically, online communities have followed the 1% rule,
with 90% of users lurking (i.e., not posting content), 9% commenting
on other posts, and 1% creating new content [75,76]. These trends have
shifted in recent years as social media use has become more ubiquitous,
with some now suggesting a 70-20-10 split [77] or even 55-25-20 [78].
As of 2018, approximately 10% of BecomeAnEX users contribute con-
tent, representing a clinically meaningful number of users who could
benefit from future interventions developed from this approach.
Second, we only evaluated the performance of six classification algo-
rithms. Using other classification algorithms with more annotated posts
may yield better performance.
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