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Regression modeling is one of the most useful statistical techniques. It is an
activity that leads to a functional relationship between a response and a set of
explanatory variables. Such modeling has many different purposes. A regression
model indicates which explanatory variables have an effect on the response, telling
us which explanatory variables to change in order to affect the response. The
functional relationship allows us to estimate the response for given values of
the explanatory variables and to infer the response for values of the explanatory
variables that were not studied directly. The regression model allows us to ask
“what—if” type questions; for example, what happens to sales if we keep the
product’s price the same, but increase the advertising by ten percent. The predic-
tion of future values of a response is another important purpose of regression;
a model relating sales at time ¢ to sales at previous periods allows us to make
predictions of future sales. Furthermore, regression models may indicate that a
variable that is difficult and expensive to measure is well explained by other vari-
ables that are easy and cheap to obtain. Such information is useful as then the
cheaper measurements can be used as proxies for the more expensive ones.

This book is intended as a regression text for undergraduate and graduate
students in statistics, business, engineering, and the physical/biological sciences
desiring a solid introduction to this area. Our book is a blend of theory and
interesting applications. We explain in detail the theory behind regression,
using results from matrix algebra and adopting a data-driven approach that also
emphasizes regression applications. The book includes several case studies from
a wide range of application areas, and it covers the analysis of observational data
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as well as of data that arise from designed experiments. Special emphasis is given
to the difficulties when working with observational data, such as problems arising
from multicollinearity and “messy” data situations that violate some of the usual
regression assumptions.

The book goes beyond the typical linear regression model as it also covers
nonlinear models, regression models with time series errors, and logistic and
Poisson regression models. These topics are of great importance as the response
data in many application areas are categorical involving small counts, and because
observations often arise in the form of time series.

Prerequisites for this book are an introduction to linear algebra including
matrix operations, a first course in statistics, and knowledge of probability distri-
butions and introductory statistical inference including confidence intervals and
probability values.

WHY ANOTHER REGRESSION BOOK AND HOW THIS TEXT DIFFERS
FROM COMPETING BOOKS

People may ask why we have written yet another regression book as several other
successful regression texts are already available on the market. We have engaged
in this project because we believe that we can do better. Time will tell whether
we have been successful.

Students taking a course on regression must understand the purpose of
regression. Chapter 1 addresses this issue. Many regression books do not address
this topic in such detail as we have done in this book. We believe that students
should know how, when and where regression models work. Hence we have
included several case studies that illustrate the process of regression modeling,
emphasize its benefits, but also warn of its pitfalls and problems. We believe that
the data-driven approach used in our book will teach students practical modeling
skills.

We also believe that most students want to know why some things work and
why others do not. The text not only teaches students the use of regression, but
also provides a rigorous coverage of the theory behind regression. This gives
students the theoretical foundation that is needed for subsequent courses and
further self-study. Geometric interpretations complement the algebraic results
whenever possible.

EXERCISES, CASE STUDIES AND PROJECTS

Our book is unique because of the many excellent exercises, data sets, and project
suggestions that are drawn together from several different areas of application such
as engineering, business, social sciences, and the physical sciences. Projects in
this book address questions that will interest readers from diverse fields of study.
You may be interested whether and how it is possible to predict the price of fine
French wine, and how to predict the winner of the next U.S. presidential election.
You may want to know how to explain fuel efficiencies of automobiles, and
whether race places a role in death penalty sentencing. You may want to model
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the scholastic achievement of U.S. students and determine the driving factors
behind scholastic success. You may want to establish whether certain additives in
building materials affect the ambient air quality, infer the effect of advertisement
on the sales of a product, or learn about the factors that contributed to the survival
of the Donner party that attempted to cross the Sierra Nevada mountain range in
the 1840’s on their westward trek. This book will interest you if you want to find
the answers to these questions.

One learns statistics and regression modeling best by solving exercises that
emphasize theoretical concepts, by analyzing real data sets, and by working on
projects that require one to identify a problem of interest and to collect data that are
relevant to the problem’s solution. Suggestions for project topics and guidelines
for dealing with projects are provided in Chapter 8. Successful projects involve
the application of the studied regression techniques to solve real problems. Many
of our exercises are based on real situations giving the students ample chance to
practice on meaningful problems. Most exercises have been pre-tested in various
classes on regression, time series modeling (Chapter 10), and statistical methods
for business applications (Chapter 11 on logistic regression).

HOW TO USE THIS TEXT

Some parts of the book require more mathematical/statistical background than
others. However, the more theoretical portions of this book can be omitted without
compromising the main ideas. We suggest omitting the following sections when
teaching students with weaker mathematics/statistics background: Most of the
material in Chapter 3, except for elementary matrix algebra, can be skipped.
In Chapter 4, one can omit the geometric approach in section 4.2.1, many of
the derivations in sections 4.2.2 and 4.3, the discussion involving the geometric
approach in section 4.4.1, the derivations in section 4.4.2, the joint confidence
regions in section 4.4.3, generalized least squares in section 4.6, and the appendix.
In Chapter 6, one can skip section 6.2.2 on added variable plots, the derivations
in sections 6.4.1, section 6.5 on transformations, and the appendix.

The complete book (all 12 chapters) can be covered comfortably in two
terms. If only one term or only one semester is available, we suggest covering
Chapters 1 through 8 on the standard linear regression model, followed by a brief
introduction to one of the additional topics in Chapters 9 through 12. For students
with weaker background in mathematics/statistics we recommend that the more
theoretical sections listed previously are omitted. For a target audience that wishes
to concentrate on practical modeling we recommend that additional emphasis be
put on the case studies in Chapter 8.

Chapters 1-7 of the book are based on notes that have been used many times
at the University of Waterloo in an advanced undergraduate course on “Applied
Linear Models.” Students from Actuarial Science, Computer Science, Math-
Business and Math-Accounting, Operations Research, Statistics, and Systems
Design Engineering take this course. Materials from all chapters of the book have
been class-tested in several courses at the University of lowa as well.
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SUPPLEMENTARY MATERIALS: SOLUTIONS TO EXERCISES, DATA FILES,
AND COMPUTER PROGRAMS

Several supplements for this book are available. Files containing the data sets used
throughout the text can be found on the enclosed data disk and on the webpage
http://statistics.brookscole.com/abraham_ledolter/. The files are in ASCII format,
as well as in the format of frequently-used statistical software packages.

One cannot learn and understand regression without using statistical com-
puter software. Our text is not tied to a specific computer program, but we discuss
computer output from several commonly used packages such as Minitab, R,
S-Plus, SPSS, and SAS. Most packages are menu-driven and knowing one helps
you understand how to use the others. Since not all programs are alike, we en-
courage you to try and experiment with several.

An instructor’s manual and a student solutions manual are also available.
They provide solutions to many of the exercises, as well as helpful hints on how
to access and work with statistical computer software. Furthermore, brief answers
to selected exercises are listed in the back of the text.
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Introduction to
Regression Models

1.1 INTRODUCTION

Regression modeling is an activity that leads to a mathematical description of
a process in terms of a set of associated variables. The values of one variable
frequently depend on the levels of several others. For example, the yield of a
certain production process may depend on temperature, pressure, catalyst, and
the rate of throughput. The number or the rate of defectives of a process may
depend on the speed of the production line. The number of defective seals on
toothpaste tubes may depend on the temperature and the pressure of the sealing
process. The volume of a tree is related to the diameter of the tree at breast
height, the height of the tree, and the taper of the tree. The fuel efficiency of an
automobile depends, among others, on the weight of the car and characteristics of
its body and engine. Employee efficiency may be related to the performance on
employment tests, years of training, and educational background. The salaries of
managers, athletes, and college teachers may depend on their seniority, the size
of the market, and their performance. Many additional examples can be given,
and in Exercise 1.1 we ask you to comment on several other relationships in
detail.

The supply of a product depends on the price customers are willing to pay;
one can expect that more products are brought to market when the price is high.
Economists refer to this relationship as the production function. Similarly, the
demand for a product depends on the price of the item, the price of the competition,
and the amount spent on its advertisement. Economists refer to this relationship
as the demand function. One can expect lower sales if the price is high, in-
creased sales if the price of the competition is higher, and increased sales if more
money is spent on promotion. However, price and advertising may also interact.
Advertising may be more effective if the price is low; furthermore, the effect of
the competition’s price on sales may depend on one’s own price. Also, seasonal
components may have an impact on sales during a certain period because sales of
a summer item during winter months will be low in northern states, irrespective
of the product’s price.
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Introduction to Regression Models

In all these situations we are interested in obtaining a “model” or a “law” (i.e.,
a mathematical description) for the relationship among the variables. Regression
analysis deals with modeling the functional relationship between a response
variable and one or more explanatory variables. In some instances one has a
fairly good idea about the form of these models. Often the laws from physics or
chemistry tell us how aresponse is related to the explanatory variables. These laws
may involve complicated mathematical equations that contain functions such as
logarithms and exponentials. In some instances, the constants in the equations
are also known, but more often the constants need to be determined empirically
by “fitting” the models to data. In many social science applications, theoretical
models are absent, and one must develop empirical models that describe the main
features of the relationship entirely from data.

Let us consider a few illustrative examples in detail.

1.2 EXAMPLES

1.2.1 PAYOUT OF AN INVESTMENT

Consider the payout of a principal P that you invest for a certain number of years
(length of maturity) 7', at an annual interest rate of 100R percent. We know from
simple actuarial mathematics that the payout is given by

Payout= f(P,R, T)=P(1+ R)T (1.1)

provided that interest is compounded annually. With continuous compounding
the resulting payout is slightly different. In this case, it can be calculated from
Payout = PeR” | where e is Euler’s number (e =2.71828.. ).

This first example illustrates a deterministic relationship. Each investment
of principal P at rate R and maturity 7 leads to the exact same payout—nothing
more and nothing less. We are very familiar with this law, and we would not
need any data (or regression methods) to arrive at this particular model. However,
assume for a moment that one was unfamiliar with the theory but had data on the
payouts of different investments P, with different interest rates and maturities.
Since the relationship is deterministic, payouts from identical investments would
be identical and would not provide any additional information. Given this infor-
mation, one would—after some trial and error and carefully constructed plots of
the information—*"see”” the underlying functional relationship. This model would
“fit” the data perfectly.

We have actually used the previous relationship to generate payouts for dif-
ferent principals, interest rates, and maturities, and we ask you in Exercise 1.2 to
document the approach you use to find the model. You will experience firsthand
the value of good theory; good theory will avoid much trial and error. Note that for
payouts from continuous compounding, a plot of the logarithm of payout against
the product of interest rate and length of maturity (R7") will show points falling
on a line with slope one and intercept log(P).
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1.2.2 PERIOD OF OSCILLATION OF A PENDULUM

Consider the period of oscillation (let us call it ) of a pendulum of length L. It
is a well-known fact from physics that the period of oscillation is proportional to
the square root of the pendulum’s length L, . = BL'/?. However, the value of the
proportionality factor § may be unknown.

In this example, we are given the functional form of the relationship, but
we are missing information on the key constant, the proportionality factor .
In statistics we refer to unknown constants as parameters. The values of the
parameters are usually determined by collecting data and using the resulting data
to estimate the parameters.

The situation is also more complicated than in the first example because there
is measurement error. Although the length of the pendulum is easy to measure,
the determination of the period of oscillation is subject to variability. This means
that sometimes our measurement of the “true” period of oscillation is too high and
sometimes too low. However, for a calibrated measurement system we can expect
that there is no bias (i.e., on average there is no error). If measured oscillation
periods are plotted against the square roots of varying pendulum lengths, then the
points will not line up exactly on a straight line through the origin, and there will
be some scatter.

Mathematically, we characterize the relationship between the true period
of oscillation y and the length of the pendulum L as u = SL'/?>. However, the
measured oscillation period OP is the sum of the true period (which we sometimes
call the signal) and the measurement error ¢ (which we sometimes call the noise).
Typically, we use a symmetric distribution about zero for the measurement error
since the error is supposed to reflect only unbiased variability; if there were some
bias in the measurement error, then such bias could be incorporated into the signal
component of the model. Combining these two components (the signal and the
noise) leads to the model

OP=p+e=BL">+¢ (1.2)

This model is similar to the one in Example 1.2.1 because we use theory (in
this case, physics) to suggest the functional form of the relationship. However, in
contrast to the previous example, we do not know certain constants (parameters)
of the function. These parameters need to be estimated from empirical informa-
tion. Furthermore, we have to deal with measurement variability, which leads to
variability (or scatter) around the function (here, a line through the origin). We in-
clude a stochastic component ¢ in the model in order to capture this measurement
variability.

1.2.3 SALARY OF COLLEGE TEACHERS

The third example represents a situation in which there is no theory about the
functional form of the relationship and there is considerable variability in the
measurements. In this situation, the data must perform “double duty,” namely
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to determine the functional form of the model and the values of the parameters
in these functions. Moreover, the modeling must be carried out in the presence
of considerable variability. We refer to such models as empirical models (in
contrast to the theory-based models discussed in Examples 1.2.1 and 1.2.2), and
we refer to the process of constructing such models as empirical model build-
ing. Examples of this type arise in the social sciences, economics, and business,
where one usually has little a priori theory of what the functions should look
like.

Consider building a model that explains the annual salary of a college pro-
fessor. We probably agree that salary should be related to experience (the more
experience, the higher the salary), teaching performance (better teachers are paid
more), performance on research (significant papers and books increase the salary),
and whether the job includes administrative duties (administrators usually get paid
more). However, we are lacking a theory that tells us the functional form of the
model. Although we know that salary should increase with years of experience,
we do not know whether the function should be linear in years, quadratic, or
whether an even more complicated function of the number of years should be
used. The same applies to the other variables.

Moreover, we notice considerable variability in salary because professors
with virtually identical background often are paid vastly different salaries. So there
may be additional factors that one has overlooked. Feel free to brainstorm and add
to this initial list of variables. For example, salary may also depend on gender and
racial factors (use of these factors would be illegal), the year the professor was
hired, whether the professor is easy to get along with, whether the professor has
had a relationship with the dean’s spouse or had made an inappropriate remark
at last year’s holiday party, and so on. Knowing these factors may improve the fit
of the model to the data. However, even after factoring all these variables into the
model, substantial random variation will still exist.

Another aspect that makes the modeling within the social science context
so difficult is problems with measuring the variables. Consider, for example, the
teaching performance of an instructor. Although student ratings from end-of-the-
semester questionnaires could be used as an indicator of teaching performance,
one could argue that these ratings are only a poor proxy. Demanding teachers,
difficult subject matter, and lectures held in large classes are known to lower
these ratings, thus biasing the measure. Assessment of research performance is
another good case in point. One could use the number of publications and books
and use this as a proxy for research. However, such a simple-minded count does
not incorporate the quality of the publications. Even if one decides to somehow
incorporate publication quality, one notices very quickly that reasonable people
differ in their judgments. Of course, not being able to accurately measure the
factors that we believe to have an effect on the response affects the results of the
empirical modeling.

In summary, we find that empirical modeling faces many difficulties: little or
no theory on how the variables fit together, often considerable variability in the
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TABLE 1.1 HARDNESS DATA [DATA FILE: hardness]

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14

x = Temperature 30 30 30 30 40 40 40 50 50 50 60 60 60 60
y = Hardness 55.8 59.1 54.8 54.6 43.1 42.2 452 31.6 30.9 30.8 17.5 20.5 17.2 16.9
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response, and difficulties in obtaining appropriate measures for the variables that
go into the model.

1.2.4 HARDNESS DATA

The quench bath temperature in a heat treatment operation was thought to affect
the Rockwell hardness of a certain coil spring. An experiment was run in which
several springs were treated under four temperatures: 30, 40, 50 and 60°C. The
springs used in this experiment were selected from springs that had been produced
under very similar conditions; all springs came from the same batch of material.
Table 1.1 lists the (coded) hardness measurements and the temperatures at which
the springs were treated.

We are interested in understanding how quench bath temperature affects
hardness. Knowing this relationship is useful because it allows us to select the
temperature that achieves a specified level of hardness.

Hardness is the dependent (or response) variable, and we denote it by y.
Quench bath temperature is the independent (predictor, explanatory) variable that
is supposed to help us predict the hardness; we denote it by x. For each experiment
(coil spring—also called run or case) i, we have available a temperature that we
select and control (the value x;) and a measurement on the resulting hardness
that we determine from the manufactured part (the value y;). A scatter plot of
hardness (y;) against quench bath temperature (x;) is shown in Figure 1.1.
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We want to build a model (i.e., a mathematical relationship) to describe y in
terms of x. Note that y cannot be a function of x alone since we have observed
different y’s (55.8, 59.1, 54.8, and 54.6) for the same x = 30. Furthermore, since
no theoretical information is available to us to construct the model, we have to
study the relationship empirically. The scatter plot of y against x indicates that y
is approximately linear in x.

The scatter plot suggests the following model:

y(hardness) = By + B1x(temperature) + & (1.3)

where B and S; are the constants (parameters), and ¢ is the random disturbance
(or error) that models the deviations from the straight line. The model is the
sum of two components, the deterministic part (or signal) u = By + f1x and the
random part €. The deterministic part u = fo + B1x is a linear function of x with
parameters By and B;. More important, it is linear in the parameters B and 8;, and
hence we refer to this model as a linear model. The random component ¢ models
the variability in the measurements around the regression line. This variability
may come from the measurement error when determining the response y and/or
changes in other variables (other than temperature) that affect the response but
are not measured explicitly.

In order to emphasize that the model applies to each considered (and potential)
experiment, we introduce subscripts. The temperature and the hardness from the
ith experiment are written as (x;, y;). With these subscripts, our model can be
expressed as

vi=Po+ Bixi +¢&i, wherei=1,2,...,n (1.4)

We complete the model specification by making the following assumptions about
the random component ¢:

E(e)=0,V(¢)=0*foralli=1,2,...,n
¢; and ¢ are independent random variables fori # j (1.5)

In this example, we treat x; as deterministic. The experimenter selects the
temperature and knows exactly the temperature of the quench bath. There is
no uncertainty about this value. In later sections of this book (Section 2.9), we
consider the case when the values of the explanatory variable are random. For
example, the observed temperature may only be a “noisy” reading of the true
temperature.

Our assumptions about the error ¢ and the deterministic nature of the ex-
planatory variable x imply that the response y; is a random variable, with mean
E(y;) = ;i = fo + Bix; and variance V (&;) = o%. Furthermore, y; and y; are in-
dependent for i # j.

The mean, E(y;) = u; = Po + Pixi, is a linear function of x. The intercept
Bo represents E(y) when x = 0. If the value x = 0 is uninteresting or impossible,
the intercept is a rather meaningless quantity. The slope parameter f; represents
the change in E(y) if x is increased by one unit. For positive £, the mean E(y)
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TABLE 1.2 UFFI DATA [DATA FILE: uffi]

y = CH,0 x = Air Tightness z = UFFI Present

31.33
28.57
39.95
44.98
39.55
38.29
50.58
48.71
51.52
62.52
60.79
56.67
43.58
43.30
46.16
47.66
55.31
63.32
59.65
62.74
60.33
53.13
56.83
70.34
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increases for increasing x (and decreases for decreasing x). For negative S, the
mean E(y) decreases for increasing x and increases for decreasing x.

Our assumption in Eq. (1.5) implies that V (y) = o2 is the same for each x.
This states that if we repeat experiments at a value of x (as is the case in this
example), we should see roughly the same scatter at each of the considered x’s.
Figure 1.1 shows that the variability in hardness at the four levels of temperature—
x =30, 40, 50, and 60—is about the same.

1.2.5 UREA FORMALDEHYDE FOAM INSULATION

Data were collected to check whether the presence of urea formaldehyde foam in-
sulation (UFFI) has an effect on the ambient formaldehyde concentration (CH,0)
inside the house. Twelve homes with and 12 homes without UFFI were studied,
and the average weekly CH,O concentration (in parts per billion) was measured.
It was thought that the CH,O concentration was also influenced by the amount
of air that can move through the house via windows, cracks, chimneys, etc. A
measure of “air tightness,” on a scale of 0 to 10, was determined for each home.

The data are shown in Table 1.2. CH,O concentration is the response variable
(v) that we try to explain through two explanatory variables: the air tightness
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FIGURE 1.2
Scatter plot of CH,0
against air tightness
for homes with and
without urea
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insulation (UFFI)
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of the home (x) and the absence/presence of UFFI (7). A scatter plot of CH,O
against air tightness for homes with and without UFFI is shown in Figure 1.2. The
absence/presence of UFFl is expressed through an indicator variable. If insulation
is present, then UFFI = 1; if it is absent, then UFFI = 0. The points in the scatter
plot are labeled with solid and open circles, depending on whether or not UFFI is
present. The plot shows strong evidence that CH,O concentrations increase with
increasing air tightness of the home.

It is important to emphasize that the data-generating mechanism in this ex-
ample differs from that in the previous one. In the previous example, we were able
to set the quench bath temperature at one of the four levels (30, 40, 50, and 60°C),
conduct the experiment, and then measure the hardness of the spring. We refer to
this as a controlled experiment, one in which the experimenter sets the values of
the explanatory variable. In the current example, we select 12 houses with UFFI
present and 12 houses in which it is not and measure the CH,O concentration (the
response y) as well as the air tightness (the explanatory x variable). It is not possi-
ble to preselect (or control) the air tightness value; the x values become available
only after the houses are chosen. These data come from an observational study.

The basic objective of this particular observational study is to determine
whether differences in the CH,O concentrations can be attributed to the presence
of insulation. Note, however, that we want to take into account the effect of air
tightness. This can be achieved by considering the following model. Let

y=PBo+pix+ Pz +e (1.6)

where

= y is the CH,O concentration,
= x is the air tightness of the house,

= zis 1 or 0, depending on whether or not UFFI is present,
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= ¢ is the error component that measures the random component, and

= B9, B1, and B, are constants (parameters) to be estimated.

CH,O concentration is the response variable (y). It is the sum of a deter-
ministic component (8 + B1x + B2z) and a random component . The random
component ¢ is again modeled by arandom variable with E(¢) =0and V (¢) = 02;
it describes the variation in the CH,O concentration among homes with identi-
cal values for x and z. Large variation in CH,O concentration y among homes
with the same insulation and tightness is characterized by large values of o2, The
variability arises because of measurement errors (it is difficult to measure CH,O
accurately) and because of other aspects of the house (beyond air tightness and
the presence of UFFI insulation) that have an influence on the response but are
not part of the available information.

The deterministic component, Sy + f1x + B2z, is the sum of three parts.
The intercept By measures the average CH,O concentration for completely air-
tight houses (x =0) without UFFI insulation (z =0). The parameter S, can be
explained as follows: Consider two houses with the same value for air tight-
ness (x), the first house with UFFI (z = 1) and the second house without it (z = 0).
Then >, = E(y | house 1) — E(y | house 2) represents the difference in the average
CH,O concentrations for two identical houses (as far as air tightness is concerned)
with and without UFFI. This is exactly the quantity we are interested in. If 8, =0,
we cannot link the formaldehyde concentration to the presence of UFFI.

Similarly, g; is the expected change in CH,O concentrations that is due to
a unit change in air tightness in homes with (or without) UFFI. Model (1.6)
assumes that this change is the same for homes with and without UFFI. This is a
consequence of the additive structure of the model: The contributions of the two
explanatory variables, Bx and B,z, get added. However, additivity does not have
to be the rule. The more general model that involves the product of x and z,

y=P00+ Bix + oz + Bsxz+¢ (1.7)

allows air tightness to affect the two types of homes differently. For a house
without UFFI, E(y) = By + B1x, and B expresses the effect on the CH,O con-
centrations of a unit change in air tightness. For a house with UFFI, E(y) =
(Bo + B2) + (B1 + B3)x, and (B; + B3) expresses the effect of a unit change in
air tightness. The effect is now different by the factor 3.

1.2.6 ORAL CONTRACEPTIVE DATA

An experiment was conducted to determine the effects of five different oral con-
traceptives (OCs) on high-density lipocholesterol (HDLC), a substance found in
blood serum. It is believed that high levels of this substance (the “good” choles-
terol) help delay the onset of certain heart diseases. In the experiment, 50 women
were randomly divided into five equal-sized groups; 10 women were assigned
to each OC group. An initial baseline HDLC measurement was taken on each
subject before oral contraceptives were started. After having used the respective
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TABLE 1.3 ORAL CONTRACEPTIVE DATA [DATA FILE: contraceptivel

OC1 OCl1 OC2 0OC2 O0OC3 0C3 0C4 0OC4 OCs5 0OCs
y=Final HDLC z = Initial HDLC y b4 y b4 y z y b4
43 49 58 56 100 102 50 57 41 37
61 73 46 49 52 64 50 55 58 60
45 55 66 64 49 60 52 64 58 39
46 55 59 63 51 51 58 49 69 60
59 63 71 90 48 59 65 78 68 71
57 53 64 56 51 57 71 63 64 63
56 51 53 46 40 63 52 62 46 51
68 74 50 64 52 62 49 50 56 64
46 58 68 75 44 61 49 60 51 45
47 41 35 58 50 58 58 59 57 58

drug for 6 months, a second HDLC measurement was made. The objective of
the experiment was to study whether the five oral contraceptives differ in their
effect on HDLC. The data are shown in Table 1.3. A scatter plot of final HDLC
against the initial readings, ignoring the information on the respective treatment
groups, is shown in Figure 1.3a. Figure 1.3b repeats this graph for groups 1, 2,
and 5, using different plotting symbols to denote the three OC groups. Such a
graph can highlight potential differences among the groups. (In order to keep the
graph simple, only three groups are shown in Figure 1.3b).

Let y; be the final HDLC measurement on subject i(i =1, 2,...,50) and
let z; be the initial HDLC reading. Furthermore, define five indicator variables
X1, ..., X5 so that

x;r = lif subjecti is a participant in the kth OC group
= (O otherwise

Here, we need two subscripts because there are five x variables. The first index in
this double-subscript notation refers to the subject or case i; the second subscript
refers to the explanatory variable (OC group) that is being considered. The fol-
lowing model relates the final HDLC measurement to six explanatory variables:
the initial HDLC reading (z) and the five indicator variables (xi, ..., x5). For
subject i,

yi=oaz; + pixi1 + Boxio + - - + Bsxis + & (1.8)

The usual assumption on the random component specifies that E(g;) =0 and
V(e;) =02 for all i, and that ¢; and ¢ j» for two different subjects i # j, are
independent.

The deterministic component of the model, E(y;) =az; + Bi1xi1 + Baxiz +
-+« 4 Bsx;s, represents five parallel lines in a graph of E(y;) against the initial
HDLC, z;. The six parameters can be interpreted as follows: The parameter o
represents the common slope. The coefficients 81, B2, ..., Bs represent the in-
tercepts of the five lines and measure the effectiveness of the five OC treatment
groups. Their comparison is of primary interest because there is no difference
among the five drugs when ) =, =-- - = fs.



FIGURE 1.3
Scatter plots of
final HDLC against
initial HDLC

Abraham Abraham CO1 November 8, 2004 0:33

1.2 Examples 11

100 .
90
8 80
g 70 *° cw *
= . o .
=} 60 — ]
= L e 0 00 O
50 ¢ o e,
° e g o
40 ¢ .
L[]
30 H
T T T T T T T T
30 40 50 60 70 80 90 100
Initial HDLC
(@)
100 7 Group 1: solid circle
90 9 Group 2: open circle
80 -| Group 5: asterisk
Q
A 70 * « © °
T o L
g 60 * e Ox¥* '* *
T s 2 o
o ox g e
L]
40 H *
o
30

T T T T T T T T
30 40 50 60 70 80 90 100

Initial HDLC
(b)

Consider two subjects (subjects i and j), both from the same OC group. Since
the five indicator variables are the same on these two subjects (x;1 = xj1, ..., Xj5 =
Xj5), the model implies E(y;) — E(y;) = a(z; — z;). The parameter o represents
the expected difference in the final HDLC of two subjects who take the same
drug but whose initial HDLC measurements differ by one unit. Next, consider
two subjects with identical initial HDLC measurements but from different OC
groups. Assume that the first woman is from group r, whereas the second is from

group s. Then E(y;) — E(y;) = B, — By, representing the expected difference in
their final HDLC measurements.

1.2.7 GAS CONSUMPTION DATA

Let us give another illustration of empirical model building. Assume that we are
interested in modeling the fuel efficiency of automobiles. First, we need to decide
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how to measure fuel efficiency. A typical measure of fuel efficiency used by the
Environmental Protection Agency (EPA) and car manufacturers is “miles/gallon.”
It expresses how many miles a car can travel on 1 gallon of fuel. However, there is
an alternative way to express fuel efficiency considering gallons per 100 traveled
miles, “gallons/100 miles.” It expresses the amount of fuel that is needed to travel
100 miles. The second measure is the scaled reciprocal of the first: [gallons/
100 miles] = 100/[miles/gallon]. In Chapter 6, we discuss how to intelligently
choose among these two measures. Assume for the time being, that we have
settled on the second measure, [gallons/100 miles].

Next, we need to think about characteristics of the car that can be expected to
have an impact on fuel efficiency. Weight of the car is probably the first variable
that comes to mind. Weight should have the biggest impact, as we know from
physics that we need a certain force to push an object, and that force is related
to the fuel input. Heavy cars require more force and, hence, more fuel. Size
(displacement) of the engine probably matters also. So does, most likely, the
number of cylinders, horsepower, the presence of an automatic transmission,
acceleration from 0 to 60 mph, the wind resistance of the car, and so on. However,
how many explanatory variables should be in the model, and in what functional
form should fuel consumption be related to the explanatory variables? Theory
does not help much, except that physics seems to imply that [gallons/100 miles]
should be related linearly to weight. However, how the other variables enter into
the model and whether there should be interaction effects (e.g., whether changes
in weight affect fuel efficiency differently depending on whether the car has a
small or large engine) are open questions.

Assume, for the sake of this introductory discussion, that we have settled
on the following three explanatory variables: x; = weight, x, = engine displace-
ment, and x3 = number of cylinders. Table 1.4 lists the fuel efficiency and the
characteristics of a sample of 38 cars. We assume that the data are a representa-
tive sample (random sample) from a larger population. You can always replicate
this study by going to recent issues of Consumer Reports and selecting another
random sample. If you have ample time, you can select all given cars and study
the population. The fact that we are dealing with a random sample is very im-
portant because we want to extend any conclusions from the analysis of these 38
cars to the larger population at hand. Our results should not be restricted to just
this one set of 38 cars, but our conclusions on fuel efficiency should apply more
generally to the population from which this sample was taken. If our set of 38
cars is not a representative sample, then it is questionable whether the inference
can be extended to the population.

Note that fuel consumption in Table 1.4 is given in “miles/gallon” and
“gallons/100 miles.” Convince yourself that the entries in the second column are
obtained through the simple transformation, [gallons/100 miles] = 100/[miles/
gallon]. In addition to data on weight, engine displacement, and number of
cylinders, the table includes several other variables that we will use in later
chapters.
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TABLE 1.4 GAS CONSUMPTION DATA [DATA FILE: gasconsumption]

Miles/ Gallons/ Weight, Displacement No. of Engine Type:
gallon 100 miles 1000 Ib (cubic inches) Cylinders Horsepower  Acceleration (sec) V(0), straight(1)
16.9 5917 4.360 350 8 155 14.9 1
15.5 6.452 4.054 351 8 142 14.3 1
19.2 5.208 3.605 267 8 125 15.0 1
18.5 5.405 3.940 360 8 150 13.0 1
30.0 3.333 2.155 98 4 68 16.5 0
27.5 3.636 2.560 134 4 95 14.2 0
27.2 3.676 2.300 119 4 97 14.7 0
30.9 3.236 2.230 105 4 75 14.5 0
20.3 4.926 2.830 131 5 103 15.9 0
17.0 5.882 3.140 163 6 125 13.6 0
21.6 4.630 2.795 121 4 115 15.7 0
16.2 6.173 3.410 163 6 133 15.8 0
20.6 4.854 3.380 231 6 105 15.8 0
20.8 4.808 3.070 200 6 85 16.7 0
18.6 5.376 3.620 225 6 110 18.7 0
18.1 5.525 3.410 258 6 120 15.1 0
17.0 5.882 3.840 305 8 130 154 1
17.6 5.682 3.725 302 8 129 134 1
16.5 6.061 3.955 351 8 138 13.2 1
18.2 5.495 3.830 318 8 135 15.2 1
26.5 3.774 2.585 140 4 88 14.4 0
21.9 4.566 2.910 171 6 109 16.6 1
34.1 2.933 1.975 86 4 65 15.2 0
35.1 2.849 1.915 98 4 80 14.4 0
27.4 3.650 2.670 121 4 80 15.0 0
31.5 3.175 1.990 89 4 71 14.9 0
29.5 3.390 2.135 98 4 68 16.6 0
28.4 3.521 2.670 151 4 90 16.0 0
28.8 3472 2.595 173 6 115 11.3 1
26.8 3.731 2.700 173 6 115 12.9 1
33.5 2.985 2.556 151 4 90 13.2 0
34.2 2.924 2.200 105 4 70 13.2 0
31.8 3.145 2.020 85 4 65 19.2 0
37.3 2.681 2.130 91 4 69 14.7 0
30.5 3.279 2.190 97 4 78 14.1 0
22.0 4.545 2.815 146 6 97 14.5 0
21.5 4.651 2.600 121 4 110 12.8 0
31.9 3.135 1.925 89 4 71 14.0 0

The first car on this list has weight 4,360 pounds (i.e., the value for variable
x; for the first car is x;; = 4.360), cubic displacement of 350 in.? (i.e., the value
for x; for the first car is x5 = 350), eight cylinders (i.e., the value for x3 for the
first car is x13 = 8), and gets 16.9 miles to the gallon. The value of the response y,
fuel efficiency measured in gallons/100 miles, is y; =100/16.9 =5.917; the car
needs 5.917 gallons to travel 100 miles. The second car of our data set measures
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at xp; =4.054, xpp =351, xp3 =8, and y, = 100/15.5 = 6.452 (i.e., weight 4,054
pounds, 351 in.? displacement, eight cylinders, and 6.452 gallons/100 miles).
The last car (car 38) measures at x33 1 = 1.925, x33 2 =89, x333 =4, and ys3 =
100/31.9 =3.135 (i.e., weight 1,925 pounds, 89 in3 displacement, four cylinders,
and 3.135 gallons/100 miles).

Observe the notation that we use throughout this book. For the ith unit (in
this case, the car), the values of the explanatory variables xi, x2, ..., x, (here,
p =3) and the response y are denoted by x;1, x;2, . .., X;p, and y;. Usually, there
are several explanatory variables, not just one. Hence, we must use a double-
index notation for x;;, where the firstindex i =1, 2, . .., n refers to the case, and
the second index j =1, 2,..., p refers to the explanatory variable. For example,
xs2 = 98 is the value of the second explanatory variable (displacement, x;) of the
fifth car. Since we are dealing with a single response variable y, there is only one
index (for case) in y;.

A reasonable starting model relates fuel efficiency (gallons/100 miles) to the
explanatory variables in a linear fashion. That is,

y=u+e=pBo+ Bix1+ Boxo + B3xz + ¢ (1.9)

As before, the dependent variable is the sum of a random component, ¢, and a
deterministic component, u = fo + B1x1 + P2x2 + Bzxz, which is linear in the
parameters By, B1, B2, and Bs.

Cars with the same weight, same engine displacement, and the same number
of cylinders can have different gas consumption. This variability is described by €,
which is taken as a random variable with E (¢) =0 and V (¢) = 2. If we consider
cars with the same weight, same engine displacement, and same number of cylin-
ders, then the average deviation from the mean value in gas consumption of these
“alike” cars is zero. The variance o2 provides a measure of the variability around
the mean value. Furthermore, we assume that E(¢) = 0and V (¢) = ' is the same
for all groups of cars with identical values on xj, x», and x3. The variability is
there because of measurement variability in determining the gas consumption.
However, it also arises because of the presence of other characteristics of the car
that affect fuel consumption but are not part of the data set. Cars may differ with
respect to such omitted variables. If the omitted factors affect fuel consumption,
then the fuel consumption of cars that are identical on the measured factors will
be different.

The deterministic component = By + B1x1 + Baxz + B3x3 is linear in the
parameters o, f1, B2, and 3. We expect a positive value for the coefficient §;
because a heavier car (with fixed engine displacement and number of cylinders)
needs more fuel. Similarly, we expect a positive coefficient 8, because a larger
engine on a car of fixed weight and number of cylinders should require more fuel.
We also expect a positive coefficient for 3 because more cylinders on a car of
fixed weight and engine displacement should require more fuel.

In order to understand the deterministic component p more fully, consider
two cars i and j with identical engine displacement and number of cylinders.
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Since x; = x and x;3 = x 3, the difference
E(yi) — E(y;) = B1(xi1 — x;1)

Thus, B; represents the difference in the mean values of y (the mean difference in
the gas consumption) of two cars whose weights (x;) differ by one unit but that
have the same engine displacement (x;) and the same number of cylinders (x3).
Similarly, B, represents the difference in the mean values of y of two cars whose
engine displacements (x;) differ by one unit but that have the same weight (x;)
and the same number of cylinders (x3). The parameter B3 represents the difference
in the mean values of y of two cars whose number of cylinders (x3) differ by one
unit but that have the same weight (x;) and the same engine displacement (x;).

In the modeling context, one often is not certain whether the variables under
consideration are important or not. For instance, we might be interested in the
question whether or not x3 (number of cylinders) is necessary to predict y (gas
consumption) once we have included the weight x; and the engine displacement
X7 in the model. Thus, we are interested in a test of the hypothesis that 83 =0,
given that x; and x; are in the model. Such tests may lead to the exclusion of
certain variables from the model. On the other hand, other variables such as
horsepower x4 may be important and should be included. Then the model needs
to be extended so that its predictive capability is increased.

The model in Eq. (1.9) is quite simple and should provide a useful starting
point for our modeling. Of course, we do not know the values of the model
coefficients, nor do we know whether the functional representation is appropriate.
For that we need data. One must keep in mind that there are only 38 observations
and that one cannot consider models that contain too many unknown parameters.
A reasonable strategy starts with simple parsimonious models such as the one
specified here and then checks whether this representation is capable of explaining
the main features of the data. A parsimonious model is simple in its structure
and economical in terms of the number of unknown parameters that need to be
estimated from data, yet capable of representing the key aspects of the relationship.
We will say more on model building and model checking in subsequent chapters.
The introduction in this chapter is only meant to raise these issues.

1.3 A GENERAL MODEL

In all of our examples, we have looked at situations in which a single response
variable y is modeled as

y=pn+e (1.10a)
The deterministic component p is written as
w=pPo+ Bix1 + Baxa+ -+ Bpx, (1.10b)

where x1, x2,...,x, are p explanatory variables. We assume that the explana-
tory variables are “fixed”—that is, measured without error. The parameter
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Bi(i=1,2,..., p) is interpreted as the change in ;« when changing x; by one
unit while keeping all other explanatory variables the same.

The random component ¢ is a random variable with zero mean, E(¢) =0,
and variance V (¢) = o> that is constant for all cases and that does not depend on
the values of x1, x», ..., x,. Furthermore, the errors for different cases, ¢; and ¢,
are assumed independent. Since the response y is the sum of a deterministic and
a random component, we find that E(y) = x and V (y) =02

We refer to the model in Eq. (1.10) as linear in the parameters. To explain the
idea of linearity more fully, consider the following four models with deterministic
components:

L =P+ pix

ii. = Bo+ Bix1 + frx2
iii. 1= Bo+ Pix + Pox”
iv. w = Po+ Brexp(frx)

(1.11)

Models (i)—(iii) are linear in the parameters since the derivatives of p with re-
spect to the parameters S;, du/9p;, do not depend on the parameters. Model
(iv) is nonlinear in the parameters since the derivatives du /081 = exp(B2x) and
opn/0By = Brxexp(Brx) depend on the parameters.

The model in Egs. (1.10a) and (1.10b) can be extended in many different
ways. First, the functional relationship may be nonlinear, and we may consider
a model such as that in Eq. (1.11iv) to describe the nonlinear pattern. Second,
we may suppose that V (y) =o?(x) is a function of the explanatory variables.
Third, responses for different cases may not be independent. For example, we
may model observations (e.g., on weight) that are taken on the same subject over
time. Measurements on the same subject taken close together in time are clearly
related, and the assumption of independence among the errors is violated. Fourth,
several different response variables may be measured on each subject, and we
may want to model these responses simultaneously. Many of these extensions
will be discussed in later chapters of this book.

1.4 IMPORTANT REASONS FOR MODELING

Statistical modeling, as discussed in this text, is an activity that leads to a mathe-
matical description of a process in terms of the variables of the process. Once a
satisfactory model has been found, it can be used for several different purposes.

i. Usually, the model leads to a simple description of the main features of the
data at hand. We learn which of the explanatory variables have an effect on
the response. This tells us which explanatory variables we have to change in
order to affect the response. If a variable does not affect a response, then
there may be little reason to measure or control it. Not having to keep track
of something that is not needed can lead to significant savings.



Abraham Abraham CO1 November 8, 2004 0:33

1.5 Data Plots and Empirical Modeling 17

ii. The functional relationship between the response and the explanatory
variables allows us to estimate the response for given values of the
explanatory variables. It makes it possible to infer the response for values of
the explanatory variables that were not studied directly. It also allows us to
ask “what if’-type questions. For example, a model for sales can give us
answers to questions of the following form: “What happens to sales if we
keep our price the same, but increase the amount of advertising by 10%?”
or “What happens to the gross national product if interest rates decrease by
one percentage point?” Knowledge of the relationship also allows us to
control the response variable at certain desired levels. Of course, the quality
of answers to such questions depends on the quality of the models that are
being used.

iii. Prediction of future events is another important application. We may have a
good model for sales over time and want to know the likely sales for the next
several future periods. We may have developed a good model relating sales
at time 7 to sales at previous periods. Assuming that there is some stability
over time, we can use such a model for making predictions of future sales.

In some situations, the models seen here are well grounded in theory.
However, often theory is lacking and the models are purely descriptive of
the data that one has collected. When a model lacks a solid theoretical
foundation, it is questionable whether it is possible to extrapolate the results
to new cases that are different from the ones occurring in the studied data
set. For example, one would be very reluctant to extrapolate the findings in
Example 1.2.4 and predict hardness for springs that were subjected to
temperatures that are much higher than 60°C.

iv. A regression analysis may show that a variable that is difficult and
expensive to measure can be explained to a large extent by variables that are
easy and cheap to obtain. This is important information because we can
substitute the cheaper measurements for the more expensive ones. It may be
quite expensive to determine someone’s body fat because this requires that
the whole body be immersed in water. It may be expensive to obtain a
person’s bone density. However, variables such as height, weight, and
thickness of thighs or biceps are easy and cheap to obtain. If there is a good
model that can explain the expensively measured variable through the
variables that are easy and cheap to obtain, then one can save money and
effort by using the latter variables as proxies.

1.5 DATA PLOTS AND EMPIRICAL MODELING

Good graphical displays are very helpful in building models. Let us use the
data in Table 1.4 to illustrate the general approach. Note that with one response
and p explanatory variables, each case (in this situation, each car) represents a
point in (p + 1) dimensional space. Most empirical modeling starts with plots
of the data in a lower dimensional space. Typically, one starts with pairwise
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(two-dimensional) scatter plots of the response against each of the explanatory
variables. The scatter plot of fuel consumption (gallons/100 miles) against weight
of the car in Figure 1.4aillustrates that heavier cars require more fuel. It also shows
that the relationship between fuel consumption and weight is well approximated
by a linear function. This is true at least over the observed weight range from
approximately 2,000 to 4,000 pounds. How the function looks for very light and
very heavy cars is difficult to tell because such cars are not in our group of
considered cars; extrapolation beyond the observed range on weight is certainly
a very tricky task.

Knowing that this relationship is linear simplifies the interpretation of the re-
lationship because each additional 100 pounds of weight increases fuel efficiency
by the same amount, irrespective of whether we talk about a car weighing 2,000
or 3,500 pounds. For a quadratic relationship the interpretation would not be as
straightforward because the change in fuel consumption implied by a change in
weight from 2,000 to 2,100 pounds would be different than the one implied by a
change in weight from 3,500 to 3,600 pounds.

Another notable aspect of the data and the graph in Figure 1.4a is that the
observations do not lie on the line exactly. This is because of variability. Our
model recognizes this by allowing for a random component. On average, the fuel
efficiency can be represented by a simple straight-line model, but individual ob-
servations (the fuel consumption of individual cars) vary around that line. This
variation can result from many sources. First, it can be pure measurement error.
Measuring the fuel consumption on the very same car for a second time may re-
sult in a different number. Second, there is variation in fuel consumption among
cars taken from the very same model line. Despite being from the same model
line and having the same weight, cars are not identical. Third, cars of identical
weight may come from different model lines with very different characteristics.
It is not just weight that affects the fuel consumption; other characteristics may
have an effect. Engine sizes may be different and the shapes may not be the
same. One could make the model more complicated by incorporating these other
factors into it. Although this would reduce the variability in fuel consumption,
one should not make the function so complicated that it passes through every
single point. Such an approach would ignore the natural variability in measure-
ments and attach too much importance to random variation. Henri Poincare, in
The Foundations of Science [Science Press, New York, 1913 (reprinted 1929),
p. 169] expresses this very well when he writes,

Pass to an example of a more scientific character. I wish to determine
an experimental law. This law, when I know it, can be represented by a
curve. I make a certain number of isolated observations; each of these
will be represented by a point. When I have obtained these different
points, I draw a curve between them, striving to pass as near to them as
possible and yet preserve for my curve a regular form, without angular
points, or inflections too accentuated, or brusque variation of the radius
of curvature. This curve will represent for me the probable law, and I
assume not only that it will tell me the values of the function intermediate



FIGURE 1.4

(a) Pairwise
scatter plot of y
(gallons/100 miles)
against weight.

(b) Pairwise
scatter plot of y
(gallons/100 miles)
against
displacement.

(c) Pairwise
scatter plot of y
(gallons/100 miles)
against number of
cylinders. (d) Three-
dimensional plot of
y (gallons/100
miles) against
weight and
displacement
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between those which have been observed, but also that it will give me the
observed values themselves more exactly than direct observation. This is
why I make it pass near the points, and not through the points themselves.

Here, we have described a two-dimensional representation of fuel consump-
tion y and weight x;. Similar scatter plots can be carried out for fuel consumption
(v) and displacement x; and also fuel consumption (y) and number of cylinders
x3. The graphs shown in Figures 1.4b and 1.4c indicate linear relationships, even
though the strengths of these relationships differ.

We notice from Figure 1.4 that each pairwise scatter plot exhibits linear-
ity. Is this enough evidence to conclude that the model with the three explana-
tory variables should be linear also? The answer to this question is “no” in
general. Although the linear model, y = By + B1x1 + Baxz + B3x3 + €, may pro-
vide a good starting point, the model may miss more complicated associations.
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FIGURE 1.4
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Two-dimensional displays are unable to capture the joint relationships among
the response and more than one explanatory variable. In order to bring out the
joint relationships between a response and two explanatory variables (e.g., weight
x1 and displacement x,), one needs to look at a three-dimensional graph of fuel
consumption y on both x; and x;. This is done in Figure 1.4d. One notices that
in such graphs it becomes considerably more difficult to recognize patterns, es-
pecially when working with relatively small data sets. However, at least from
this graph it appears that the relationship can be approximated by a plane. The
equation of a plane is given by y(gallons/100 miles) = By + B1x1 + Brx». This
function implies that for a fixed value of x,, a change in x; by one unit changes
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the response y by B; units. Similarly, for a fixed value of x;, a change in x, by
one unit changes the response y by 8, units. The effects of changes in x; and x;
are additive. Additivity is a special feature of this particular representation. It is
a convenient simplification but need not be true in general. For some relation-
ships the effects of a change in one explanatory variable depend on the value of
a second explanatory variable. One says that the explanatory variables interact
in how they affect the response y.

Up to now, we have incorporated the effects of x| and x,. What about the effect
of the third explanatory variable x3? It is not possible to display all four variables
in a four-dimensional graph. However, judging from the pairwise scatterplots and
the three-dimensional representations (y, x1, x2), (v, X1, X3), and (y, x2, x3), our
linear model in xi, x,, and x3 may provide a sensible starting point.

1.6 AN ITERATIVE MODEL BUILDING APPROACH

FIGURE 1.5 A
model building
system

An understanding of relationships can be gained in several different ways. One
can start from a well-developed theory and use the data mostly for the estimation
of unknown parameters and for checking whether the theory is consistent with the
empirical information. Of course, any inconsistencies between theory and data
should lead to a refinement of the model and a subsequent check whether the
revised theory is consistent with the data.

Another approach, and one that is typically used in the social sciences, is to
start from the data and use an empirical modeling approach to derive a model
that provides a reasonable characterization of the relationship. Such a model may
in fact lead to a new theory. Of course, theories must be rechecked against new
data, and in cases of inconsistencies with the new information, new models must
be developed, estimated, and checked again. Notice that good model building is
a continual activity. It does not matter much whether one starts from theory or
from data; what matters is that this process continues toward convergence.

A useful strategy for building such models is given in Figure 1.5. Initially, a
tentative model is specified from relevant data and/or available theory. In some
cases, theory will suggest certain models. In other situations, theory may not

|N0

— . Model checking: Yes Use the
Specifications Estimation
model

Is the model adequate?
Theory
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exist or may be incomplete, and data must be used to specify a reasonable initial
model; exploratory data analysis and innovative ways of displaying information
graphically are essential. The tentatively entertained model usually contains un-
known parameters that need to be estimated. Model fitting procedures, such as
least squares or maximum likelihood, have been developed for this purpose.
This is discussed further in the next chapter.

Finally, the modeler must check the adequacy of the fitted model. Inadequacy
can occur in several ways. For example, the model may miss important variables, it
may include inappropriate and unnecessary variables that make the interpretation
of the model difficult, and the model may misspecify the functional form. If the
model is inadequate, then it needs to be changed, and the iterative cycle of “model
specification—parameter estimation—model checking” must be repeated. One
needs to do this until a satisfactory model is obtained.

1.7 SOME COMMENTS ON DATA

This discussion shows that good data are an essential component of any model
building. However, not all data are alike, and we should spend some time dis-
cussing various types of data. We should distinguish between data arising from
designed experiments and data from observational studies.

Many data sets in the physical sciences are the result of designed studies that
are carefully planned and executed. For example, an engineer studying the impact
of pressure and temperature on the yield of a production process may manufacture
several products under varying levels of pressure and temperature. He or she may
select three different pressures and four different settings for temperature and
conduct one or several experiments at each of the (3) x (4) = 12 different factor-
level combinations. A good experimenter will suspect that other factors may
have an impact on the yield but may not know for sure which ones. It could be
the purity of the raw materials, environmental conditions in the plant during the
manufacture, and so on. In order to minimize the effects of these uncontrolled
factors, the investigator will randomize the arrangement of the experimental runs.
He or she will do this to minimize the effects of unknown time trends. For example,
one certainly would not want to run all experiments with the lowest temperature on
one day and all experiments using the high temperature on another. If the process
is sensitive to daily fluctuations in plant conditions, an observed difference in the
results of the two days may not be due to temperature but due to the different
conditions in the plant. Good experimenters will be careful when changing the
two factors of interest, keeping other factors as uniform as possible. What is
important is that the experimenter is actively involved in all aspects of obtaining
the data.

Observational data are different because the investigator has no way of im-
pacting the process that generates the data. The data are taken just as the data-
generating process is providing them. Observational data are often referred to as
“happenstance” data because they just happen to be available for analysis.
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Economic and social science information is usually collected through a cen-
sus (i.e., every single event is recorded) or through surveys. The problem with
many social science data sets is that several things may have gone wrong during
the data-gathering process, and the analyst has no chance to recover from these
problems. A survey may not be representative of the population that one wants
to study. Data definitions may not match exactly the factors that one wants to
measure, and the gathered data may be poor proxies at best. Data quality may
be poor because there may not have been enough time for careful data collection
and processing. There may be missing data. The data that come along may not
be “rich” enough to separate the effects of competing factors.

Consider the following example as an illustration. Assume that you want to
explain college success as measured by student grade point average. Your admis-
sion office provides the student ACT scores (on tests taken prior to admission),
and you have survey data on the number of study hours per week. Does this
information allow you to develop a good model for college success? Yes, to a
certain degree. However, there are also significant problems. First, college GPA
is quite a narrow definition of college success. GPA figures are readily available,
but one needs to discuss whether this is the information one really wants. Sec-
ond, the range of ACT scores may be not wide enough to find a major impact
of ACT scores on college GPA. Most good universities do not accept marginal
students with low ACT scores. As a consequence, the range of ACT scores at
your institution will be narrow, and you will not see much effect over that limited
range. Third, study hours are self-reported, and students may have a tendency to
make themselves look better than they really are. Fourth, ACT scores and study
hours tend to be correlated. Students with a high ACT scores tend to have good
study skills; it will be rare to find someone with a very high ACT score who does
not study. The correlation between the two explanatory variables, ACT score and
study hours, makes it difficult to separate the effects on college GPA of ACT
scores and study hours.

1.1. Consider the following relationships. c. The weight of the coating of electrolytic
Comment on the type of relationships that tin plate may be affected by the current,
can be expected, supporting your discussion acidity, rate of travel of the strip, and
with simple graphs. In which of these cases distance from the anode.
can you run experiments that can help you d. The diameter of a condenser coil may be
learn about the relationship between the affected by the thickness of the coil,
response y and the explanatory variables x? number of turns, and tension in the
a. Tensile strength of an alloy may be related winding.
to hardness and density of the stock. e. The moisture content of lumber may

b. Tool life may depend on the hardness of depend on the speed of drying, the drying
the material to be machined and the depth temperature, and the dimension of the
of the cut. pieces.
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f. The performance of a foundry may be
affected by atmospheric conditions.

g. The life of a light bulb may vary with the
quality of the filament; the tile finish may
depend on the temperature of firing.

Consider the payout of the following 18
investments (data file payout). The
investments vary according to the invested
principal P, the monthly interest rate R, and
the length of maturity 7' (in months). The
data in the following table were generated
from the deterministic continuous
compounding model, Payout = PeR”. No
uncertainty was added to the equation.

It is reasonable to assume that the payout
increases with the principal, the interest rate,
and the maturity. However, without theory,
the form of the relationship is not obvious.
An empirical model building strategy that
does not utilize available theory will be
inefficient and may never find the hidden
model. Construct scatter plots of the response
(payout) on the explanatory variables
(principal, interest rates, and maturity), and
you will see what we mean. It is quite
difficult to “see” the correct relationship.

Plot the logarithm of payout against the
product of interest rate and maturity, and
label the points on the scatter plot according
to the invested principal (1,000, 1,500, and
2,000). What do you see, and how does this
help you arrive at the correct model?

Principal Interest Rate Time (Months) Payout
1,000 0.001 12 1,012.1
1,000 0.002 24 1,049.2
1,000 0.003 12 1,036.7
1,000 0.001 36 1,036.7
1,000 0.002 12 1,024.3
1,000 0.003 36 1,114.0
1,500 0.001 36 1,555.0
1,500 0.002 24 1,573.8
1,500 0.003 24 1,612.0
1,500 0.010 12 1,691.2
1,500 0.010 36 2,150.0
1,500 0.010 12 1,691.2
1,200 0.015 12 1,436.7
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Principal Interest Rate Time (Months) Payout

1,200 0.015 36 2,059.2
1,200 0.015 36 2,059.2
1,200 0.005 24 1,353.0
1,200 0.005 12 1,274.2
1,200 0.005 36 1,436.7
1.3. Look ahead in the book and read the problem

1.4.

1.5.

1.6.

1.7.

1.8.

1.9.

descriptions of several exercises in Chapters
2 and 4-8. Find examples where the data
originate from a designed experiment. Find
examples where the data are the result of
observational studies.

List other examples of designed experiments
and observational studies.

Look ahead in the text and consider the data
sets in Exercises 2.8, 2.9, 2.16-2.18, 2.21,
2.24, and 2.25 of Chapter 2. Construct
pairwise scatter plots of the response variable
against the explanatory variable(s). Discuss
whether a linear model gives an appropriate
description of the relationship. Speculate on
the reasons for the variability of the response
around the fitted line.

Experiment with three-dimensional displays
of the information. For example, consider the
data generated in Exercise 1.2. Consider the
logarithm of payout as the response and the
logarithm of the principal and the product of
interest rate and maturity as the two
explanatory variables. Discuss whether it is
easy to spot three-dimensional relationships
from such graphs. As a second example,
consider the silkworm data in Exercise 4.15
of Chapter 4.

Explain the statement that a nonlinear model
in the explanatory variables may turn out to
be linear in the parameters. Give examples.
For instance, is the quadratic model in x a
model that is linear in the parameters?
Explain.

Give examples of regression models that are
nonlinear in the regression parameters.

Can you think of situations in which the
variability in the response depends on the
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level of the explanatory variables? For
example, consider sales that increase over
time. Why is it reasonable to expect more
variability in sales when the sales are high?
Discuss.

Causality and correlation. Assume that a
certain data set exhibits a strong association
among two variables. Does this imply that
there is a causal link? Can you think of
examples where two variables are correlated
but not causally related? What about the
annual number of storks and the annual
number of human births? Assume that your
data come from a time period of increasing
prosperity, such as the one immediately
following World War II. Prosperity may
impact the storks, and it may also affect
couples’ decisions to have families. Hence,
you may see a strong (positive) correlation
between the number of storks and the number
of human births. However, you know that
there is no causal effect. Can you describe the
underlying principle of this example? Give
other examples?

. Collect the following information. Obtain

average test scores for the elementary schools
in your state (region). Obtain data on the
proportion of children on subsidized lunch.
Construct scatter plots. Do you think that
there is a causal link between test scores and
the proportion of children on subsidized
lunch? If not, how do you explain the results
you see. What if you had data on average
income or the educational level of parents

in these districts? Do you expect similar
results?

. Salary raises are usually expressed in

percentage terms. This means that two people
with the same percentage raise, but different
previous salaries, will get different monetary
(dollar) raises. Assume that the relative raise
(R = RelativeRaise = PercentageRaise/100)
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is strictly proportional to performance (that
is, RelativeRaise = SPerformance).

a. A plot of RelativeRaise against
Performance exhibits a perfect linear
relationship through the origin. Would a plot
of AbsoluteRaise against Performance also
exhibit a perfect linear association? Would a
regression of AbsoluteRaise against
Performance lead to the desired slope
parameter 3?7

b. Consider the logarithmic transformation of
the ratio (CurrentSalary/ PreviousSalary).
What if you were to plot the logarithm of this
ratio against the performance? How would
this help you?

. Consider Example 1.2.6 in which we studied

the effectiveness of five oral contraceptives.
We used model (1.8),

yi=azi+ pixp + -+ Bsxis + &
where z; and y; are the HDLC readings at the
beginning and after 6 months, and xi, ..., x5
are indicators for the five treatment
(contraceptive) groups.

How would you convince someone that
this is an appropriate specification? In order
to address this question, you may want to
look at five separate scatter plots of y against
z, one for each contraceptive group. Make
sure these graphs are made with identical
scales on both axes. Have the statistical
software of your choice draw in the “best
fitting” straight lines. Your model in Eq. (1.8)
puts certain requirements on the slopes of
these five graphs. What are these
requirements?

How would you explain a model in which
o = 1? In this case, the emphasis is on
changes in the HDLC, and the question
becomes whether the magnitudes of the
changes are related to the contraceptives.
How would you analyze the data under this
scenario?
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Simple Linear
Regression

2.1 THE MODEL

In this chapter, we consider the linear regression model with a single predictor
(regressor) variable. The model is given as
y=u + €, where u= o+ Bix 2.1

It is commonly referred to as the simple linear regression model because only
one predictor variable is involved. Suppose we have n pairs of observations (x;, y;)
i=1,2,...,n. Then we can characterize these observations as

yi =PBo+ Bixi + €, i=1,2,...,n
For the hardness data in Example 1.2.4 of Chapter 1, we have

55.8 = fo + B1.30 + €1
59.1 = Bo+ B1.30 + ¢
‘ ,éo Bi 2 22)

16.9 = Bo + B1.60 + €14

2.1.1 IMPORTANT ASSUMPTIONS

The standard analysis is based on the following assumptions about the regressor
variable x and the random errors ¢;,i =1, ..., n:

1. The regressor variable is under the experimenter’s control, who can set the
values xq, ..., x,. This means that x;, i =1, 2, ..., n, can be taken as
constants; they are not random variables.

2. E(¢,)=0,i=1,2,...,n.

This implies that u; = E(y;) = Bo + Bixi,i=1,2,...,n.

3. V(ej)=0c?isconstant foralli=1,2,...,n.

This implies that the variances V (y;) = o2 are all the same. All
observations have the same precision.

26
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4. Different errors €; and €;, and hence different responses y; and y;, are
independent. This implies that Cov(e;, €;) =0, fori # j.

The model implies that the response variable observations y; are drawn from
probability distributions with means u; = E(y;) = Bo + B1x; and constant vari-
ance o2, In addition, any two observations y; and y j, for i # j, are independent.

2.1.2 OBJECTIVES OF THE ANALYSIS
Given a set of observations, the following questions usually arise:

1. Can we establish a relationship between y and x?
2. Can we predict y from x? To what extent can we predict y from x?

3. Can we control y by using x?

In order to answer these questions within the context of the simple linear regression
model with mean u = By + B1x, we need to estimate By, 8, and o2 from available
data (x;, ¥;),i =1,2,...,n. The slope g is of particular interest, because a zero
slope indicates the absence of a linear association.

2.2 ESTIMATION OF PARAMETERS
2.2.1 MAXIMUM LIKELIHOOD ESTIMATION

This is a common method of estimating the parameters. Maximum likelihood es-
timation selects the estimates of the parameters such that the likelihood function
is maximized. The likelihood function of the parameters B, B1, o2 is the joint
probability density function of y;, y», ..., y,, viewed as a function of the param-
eters. One looks for values of the parameters that give us the greatest probability
of observing the data at hand.

A probability distribution for y must be specified if one wants to use this
approach. In addition to the assumptions made earlier, we assume that €; has a
normal distribution with mean zero and variance 2. This in turn implies that y;
has a normal distribution with mean w; = By + Bi1x; and variance o>. We write
€~ N(0,0?) and y; ~ N(Bo + Bixi, 02).

The probability density function for the ith response y; is

1 1
2 2
i1Bo, B, 0% = —— i = fo — Bixi 23
pWilBo, B1,o7) N eXp|: 552 Vi — Bo— Prxi) j| (2.3)
and the joint probability density function of yi, yp, ..., y, is

1\ 1 &
PO Y2, e YalBos B, %) = (E) o exp [—p ;@i — o — ﬂm)z}
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Treating this as a function of the parameters leads us to the likelihood function
L(Bo. B1.02|y1, ¥2, - - -, yu), and its logarithm

1 n
1(Bo, P1, o) =InL(Bo, p1,0*) = K — nino — 73 ;‘(y,- — Bo—Pixi)* (24)

Here, K = (—n/2)In(2m) is a constant that does not depend on the parameters.
The maximum likelihood estimators (MLEs) of B, 81, 02 maximize (8o, Bi, 02).
Maximizing the log-likelihood (8o, B, o) with respect to By and B, is equivalent
to minimizing >__, (y; — Bo — B1x;)>. The method of estimating f and B; by
minimizing S(Boy, B1) = Z?:l (yi — Bo — Bix;)? is referred to as the method of
least squares.

2.2.2 LEAST SQUARES ESTIMATION

This discussion shows that maximum likelihood estimation, with the assumption
of a normal distribution, leads to least squares estimation. However, least squares
can be motivated in its own right, without having to refer to a normal distribution.
One wants to obtain a line u; = By + B x; that is “closest” to the points (x;, y;).
The errors €; =y; — i =y; — Bo — B1x; (i = 1,2, ..., n) should be as small as
possible. One approach to achieve this is to minimize the function

SBo. =Y =Y i—um)=Y i—Po—Px) (25
i=1

with respect to By and ;. This approach uses the squared distance as a measure of
closeness. Note that other measures could be used, such as the absolute value of
the difference, or some other power of the absolute difference. We use a symmetric
loss function where positive and negative differences are treated the same. One
could also think of nonsymmetric loss functions where over- and underpredictions
are weighted differently. The squared error loss is the function that arises from
the maximum likelihood procedure.

Taking derivatives with respect to By and f;, and setting the derivatives to

Z€ro,
0SB0 B = o
—8,80 = 22()’; Bo — Bixi) =0
and
9S(Bo, B1)
87,31 =-2 Z()’z = Bo— Bixi)xi =0

leads to the two equations:
nBo+ (X xi)Bi=>y

(2.6)
(% w0)fo+ (E )81 = Zxn
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These are referred to as the normal equations. Suppose that B and 3, denote the
solutions for By and B; in the two-equation system (2.6). Simple algebra shows
that these solutions are given by

_ DXy — w X =00 =) sy

: - = 2.7
ﬂl sz — (Z—x')z Z(xi —)_C)Z Six ( )
Bo=3 - Bix, Wherej;:zyi and )—szxi
n n

They are called the least squares estimates (LSEs) of By and B, respectively.

2.3 FITTED VALUES, RESIDUALS, AND THE ESTIMATE OF o2

FIGURE 2.1 Mean
Response and
Estimated
Regression Line:
Simple Linear
Regression

The expression [i; = BO + ,3 1x; is called the fitted value that corresponds to the
ith observation with x; as the value for the explanatory variable. It is the value
that is implied by the fitted model. Some textbooks refer to it as J;.

The difference between y; and f1;, y; — [L; = e;, is referred to as the residual.
It is the vertical distance between the observation y; and the estimated line f;
evaluated at x;.

The simple linear regression model, sample data, and the fitted line are illus-
trated in Figure 2.1. The broken line represents the mean E (y;) = u; = Bo + BiX;.
The data are generated from distributions with densities sketched on the graph.
The resulting data are used to determine the LSEs Bo and ;. The solid line on
the graph represents the estimated line /i; = Bo + B1x;. Imagine repeating this
experiment with another set of n observations y; at these specified x’s. Due to
the random component ¢; in the model, the observations will be different, and the
estimates and the fitted line would change.

~~-.__ =P+ Byx (dashed line)
°
[ ]

Response y

11 = By + B (solid line)

Regressor x
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2.3.1 CONSEQUENCES OF THE LEAST SQUARES FIT

Least squares estimates set the derivatives of S(By, B1) equal to zero. The equa-
tions, evaluated at the least squares estimates,

N A A
LD — 2~ (Bo+ Brx =0

and
aS(ﬂo,ﬂl) —23 [y — (Bo + Brx)lxi =0

imply certain restrictions:

i. ', e; =0. This can be seen from the derivative with respect to fy.
ii. Y 7, eix; =0. This follows from the derivative with respect to f;.

iii. >/, A;e; =0. This is because

Zﬂiei = Z(,go + Bixi)ei = Bo Zei + Bi inei =0

due to the results in (i) and (ii).

iv. (%, y)is a point on the line 1 = By + B 1x. Evaluating the fitted model at x
leads to Bo + 1% = (5’ B1x) + pi1x =7y
v. S(Bo, B1) =Y""_, €7 is the minimum of S(ﬂo B1).

2.3.2 ESTIMATION OF o2

Minimization of the log-likelihood function (B, B1, o%) in Eq. (2.4) with respect
to o2 leads to the MLE
S(Bo, p
s2_ Stho. By 08
n
The numerator S(Bo, B1) =3 1 (yi — (Bo+ B1x))> =31, €? is called the
residual sum of squares; it is the minimum of S(Sy, B1).
The LSE of ¢ is slightly different. It is obtained as

S2 — N (BO, B 1)
n—2
It is also called the mean square error (MSE). The only difference between the
estimates in Egs. (2.8) and (2.9) is in the denominator. The MLE divides by n,
whereas the LSE divides by n — 2.

The residual sum of squares, S(Bo, B1) = > 1612 consists of n squared
residuals. However, the minimization of S(fy, 1) has introduced two constraints
among these n residuals; see (i) and (ii) given previously. Hence, only n — 2 resid-
uals are needed for its computation. The remaining two residuals can always be
calculated from > e; =) e;x; =0. One says that the residual sum of squares
has n — 2 “degrees of freedom.” The number of degrees of freedom symbolizes

2.9)
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the number of independent components that are needed to determine the sum of
squares.

The difference between the ML and the LS estimate of o2 is small, especially
if n is reasonably large. In practice, one prefers the LSE s because it is an
unbiased estimate of o'2; this is discussed further in Chapter 4.

2.3.3 LEAST SQUARES CALCULATIONS FOR THE HARDNESS EXAMPLE

Here we have n=14, Y2 x; =630, Y12, v, =520.2, Y12, xiy; = 20,940,
S x2=130,300:

i=1"
5 20,940 — (630 x 520.2/14) .

- — 1266
P 30,300 — (6302/14)
. 5202 630
=2 (—1.266)—- =94.123
Po=—g ¢ Vi

14
2 2

=— - =12.235
e

The slope estimate A is negative. It implies lower than average hardness for items
produced under higher than average temperatures. Is the estimate 3; = —1.266
extreme enough to claim that the unknown (population) slope g, is different from
zero? For the answer to this question, one needs to understand the sampling prop-
erties of the estimators. In other words, if the true slope were zero and if we
repeated the experiment many times at the same given temperature values, what
would be the natural variability in the estimates 3;? Would the one observed
estimate B = —1.266 appear like an extreme realization from this sampling dis-
tribution? If our estimate is large compared to the sampling distribution that can
be expected, then the estimate suggests that 8, is different from zero.

2.4 PROPERTIES OF LEAST SQUARES ESTIMATES

Let us write the LSE of 8; in Eq. (2.7) in slightly more convenient form:

n n

xi —X)i—y) 2 =X)yi—y) (x—X)

n
i=1 i=1 i=1

51 = n = n
> (xi —X)? > (i —x)?
i=1 i=1
i(xi —X)y; n
= lz,,l = ZCiYi
(—®2 =

where ¢; = (x; — X) /s, are constants; s, = > ;_, (x; — X)2.
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The constants ¢; have several interesting properties:

i Z?:l ¢ = Z?:l (xi - )_C)/Sxx =0
i Yoy e =200 X — ) /s =1 (2.10)
ii. Y c?=>" (i —%)?/s2=1/sn

These results can be used to derive the expected values and the variances of the
LSEs B¢ and B;.

2.4.1 EXPECTED VALUES OF LEAST SQUARES ESTIMATES

1. E(Bn = E( > ciYi) =Y GE) =Y ci(Bo+ Bixi)
i=1
=) ci+pi)cixi=0+pr x1=p (2.11)
Since E(B1) = B1, we say that 3 is an unbiased estimator of ;. This

implies that when the experiment is repeated a large number of times, the
average of the estimates 8, [i.e., E(fB1)] coincides with the true value §;.

2. Similarly,
E(B)=EF — p1X)=E(y) —XEB)=E®F) — Bi %
However, E(y) = E(Y_ yi/n) =[>_1_(Bo + Bixi)]/n = o + Bi1%.

Hence,
E(Bo)=Bo+ Bi1X — fix=fo (2.12)
Thus, B is also unbiased for By.
3. The LSE of 1o = By + Bixo is given by 1o = Bo + B1x0 and
E(fto) = Bo + Bixo = no. Hence, fi( is unbiased for p.
4. Tt can also be shown that s2 is an unbiased estimator of o 2. That is,
E(s*) =02 (2.13)

This result will be proved in Chapter 4 for the general regression model.

2.4.2 VARIANCES OF LEAST SQUARES ESTIMATES

L VD=V cyi) = c2V(y) =Y. c?o? since the y;’s are
independent and V (y;) = o is constant.
Hence, from Eq. (2.10)

V(B1)=0%/su (2.14)

2. In order to obtain the variance of B, we write the estimator B as follows:

Bo=3—Bix =X (yi/n) — X 3 (xi — X)¥i /S
i=1 i=1
n 1 — i__
= > kiyi, Whereki:—_u
~

14 n SXX
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Then,
. 5, ., L1 %
V(Bo) = E kioc“=0o |:—+—] (2.15)
i1 o Sw

Simple algebra shows that ) ki2 equals the second factor in the previous
expression.

3. For the variance of V (fig), we write

fro=Bo+ Bixo =3 — B1x + Pixo =y + B1(xo — ¥)

Z{%+(XO_)_C)(xi—X)yi}

i=1 Sx

n 1 . 3
n s)C.X

i=1
n ) . s

=) dy, Wheredi=:_+w}
i=l n Sxx

Then,
N & 1 (x _2)2
V(o) =) _df ZZ(’Z[TFOT] (2.16)
i=1 -

Simple algebra shows that ) d,.2 equals the second factor in the previous
expression.

2.5 INFERENCES ABOUT THE REGRESSION PARAMETERS

The objective of most statistical modeling is to say something about the parameters
of the population from which the data were taken (sampled). Of course, the more
data, the smaller the uncertainty about the estimates. This fact is reflected in the
variances of the LSEs; the denominators in the variances in Eqgs. (2.14)—(2.16)
increase with the sample size.

The uncertainty in the estimates can be expressed through confidence inter-
vals, and for that one needs to make assumptions about the distribution of the
errors. In the following discussion, we assume that the errors, and hence the
observations, are normally distributed. That is,

yi = o+ Bixi + €, wheree ~N(0,0?)

2.5.1 INFERENCE ABOUT 34

The question whether or not the slope f; is zero is of particular interest. The slope
B1 expresses the effect on E(y) of a unit change in the x variable.

Linear combinations of normal random variables are again normally dis-
tributed. The estimator B = Zl'-’zl ¢;yi, where ¢; =(x; — X)/sy, i1s a linear
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combination of normal random variables and hence itself a normal random vari-
able. This result is shown in Chapter 3 for a more general situation. The mean
and the variance were obtained before. We find that

A 02
B1 “‘N<,31, —)
SXX

B1— Bi
O//Sxx
The factor o2 in the variance is unknown and must be estimated. For inferences

about B8, we replace the unknown o2 by its LSE s? in Eq. (2.9). We consider the
ratio

or, after standardization,

~N(0, 1)

:(31—,31):(31—,31) (H—Z)S
8//Sxx 0/ /Sxx o?(n —
The last identity (which you can check easily) appears unnecessary. However,

the motivation for writing it in this form is that it facilitates the derivation of the
sampling distribution. It can be shown that

B — Bi

o/ o

2.17)

1. The first term Z = follows a standard normal distribution.

—2)s?
il. u follows a chi-square distributon with n — 2 degrees of freedom,
o
)(3_2 (see the appendix in Chapter 4 for the proof in the general case).
iii. s2and B, are independent (this is proved for the general case in Chapter 4).

iv. f Z~N(QO,1),U~ XVZ, and Z and U are independent, then it follows that
Z/+/U/v has a Student ¢ distribution with v degrees of freedom. We denote
this distribution as ¢ (v).

From the results in (i)—(iv), it follows that
BB

S//Sxx

Standardization of ,31 — B by the standard deviation of ,31, /s, leads to a
standard normal distribution. Standardization by the estimated standard devia-
tion, s/./S., leads to a t distribution. The estimated standard deviation of S is
also referred to as the standard error of the estimate 5, and we sometimes
write it as s.e.(B1) = s/./s.. The standard error tells us about the variability of

the sampling distribution of B;; that is, the extent to which an estimate can differ
from the true (population) value.

~t(n —2) (2.18)

Confidence Interval for 3
Letus use (1 —a/2; n — 2) to denote the 100(1 — «/2) percentile of a ¢ distri-
bution with n — 2 degrees of freedom. Since the ¢ distribution is symmetric, we
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FIGURE 2.2

t Distribution and
Confidence
Intervals

al2 ol2

H(al2; n-2) 0.0 H(1=t/2: n=2)

have that the 100(«/2) percentileis givenby t (a/2;n —2) = —t(1 —a/2; n — 2)
(Figure 2.2).

For example, the 97.5th and the 2.5th percentiles of the ¢ (12) distribution are
given by 1(0.975; 12) =2.18 and #(0.025; 12) = —2.18, respectively.

The sampling distribution result in Eq. (2.18) implies

P|:—t(1—g;n—2><ﬁl_'31 <t(1—g;n—2)}=l—a
2 S/ Sxx 2
or

Pla —i[1-2 ) g <B+i[1-Z 2) =1
- ——in—2)—<p1 < — —;n— =1l—-«
! 2’ Vo 2’ Sr

Hence, a 100(1 — «) percent confidence interval for 8, is defined by the previous
equation, and it is given by

[31—1‘(1—%;1’1—2)%, 31—}—1‘(1—%;11—2)\;;_] (2.19)

Note the form of this interval. You get it by starting with the point estimate 3;
and by adding and subtracting a certain multiple of its standard error. That is,

Estimate =+ (¢ value)(standard error of estimate)

where the standard error of the estimate is the estimated standard deviation of
the sampling distribution of B, given by 8/s/Sx. For a 95% confidence interval
and o = 0.05, one needs to look up the 97.5th percentile #(0.975; n — 2) and the
2.5th percentile, #(0.025; n — 2) = —¢(0.975; n — 2).
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Testing a Hypothesis about 3
When testing Hy: 81 = 0 against the alternative H, : 81 # 0, one assesses the mag-
nitude of the ¢ ratio

B B
= = 2.20
0 s.e.(B1)  S//Sw (220

The ¢ ratio is the standardized difference of the estimate 8; from the null hy-
pothesis (which in this case is zero). The issue is whether the observed ¢ ratio
is large enough in absolute value so that one can also claim that the population
parameter S is different from zero. A comment on notation: The subscript zero
in the observed ¢ ratio fy = Bl/s.e.(,él) makes reference to the zero constraint
in Athe null hypothesis g; =0. We also write this ¢ ratio as to(,31) or simply as
e -

Under the null hypothesis (8; =0), the ¢ ratio, T = B/s.e.(f1), follows a
t(n — 2) distribution. Hence, one can calculate the probability

p="P[T|=|1|]]=2P[T = |1o]] (2.21)

This is referred to as the p value, or the probability value. If this p value is small
(smaller than a selected significance level, usually 0.05), then it is unlikely that
the observed ¢ ratio has come from the null hypothesis. In such case, one would
not believe in the null hypothesis and reject the hypothesis that 8; =0. On the
other hand, if this p value is large (larger than the significance level), one would
conclude that the observed ¢ value may have originated from the null distribution.
In this case, one has no reason to reject H.

2.5.2 INFERENCE ABOUT 1o = Bo + B1Xo

1 Xo—X)(x; — % . . .
We saw that flo = ;_, d;y;, whered; = — + M. Since j1¢ is a lin-
n sxx
ear combination of normal random variables, fiy is normal. Earlier we derived the

mean E(f19) = uo = Po + PBi1xo and the variance

o2
V(o) = [% T2 };2

Sxx
Hence, the standardized random variable
o — o
ol ="

Sxx

~N(0, 1)

Substitution of the estimate s for o changes the sampling distribution from a
normal to a # (n — 2) distribution. As before, it can be shown that

o — Ko (Bo + Bixo) — (Bo + Bix)
T g[L oy eyl T w2 -2 22
s[z + T] s[; T]
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Using a ¢ distribution with n — 2 degrees of freedom (d.f.), a 100(1 — «) percent
confidence interval for 1 is given by
A A o 1 (xo—Xx)? 12
(Bo+Bixo) £t({1 — sn =2 s| -+ ——
—_—— 2 n

Sxx

(2.23)

estimate t value s.e.(Bo + B1xo)

Recall our rule about the construction of such intervals. Start with the point
estimate and add/subtract a multiple of the estimated standard deviation of the
point estimate, which is also referred to as the standard error of the estimate.

For the special case when xy =0, 1o simplifies to ;o = By and we can obtain
a 100(1 — &) percent confidence interval for By by setting xo = 0 in the previous
interval Eq. (2.23). This turns out to be

R a 1 x2]V2
Por(1-Jin—2)s|—+— (2.24)

no Sy

2.5.3 HARDNESS EXAMPLE CONTINUED

Bo=94.134, B = —1.266, 5., =Y (x; — X)> = 1,950, n = 14, s> =2.235. The
relevant degrees of freedom are n — 2 = 12. For a 95% confidence interval for

2.235
weneed 7(0.975, 12) =2.18; and 5 = =0.034. The 95% confidence
S Sr 1,950
interval for B is
B\ +1(0.975: 12)—
SXX

—1.266 + (2.18)(0.034)
—1.266 £ 0.072

The confidence interval for 8; extends from —1.338 to —1.194. Since “zero”
is not in this interval, the data provide substantial evidence to reject f; =0.
Temperature appears to have a significant effect on hardness. Since B is negative,
the hardness decreases as temperature increases.

Formally, one can test the null hypothesis 81 = 0 by calculating the ¢ ratio

L B 1266

0 seB) 0034
and its probability value, P(|T| > 37.4) ~ 0.0001. Since this is extremely small,
there is overwhelming evidence against the hypothesis 8; = 0. Temperature has

a major impact on hardness.
A 95% confidence interval for Sy uses the standard error

=-374

) 1 x
s.e.(Bo) = s2<— n x—) —1.575
n

XX
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The interval is given by

Bo £ 1(0.975; 12)s.e.(Bo)
94.134 + (2.18)(1.575) or 94.134 + 3.434
90.700 < o < 97.578

The 95% confidence interval for the mean response 1o = By + B1xo when xo = 55
is centered at

flo=94.134 + (—1.266)(55) =24.504

The standard error is

o) (1, oD 23 Ly 100

S.C. = — ERSEEE—— . _

Ho \a Sor 14 " 1950
= V02742 =0.524

The 95% confidence interval for the mean response at xo =55 is

24.504 £ (2.18)(0.524),24.504 £ 1.142, or
23.362 < g < 25.646

We are 95% confident that our interval from 23.362 to 25.646 covers the average
hardness for parts produced with temperature set at 55 degrees.

2.6 PREDICTION

We consider now the prediction of a single observation y, resulting from a new
case with level x, on the regressor variable. For illustration, in the hardness
example one may be interested in the next run with temperature 55, and one
may wish to predict the resulting hardness. Here, the emphasis is on a single
observation and not on the mean (average) response for a given x,.

The new observation y, is the result of a new trial that is independent of
the trials on which the regression analysis is based. However, we continue to
assume that the model used for the sample data is also appropriate for the new
observation.

The distinction between drawing inferences about the mean response (1, =
Bo + Bix,, and predicting a new observation y, must be emphasized. In the former
case, we discuss the mean of the probability distribution of all responses at x,. In
the latter case, we are concerned about an individual outcome from this probability
distribution (Figure 2.3).

The new observation can be written as

yp2130+ﬂlxp+€p

where €, is a future unknown random error, and x, is assumed known. Initially, let
us assume that By and B are known. Then the “best” prediction of y,, is obtained



FIGURE 2.3
Prediction: Simple
Linear Regression
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~--.__ M= By + Byx (dashed line)

Response y

Hp AoA
= Py + Bx (solid line)

p

Regressor x

by replacing €, with its expected value, namely zero. If By and B are known, the
prediction is given by
5)17 = :80 + lglxp

and the prediction error by

A

Yp = Yp=¢€p
The variance of the prediction error is
V(yp =9, =V(e,) =0’ (2.25)

In this case, the uncertainty about the prediction comes only through the random

eITor €.
p ~
Next, suppose that 8y and B are unknown and that they are estimated by B¢

and f,. Then the best prediction is obtained by
Jp= Bo + Bix p
and the prediction error is
Yp = 9p=(Bo+ Bixp) — (Bo+ Bixp) + €p=1p — Ly + €, (2.26)

The prediction error is the sum of two components: the new random error €,
zind the error in estimating the mean response at x, i, — fi,. The LSEs B¢ and
B1, and hence the estimation error i, — 1, are independent of €, since €, is a
future random error that is unrelated to the data at hand. Hence, using the variance
V(f1p) in Eq. (2.16), we find that the variance of the forecast error is

V(yp=3p) = Vtp) +V(ep)

_ Gz[l N M] Ly
SXX

n

)
_ [1 n % n M]az 2.27)
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Our uncertainty about the prediction $, comes from two sources: (i) the random
future error €, and (ii) the estimation of By and ;.

So far, we have discussed the properties (expectation and variance) of the pre-
diction error. For prediction intervals we need to study the distribution of the error.
Since the prediction error y, — 9, is a linear combination of normal random vari-
ables, it is also normal. The mean

E(yp=9p)=tp — E(itp) + E(p) =pp —ip +0=0
implying an unbiased forecast. The variance is given in Eq. (2.27). Therefore,
Yp — j\’p
o1+ 5+ ()‘”"")2]1/2

~N(0,1)
T
Replacing o with its LSE s leads us to the ratio
T=_J2" )2 (2.28)
s.e.(yp — 3p)
(xp —X)?

1 1/2
where s.e.(y, — $,) =s (1 + -+ > . Following similar arguments
n

SXX
as before, it can be shown that 7" in Eq. (2.28) has a Student ¢ distribution with
n — 2 degrees of freedom. Hence,

A a A A
P|:y,, —t(l — E; n— 2) se.(yp—3p) <yp <)

+z(1 - %; n— 2) s.e.(yp — yp)] =l-a
and a 100(1 — «) percent prediction interval for y, is given by

o 1 x, —x)27"?
j)pit(l - —;n—2>s[1 + -+ M}

2 n Syx
This interval is usually much wider than the confidence interval for the mean
response [, at x =x,. This is because of the random error €, reflecting the fact
that individual observations vary around the mean level 1.

(2.29)

2.6.1 HARDNESS EXAMPLE CONTINUED

Suppose we are interested in predicting the hardness in the forthcoming run with
temperature 55. Our prediction is $, =94.134 + (—1.266) x (55) =24.504. The
prediction error variance is estimated as

Vv, —5,) =1+ ! +(55_45)2 2.235=2.5093
Yp = I) = 14 1950 |70

and a 95% prediction interval is given by

yp £1(0.975; 12)+/2.5093
24.504 £ (2.18)(1.584), or 24.504 + 3.453
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We are 95% confident that the interval from 21.051 to 27.957 will cover the
hardness of the next run at temperature 55 degrees.

Note that this interval is considerably wider than the interval for the mean
response (o in Section 2.5. This is because of the additional uncertainty that
comes through €.

2.7 ANALYSIS OF VARIANCE APPROACH TO REGRESSION

FIGURE 2.4
Decomposition of
the Variation:
Simple Linear
Regression

In this section, we develop an approach for assessing the strength of the linear
regression relationship. This approach can be extended quite easily to the more
general regression models discussed in subsequent chapters.

Variability among the y;’s is usually measured by their deviations from the
mean, y; — y. Thus, a measure of the total variation about the mean is provided
by the total sum of squares (SST):

SST=Y (v — )’
i=1

If SST =0, all observations are the same. The greater is SST, the greater is the
variation among the y observations. The standard deviation of the y’s is obtained

through
sy =+/SST/(n — 1)

The objective of the analysis of variance is to partition the total variation SST
into two parts: (i) the variation that is accounted for by the model and (ii) the
variation that is left unexplained by the model. We can write the deviation of the
response observation from its mean as

yi—y= =y + (i — i), i=1,2,...,n
where [i; = Bo + ,31xl~ is the estimated (fitted) mean (Figure 2.4). The total sum

> (xi’ yi)

i

=
——————

<1

i~

x>
|
<l

e

Response y

|

ﬁ: Bo+ Bix

Regressor x
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TABLE 2.1 THE ANALYSIS OF VARIANCE TABLE

Source df SS MS

Regression (Model) 1 SSR=Y"(1; — 7)? MSR = R Sss‘j/ !
Residual n—2 SSE=Y"(y; — 1) MSE = 5% =2

Total (corrected) n—1 SST =Y (yi — ¥)?

of squares can be written as
SST=>"(yi = 9> =Y (i — N>+ Y i — 1) +2 > (i — $) i — fu)

=Y =9+ i — )’

= SSR + SSE (2.30)

since the cross-product term Y (4; — ¥)(yi — i) =D e (i — )= ejfl; —
¥ > e; =0; this follows from properties (i) and (iii) in Section 2.3.

The difference (y; — f1;) =e; is the residual, and it reflects the component
in the response that could not be explained by the regression model. The second
term in Eq. (2.30), SSE=Y"(y; — ;) =Y €7, is known as the residual (error)
sum of squares. It measures the variability in the response that is unexplained by
the regression model. The first component in Eq. (2.30), SSR =) (ft; — $)?, is
referred to as the regression sum of squares. The /i; are the fitted values of the
response variable that are implied by the model. SSR measures the variability in
the response variable that is accounted for by the model. SSR can also be written
in the following equivalent way:

SSR=> (i =37 =Y (Bo+Bixi=3)°=) (5 — B+ Bixi — 5)
=B1Y (-3 2.31)

This expression will be useful later on.

Equation (2.30) shows that the SST can be partitioned into these two com-
ponents: SST = SSR + SSE. The first component, SSR, expresses the variability
that is explained by the model; the second component, SSE, is the variability that
could not be explained. The decomposition of the SST is usually displayed in a
table, the so-called analysis of variance (ANOVA) table (Table 2.1).

Column 2 in the ANOVA table contains the degrees of freedom of the sum
of squares contributions. The degrees of freedom are the number of independent
components that are needed to calculate the respective sum of squares.

The total sum of squares, SST =) (y; — )‘))2, is the sum of n squared com-
ponents. However, since Y (y; — y) =0, only n — 1 components are needed for
its calculation. The remaining one can always be calculated from (y, — y) =
—Z;:ll (yi — ¥). Hence, SST has n — 1 degrees of freedom.

SSE=Ye? is the sum of the n squared residuals. However, there are
two restrictions among the residuals, coming from the two normal equations
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[> e; =) eix; =0]. Hence, only n — 2 residuals are needed to calculate SSE
because the remaining two can be computed from the restrictions. One says that
SSE has n — 2 degrees of freedom: the number of observations minus the number
of estimated regression coefficients By and f;.

This leaves SSR = ﬁA% > (x — %)%, Only one (linear) function of the re-
sponses, ,31 = > ¢;yi,is needed for its calculation. Hence, the degrees of freedom
for SSR is one. Observe that also the degrees of freedom add up: d.f. (SST) =
d.f. (SSR) + d.f. (SSE).

The sums of squares in column 3 are divided by their degrees of freedom
in column 2. The resulting ratios are called the mean squares: MSR = SSR/1 is
the mean square due to regression; s> = MSE = SSE/(n — 2) is the mean square
due to residual; it is also called the mean square error (see our discussion in
Section 2.3).

The last column in the ANOVA table contains the F ratio:

F =MSR/MSE = SSR/s? (2.32)

It will soon become clear why this is called the F ratio.
In Eq. (2.13) we mentioned that E (s?) = o%; MSE = s? is an unbiased esti-
mate of V (¢;) =o2. One can show that the expectation of E(MSR) is given by

E(MSR) = E(SSR) = E[B% > i - fc)z] = [Z(xi — X)z]E (1)
=[> 0 — 0] [vo@l) T [E(ﬁl)ﬂ
o P

=0+ B Y (5 — %) (2.33)

When 8; =0, then also E(MSR) = o2. On the other hand, when B1 #0, E(MSR)
is greater than o? since the term ﬂlz 3 (x; — x)? is always positive. Thus, a test
whether 8; = 0 can be constructed by comparing the MSR and the mean square
due to residuals MSE. A MSR substantially larger than s> (the mean square of
residuals) suggests that 8 # 0. This is the basic idea behind the analysis of
variance test which is discussed next.

Let us consider the ratio in the last column of the ANOVA table. We note the
following:

i. The variance ofﬁl, V(Bl) :02/Z(xi — x)? was derived in Eq. (2.14).
(B1 — B1)

o /(> (x; — %)2}1/2
(:310;2:31) Z(xi 3~ X12~ Hence, for f; =0, we have that

B (i —%)* SSR
2 =,z X

Since

~ N(0, 1), it follows that its square

o
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SSE  (n —2)s?
o2 o2

ii. ~ X,iz (This is shown in the appendix in Chapter 4).
iii. SSR and SSE are independent. (This is proved in the appendix in Chapter 4).

These facts imply the following result for the ratio:

SR /1 SSR

o2

F= =
Mln=2 5

If B =0 (i.e., there is no linear relationship between y and x), the F ratio
(Eq. 2.32) in the last column of the ANOVA table follows an F distribution
with 1 andn — 2 d.f. We write F ~ F (1, n — 2). The degrees of freedom are easy
to remember because they stand in the d.f. column next to the respective sum of
squares. For f; # 0, we expect larger values for F'. For testing the hypothesis that
B1 =0, we calculate the probability value

p=P(F = fo)

where fj is the observed value of the F statistic. If the p value is small (smaller
than a preselected significance level, usually 0.05), then there is evidence against
the hypothesis g; = 0. If the p value is large, then there is no evidence to reject
the null hypothesis that ; = 0.

2.7.1 COEFFICIENT OF DETERMINATION: R?

We now discuss a descriptive measure that is commonly used in practice to
describe the degree of linear association between y and x. Consider the identity

SST =SSR + SSE

The ratio
s _SSR_ | SSE
~SST ~ SST
is used to assess the “fit” of a regression model. It expresses the proportion of the
total variation of the response around the mean that is explained by the regression
model.

R? must always be between O and 1: 0 < R? < 1. R? = O indicates that none of
the variability in the y is explained by the regression model. SSE =0 and R?> = 1
indicate that all observations fall on the fitted line exactly.

Given the observations yi, y2, ..., y,, SST is a certain fixed quantity. How-
ever, SSR (and SSE) change with the choice of the model. Models with larger
SSR (smaller SSE) and larger R? are usually preferable to models with smaller
SSR (larger SSE) and smaller R?. However, a large R? does not necessarily imply
that a particular model fits the data well. Also, a small R? does not imply that
the model is a poor fit. Thus one should use R? with caution. The coefficient of
determination R? does not capture the essential information as to whether a given
relation is useful in a particular application. We will discuss this more fully in
Chapter 4.

(2.34)
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Response y
Response y
L]

Regressor x Regressor x

(@) (b)

FIGURE 2.5 R?2 for Different Situations

It should also be emphasized that R? is a measure of the linear association
between y and x. A small R? does not always imply a poor relationship between
y and x. As indicated in Figure 2.5, the relation between y and x may be quadratic
and R? could be a small value.

There is a simple relationship between the R? in simple linear regression
and the correlation coefficient between y and x. R? is the square of the sample
correlation coefficient r. You can see this by writing

_ SSR_ BIY (x; — X)?

CSST T Y-

(Y6 =500 =] T — 57 _[ > — D0 — 9) T
[Yw -0 0= VX -0 — )

=72 (2.35)

R2

2.7.2 HARDNESS EXAMPLE CONTINUED
ANOVA TABLE FOR HARDNESS EXAMPLE

Source df SS MS F
Regression (Model) 1 3,126.134  3,126.134  1,398.7
Residual 12 26.820 2.235

Total (corrected) 13 3,152.954

Here, the F statistic has 1 and 12 df. From the F tables we find that
p=P(F=>1,398.7) <0.0001

is tiny. Thus, there is considerable evidence in the data against the hypothesis 8| =
0. We can safely reject 8; =0. There is a strong relationship between hardness

and temperature.
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Note

(2.36)

A A 2
;oSSR _Piycn - % z{ A } _p

52 s2 /S

where ¢ is the ¢ ratio in Eq. (2.20) in Section 2.5. The F statistic obtained here
is the square of the ¢ statistic that was used earlier for testing 8 = 0. We know
that in general the square of a #(n — 2) random variable follows an F'(1,n — 2)
distribution; see Exercise 2.2. Hence, the F test discussed here and the ¢ ratio
discussed earlier represent two equivalent tests of the null hypothesis g1 =0.

The coefficient of determination in this example is RZ=3, 126.134/
3,152.954 =0.991. Thus, 99.1% of the total sum of squares is explained by
the regression model. Temperature is an important predictor of hardness.

2.8 ANOTHER EXAMPLE

This example addresses the variation in achievement test scores among lowa
elementary schools. The test scores are the average “core” scores from the Iowa
Test of Basic Skills, a commonly used standardized test for elementary schools
in Iowa. The core score includes vocabulary, reading comprehension, spelling,
capitalization, punctuation, usage, expression, and math concepts and problems.
The data set in Table 2.2 contains the average fourth-grade tests scores of all
elementary schools in the six largest lowa communities.

Average test scores vary from school to school. The average test score of
a school depends on, among other factors, the natural ability of the children
attending the school, the quality of the educational programs offered by the school,
and the support the children get from their parents. These explanatory factors tend
to be related to the economic situation that surrounds each school. Causal links
are complicated, but one can expect that richer communities tend to have more
resources, children of economically secure parents have more opportunities, and
well-to-do parents select their residences such that their children can go to “better”
schools. We use the percentage of students in the federal free and reduced-price
breakfast and lunch program as an economic indicator; it serves as a proxy for
“poverty.” Students qualify for this program if they come from families with
incomes at or below 130% of the poverty level. The information on n =133
schools is taken from an article in the Des Moines Register, November 2000.
Poverty and test scores are from the 1999-2000 school year.

A scatter plot of test scores against poverty is shown in Figure 2.6. One
notices that average test scores of schools with a high percentage of children in
the subsidized lunch program are considerably lower than those of schools with
small percentages. The relationship between test scores and the proportion of
children on subsidized lunch is roughly linear, which leads us to the simple linear
regression model, y = By + B1x + €, that we study in this chapter.
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TABLE 2.2 IOWA TEST OF BASIC SKILLS DATA [DATA FILE: iowatest]

School Poverty Test Scores City
Coralville Cen. 20 65 Iowa City
Hills 42 35 Iowa City
Hoover 10 84 Towa City
Horn 5 83 Towa City
Kirkwood 34 49 Iowa City
Lemme 17 69 Towa City
Lincoln 3 88 Iowa City
Longfellow 24 63 Iowa City
Lucas 21 65 Iowa City
Mann 34 58 Towa City
Penn 24 52 Towa City
Roosevelt 35 61 Iowa City
Shimek 4 81 Iowa City
Twain 57 43 Iowa City
Weber 24 66 Towa City
Wickham 10 62 Towa City
Wood 31 65 Iowa City
Black Hawk 35 46 Waterloo
Edison 62 41 Waterloo

Elk Run 56 48 Waterloo
Grant 81 36 Waterloo
Irving 45 52 Waterloo
Jewett 50 44 Waterloo
Kingsley 15 76 Waterloo
Kittrell 40 48 Waterloo
Lincoln 74 30 Waterloo
Longfellow 99 27 Waterloo
Lowell 82 28 Waterloo
McKinstry 81 20 Waterloo
Orange 38 56 Waterloo
Roosevelt 80 23 Waterloo
Arthur 13 75 Cedar Rapids
Cleveland 27 55 Cedar Rapids
Coolidge 10 72 Cedar Rapids
Erskine 25 67 Cedar Rapids
Garfield 39 46 Cedar Rapids
Grant Wood 44 55 Cedar Rapids
Harrison 55 35 Cedar Rapids
Hiawatha 27 56 Cedar Rapids
Hoover 30 66 Cedar Rapids
Jackson 7 69 Cedar Rapids
Johnson 59 51 Cedar Rapids
Kenwood 41 75 Cedar Rapids
Madison 16 70 Cedar Rapids
Nixon 21 62 Cedar Rapids
Pierce 3 75 Cedar Rapids
Polk 80 54 Cedar Rapids
Taylor 78 36 Cedar Rapids

(Continued )
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School Poverty Test Scores City
Truman 10 57 Cedar Rapids
Van Buren 52 43 Cedar Rapids
Wilson 39 41 Cedar Rapids
Wright 27 53 Cedar Rapids
Adams 17 52 Davenport
Blue Grass 9 53 Davenport
Buchanan 57 37 Davenport
Buffalo 31 43 Davenport
Eisenhower 40 58 Davenport
Fillmore 57 39 Davenport
Garfield 49 43 Davenport
Grant 38 47 Davenport
Harrison 22 56 Davenport
Hayes 61 30 Davenport
Jackson 58 34 Davenport
Jefferson 89 21 Davenport
Johnson 53 40 Davenport
Lincoln 59 56 Davenport
Madison 87 29 Davenport
McKinley 50 49 Davenport
Monroe 73 36 Davenport
Perry 51 20 Davenport
Truman 40 48 Davenport
Walcott 23 59 Davenport
‘Washington 71 38 Davenport
Wilson 39 53 Davenport
Adams 50 58 Des Moines
Brooks/Lucas 79 32 Des Moines
Cattell 49 50 Des Moines
Douglas 37 54 Des Moines
Edmunds 77 28 Des Moines
Findley 61 51 Des Moines
Garton 55 27 Des Moines
Granger 47 49 Des Moines
Greenwood 32 67 Des Moines
Hanawalt 12 79 Des Moines
Hills 31 57 Des Moines
Howe 50 50 Des Moines
Hubbell 22 81 Des Moines
Jackson 40 45 Des Moines
Jefferson 3 74 Des Moines
Longfellow 80 50 Des Moines
Lovejoy 62 40 Des Moines
Madison 52 45 Des Moines
Mann 65 32 Des Moines
McKee 57 31 Des Moines
McKinley 78 36 Des Moines
Mitchell 54 46 Des Moines
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TABLE 2.2 (Continued)

School Poverty Test Scores City
Monroe 45 53 Des Moines
Moore 40 53 Des Moines
Moulton 83 30 Des Moines
Oak Park 52 49 Des Moines
Park Avenue 42 36 Des Moines
Perkins 65 51 Des Moines
Phillips 29 61 Des Moines
Pleasant Hill 17 68 Des Moines
Stowe 53 47 Des Moines
Strudebaker 25 53 Des Moines
Wallace 77 24 Des Moines
Watrous 39 47 Des Moines
Willard 84 42 Des Moines
Windsor 32 62 Des Moines
‘Woodlawn 35 59 Des Moines
Wright 28 60 Des Moines
Bryant 32 56 Sioux City
Clark 4 78 Sioux City
Crescent Park 49 65 Sioux City
Emerson 53 40 Sioux City
Everett 79 48 Sioux City
Grant 50 45 Sioux City
Hunt 72 43 Sioux City
Irving 86 27 Sioux City
Joy 33 65 Sioux City
Leeds 46 42 Sioux City
Lincoln 14 76 Sioux City
Longfellew 34 40 Sioux City
Lowell 54 57 Sioux City
McKinley 84 37 Sioux City
Nodland 10 74 Sioux City
Riverview 60 59 Sioux City
Roosevelt 48 50 Sioux City
Smith 72 39 Sioux City
Sunnyside 14 73 Sioux City
Washington 20 57 Sioux City
Whittier 39 48 Sioux City

In a subsequent chapter, we will use this data set to illustrate model checking.
The question whether the model can be improved by adding a quadratic compo-
nent of poverty will be addressed in Exercise 5.17. In addition, we will investigate
whether “city” information adds explanatory power. It may be that irrespective
of the proportion of children on subsidized lunch, students in college communi-
ties (e.g., lowa City) score higher. If that were true, one would need to look for
plausible explanations.
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FIGURE 2.6
Scatterplot of Tests
Scores Against
Proportion of
Children on
Subsidized Lunch
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TABLE 2.3 MINITAB OUTPUT OF TEST SCORES AGAINST
PROPORTION OF CHILDREN ON SUBSIDIZED LUNCH

Test Scores = 74.6 —0.536 Poverty

Predictor Coef SE Coef T P
Constant 74.606 1.613 46.25 0.000
Poverty —0.53578 0.03262 —16.43 0.000
5 =8.766 R>=67.3%

Analysis of Variance

Source DF SS MS F P
Regression 1 20731 20731 269.79 0.000
Residual Error 131 10066 77

Total 132 30798

The output from a standard regression program is listed below. Most com-
puter packages, such as Minitab, SPSS, and SAS, provide very similar output. In
Table 2.3, we show the output from Minitab, a popular statistics software.

The fitted regression equation,

Test scores = 74.6 — 0.536 poverty (2.37)

implies that with each additional unit (1%) increase in the proportion on subsidized
lunch, average test scores decrease by 0.54 points.

The LSEs Bo =74.606 and 31 = —0.536, their standard errors s.e.(ﬁo) =
1.613 and s.e.(81) = 0.033, and the # ratios 74.606,/1.613 = 46.25 and —0.536/
0.033 = —16.43 are shown in the columns labeled Coef, SE Coef, and 7. The last
column labeled “P” contains the probability value of the regression coefficients.
The ¢ ratio for the slope B is —16.43. It leads to a very small probability value.
Under the null hypothesis of no relationship (8; = 0), there is almost no chance to
get such an extreme value. Hence, we reject—very soundly—the null hypothesis



Abraham Abraham C02 November 8, 2004 0:36

2.9 Related Models 51

B1=0. Yes, there is a very strong, and negative, association among test scores
and the proportion of children on subsidized lunch.

The sum of squares, the degrees of freedom (n — 1 =133 — 1 = 132 for total,
n —2 =133 — 2 =131 for error, and 1 for regression), and the mean squares are
shown in the ANOVA table. The R? from the regression is 67.3%. We obtain this
value by dividing the regression sum of squares SSR = 20,731 by the total sum of
squares SST = 30,798. It says that 67.3% of the variation in average test scores
can be explained through the linear association with poverty.

Another interpretation of “model fit” focuses on standard deviations. The
standard deviation of the test scores, not keeping track of poverty, is given by s, =
[SST/(n — 1)]'/? =[30,798/132]'/2 = 15.275. After factoring in (or adjusting
the analysis for) poverty, the standard deviation of the yet unexplained deviations
is given by s = [SSE/(n — 2)]'/?2 =[10,066/131]'/? = 8.766. This is the square
root of the MSE. The reduction from s, = 15.275 to s = 8.766 is 42.6%.

The last column of the ANOVA table contains the F ratio, F = (SSR/1)/
(MSE) =269.79. It serves as a test of the null hypothesis 8; = 0. The probability
value to the right of this number is the probability that an F'(1, 131) random
variable exceeds this value. The probability is virtually zero, implying a solid
rejection of the null hypothesis. Note that the F' test in the simple linear regression
model is equivalent to the test that looks at the ¢ ratio. The square of the ¢ ratio,
(—16.43)? =269.79, is identical to the F ratio.

2.9 RELATED MODELS
2.9.1 REGRESSION THROUGH THE ORIGIN

Theory or the patterns in the scatter plot may imply that the straight line should
pass through the origin. Theory may suggest that the relationship between y and
x is strictly proportional, implying that the line in the model y; = Bx; + €; passes
through the origin. The slope coefficient 8 can be estimated by minimizing the
sum of squares

SBY=)_(yi — Bx)’ (2.38)
The minimization leads to

B=>xivi /Y x? (2.39)

and the residuals y; — f1; = y; — Bx;. The LSE of 0% is
7= (i = Bx)*/(n—1) (2.40)

Note that we divide by (n — 1) degrees of freedom, because there is only one
restriction among the residuals, Y ¢;x; = 0.

One can show that § is unbiased [i.e., E(f) = B] and that its variance is given
by

o . 2% 2 2
Zx,y,]_V(szyz)_U dxi o (2.41)

V(ﬁ)EV[in2 = [Zx-z]z —[sz]z—zxiz
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Inference about § is similar to the one in the model with intercept, y; =
Bo + Bixi + €;, except that now s> has (n — 1) rather than (n — 2) degrees of
freedom.

A 100(1 — o) percent confidence interval for 8 is given by

B+ t(l - %; n— 1>s.e.(ﬁ) (2.42)

where s.e.(B) =s/,/>. xiz.
A 100(1 — «) percent confidence interval for the mean response at xg, (o =
Bxo, is

Do+ z(1 — %; n— 1) s.e. (o) (2.43)
where

fto = Bxo and s.e. (fi0) = s|xol/ lez

A 100(1 — o) percent prediction interval for a future observation y, at x,, is

y,,iz(l —%;n—1>s\/1+(x12,/2x3) (2.44)

where $, = i, = Bx,.

2.9.2 THE CASE OF RANDOM x’s

In our discussions so far we have assumed that the x’s are fixed constants. Thus,
our inferences are based on repeated sampling, when the x’s are kept the same
from sample to sample.

Frequently, this assumption is not appropriate since fixed x’s may not be
possible. It may be preferable to consider both y and x as random variables
having some joint distribution. Do the results of the previous sections still hold
true in this situation?

We assume that y and x are jointly distributed as a bivariate normal
distribution

1
 exple— 2.45
2noyoyy/1 — p? exp{ (1—p? Q} (24

Q:<y—uy)2+ (x_ﬂx>2_2p<y_ﬂy>(x_ﬂx)
oy Oy oy Oy

Here, py = E(y), it = E(x) are the means; o7 =V (y), o7 = V (x) are the vari-
ances, and p = E(y — u,)(x — uy) /0,0y is the correlation between y and x.

It can be shown that the conditional distribution of y given x is also normal
with conditional mean E(y|x) = By + B1x and conditional variance V (y|x) =
oyz(l — p?). The regression coefficients By and B, are related to the parameters of

Sy, x)=

where
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the bivariate normal distribution: By = (0y/0y)p and Bo =, — p(oy/0%) [hx.
Zero correlation (p = 0) implies B; = 0; then there is no linear association be-
tween y and x.

In this more general setup, one can also show that the maximum likelihood
estimates of fy and B, are given by

,80:57—,31)_6, ,Blzsxy/sxx

. . . R 5 [
which are exactly the previous estimates. Furthermore, p = 5,/ /Sx:5,y = B1. [ —.

Syy
Hence, the regression model in which y and x are jointly normally distributed
can be analyzed using the methods that treat x as fixed.

APPENDIX: UNIVARIATE DISTRIBUTIONS
1. THE NORMAL DISTRIBUTION

We say Y is a normal random variable if the density function of Y is given by
1 1
(y) = ——ex {——( — )2}, —0 <y <00
fO N P17 520 — 1 y

We use the notation ¥ ~ N (u, 0%). Note that E(Y)=pu and V(Y)=02. The
density function of the standard normal distribution with mean 0 and variance 1
is shown in Figure 2.7a.

To calculate probabilities for Y, we use the representation Y = u + o Z, where
Z is the standard normal distribution. Hence,

P(YSy)=P(u+aZ§y)=P(z§%)

Table A at the end of the book gives the cumulative probabilities P(Z < z)
for the standard normal distribution. For example, P(Z <0)=0.5, P(Z <1) =
0.8413, P(Z < —0.85) =0.1977. The 97.5th percentile of the standard normal is
1.96; the 95th percentile is 1.645.

2. THE 2 DISTRIBUTION

We say that U follows a chi-square distribution with v degrees of freedom if the
density function of U is given by

fw)=cu’? e 2 for u=>0

c is a constant that makes the density integrate to 1. The parameter v is called
the degrees of freedom. We write U ~ XVZ- The density functions of three chi-
square distributions (v = 3, 6, 10) are shown in Figure 2.7b. The mean of the chi-
square distribution is given by E(U) = v, and the variance is given by V(U) = 2v.
Table B (at the end of the book) gives selected percentiles. For example, in a X52
distribution, the 50, 95, and 99th percentiles are 4.3515, 11.0705, and 15.0863,
respectively.
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Suppose Zi, ..., Z, are independent N (0, 1) variables. Then le has a x?
distribution with 1 degree of freedom, and U = Z? + Z5 +--- + Z2 has a x°
distribution with v degrees of freedom.

3. THE STUDENT ¢ DISTRIBUTION

We say that 7" follows a Student ¢ distribution if the density function of 7" is given
by
c
f(t)=W, -0 <t <00

c is a constant that makes the density integrate to 1. We write 7 ~1(v). The
parameter v is called the degrees of freedom. The density functions of two ¢
distributions with v =3 and v =10 degrees of freedom are shown in Figure
2.7c. The ¢ distribution is symmetric with mean E(7") =0 and variance V(T) =
v/(v —2) and is similar to the standard normal distribution, but with slightly
heavier tails. As can be seen from Figure 2.7c, the ¢ distribution is close to the
standard normal distribution when the degrees of freedom (v) is large. Table C
(at the end of the book) gives selected percentiles of Student ¢ distributions. For
example, for v =10 d.f., the 90th percentile is 1.372, and the 5th percentile is
—1.812.

Suppose Z~ N(0, 1) and U ~ sz’ with Z and U independent. Then T =
Z /+/UJv has a Student ¢ distribution with v degrees of freedom.

4. THE F DISTRIBUTION

We say that F' follows an F' distribution if the density function is given by
f(v /2)—1

g(f)zcm,

f=0



Abraham Abraham C02 November 8, 2004 0:36

56 Simple Linear Regression

cis a constant that makes the density integrate to 1. We write F' ~ F'(v, w). The in-
teger parameters v and w are called the degrees of freedom. The density functions
of four F distributions are shown in Figure 2.7d. The mean of an F distribution is
given by E(F)=w /(w — 2); it depends only on the second degrees of freedom
and is slightly larger than 1. The variance depends on both v and w. Table D
(at the end of the book) gives selected percentiles. For example, the 95 and 99th
percentiles of an F(5,8) distribution are given by 3.69 and 6.63, respectively.

Suppose U ~ sz and V ~ szw with U and V independent. Then F = U//VVV has

4
an F distribution with v and w degrees of freedom.

A comment on statistical tables: Most computer programs calculate cumu-
lative probabilities and percentiles (the “inverse” of the cumulative probabilities)
for a wide selection of distributions. For some programs (such as EXCEL) the
calculation of percentiles requires the specification of the upper tail area.

EXERCISES

2.1. Determine the 95 and 99th percentiles of 2.3. For each of the four sets of data given below
a. The normal distribution with mean 10 and (see Anscombe, 1973), plot y versus x. The
standard deviation 3: data are given in the file anscombe. Fit a

straight line model to each of the data sets

b. The ¢ distributions with 10 and 25 degrees giving least squares estimates, ANOVA table,

of freedom; and R?. Compute the correlation coefficient
c. The chi-square distributions with 1, 4, and between y and x for each data set. Comment
10 degrees of freedom; on your results. Would a linear regression of
d. The F distributions with 2 and 10, and 4 y on x be appropriate in all cases? Discuss.
and 10 degrees of freedom.
2.2. Itis a fact that two distributions are the same Set 1 Set 2 Set 3 Set 4
if (all) their percentiles are identical. X y x X y X y
a. Convince yourself, by IOOkiIlg up several 4 4.26 4 3.10 4 5.39 8 6.58
percentiles, that the square of a standard 5 568 5 474 5 573 8 576
normal distribution is the same as a 6 724 6 613 6 608 8 771
chi-square distribution with one degree 7 48 7 726 7 642 8 884
of freedom. Determine the percentile of 8 695 8 814 8 677 8 847
the X12 and the percentile of the square of 9 881 9877 9 711 8 7.04
a standard normal distribution, Z?2, and 10 804 10 914 10 746 8§ 525
show that they are the same. Use the fact 11 833 11 926 11 781 8 556
that P(Z? <2)=P(—/2<Z < /2). 12 1084 12 9.13 12 815 8 791
Hence, for example, the 95th percentile 13 758 13 874 13 1274 8 6.89
of 22 is the same as the 97.5th percentile 14 996 14 8.10 14 8.84 19 12.50
of Z.
b. Convince yourself, by looking up several
percentiles, that the square of a ¢ 2.4. A car dealer is interested in modeling the
distribution with v degrees of freedom is relationship between the weekly number of

the same as the F'(1, v) distribution. cars sold and the daily average number of
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salespeople who work on the showroom
floor during that week. The dealer believes
that the relationship between the two
variables can be described by a straight line.
The following data were supplied by the car
dealer:

Average. No.
No. of Cars of Sales
Sold People on Duty
Week of y X
January 30 20 6
June 29 18 6
March 2 10 4
October 26 6 2
February 7 11 3

a. Construct a scatter plot (y vs x) for the
data.

b. Assuming that the relationship between
the variables is described by a straight
line, use the method of least squares to
estimate the y intercept and the slope of
the line.

c. Plot the least squares line on your scatter
plot.

d. According to your least squares line,
approximately how many cars should the
dealer expect to sell in a week if an
average of five salespeople are kept on the
showroom floor each day?

e. Calculate the fitted value [ for each
observed x value. Use the fitted values to
calculate the corresponding residuals. Plot
the residuals against the fitted values. Are
you satisfied with the fit?

f. Calculate an estimate of o 2.

g. Construct a 95% confidence interval for
B1 and use it to assess the hypothesis that
B1=0.

h. Given the results of (a)—(g), what
conclusions are you prepared to draw
about the relationship between sales and
number of salespeople on duty.

November 8, 2004

2.5.

2.6.
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i. Would you be willing to use this model to
help determine the number of salespeople
to have on duty next year?

Use S-Plus or any other available statistics
software for Exercise 2.4. Check your hand
calculations with the results from these
programs.

Dr. Joseph Hooker collected a set of 31

measurements on the boiling temperature of

water (TEMP; in degrees Fahrenheit) and the
atmospheric pressure (AP; in inches of
mercury) at various locations in the Himalaya

Mountains (see Weisberg, 1980). The data are

given in the file hooker.

a. Plot TEMP vs AP. Does a linear model
seem appropriate?

b. Repeat (a), plotting TEMP versus
x =100In(AP).

c. Fita linear model

TEMP = By + Bi1x + €
and calculate the estimates of Sy, 8, and
2. Draw the fitted line $ = By + B1x on
the plot in (b). Does the model seem
appropriate?

d. Find a 95% confidence interval for

L By
ii. the average temperature when the
pressure is 25.

e. Suppose the temperature had been
measured in °C instead of °F. Explain
(think about it, but don’t compute) how
the estimates in (c) and the confidence
intervals in (d) would change.

a. Consider the model

vi=p+e, E€)=0,V(e) =0,
Cov(ej,ej)=0fori#j,i=1,2,...,n
Find the LSEs of 8 and 2.
b. Discuss the following statements:
i. For the linear model
yvi=po+Bixit+e,i=1,2,...,n

a 95% confidence interval for
Ur = Bo + Bixy is narrower than a
95% prediction interval for yy.
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ii. For the linear model
yi=Bo+pixite,i=12,....n
a 99% prediction interval for yy is
wider than a 95% prediction interval
for yy.

iii. For a certain regression situation it is
reported that SST =25, SSR = 30,
and SSE = —5. These calculations are
correct since SST =SSR + SSE.

2.8. Consider the annual number of cars sold and
the revenues of the 10 largest car companies:

November 8, 2004

Cars Sold Revenues
Company (Millions)  (in Million Euros)
General Motors 8,149 1,996
Ford/Volvo 7,316 2,118
Renault/Nissan 4,778 1,174
Volkswagen 4,580 943
DaimlerChrysler 4,506 1,813
Toyota 4,454 1,175
Fiat 2,535 628
Honda 2,291 605
PSA 2,278 465
BMW 1,187 447

Consider the results of a simple linear
regression model of y = revenues on x =
sales:

a.

Test whether the number of cars sold is an
important predictor variable (use
significance level 0.05).

Calculate a 95% confidence interval for
the regression coefficient of number of
cars sold.

Calculate a 90% confidence interval for
the regression coefficient of number of
cars sold.

Obtain the coefficient of determination.

Determine the standard deviation among
revenues (y), after factoring in the
explanatory variable sales (x). Compare
this standard deviation to the standard
deviation of y without considering the
explanatory variable.

Estimate the revenues for BMW.

0:36

2.9. Grade point averages of 12 graduating MBA
students, GPA, and their GMAT scores taken
before entering the MBA program are given
below. Use the GMAT scores as a predictor of
GPA, and conduct a regression of GPA on

GMAT scores.

x = GMAT y = GPA
560 3.20
540 3.44
520 3.70
580 3.10
520 3.00
620 4.00
660 3.38
630 3.83
550 2.67
550 2.75
600 2.33
537 3.75

a. Obtain and interpret the coefficient
of determination R2.

b. Calculate the fitted value for the second
person.

c. Test whether GMAT is an important
predictor variable (use significance level
0.05).

The following are the results of a regression
of fuel efficiency (gallons per 100 miles
traveled) on the weight (in pounds) of the car.
A total of 45 cars were considered.

2.10.

The regression equation is

Gall/100 miles = 0.560 + 0.00102 Weight

Predictor Coef SE Coef t P
Constant  0.5598 0.1983 2.82  0.007
Weight  0.00102418 0.00007103 14.42 0.000

R?> =82.9% R*(adj) = 82.5%

Analysis of Variance

Source DF SS MS F )4
Regression 1 13.709 13.709 207.91 0.000
Error 43 2.835 0.066

Total 44 16.544
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a. Determine an approximate 95% prediction
interval for the fuel efficiency of an
automobile weighing 2000 pounds.

The computer output does not give you the
information to construct exact prediction
intervals. Approximate the prediction
intervals, assuming that the sample size n
is large enough to allow you to ignore the
parameter estimation uncertainty.

b. Determine an approximate 95% prediction
interval for the fuel efficiency of an
automobile weighing 1500 pounds.

Discuss the functional relationship between
the coefficient of determination R? and the
F ratio.

Occasionally, a model is considered in which
the intercept is known to be zero a priori.
Such a model is given by

vi=pixi+e,i=1,2,...,n

where the errors ¢; follow the usual
assumptions.
a. Obtain the LSEs (B, s?) of (B1, 0?).

b. Define ¢; = y; — B1x;. Is it still true that
Y, e: =0? Why or why not?

c. Show that V (B)) =o%/3_1_, x2.

The data listed in the file sriver include the

water content of snow on April 1 (x) and the

water yield from April to July (y) in the

Snake River watershed in Wyoming.

Information on n =17 years (from 1919 to
1935) is listed (see Weisberg, 1980).

a. Fit a regression through the origin
(y =pix +¢), and find B; and s2. Obtain
a 95% confidence interval for 8.

b. A more general model for the data
includes an intercept,

y=PHo+ Bix +e.

Is there convincing evidence that suggests
that the simpler model in (a) is an
appropriate representation?

Often, researchers need to calibrate
measurement processes. For that they use a

November 8, 2004
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set of known x’s to obtain observed y’s, then
fit a model called the calibration model and
use this model to convert future measured y’s
back into the corresponding x’s.

The following is an example taken from
analytical chemistry where the process is the
assay of the element calcium. Determining
calcium in the presence of other elements is
quite tricky. The following table records the
quantities of calcium in carefully prepared
solutions (x) and the corresponding analytical
results (y):

8§ 12516 20 25 31 36 40 40

y 3.77.812.1 15.6 19.8 24.5 31.1 35.5 39.4 39.5

2.15.

a. Fit a simple linear regression of y as a
function of x. List the assumptions that
you make.

b. Calculate a 95% confidence interval for
the intercept of your model.

c. Calculate a 95% confidence interval for
the slope of your model.

d. In this context two properties may be
expected:

i. When x =0, then y = 0; if there is no
calcium present, your technique
should not find any.

ii. If the empirical technique is any good
at all, then the slope in the simple
linear regression should be 1.

Is there evidence for (i)? For (ii)?

e. If you accept (i) as a condition to be
imposed on the model a priori, then the
model reduces to

y=pBx+e€
Redo part (c) and reexamine property

(ii) for your new model.

f. Explain why the results in (d) and (e) are
different.

The following data give the monthly machine
maintenance cost (y) in hundreds of dollars
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and the number of machine hours per month
(x), taken over the last 7 months.

Cost (y) Hours (x)
26 110
25 98
20 121
18 116
30 90
40 88
30 84

a. Fit a linear regression. Construct the
ANOVA table. Find R? and test the
hypothesis that ; = 0 using the F ratio.

b. Obtain the standard errors of By and ;.
Using the ¢ distribution, test the
hypothesis: (i) By = 0; (ii) B =0.
Construct a 99% confidence interval for
Bi.

c. Find the fitted value /& at x = 100 and
estimate its standard error. Calculate the
95% confidence interval for By + B;100.

d. Repeat (c), only this time take x = 84.
Explain the change in the interval length.

2.16. A company builds custom electronic

instruments and computer components. All
jobs are manufactured to customer
specifications. The firm wants to be able to
estimate its overhead cost. As part of a
preliminary investigation, the firm decides to
focus on a particular department and
investigates the relationship between total
departmental overhead cost (y) and total
direct labor hours (x). The data for the most
recent 16 months are given below. They are
also given in the file overhead.

Month Total Departmental ~ Total Direct

Number Overhead (y) Labor Hours (x)
1 25,835 878
2 27,451 1,088
3 28,611 1,281
4 32,361 1,340
5 28,967 1,090
6 24,817 1,067

November 8, 2004
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Month Total Departmental ~ Total Direct

Number Overhead (y) Labor Hours (x)
7 29,795 1,188
8 26,135 928
9 31,361 1,319

10 26,006 790
11 27,812 934
12 28,612 871
13 22,992 781
14 31,836 1,236
15 26,252 902
16 26,977 1,140

The two objectives of this investigation are

a. Summarize for management the
relationship between total departmental
overhead and total direct labor hours.

b. Estimate the expected and predict the
actual total departmental overhead from
the total direct labor hours.

Analyze the overhead data and write a brief
paragraph for your manager that summarizes
the results that you have obtained about the
two objectives. Include the computer output
that you think is necessary for clarification of
your discussion.

The following data, in the file turtles, are
measurements on length and width (both in
mm) of 10 painted female turtles (Chrysemys
picta marginta):

Length (y)  Width (x)
100 81
103 86
109 88
123 94
133 102
134 100
137 98
141 105
150 107
155 115

a. Plot y against x on a scatter plot.
Comment on this plot.
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b. Assuming the model y = By + Bi1x + €,
obtain the LSEs of the coefficients and
their corresponding 95% confidence
limits.

c. Graph the fitted line on the plot in (a). Is
this a good fit? Explain.

d. Predict the length of a female turtle if it is
100 mm wide, and obtain the 95%
prediction limits.

e. Is the linear relationship a strong or a
weak one? Explain.

The following data, in the file bloodpressure,
are measurements of systolic blood pressure
(SBP) and age for a sample of 15 individuals
older than age 40 years:

SBP(y)  Age (x)
164 65
220 63
133 47
146 54
162 60
144 44
166 59
152 64
140 51
145 49
135 57
150 56
170 63
122 41
120 43

a. Plot systolic blood pressure against age.

Comment on the plot.

b. Assuming the model y =y + fix + €,

obtain the fitted equation.

c. Construct an ANOVA table for the simple

linear model.

d. Use the results from the ANOVA table and

the F ratio to test for a significant linear
relationship at the 5% level.

e. Test the hypothesis Hy : f; =0 at the 5%

level using a ¢ test. Does your conclusion
agree with the finding in part (d)?
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f. Do you think that the individual with
x =63 and y =220 is an unusual
observation? Why? Check if this
observation is influential. Remove it from
the data set and redo steps (b)—(e). The
observation is influential if there are
substantial changes in the resulting fit. Do
you think that there are substantial
changes? Explain.

2.19. An experiment was conducted to determine

the extent to which the growth rate of a
certain fungus can be affected by filling test
tubes containing the same medium at the
same temperature with different inert gases.
Three such experiments were performed for
each of six different gases, and the average
growth rate from these three tests was used as
the response. The following table gives the
molecular weight (x) of each gas used and the
average growth rate (y) in milliliters per hour:

Average Molecular

Gas Growth Rate (y) Weight (x)
A 3.85 4.0
B 3.48 20.2
C 3.27 28.2
D 3.08 39.9
E 2.56 83.8
F 2.21 131.3

a. Find the LSEs of the slope and the
intercept for the linear model
y = Bo + P1x + €, and draw the fitted line
on the scatter plot.

b. Is there a significant linear relationship
between y and x at the 1% level?
Comment on the fit of the line.

c. What information has not been used that
may improve the sensitivity of the
analysis?

d. Would it be appropriate to use this fitted
line to estimate the growth rate of the
fungus for a gas with a molecular weight
of 200? Explain.

2.20. An investigation involving five factors has

singled out temperature as having the greatest
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impact on the accelerated lifetime of a special the chemical tests of iron content can be
type of heater. On the advice of the process predicted from a magnetic test of iron content.
engineer, temperatures 1,520, 1,620, 1,660,
and 1,708° F were chosen. y = Chemical ~ x = Magnetic
Twenty-four heaters were selected at 24 25
random from the current production and split 16 22
randomly among the four temperatures. The 24 17
life times of these heaters are given below. 18 21
18 20
Temperature 10 13
T Lifetime y (Hours) 14 16
1520 1953 2135 2471 4727 6,143 6314 16 14
1,620 1,190 1286 1,550 2,125 2.557 2,845 ;g ig
1,660 651 837 848 1,038 1,361 1,543 21 ”3
1,708 511 651 651 652 688 729 20 20
21 19
a. Plot the data and summarize the 15 15
important features of the relationship. 16 16
b. Transform the y’s to LY =Iny and replot 15 16
the data. Comment on the functional 17 12
relationship. 19 15
. 16 15
c. Fit the model 15 15
LY =80+ BT +¢ 15 15
i. Assess the fit by adding the fitted line 13 17
to the scatter plot. 24 18
ii. If you are not satisfied with the fit, 22 16
state why. What other approach might 21 18
you take to get a better fitting model? 24 22
2.21. The data are taken from Roberts, H. V., and 15 20
Ling, R. F. Conversational Statistics with 20 21
IDA. New York: Scientific Press/McGraw- 20 21
Hill, 1982. 25 21
The iron content of crushed blast furnace 27 25
slag needs to be determined. Two methods 22 22
are available. One involves a chemical 20 18
analysis in the laboratory, which is 24 21
time-consuming and expensive. The other is a 24 18
much cheaper and quicker magnetic test that 23 20
can be carried out on-site. Measurements on 29 25
53 consecutive slags are listed below. The 27 20
data are given in the file ironcontent. 23 18
Graph the results of the chemical test for 19 19
iron () against the magnetic test (x). Fit a 25 16
simple linear regression. Calculate and 15 16
interpret the coefficient of determination R?. 16 16

Investigate the extent to which the results of 27 26
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y = Chemical x = Magnetic

27 28
30 28
29 30
26 32
25 28
25 36
32 40
28 33
25 33

2.22. The data are taken from Mosteller, F.,

Rourke, R. E. K. and Thomas, G. B.:
Probability with Statistical Applications, (2nd
ed.). Reading, MA: Addison-Wesley, 1970.

Average percentage memory retention was
measured against passing time (in minutes).
The measurements were taken five times
during the first hour after the experimental
subjects memorized a list of disconnected
items and then at various times up to 1 week
later. The data given in the file memory.

Graph memory retention (y) against time
(x). Consider transformations such as the
logarithm of y and/or the logarithm of x.
Estimate and check the appropriate
regression models.

A model such as y = « exp(—BTime)
indicates geometric loss of memory. Discuss
whether this is an appropriate model or
whether there are other models that are
equally (or better) suited to describe the data.

x = Time (Minutes)  y = Memory Retention (%)

1 0.84

5 0.71

15 0.61

30 0.56

60 (1 hour) 0.54
120 0.47
240 0.45
480 0.38
720 0.36
1,440 0.26
2,880 0.20
5,760 0.16
10,080 0.08
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2.23. The data are taken from Gilchrist, W.

Statistical Modelling. Chichester, UK: Wiley,
1984. These data give the distance by road
and the straight line distance between 20
different pairs of points in Sheffield. The data
are given in the file distance.

What is the relationship between the two
variables? How well can you predict the road
distance (y) from the linear distance (x)?

x = Linear Distance ~ y = Road Distance

9.5 10.7

5.0 6.5
23.0 294
15.2 17.2
11.4 18.4
11.8 19.7
12.1 16.6
22.0 29.0
28.2 40.5
12.1 14.2

9.8 11.7
19.0 25.6
14.6 16.3

8.3 9.5
21.6 28.8
26.5 31.2

4.8 6.5
21.7 25.7
18.0 26.5
28.0 33.1

2.24. The data are taken from Risebrough, R. W.

Effects of environmental pollutants upon
animals other than man. In Proceedings of the
6th Berkeley Symposium on Mathematics and
Statistics, VI. Berkeley: University of
California Press, 1972, pp. 443-463.
Polychlorinated biphenyl (PCB), an
industrial pollutant, is thought to have
harmful effects on the thickness of egg shells.
The amount of PCB (in parts per million) and
the thickness of the shell (in millimeters) of
65 Anacapa pelican eggs are given below. The
data are also given in the file pelicaneggs.
Investigate the relationship between the
thickness of the shell and the amount of PCB
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in pelican eggs. Construct a scatter plot and x = Concentration of PCB y = Thickness
fit a linear regression model. Calculate a 95%
confidence interval for the slope. Obtain the 320 028
ANOVA table and the coefficient of 191 0.29

determination R?. Interpret the results and 305 0.30
comment on the adequacy of the model. igg ggg
143 0.35
x = Concentration of PCB y = Thickness 175 0.36
119 0.39
452 0.14 216 0.41
139 0.21 185 0.42
166 0.23 236 0.47
175 0.24 315 0.20
260 0.26 356 0.22
204 0.28 289 0.23
138 0.29 324 0.26
316 0.29 109 0.27
396 0.30 265 0.29
46 0.31 193 0.29
218 0.34 203 0.30
173 0.36 214 0.30
220 0.37 150 0.34
147 0.39 229 0.35
216 0.42 236 0.37
216 0.46 144 0.39
206 0.49 232 0.41
184 0.19 87 0.44
177 0.22
246 023 237 0.49
296 0.25
188 0.26
89 0.28 2.25. The data are taken from Wallach, D., and
198 0.29 Goffinet, B. Mean square error of prediction
122 0.30 in models for studying ecological and
250 0.30 agronomic systems. Biometrics, 43, 561-573,
256 0.31 1987.
261 0.34 The energy requirements (in Mcal/day)
132 0.36 for a sample of 64 grazing merino sheep
212 0.37 are given below, together with their body
171 0.40 weights (kg). The data are given in the file
164 0.42 energyrequirement. Construct a scatter plot
199 0.46 and establish a model that explains the energy
115 0.20 requirements as a linear function of body
214 0.22 weight. Obtain a 95% confidence interval for
177 0.23 the slope. Calculate and interpret the
205 0.25 coefficient of determination R?. Comment on

208 0.26 the adequacy of the model. Discuss whether
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or not the variance of the measurements is
constant across weight.

x = Weight

y = Energy Requirement

22.1
26.2
332
343
49.0
52.6
27.6
31.0
326
44.6
52.6
28.6
344
25.1
27.0
332
34.9
49.2
533
28.4
31.0
33.1
52.1
46.7
29.2
344
25.1
30.0
332
42.6
51.8
23.9
28.9
31.8
34.1
524
37.1
26.2
26.4
25.7
30.2
339
43.7
51.8

1.31
1.27
1.25
1.14
1.78
1.70
1.39
1.47
1.75
2.25
3.73
2.13
1.85
1.46
1.21
1.32
1.00
2.53
2.66
1.27
1.50
1.82
2.67
221
1.80
1.63
1.00
1.23
1.47
1.81
1.87
1.37
1.74
1.60
1.36
2.28
2.11
1.05
1.27
1.20
1.01
1.03
1.73
1.92
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x = Weight y = Energy Requirement

25.1 1.39
29.3 1.54
32.0 1.67
342 1.59
52.7 3.15
31.8 1.39
45.9 2.36
27.5 0.94
25.9 1.36
30.2 1.12
33.8 1.46
44.9 1.93
52.5 1.65
26.7 1.26
29.7 1.44
32.1 1.80
44.4 2.33
53.1 273
36.1 1.79
36.8 2.31

2.26. The data are taken from Atkinson, A. C.

Plots, Transformations, and Regression.
Oxford: Clarendon Press, 1985.

Here, we list 17 observations on the
boiling point (°F) and the barometric pressure
(in inches of mercury). The data are given in
the file boiling. Relate boiling point to
barometric pressure. Construct a scatter plot
and establish a model that relates the boiling
point to barometric pressure. Test the
regression coefficients for their significance.
Calculate and interpret the coefficient of
determination R?. Comment on the fit and the
adequacy of the model.

Note that this exercise deals with the same
problem as Exercise 2.6 but uses different
data. Plot the data of the two exercises on the
same graph, and add the two fitted regression
lines that you found. Comment on the graph.

y = Boiling Point x = Barometric Pressure

194.5 20.79
194.3 20.79
197.9 22.40
198.4 22.67
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y = Boiling Point x = Barometric Pressure

199.4 23.15
199.9 23.35
200.9 23.89
201.1 23.99
201.4 24.02
201.3 24.01
203.6 25.14
204.6 26.57
209.5 28.49
208.6 27.76
210.7 29.04
211.9 29.88
212.2 30.06

2.27. The data are taken from Bissell, A. F. Lines

through the origin—IS NO INT the answer?
Journal of Applied Statistics, 19, 193-210,
1992.

In a chemical process, batches of liquid
are passed through a bed containing a certain
ingredient. The ingredient gets absorbed by
the liquid, and usually approximately 6-6.5%
of the weight of the ingredient gets absorbed.
In order to be sure that there is enough
material, the bed is supplied with
approximately 7.5% material. Excess
material is costly and should be minimized
because any excess cannot be recovered.

The interest is in the relationship between
the material supplied (x) and the amount
and/or the percentage of absorption. Develop
appropriate regression models for both
expressions of the response (in kg and as a
percent) and comment on their fit and
adequacy. The data are given in the file
absorption.

x = Liquid y = Take-up (kg) y = Take-up (%)

310 14.0 4.52
330 17.1 5.18
370 21.3 5.76
400 204 5.10
450 274 6.09
490 27.2 5.55
520 284 5.46

November 8, 2004
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x = Liquid y = Take-up (kg) y = Take-up (%)

560 325 5.80
580 31.9 5.50
650 34.1 5.25
650 39.8 6.12
650 38.5 592
760 50.4 6.63
800 43.8 5.48
810 50.4 6.22
910 53.5 5.88
1,020 71.3 6.99
1,020 64.3 6.30
1,160 79.6 6.86
1,200 80.8 6.73
1,230 78.5 6.38
1,380 98.9 7.17
1,460 105.6 7.23
1,490 98.6 6.62

2.28.

Search the Web for useful regression applets.
Many such applets are available.

After entering points on a scatter plot,
these applets calculate the least squares
estimates, draw in the fitted regression line,
and calculate summary statistics, such as
the correlation coefficient or the coefficient
of determination R?. Applets allow you to
change points and they illustrate the
effect of such changes on the regression
results.

Applets also illustrate the standard errors
of the estimates. They take repeated samples
of a certain size from a given population of
points and for each sample they calculate an
estimate of the regression slope. The results
of repeated draws from the population are
displayed in the form of histograms. This
illustrates the sampling variability of the
estimate.

Experiment with these applets and write a
short discussion of what you can learn from
them. Note that these applets are designed for
the bivariate regression situation mostly
because it is difficult to draw observations in
higher dimensional space.
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A Review of Matrix
Algebra and Important
Results on Random
Vectors

In Chapter 2, we considered regression models that involve a single explanatory
(regressor) variable. In the following chapters, we discuss regression models that
contain several explanatory variables. Many of the results in Chapter 2 require
tedious algebraic manipulations, and extending these results to more elaborate
models would involve a considerable amount of complicated algebra. Much of the
tedious work can be avoided if we perform the analysis with vectors and matrices.
This chapter summarizes basic results on vectors and matrices that are needed in
subsequent chapters, and we translate the regression results of Chapter 2 into the
language of vectors and matrices. The chapter also includes a general discussion
of random vectors and a summary of important results on the multivariate normal
distribution.

3.1 REVIEW OF MATRIX ALGEBRA

Matrix A matrix A of dimension p x ¢ is an array of pg elements, arranged in
p rows and ¢ columns. We write A = (a;;), where a;; is the entry in row i and
column j of the matrix. A matrix is called square, if it has the same number of
rows and columns (p = ¢). The identity matrix / is a square matrix with ones
in the diagonal and zeros everyplace else. The zero matrix O is a matrix of all
Zeros.

Examples

; the

S = O
- o O

2 5 1
The 3 x 2 matrix A= |1 3 |; the3 x 3 identity matrix / = | 0
1 2 0

2 x 2 square matrix B = |:41l §i| . [ ]

67
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Vector A p x 1 (column) vector x = (x;) is a matrix consisting of a single
column with elements x1, x2, ..., x,. The unit vector, 1, is the vector with all its
elements equal to one. The zero vector, 0, is the vector with all its elements equal to
zero. A p-dimensional vector x with elements xp, x5, ..., x, can be represented
geometrically in p-dimensional space as a directed line with component x; along
the first axis, component x; along the second axis, . .., and component x, along
the pth axis.

3 1
2 . 1
Examples The 4 x 1 vectorx = 5 ; the 4 x 1 unit vector 1 = 1 ; the 4 x 1 zero vector
1 1
0
0
0= . [ |
0
0
Matrix/Vector Addition and Subtraction Let A and B be two matrices (or vec-
tors) of the same dimension. Then A+ B=B + A= (a;j +b;;),and A — B =
(aijj — b;j). If ¢ and d are two scalars, then cA 4 dB = (ca;; + db;;). Matrix
addition/subtraction is defined elementwise.
Matrix/Vector Multiplication ~Let A= (q;;) be a p X g matrix, and B = (b;;) a
g x t matrix. Then the matrix product C = AB = (¢;;) is a (p X t) matrix with
elements ¢;j = > 7_ a; b,;.
Example The 3 x 2 matrix A and the 2 x 4 matrix B are given as

2 5
35 -1 2
A=11 3 ;Bz[ }
-1 2 2
1 2 3
The product is a 3 x 4 matrix given by
1 25 8 14
C=AB=|0 14 5 8 [ ]
1 11 3 6

Transpose of a Matrix ~ Let A= (a;;) be a (p x ¢) matrix. The transpose A’ =
(aj;) is the ¢ x p matrix obtained by interchanging rows and columns. Note that
(AB) = B’A’. A square matrix A is symmetric if A= A"

The transpose of a (p x 1) column vector x is the (1 x p) row vector x’. It
is a matrix consisting of a single row.
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Example

The transpose of the 3 x 2 matrix A given previously is the 2 x 3 matrix A’ =

2 1 1
|: s 3 2] . The transpose of the 4 x 1 column vector x given previously is the

1 x 4 row vectorx’ =[3 2 5 1]. ]

Product of Two Vectors ~ The (inner) product of two (p x 1) vectors x and y is
defined as the scalar x'y = Zle x;y;. Two vectors x and y are called orthogonal
if their inner product x'y =0. ||x|| = (x'x)!/? = [X:le(x,-)z]l/2 is known as the
Euclidean norm, or the length of the vector x.

Example

Consider the 4 x 1 vector x given previously and the 4 x 1 column vector y =
3

02 . The inner product x’y = (3)(3) + (2)(0) + (5)(—2) + (1)(1) =0. The
1
two vectors x and y are orthogonal. The length of the vector x is given by ||x|| =
(x'x)'/? = (39)!/2 = 6.245. The length of y is ||y | = (14)!/?> = 3.742. [

Linearly Dependent and Linearly Independent Vectors A set of n x 1 vectors x1, X2,
..., Xy 1s said to be linearly dependent if there exist scalars ¢y, ¢, ..., ¢, not
all simultaneously zero, such that cix; + cox2 + - - - + cxxp = 0; otherwise, the
set of vectors is called linearly independent. Linear dependence implies that at
least one vector can be written as a linear combination of the remaining ones.

Example

Consider the following four 5 x 1 vectors xy, X3, ..., X4, which we have repre-
sented as the four columns in a 5 x 4 matrix X:

1 2 3 7
1 3 4 6
X=[x|x2]x3|x4]=|1 5 6 4
1 2 3 7
1 1 2 8

Consider the first two vectors. These two vectors are linearly independent. Only
the trivial solution ¢; = ¢, = 0 achieves ¢1x1 + c2x3 = 0. Now consider the first
three vectors. One recognizes that x1 + x, =x3. Hence, one can find coeffi-
cients ¢y =1,¢; =1, and ¢3 = —1 such that ¢ix1 + ¢yx3 + ¢3x3 =0. The first
three vectors are linearly dependent. It is now obvious that the four vectors are also
linearly dependent. Just set the coefficient ¢4 = 0, and you have a nontrivial solu-
tioncy =1,cp=1,c3=—1, ¢y =0resulting in c;x; + c2x2 + ¢3x3 + c4x4 =0.
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In this example, every possible set of three vectors from this matrix X results
in three vectors that are linearly dependent. We already saw it for x;, x», and x3.
The same is true for x1, x3, and x4, as x4 = 10x; — x3. Also for x1, x2, and x4, as
x4 = 10x1 —x3 = 10x1 — (x1 + x2) = 9x1 —x,. Hence, we only need two columns
to create the remaining columns of the matrix X. [ ]

Rank of a Matrix ~ The rank of a p x ¢ matrix A is the largest number of linearly
independent columns (or equivalently, the largest number of linearly independent
rows). The p x p square matrix AA’ has the same rank as the p x ¢ matrix A.

A m x m square matrix A is called nonsingular if its rank is m. We call the
matrix singular if its rank is less than m.

Example

The rank of the matrix X in the previous example is 2. Consider

2 5
A=|1 3| and A’=[§ ; ;i|
1 2

The rank of A, and also the rank of A’, is 2. The 3 x 3 matrix

29 17 12
AA'=|17 10 7
12 7 5

Observe that the third column in this matrix is the difference of the first two. The
matrix AA’ has rank 2 (which is the rank of A). [ |

Determinant of a Square Matrix ~ The determinant of an m x m square matrix A =
(a;j) is the real value defined by |A| =) +aj;az; . . . amp, Where the summation
is taken over all permutations (i, j, ..., p) of (1,2,...,m), with a plus sign
if it is an even permutation and a minus sign if it is an odd permutation. A
permutation is called even (odd) if its number of inversions is even (odd). An
inversion in a permutation occurs whenever a larger integer precedes a smaller
one. The determinant of A is different from zero if and only if the matrix A is
nonsingular (i.e., has full rank m). For two m x m square matrices A and B, it
holds that |AB| = |A||B|.

Example

Consider the 2 x 2 and 3 x 3 matrices

2 1 3
A:[All §:| and B=|1 2 3
4 6 10

The determinants are givenby |[A| = (4)(3) — (2)(1) =10and |B| = (2)(2)(10) +
(H©G) + (DHB)E) — BH©2)(3) — (6)(3)(2) — (1)(1)(10) =0. The matrix B
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is singular, and its rank is less than 3. We notice that the third column of B is
the sum of the first two columns; hence, the matrix has rank at most 2. The
matrix has rank 2 because we can find one pair of vectors that are linearly
independent. u

Inverse of a Nonsingular Matrix ~ The inverse of a nonsingular matrix A is denoted
by A~!. The inverse A~! satisfies AA~' = A~!A =I.If A and B are nonsingular
(m x m) matrices, then (AB)~! = B~'A~!. Various algorithms are available for
numerically determining the inverse. Most algorithms become unstable if the
matrix is close to a singular matrix.

Example

Consider the 2 x 2 matrix A of the previous example. The inverse is given by

. [ 0.3 —o.z]

—0.1 0.4
Convince yourself that AA™'=A"1A=1, where I is the 2 x 2 identity
matrix. [ ]
Quadratic Forms ~ Consider the n x 1 vector y = (y1, y2, ..., y»)'. Wecall y’Ay a

quadratic form in y provided that the n x n matrix A is symmetric (i.e., A = A").

Positive Definite Matrix ~ A symmetric matrix A is called positive definite if for all
vectors y # 0 the quadratic form y’Ay > 0. We call the matrix positive semidefi-
nite if the quadratic form y’Ay > 0 for all y and y’ Ay = 0 for some vector y # 0.

We call the symmetric matrix A negative definite if for all vectors y £ 0 the
quadratic form y’ Ay < 0. We call the matrix negative semidefinite if the quadratic
form y’Ay <0 for all y and y’ Ay = 0 for some vector y # 0.

Orthogonal Matrix A square matrix A is called orthogonal if AA’=1. Since
A'=A"! is the inverse of A, it follows that A’A = I. Hence, an orthogonal
matrix satisfies AA’=A"A=1. The rows of an orthogonal matrix are mutu-
ally orthogonal and the length of the rows is one. The same can be said about
the columns of A. Furthermore, the determinant |A| = %1. This follows since
|AA| = |A|A'|=|AP = I]=1.

Example

1/V2 —1/V2
/N2 12

the same as the transpose, A’. The rows (columns) of the matrix are orthogonal,
and the length of each row (column) vector is 1. A is an orthogonal matrix. The
determinant of A is +1. [ |

Consider the 2 x 2 matrix A = |: :| . The inverse of this matrix is
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Trace of a Square Matrix ~ The trace of a square m x m matrix A is defined as the
sum of its diagonal elements; that s, tr(A) = Y ;- | a;;. The definition implies that
tr(A) =tr(A"), tr(A + B) =tr(A) + tr(B). Provided that the matrices C, D, and
E are conformable, tr(CDE) =tr(EC D) =tr(D EC). Conformable means that
the dimensions of the matrices are such that all these products are defined.

Idempotent Matrix A square matrix A is idempotent if AA = A. The determinant
of an idempotent matrix is either O or 1. The rank of an idempotent matrix is equal
to the sum of its diagonal elements.

Example

Consider the n x p matrix X, with p <n, and assume that the matrix X has full
column rank, p. Now consider the matrix X’ X. Thisisa p x p matrix. The matrix
is symmetric since (X'X) = X'(X") = X’ X. Furthermore, it is nonsingular with
rank p, and the inverse (X’ X)~! exists.

Define the n x n matrix H = X(X’X)~'X’. H is symmetric [since the trans-
pose (X(X'X)~'X"Y = X(X'X)~'X']. H is idempotent since HH = X (X'X)~!
X'X(X'X)"'X'=X(X'X)"'X'=H. The rank of H is equal to the sum of
its diagonal elements. The trace of H is given by tr(H) =tr(X(X'X)"'X') =
tr(X'X(X'X)™") =tr(I,) = p since (X'X) isa p x p matrix and I, isthe p x p
identity matrix. This shows that the rank of the n x n matrix H is p, the rank of
X. The matrix H will become very useful in regression. [ ]

Vector Space A vector space V is the set of all vectors that is closed under
addition and multiplication by a scalar and that contains the null vector 0. A set
of linearly independent vectors xy, X3, . . ., X, is said to span a vector space of di-
mension n; any other member of this vector space can be generated through linear
combinations of these vectors. We call this set a basis of the vector space. Basis
vectors are not unique. Sometimes it is useful to work with orthonormal basis
vectors. That is, vectors uy, uy, ..., u, that are orthogonal (u;uj =0 for i # j)
and have length one (u;u; = 1). Such orthonormal basis vectors always exist, and
the Gram-Schmidt orthogonalization shows how they can be constructed from
a given set of linearly independent basis vectors xy, X3, ..., X,. The procedure
works as follows:

uy = Xx1
Uy = X2 —azuy
uz = X3 —azuz —asuy

Ui = Xi —aji—1Ui—1 — aj2Ui—2 — - —d;Uy
The coefficients in the ith equation (i =2, ..., n) are determined by setting
the inner product of u; with each of the previous vectorsu; 1, . . . , uy equal to zero.

We start with u; = x1. We select ap; such that u/1 (x2 — ajup) =0, which implies
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that a>; = (u}x2)/(ujuy). Next we determine a3, and az; from u}(x3 — aznus —
azuy) =uy(x3 — azjuy) =0, andu)y (x3 — azus — azjuy) =uy(x3 — apuz) = 0.
This implies a3 = (ujx3)/(ujuy) and az, = (uyx3)/(uyusz), and so on. This pro-
cess generates orthogonal vectors u;. The last step normalizes the vectors by
dividing each vector u; by (u;u,-)o's. The denominator is always different from
zero, because the initial basis vectors are linearly independent.

The Euclidean space R”" is a vector space. The vectors u;, with all zero
elements except for a one in the ith row, provide one natural orthonormal basis
(but by no means the only one).

Subspace of R”  Consider k < n linearly independent vectorsin R", x1, X2, . .., Xj.
The linear combinations of x1, x3, . . ., X§ span a certain k-dimensional subspace
R* within R". The Gram—Schmidt orthogonalization can be used to construct an
orthonormal basis for this subspace.

Linear Transformations ~ Matrices arise naturally in the study of linear transforma-
tions. A linear transformation of the n x 1 vector x into the n x 1 vector y is
written as y = Ax, where A is the n x n transformation matrix. For nonsingular
matrices A the transformation is one-to-one.

Orthogonal Transformations A linear transformation y = Ax is called orthogonal
if A is an orthogonal matrix satisfying AA’ = A’A = I; that is, a matrix with
mutually orthogonal rows (columns) of unit lengths. Orthogonal transformations
correspond to rotations and reflections in n-dimensional space, and they preserve
lengths (i.e., y'y =x’A’Ax =x'x) and also volumes.

Projections  Projection of a vector x in R” on to a subspace S of R” is the linear
transformation y = Px, where the n x n matrix P is symmetric (P = P’) and
idempotent (satisfying PP = P).

The subspace S onto which we project is spanned by the columns (or rows)
of P, and the dimension of S is given by the rank of this matrix P. Since y =
Px, y is a member of that subspace. The fact that Py = P Px = Px and hence
P(x —y)= P'(x —y) =0 implies that x — y is orthogonal to the subspace S.

Eigenvalues and Eigenvectors of a Square Matrix ~ The eigenvalues (or character-
istic roots) Ay, Az, ..., A, of an m x m matrix A are the m solutions to the
characteristic equation (determinant equation) |A — /| =0. The eigenvectors
Vi,V2,..., v, of the matrix A are the (vector) solutions of the equations (A —
Ay, =0,fori=1,2,...,m.

For symmetric matrices the eigenvalues are real numbers. For symmetric
positive definite matrices all eigenvalues are positive. For symmetric positive
semidefinite matrices one or more of the eigenvalues will be zero.

Spectral Representation (Canonical Reduction) of a Symmetric Matrix Let A be anm x
m symmetric matrix (i.e., A" = A). Then there exist an orthogonal matrix P (i.e.,
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satisfying PP = PP’ =1) and a diagonal matrix A with elements A1 > A >
-«.> )\, such that AP = A.Hence, A= PAP'.

The elements A; > Ay >---> X, of the diagonal matrix A are the real-
valued eigenvalues of the matrix A, and the m column vectors of the matrix
P =[p1, P2, ..., pm] are the corresponding eigenvectors, that satisfy Ap; = A; p;
and have been normalized to lengths one.

3.2 MATRIX APPROACH TO SIMPLE LINEAR REGRESSION

In Chapters 1 and 2, we considered the hardness (y) and the temperature (x) of
14 coil springs. The linear model

y=PB0+pix +e€
led us to the 14 equations in Eq. (2.2). These may be written as

55.2 Bo+ B1-30 €1
59.1 Bo + B - 30 N €

16.9 Bo + B1 - 60 €14

y=XB+e

where y and € are (14 x 1) column vectors, 3 is a (2 x 1) column vector, and X
is a (14 x 2) matrix. Specifically,

Vi 55.2 €] I x 1 30
»w 59.1 € 1 X2 1 30
y=|"1|=| . [ e=| | B= [ﬁ 0}; x=|. . |=
. . . /31 . . : .
YVi4 16.9 €14 1 X14 1 60

With n cases, y and € are (n x 1) vectors, and X is a (n x 2) matrix.

3.2.1 LEAST SQUARES

The least squares estimates of 3 minimize the error sum of squares

n

SB =SB0, Br)=) e =€e=(y—XPB)(y — XB)

i=1
The minimization with respect to 3 leads to the normal equations in Eq. (2.6),
which can be written in vector/matrix form as

s sl ]
Yoxi x| A Sxivi |
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or
X'X)B=X'y (3.2)
The solution to this matrix equation, (3, is given by
B=X'X)"'Xy 3.3)
provided that the matrix X’X can be inverted (i. e., the matrix X has full column
rank 2, which implies that X’X is nonsingular).
The fitted values and residuals can also be expressed in vector form. The
vector of fitted values is given by

23 Bo + Bixi I x A
) ) . |:,30:| A

= : Do =Xp (3.4)
fln Bo+ Bix, 1 x,
The vector of residuals is
e yi— i
e=|:|=| : |=y-p=y-Xp (3.5)
€n Yn = fn

The least squares estimator of o2 is given as

1 1 1
§2 = Z 61.2 = ee (3.6)
i=1

n—2 n—2

Since @ is the solution of Eq. (3.2), X’X8 = X'y, we find that

X(y—XB)=Xe=0 (3.7)
The equation
€l
[ 1 1 1 :| -
X1 X2 Xn
€n

implies Y " e; =0and Y_ x;e; =0, the two restrictions seen earlier.
Furthermore, through substitution of fi = X3, we find that the scalar

> hiei=fle=(XB)e=BXe=0 (3.8)

which is another consequence of the least squares fit seen earlier.

This discussion shows that with vector/matrix algebra a number of results
can be established quite easily. Without vector algebra, the analysis involves
considerable algebraic manipulations. The results in Eqs. (3.7) and (3.8) also have
interesting and useful geometric interpretations, which are discussed in Chapter 4.
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3.2.2 HARDNESS EXAMPLE

Using the data in Chapter 2, we find

o [14 630 oo [1.1099  —.0231
XX = 630 30300]° X0 =1_0231 0005
L 1252021 4 oot o | 94.134
Xy = 00400| P=EX) Xy=|_ "
[ i Bo + B1 - 30 56.1495
. %) Bo+ B1-30 56.1495
14 Bo+ Bi - 60 18.1648
[ e 55.2 56.1495 —0.3495
e 59.1 56.1495 2.9505
e = . = . — . = .
| eis 16.9 —18.1648 —1.2648

3.3 VECTORS OF RANDOM VARIABLES

Definition

Equation (3.1) expresses the simple linear regression model in vector notation. The
vectors € = (€1, ...,€;) and y = (y1, ...,y,) are called random vectors because
their elements are random variables. In this section, we review random vectors and
their properties. This will help us establish the general regression results. Note that
in Chapter 2 we made a careful distinction between a random variable (denoted by
capital letter Y') and a possible value of this random variable (denoted by lowercase
letter y). From now on, we will not make this distinction and throughout this text
we will use lowercase letters for random variables.

The expected value of a random vector y is defined as

E(y)=(EG), EG2), ... EG)

The expected value of a random vector is the vector of the respective expected
values; we also call it the mean of the random vector. Similarly, if W is a matrix
of random variables, then the expected value of W, E (W), is the corresponding
matrix of expected values.

For single random variables y; and y, and constants a; and a,, we know that
() E(ary1 +a2) =a1E(y1) +az, (i) E(aryr +axy2) =a1E(y1) + a2 E(y2)

The second property is very important. It states that the expected value of a linear
combination of random variables is the linear combination of the expected values.
For vectors we have the corresponding properties

() E(ay +b)=aE(y) +b, (i) E(Aiy)=A1E(y); EQ'A)=EQy) A
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where a is a scalar constant, b is a vector of constants, and A; and A, are matrices
of constants. These results follow easily by writing out the expressions after the
expectation sign and using the definition of the expectation of a random vector.

Recall that for scalar random variables y; and y, with means E(y;) = i and
E (y,) = 147, the variances of y; and y, are

VD =EG —p)® and V() =EQ —p2)’
and the covariance between y; and y; is
Cov(yr, y2) = E(y1 — n1)(y2 — o)

In the context of a (n x 1) random vector y we collect both variances and covari-
ances in a single matrix called the covariance matrix V (y).

Definition Lety = (y1,...,y,)" be a vector of random variables with mean vector E(y) =
pw= (w1, ..., 1, . The covariance matrix V (y) is the matrix with diagonal ele-
ments V (y;) and (i, j)th off-diagonal elements Cov(y;, y;). That is,

V(y) Cov(yr,y2) --- Cov(yi1, yn)
V() <+ Cov(y2, yn)
V(y)= .
Cov(yu, y1) e V(yn) ]

Here we list several important properties of vectors of random variables:
i. The covariance matrix ¥ = V (y) is symmetric (X = X’) since
Cov(yi, yj) = Cov(yj, yi)-

ii. For uncorrelated random variables yi, . ..,y, with Cov(y;, y;) =0, i # J,
the covariance matrix V (y) is diagonal.

iii. We can express the covariance matrix as

V) =E(y —pw)(y —p)

One can see this by writing

Y1 — K1
E(y—u)(y—u)/=E{[ }[yl—m,--.,yn—un]}

Yn — MUn
E(yi—p)? EGr—uD)—m2) - Ei—pw)Gn — fa)
3 E(y: — u2)? o E(yy — w2) (Y — ta)
Symmetric :
E(y, — Mn)z
=V(y)

iv. Consider a system of p linear transformations u = Ay, where Aisa p x n
matrix of constants. The p x 1 vector u is a random vector. Its mean vector
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is given by the p x 1 vector E(u) = E(Ay) =AE(y)=Ap. The p x p
covariance matrix of u is given by V(u) = V(Ay) = AV (y)A’. The result
for the mean vector follows from the definition. The result on the
covariance matrix can be proved as follows:
V() = Elu— E@W)][u — E@)]

= E[(Ay — Ap)(Ay — Ap)']

= E[A(y —p)(y —p)'A]

= AE[(y —w)(y — 1A

=AV(y)A
If the linear transformation includes a constant vector b (i.e.,u =b + Ay),

then the mean vector changes to E(u) =b + Ap. However, since b is
nonstochastic, the covariance matrix is as given previously.

Example Consider the random vector y = (y1, y, y3)' such that E(y) = u = (1, 2, 3)" and
1 0 1
Viy=|0 2 -1
1 -1 3

Consider the system of linear combinations

up =y —y2+2y

u =y1+y
. 1 -1 2
Thatis, u = Ay, where A = . 0 1.Then
1
1 -1 2 5
E =A = =
w=m=|; " 1] 2]=[3]

and

1 0 1 1 1

V(u)=|:i _01 ﬂ 0 2 —1||-1 0 =[ﬁ’ 161}
1 -1 3]|[2 1

This implies that V (1) =23, V(uy) =6, Cov(uy, up) =11, and
Cov(uy, us) _ 11
VW) V) /236

=0.936 [ ]

COI‘I"(M1, u2) =

v. Consider p = 1, and the single linear combination u =a’y, where
a' =(ay,...,a,)isal x nrow vector. The mean of the scalar random
variable u is E (1) =a’p and its variance is V (u) =a’'V (y)a.
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vi. The covariance matrix ¥ = V(y) must be positive semidefinite. Variances
of linear combinations a’y can never be negative; hence, we require that
V(a'y) =a’'V(y)a > 0. Note that the requirement of being positive
semidefinite allows for nontrivial linear combinations of y with zero
variance. In such cases, we have deterministic linear relationship(s) among
the n random variables, and the distribution of y can be defined on a lower
(lower than n) dimensional space. In this case, the covariance matrix V (y)
is singular.

vii. Eigenvalues of a positive semidefinite symmetric matrix are nonnegative.
Hence, the covariance matrix X of a random vector y can always be written
as X = PA'2A2P' = P*P¥, where P* = PA'/2, and where A'/? is the
diagonal matrix with elements (A;)'/2 > (A)'/2 > ... > (A,,)1/2.

This is an important result. For any random vector y with general
nonsingular covariance matrix ¥ = PAP' = P*P*/, we can find a linear
transformation z = (A~!/2P")y that transforms the correlated random
variables y into uncorrelated random variables with unit variances. Here,
A~ is a diagonal matrix with elements
M) V2 <) V2 <o < (Ay) Y2, and P is the matrix of normalized
eigenvectors of X.

You can see this result from our general result on covariance matrices
of linear transformations. The covariance matrix of z is given by
(A712PYS(PAY2) = A~1/2AAY2 =]. Note that we have assumed
that the covariance matrix X is nonsingular. In this case, all eigenvalues
(A1, A2, ..., Ap) are strictly larger than zero, and it is possible to take the
reciprocal of the eigenvalues.

Example

Consider the 2 x 2 matrix £ = |: Ol 5 Ois

inite matrix. It is a nonsingular covariance matrix of a bivariate (nondegenerate)
random vector. The eigenvalues are the solution to the equation (1 — A)(1 — 1) —
0.25=0, and they are given by 0.5 and 1.5. The eigenvector corresponding to

:| . This is a symmetric and positive def-

05 1 0

This leads to the equation x; + x, =0 (note that the second equation is identi-
cal). Solving this equation and imposing the restriction that the length of the
resulting solution is 1 [i.e., (x;)> + (x2)> = 1] leads to the first eigenvector

pi= |:_1 1/ ;/«/55] . The second eigenvector satisfies the equation [0%5 0i5i| Bj _

(1.5) [;Cli| = [8} , which leads to the equation x; —x, =0 and the second
2

1 .
the first eigenvalue satisfies the equation |: 0 5] [il ] —(0.5) [il] = |:Oj| .
2 2
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1/v/2 1N2 142
eigenvector p, = . Hence, the orthogonal matrix P =
g P2 [1/[2} g [—1/ﬁ 1/v2

05 0

andA:[o 15

] . You can convince yourself that . = PAP’. [ ]

So far, we have discussed the mean E(y) and the covariance matrix V (y) of
arandom vector y. We can also consider the distribution of random vectors. Such
distributions are referred to as multivariate distributions. The most important
multivariate distribution is the multivariate normal distribution.

3.4 THE MULTIVARIATE NORMAL DISTRIBUTION

In the Appendix in Chapter 2, we discussed the univariate normal distribution
with mean p and standard deviation o > 0. The density function of the univariate
normal distribution is given by

1 1
f(Y)=meXp [—ﬁ(y—u)z] for —co<y<oo

The standard normal distribution is the normal distribution with mean 0 and
variance 1. Percentiles of the standard normal distribution are given in Table A
at the end of this book.
The n variate normal distribution for an n x 1 random vector y = (yy, y»,
.., Yu)| With mean vector gt = (i1, 2, ..., 4,)" and n X n covariance matrix
Y = (0y;) is given by

11?2 1
f(y)=[g} |E|—‘/2exp[—§(y—u)’z—%y—u)} for —o0 <y <00

The distribution is completely specified by a mean vector p and a symmetric pos-
itive definite covariance matrix X. This assumption ensures that X is nonsingular
and has an inverse. Note that a positive semidefinite covariance matrix ¥ implies
at least one nontrivial linear combination of y with zero variance. In this case,
there exists a deterministic linear relationship among the n random variables, and
the distribution of y can be defined on a lower (lower than n) dimensional space.
The resulting covariance matrix ¥ is singular, and one needs to consider a special
type of inverse called generalized inverse of X.

Important properties of the multivariate normal distribution are listed as fol-
lows:

i. The reproductive property: Linear transforms of multivariate normals
are again normal.
Consider the (vector) linear transformation of y, u = Ay, whereu isa p x 1
vector with p <n, and where A is a p x n matrix of rank p. It follows that
u has a p variate normal distribution with mean vector E(u) = Ay and
covariance matrix AX A’
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iii.

iv.
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The result about the mean vector and covariance matrix of a (vector)
linear transformation was shown in Section 3.3. The importance of the
present result is that the distribution of linear combinations of a multivariate
normal vector is again multivariate normal.

As a special case, consider a single linear transformation u =a'y,
where a = (ay, as, ..., a,) is aknown n x 1 vector of constants. The
(scalar) random variable u follows a univariate normal distribution with
mean a’p and variance a’ Za.

Marginal distributions of multivariate normals are again normal.
Consider y1, a p x 1 subvector of the n x 1 vector y = (yy, y2, ..., yn) -
Assume without loss of generality that y consists of the first p components

yi1

of y. Partition the vector y accordingly, and let y = , with mean

i X2
Zh o

121

. We can write y
K2

vector g = |: ] and covariance matrix X =

as a (vector) linear combination of y. That is,

yi= [IPXP 0p><(n—p)]y
where 1,4, is the p x p identity matrix, and Oy u—p) is the p x (n — p)
matrix of zeros.
Applying property i, we find that y has a p variate normal distribution
with mean vector p; and covariance matrix

u 22 Ipxp
1 o0 _ =X
[ pXxp px(n P)] |:Ei2 PO O(n—p)Xp 11

Let us consider p =1 and an individual component y; (where i is any index
between 1 and n). It follows that the distribution of y; is univariate normal
with mean u; and variance o;;.

Conditional distributions of multivariate normal distributions are
again normal.

Partition the multivariate normal vector y into nonoverlapping subvectors
y1 and y; as shown in (ii). The conditional distribution of y; given certain
specified values for y; is a p variate normal distribution with the p x 1
mean vector

B2 =p1+ Z12(32) " (y2 — p2)
and the p x p covariance matrix
Ti2=%n - Zn(En) 'S,

Equivalence of zero covariance and independence.

We know that for any distribution, the independence of (two) random
variables implies zero covariance between the random variables. Under a
multivariate normal distribution, the converse also holds, and zero
covariance implies statistical independence.
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You can see that with o1, = Cov(yy, y2) =0, the bivariate normal
density of y; and y, factors into

1 |:_ (1 — 11)? ~On - Mz)z]

(2m)(o11022) 172 2011 202

_ 1 exp |:_ (i — M1)2j| 1 exp |:_ (2 — M2)2:|
(2:'[)1/20111/2 2011 (271)1/20*212/2 202 '

the product of two marginal normal densities.

The assumption of joint normality is essential for the equivalence of
uncorrelatedness and independence. The following example shows that, in
general, uncorrelated random variables need not be independent. Take the
random variable y with zero odd moments; that is, E(y) = E(y°) =
E(y’) =---=0. Take as a second random variable x = y>. Then
Cov(x,y)=E[(y* — EG*)(y — EO))]=E(y*) — E(y)E(y*) =0, but x
and y are functionally related and hence not independent.

Consider two (vector) linear transforms of a multivariate normal random
vector y with covariance matrix X. Thatis,z; = A1y and z, = A,y, where
A and A, are matrices of dimensions p; X n and p, x n. The transforms
are independent if and only if A} XA}, = O, a matrix of p; x p, zeros.

fOLy) =

S A o
Result i implies that the vector z = |:§1:| = [ Al:| y has a multivariate
2 2

normal distribution with covariance matrix
Ay AIZA] AXA,
[Aj T [A] A]= [

. The covariance is zero if and
AT Al AT A
only if A;ZA, = 0.

3.5 IMPORTANT RESULTS ON QUADRATIC FORMS

We call Q =y’Ay a quadratic form in y = (y1, y2, ..., y,)’ provided that the
n X n matrix A is symmetric (i.e., A =A").

L.

The distribution of quadratic forms
Assume that the n x 1 vector y = (yy, y2, ..., y») follows a multivariate
normal distribution with mean vector zero and nonsingular covariance
matrix 2. Assume that the symmetric n x n matrix A has rank r <n. A
necessary and sufficient condition that Q =y’ Ay follows a chi-square
distribution with r degrees of freedom is provided by the matrix equality
AT A=A.

Consider the special case in which yy, y», ..., y, are independent
univariate normal random variables with means zero and a constant
variance o2, This implies that the n x 1 vector z with elements
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=y1/0,22=Y2/0, ..., 2y = y»/0 follows a multivariate normal
distribution with mean vector zero and covariance matrix /,,. Hence, the
quadratic form Q =y’Ay/o? follows a chi-square distribution with r
degrees of freedom if and only if the matrix A is idempotent (AA = A).

ii. Independence of two quadratic forms
Assume that the n x 1 vector y = (y1, y2, ..., y»)’ follows a multivariate
normal distribution with mean vector zero and nonsingular covariance
matrix X. Consider the two quadratic forms Q1 =y’Ay and Q, =y’By,
where A and B are symmetric n X n matrices. The random variables
Q1 =y Ay and Q, =y'By are independent if and only if AXB = O, an
n x n matrix of zeros. If £ =21, the condition simplifies to AB = O.
iii. Results on the distribution of a sum of quadratic forms
Assume that the n x 1 vector y = (yy, ya, ..., y») follows a multivariate
normal distribution with mean vector zero and nonsingular covariance
matrix ¥ =0%]. Let 0= Q; + -+ Os_1 + O, where O, Oy, ...,
Qi_1, Qy are k + 1 quadratic forms in y. Let Q /o2 be chi-square with r
degrees of freedom, let Q; /o> be chi-square with r; degrees of freedom
(i=1,2,...,k—1),and let Q; be nonnegative. Then the random variables
Q1, ..., Qk_1, QO are mutually independent and, hence, Q. /a2 18
chi-square with ry =r — (r; +r2 + - - - + rr—1) degrees of freedom.

EXERCISES

3.1. Consider the matrix 3.3. Consider the matrix
2 0 1 I xii xi2
=3 2 2 1 X21 X22
2 1 4 X=11 X317 X32
a. Obtain the transpose A’ of A. Ixa xp
I x51 x5
b. Calculate A’A.
. /
c. Obtain the trace tr(A) of A; obtain a. Find X'X.
tr(A’A). b. Obtain
5 5 5 5
d. Calculate the determinant det(A) of A; 2 2
obtain det(A’A). Zx“’ Zxﬂ’ inl! inzv
3.2. Consider the matrix and X
I =1 —1 4 inlxiZ
1 +1 -1 3 i=1
X = 11 41 and the vector y = 5 How are these quantities related to the
elements of the X’ X matrix?
1 +1 +1 7
3.4. Consider the matrix
a. Find X'X, (X'X)~!, X'y, and (X'X)~! |
X'y. A= [—1 2 }
b. Describe the structure of X’'X and a. Calculate the determinant and the inverse

(X'x)~L of the matrix A.
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3.5.

3.6.

3.7.

Abraham Abraham C03

b. Obtain the eigenvalues and the
eigenvectors of the matrix A.

c. Determine the spectral representation of
the matrix A.

d. Determine whether the matrix A can be a
covariance matrix. If so, determine the
corresponding correlation matrix.

Consider the matrix

A=

—_— e D
NS I S
NS NS R

a. Calculate the determinant and the inverse
of the matrix A.

b. Obtain the eigenvalues and the
eigenvectors of the matrix A.

c. Determine the spectral representation of
the matrix A.

d. Determine whether the matrix A can be a
covariance matrix. If so, determine the
corresponding correlation matrix.

Consider the matrix
2 1 1
A=1|1 4 0
1 0 1
a. Calculate the determinant and the inverse

of the matrix A.

b. Obtain the eigenvalues and the
eigenvectors of the matrix A.

c. Determine whether or not the matrix A can
be a covariance matrix. If so, determine
the corresponding correlation matrix.

Consider the matrix

[N
[©) QUSROS

a. Calculate the determinant and the inverse
of the matrix A.

b. Obtain the eigenvalues and the
eigenvectors of the matrix A.

c. Determine whether the matrix A can be a
covariance matrix. If so, determine the
corresponding correlation matrix. Identify

November 8, 2004

3.8.

3.9.

3.10.

3.11.

3.12.

3.13.

14:18

the linear combination that has
variance zero.

Consider the matrices

4 1
a=[l 4] e a2
2 4

a. Determine the matrix product AB and
obtain its rank.

b. Determine the matrix product BA and
obtain its rank.

Obtain a 3 x 3 orthogonal matrix other than
the trivial case of the identity matrix.

Specify a linear regression model for the
hardness data in Table 1.1. Specify the 14 x 2
matrix X and the 14 x 1 vector of responses
y. Determine the 2 x 2 matrix X’X and its
inverse (X’X)~!. Using matrix algebra, write
down the expression for the least squares
estimates in 8= (X'X)"'X'y.

Consider a trivariate normal distribution

y =(y1, y2, y3) with mean vector
E(y)=(2,6,4) and covariance matrix

1 0 1
viy=|0 2 -1
1 -1 3

a. Determine the marginal bivariate
distribution of (yy, y2)'.

b. Determine the conditional bivariate
distribution of (yy, y,)’, given that y3 =5.

Let zy, z2, z3 be random variables with mean
vector and covariance matrix

1 3 2 1
pu=|21: v=|2 2 1
3 1 1 1
Define the new variables
yi=2z21+223; y2=21+22—23;

yv3i=221+2+23—7
a. Find the mean vector and the covariance
matrix of (y1, y2, ¥3).
b. Findlthe mean and variance of
y= g(yl +y2+y3).

Let X be an n x p matrix. Assume that the
inverse (X’X)~! exists, and define
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A=(X'X)"'X"and H=XA.
a. Show that (i) HH = H,;

(i)(I —H)(I—-—H)=({ - H);and

(i) HX = X.

b. Find G) A(I — H); (ii)) (I — H)A’;

(iii) H(I — H); and (iv) (I — H)'H'.
Suppose that the covariance matrix of a vector
y is 021, where I is an 1 x n identity matrix.
Using the matrices A and H in Exercise 3.13,
find the covariance matrix of

a. Ay
b. Hy
c. { —H)y

JA)

Consider the bivariate random vector with
covariance matrix

L p
A= :
[p 1]’

|p| < 11is the correlation coefficient

a. Show that the eigenvalues of the matrix A
are given by 1 + p and 1 — p.

b. Show that the normalized eigenvectors
that correspond to these two eigenvalues

are given by
~1/¥2
p2=

_[uv2
P1= 1/\/5 1/«/5

c. Confirm the spectral representation of the
covariance matrix A. That is, show that

/ [uﬁ —1/\/§:||:1+,0 0

PAP=1N§ " S

1//2
—1/v2 142
d. Generate n = 20 independent random
vectors from a bivariate normal

distribution with mean vector zero and
covariance matrix A.

p 1

The result in (c) helps you with the
generation (simulation) of correlated random
variables. Assume that you want to generate

1/~/§}=A=[1 P

]

]

November 8, 2004
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bivariate normal random variables (yy, y,)
with covariance matrix A given previously.
You can achieve this by generating
independent random variables (x;, x;) with
variances 1 + p and 1 — p and applying the
transformation

N

y2 1/vV2  1/42 | Lx

The resulting random vector (y;, y,) has a
bivariate normal distribution with covariance
matrix A.

Most computer programs make it easy to
generate univariate normal random variables,
but they lack routines for simulating
correlated random vectors. For generating
multivariate normal random variables with a
certain specified covariance matrix, one can
use the spectral representation of the
covariance matrix to determine the matrix
that transforms independent random variables
into correlated random variables.

. The linear regression model in Chapter 2,

y =B+ P1x + &, assumes that the settings
of the regressor variable are fixed
(nonstochastic). In Section 2.9.2, we showed
that the standard regression results still apply
in the random x case, provided that the
random components on the right-hand side of
the model (the regressor x and the error ¢) are
independent. As this exercise now shows,
difficulties arise if the error and the regressor
are dependent.

Assume that the vector (g, x) in the linear
regression model y = By + B1x + ¢ follows a
bivariate normal distribution with mean
vector (0, u,) and covariance matrix

2
0, Pex0gO0x
&
Ve x) = ‘
Pex0e0x (e

Pex1s the correlation between the error and
the random regressor.

a. Use the result on linear transformations of
(jointly) normal random variables in
Section 3.4 and show that the distribution
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of

1
[y] _| Ao N Bi [x]
X 0 1 0fLe
is bivariate normal with mean vector
(Bo + Bitiy, i) and covariance matrix

02 pyxayax
V(y,x)= { Y

2
PyxOyOx Oy

B [(ﬂl)zof +2106x0:05 + 07 P10} + ex0:0%

ﬂlaxz + Pex 00y O'xz

b. Use the result in Section 3.4 on
conditional distributions and show that the
conditional distribution of y given x is
(univariate) normal with mean

B0} + pex0ec0
My.x :ﬂO +/31Mx + #(-x - Mx)

X

= [ﬂO - (os/ax)pexﬂx] + [/31 + (os/ax)psx] X

=By +Bix
and variance

2
oy, =0)— _[,oyxz_;ax] =0, (1—p;,)
X
c. Interpret the result in (b).
The least squares estimate
Bi=Y (xi —X)y;/ (x; — ¥)? estimates
the slope in the conditional expectation
iy = B§ + Bix. The slope B} = 1 +
(0¢/0y) pex €quals By only if the error and
the covariate are independent. This result
shows that with correlation between the
error and the regressor, the least squares
estimate is no longer an unbiased estimate
of B;. Discuss why this has important
implications. Can you think of situations
in which the error in the regression

relationship depends on the value of the
regressor variable?

In Section 2.9.2, we assumed that the
conditional expectation p, . is By, tacitly
implying that p., = 0. In this situation, the
least squares estimate is an unbiased
estimate of f;.

d. Consider the following simulation
experiment. Generate n = 20 independent
random vectors (&, x)with mean vector
(0, 1)and covariance matrix V (g, x) =

1 pex
; Pex = 0.5. Use the approach
Pex

in Exercise 3.15(d) if your computer
software does not allow you to simulate
multivariate normal random variables.
Generate the 20 x 1 response vector y
from y =2x+ € (i.e., Bp =0 and B; =2).
Obtain the least squares estimate Bl.
Repeat this exercise for 1,000 independent
samples, and obtain the sampling
distribution of B;. Confirm that the mean
of the sampling distribution is given by

B1 + Pex =2 + pex. Repeat the simulation
experiment for p,, = —0.5 and p,, =0.
Demonstrate that the ordinary least
squares estimate is not an unbiased
estimate of 8, if the independence between
the regressor and the error is violated.

3.17. Consider a trivariate normal distribution
y = (y1, y2, y3) with mean vector zero and
covariance matrix V (y) =o?1. Determine
the distribution of the quadratic form
¥? +0.5y3 + 0.5y + yoys.

3.18. Consider a bivariate normal distribution
vy =(y1, y2)" with mean vector zero and
covariance matrix V(y) =o?1. Show the
independence of the two quadratic forms
(y1 — y2)*and (y1 + y2)*.
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Multiple Linear
Regression Model

4.1 INTRODUCTION

In this chapter we consider the general linear model introduced in Eq. (1.10),
y=PBo+pixi+---+Bpx,+e€ 4.1

which links a response variable y to several independent (also called explanatory
or predictor) variables xi, x2, ..., x,. We discuss how to estimate the model
parameters 3 = (Bo, Bi, . .., B,)" and how to test various hypotheses about them.
You may find the subsequent discussion interesting from a theoretical standpoint
because it uses linear algebra to establish general results. It also maps out an
elegant geometric approach to least squares regression. Be prepared for subspaces,
basis vectors, and orthogonal projections.

4.1.1 TWO EXAMPLES

In order to motivate the general notation, we start our discussion with two ex-
amples: the urea formaldehyde foam insulation (UFFI) example and the gas con-
sumption data of Chapter 1.

UFFI Example
In Example 1.2.5 of Chapter 1, we considered 12 homes without UFFI (x; =0)
and 12 homes with insulation (x; = 1). For each home we obtained an air-tightness
measure (xz) and a reading of its ambient formaldehyde concentration (y). The
model in Eq. (1.6) relates the ambient formaldehyde concentration (y) of the ith
home to its air tightness (x;) and the presence of UFFI (x;):

yi=Po+ Bixit + foxint+e€, i=1,2,...,24 (4.2)
Table 1.2 lists the information on the 12 houses without UFFI (x; = 0) first; the
remaining 12 homes with UFFI (x; = 1) are listed second. Note that Chapter 1

87
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uses z and x for the predictors x; and x;. The 24 equations resulting from
model (4.2),

31.33 = Bo+ B0+ B0+ €
28.57 = Bo+ B0+ Bl + €

56.67 = Bo+ P10+ B9 + €12
43.58 = Bo+ Bil + Bl + €13

70.34 = Bo+ Bil + Br10 4+ €4

can be written in vector form,

31337 [1 0 0] [ ]
28.57 1 0 1 €
: R Bo :
5667 =1 0 9||B |+ en
4358 1 1 1 ,32 €13
(7034 | |1 1 10 e
In short,
y=XB+e (4.3)
where
1 0 0]
31.33 1 O 1 B €1
. . N 0
= 28:57 ; X=|1 0 9 |; B=|B]|; and e= 6'2
70.34 b P> -
|11 10

Gas Consumption Data
In Example 1.2.7 of Chapter 1 we relate the fuel efficiency on each of 38 cars to
their weight, engine displacement, and number of cylinders. Consider the model

vi=PBo+ Bixit + Poxio + B3xiz +€, i=1,2,...,38 4.4)

where y; = gas consumption (miles per gallon) for the ith car
x;1 = weight of the ith car
x;» = engine displacement for the ith car
x;3 = number of cylinders for the ith car
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The resulting 38 equations

16.9 = By + B14.360 + B,350 + 538 + €
15.5 = By + B14.054 + B,351 + B38 + €

31.9 = By + B11.925 + B289 + B34 + €33

can be written in vector form as

16.9 1 4360 350 8 Bo €1
15.5 1 4.054 351 8 B1 n €
: : : Do B2 :
31.9 1 1925 &89 4 B3 €38
In short,
y=XB+e
where
16.9 1 4360 350 8 Bo €]
_ 1?.5 X = 1 4.954 3?1 8 . B= B1 and e= €
: : : Do B2 :
31.9 1 1925 89 4 B3 €33
4.5)

4.1.2 THE GENERAL LINEAR MODEL

These two examples show us how we can write the general linear model (4.1)
in vector form. Suppose that we have information on n cases, or subjects i =
1,2,...,n. Let y; be the observed value on the response variable and let x;,
Xi2, ..., Xip be the values on the independent or predictor variables of the ith case.
The values of the p predictor variables are treated as fixed constants; however,
the responses are subject to variability. The model for the response of case i is
written as

yi = Po+ Pixit + -+ Bpxip + €
= Wi+ € (4.6)

where u; = Bo + Bixi1 + - - - + Bpxipis adeterministic component that is affected
by the regressor variables and ¢; is a term that captures the effect of all other
variables that are not included in the model.

We assume that ¢; is a random variable with mean E(¢;) =0 and variance
V (¢;) = 0’2, and we suppose that the ¢; are normally distributed. Furthermore, we
assume that the errors from different cases, €1, . .., €,, are independent random
variables. These assumptions imply that the responses y, . . ., y, are independent
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normal random variables with mean E(y;) = u; = fo + pi1xi1 + - - - + B,xip and
variance V (y;) = o2

We assume that the variance V (y;) is the same for each case. Note that this
is an assumption that needs to be checked because one needs to check all other
model assumptions, such as the form of the deterministic relationship and the
normal distribution of the errors.

The n equations in (4.6) can be rewritten in vector form,

yi /3()+,31)C11—|-~~+,3p)€1p €]
|- z |
In :30 + ,lenl +---+ ﬂpxnp €n
In short,
y=XB+e @.7)
where
Vi 1 x11 xip - Xip Bo €]
1
y=| 2] x=|. ™ =] O] and e=| @
Yn I xp Xp2 oo Xnp 1817 €n

You should convince yourself that this representation is correct by multiplying
out the first few elements of X 3.

The assumptions on the errors in this model can also be written in vector
form. We write € ~ N (0, o2l ), a multivariate normal distribution with mean
vector E(e) =0 and covariance matrix V(€) =o2I. Similarly, we write y ~
N (X3, o21), a multivariate normal distribution with mean vector E(y) = X3
and covariance matrix V(y) =o1.

4.2 ESTIMATION OF THE MODEL

We now consider the estimation of the unknown parameters: the (p + 1) re-
gression parameters (3, and the variance of the errors o2. Since y; ~ N (14;, 0%)
with t; = Bo + Bixi1 + - - - + Bpx;, are independent, it is straightforward to write
down the joint probability density p(y1,..., yu | 3, 02). Treating this, for given
data y, as a function of the parameters leads to the likelihood function

LB, 6> y1,..., ya)=(1/¥270)" exp [— > - m>2/202} (4.8)
i=1

Maximizing the likelihood function L with respect to 3 is equivalent to minimiz-
ing S(B) = Z?:l (yi — pi)? with respect to 3. This is because the exponent in
Eq. (4.8) is the only term containing 3. The sum of squares S(3) can be written
in vector notation,

SB=y-—wQy-—mw=>Qy-X3)(y—XpB), sincep=X3 (4.9
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The minimization of S(3) with respect to 3 is known as least squares estimation,
and for normal errors it is equivalent to maximum likelihood estimation. We
determine the least squares estimates by obtaining the first derivatives of S(3) with
respect to the parameters B, B1, . .., B,, and by setting these (p -+ 1) derivatives
equal to zero.

The appendix shows that this leads to the (p + 1) equations

X'XB=X'y (4.10)

These equations are referred to as the normal equations. The matrix X is assumed
to have full column rank p + 1. Hence, the (p + 1) x (p + 1) matrix X'X is
nonsingular and the solution of Eq. (4.10) is given by

B=X'X)""Xy 4.11)

The estimate B in Eq. (4.11) minimizes S(3), and is known as the least squares
estimate (LSE) of 3.

4.2.1 A GEOMETRIC INTERPRETATION OF LEAST SQUARES

The model in Eq. (4.7) can be written as

y=,301+/31x1+---+,3pxp+e
=pu+e 4.12)

where the (n x 1) vectors y and € are as defined before, and the (n x 1) vec-
torsl=(1,1,..., D) andx; = (x1;, x2j, ..., x,;) ,for j=1,2,..., p,represent
the columns of the matrix X. Thus, X =(1,x,...,x,) and p=XB=pol +
Bixi+ -+ Bpx,.

The representation in Eq. (4.12) shows that the deterministic component gt is
a linear combination of the vectors 1, x1, ..., x,. Let L(1, x1, ..., x,) be the set
of all linear combinations of these vectors. If we assume that these vectors are not
linearly dependent, L(X) = L(1,xy,...,x,) is a subspace of R" of dimension
p + 1. Note that the assumption that 1, x, ..., x, are not linearly dependent is
the same as saying that X has rank p + 1.

We want to explain these concepts slowly because they are essential for under-
standing the geometric interpretation that follows. First, note that the dimension
of the regressor vectors 1, xq, ..., X, is n, the number of cases. When we display
the (p + 1) regressor vectors, we do that in n-dimensional Euclidean space R".
The coordinates on each regressor vector correspond to the regressor’s values on
the n cases. For example, the regressor vector x may represent the air tightness
of a home, and the dimension of this vector is 24, if measurements on 24 homes
are taken. Note that for models with an intercept, one of the regressor columns is
always the vector of ones, 1.

Obviously, it is impossible to graph vectors in 24-dimensional space, but
you can get a good idea of this by considering lower dimensional situations.
Consider the case in which n = 3, and use two regressor columns: the unit vector
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FIGURE 4.1 Two
Vectors in
Three-Dimensional
Space, and the
Two-Dimensional
Space Spanned by
These Two Vectors

1,1, 1)

Dimension 3
=
1
N
N
'
i

Dimension 1

1=(1,1,1) and x = (—0.3, 0.5, 0.7)". These two vectors are graphed in three-
dimensional space in Figure 4.1. Any linear combination of these two vectors
results in a vector that lies in the two-dimensional space that is spanned by the
vectors 1 and x. We highlight this by shading the plane that contains all linear
combinations. We see that L(1, x) is a subspace of R3, and its dimension is 2.

Observe that we have selected two vectors 1 and x that are not linearly
dependent. This means that one of the two vectors cannot be written as a multiple
of the other. This is the case in our example. Note that the matrix

1 —-03
X=[1Lx]=|1 0.5
1 0.7

has full column rank, 2.

What would happen if two regressor vectors were linearly dependent; for ex-
ample, if1=(1, 1, 1)’ and x = (0.5, 0.5, 0.5)'? Here, every linear combination of
landx, o114+ aox =11 4 2(0.5)1 = () + 0.5c2)1, is a multiple of 1. Hence,
the set of all linear combinations are points along the unit vector, and L(1, x)
defines a subspace of dimension 1. You can also see this from the rank of the
matrix X: The rank of

1 05
X=[1,x]=|1 05
1 05

is one; X does not have full column rank.

If we contemplate a model with two regressor columns, 1 and x, then we
suppose that 1 and x are not linearly dependent. If they were linearly dependent,
we would encounter difficulties because an infinite number of linear combinations
could be used to represent each point in the subspace spanned by 1 and x. You
can see this from our example. There is an infinite number of values for «; and
ay that result in a given value o) + 0.5a, =c.



FIGURE 4.2
Geometric
Representation of
the Response Vector
y and the Subspace
LX)

Abraham Abraham C04 November 8, 2004 1:29

4.2 Estimation of the Model 93

LX)

Now we are ready to go to the more general case with a large number of cases,
n. Suppose that there are two regressors (p = 2) and three regressor columns 1,
x1,and x;. We assume that these three columns are not linearly dependent and that
the matrix X =[1, x1, x2] has full column rank, rank 3. The regressor vectors are
elements in R", and the set of all linear combinations of 1, x1, x2, L(1, x1, x2),
defines a three-dimensional subspace of R". If 1, x;, x were linearly dependent,
then the subspace would be of lower dimension (either 2 or 1).

Now we consider the case with p regressors shown in Figure 4.2. The oval
represents the subspace L(X). The vector = ol + Bix1 + - - - + Bpx, is alin-
ear combination of 1, xy, ..., xp, and is part of the subspace L (X). This picture is
simplified as it tries to illustrate a higher dimensional space. You need to use your
imagination.

Until now, we have talked about the subspace of R" that is spanned by
the p + 1 regressor vectors 1, x1, ..., xp,. Next, let us add the (n x 1) response
vector y to the picture (see Figure 4.2). The response vector y is not part of the
subspace L(X). For a given value of 3, X3 is a vector in the subspace; y — X3
is the difference between the response vector y and the vector in the subspace,
and S(8) = (y — X0B)'(y — X3) represents the squared length of this difference.
Minimizing S(3) with respect to 3 corresponds to finding 3 so that y—X 3 has
minimum length.

In other words, we must find a vector X ,@ in the subspace L(X) that is “clos-
est” toy. The vector in the subspace L (X) thatis closestto y is obtained by making
the difference y — X ﬁ perpendicular to the subspace L(X); see Figure 4.3. Since
1,xq,...,x, are in the subspace, we require that y — X B is perpendicular to 1,
X1,...,and x,.

This implies the equations

'(y-XB)=0
xi(y—XB)=0

X, (y—XB)=0
Combining these p + 1 equations leads to

X' (y—-XB)=0
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FIGURE 4.3 A
Geometric View of
Least Squares

LX)

and

X'XB=X'y
the normal equations in Eq. (4.10) that we previously derived algebraically.

We assume that X has full column rank, p + 1. Hence, X’'X has rank (p +
1), the inverse (X’X)~! exists, and the least squares estimate is given by B =
(X’X)~'X'y. Notice that we have obtained the LSE solely through a geometric
argument; no algebraic derivation was involved.

The vector of fitted values is given by = X3, and the vector of resid-
valsise=y—fi=y — X ,3 The geometric interpretation of least squares is
quite simple. Least squares estimation amounts to finding the vector 1 = X3 in
the subspace L(X) that is closest to the observation vector y. This requires that
the difference (i.e., the residual vector) is perpendicular (or othogonal) to the
subspace L(X). Hence, the vector of fitted values 1= X B is the orthogonal
projection of y onto the subspace L(X). In algebraic terms,

A=XB=X(X'X)"'X'y=Hy
where H = X (X'X)~' X’ is an n x n symmetric and idempotent matrix. It is easy
to confirm that H is idempotent as
HH=XX'X)"'X'X(X'X)"'X'=H

The matrix H is an important matrix because it represents the orthogonal
projection of y onto L(X). It is referred to as the “hat” matrix.

The vector of residualse=y — fi=y — X(X'X)"' X'y = (I — H)y is also
a projection of y, this time on the subspace of R" that is perpendicular to L(X).

The vector of fitted values i = X 3 and the vector of residuals e are orthog-
onal, which means algebraically that

Xe=X(y—XB)=0

See the normal equations in Eq. (4.10). Hence, least squares decomposes the
response vector

y=h+e=XB+(y-XPB
into two orthogonal pieces. The vector of fitted values X B is in L(X), whereas
the vector of residuals y — X3 is in the space orthogonal to L(X).

It may help you to look at this in the very simplest special case in which we
have n =2 cases and just a single regressor column, 1= (1, 1)’. This represents
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the “mean” regression model, y; = By + €;, withi = 1, 2. How does this look geo-
metrically? Since the number of cases is 2, we are looking at the two-dimensional
Euclidean space. Draw in the unit vector 1= (1, 1)’ and the response vector y =
(y1, y2)'. For illustration, take y = (0, 1)’. We project y = (y1, y2)' = (0, 1)’ onto
the subspace L (1), which is the 45-degree line in the two-dimensional Euclidean
space. The projection leads to the vector of fitted values & = 0.51 = (0.5, 0.5)" and
the LSE B = 0.5. The estimate is the average of the two observations, 0 and 1. The
residual vectore=y — i=(0—0.5,1—0.5)'=(—0.5,0.5)" and the vector of
fitted values & = (0.5, 0.5)" are orthogonal; that is, e’ i = —(0.5)%> + (0.5)> =0.

4.2.2 USEFUL PROPERTIES OF ESTIMATES AND OTHER RELATED VECTORS

Recall our model
y=XB+e

where X is a fixed (nonrandom) matrix with full rank, and the random error €
follows a distribution with mean E(€) =0 and covariance matrix V (€) = o21.
Usually, we also assume a normal distribution. The model implies that E(y) =
X3 and V(y)=021. The LSE of the parameter vector 3 is 3= (X'X)"'X'y.
The vector of fitted values is 1 = X3 = Hy and the residual vectorise =y — i =
(I — H)y. We now study properties of these vectors and other related quantities,
always assuming that the model is true.

i. Estimate B:

E(B) =EX'X)"'Xy

=X'X)"'XE(y)=X'X)"'X'XB=p (4.13)
showing that ,é’ is an unbiased estimator of 3.

V(B = VIX'X)"'X'y]
= X'X)'X'V(»XX'X)™!
=X'X) "X (*HhX'X)!
=X'X)'X'XX'X) ol =(X'X) o2 (4.14)

The matrix in Eq. (4.14) contains the variances of the estimates in the

diagonal and the covariances in the off-diagonal elements. Let v;; denote

the elements of the matrix (X’X)~'. Then V (8;) = o2vi;,
o o Vi
Cov(Bi, Bj) =o?v;j, and Corr(B;, B;) = %]1/2
Viivjj)
1i. Linear combination of estimates, a’f)’:
The linear combination a’3, where a is a vector of constants of appropriate

dimension, can be estimated by a’ B We find
E@pB) =dEB) =dp
and

Va'B)=a'V(Ba=d (X'X) 'ac? (4.15)
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iii. Fitted values 1 = X B:
E(Q=EXP)=XEP)=XB=p
and
V() =VXB)=XV(BX =XX'X)"'X'0?
= Ho? (4.16)
where H = X (X’'X)~' X’ is the idempotent projection matrix defined
earlier.

iv. Residual vectore=y — X B:
E(e)=E(y—XB)=E(y)— XE(B)=XB—XB=0 (4.17)
Vie)=VIU-Hyl=(UI-HV(y)I—-H)
= (I —H)(I —H)o?>=(I — H)o? (4.18)

v. Statistical independence between 3 and e: We stack the (p + 1) vector 3
and the (n x 1) vector of residuals e to obtain the (p + 1 4+ n) x 1 vector

¢} A
e 1 —H

with A= (X’X)"'X" and H = X(X'X)~'X'. The stacked vector is a linear
transformation of y. Our assumption of independent normal random
variables for y; implies a multivariate normal distribution for the vector y.

Hence, the linear transform Py follows a multivariate normal distribution
with mean

L2t 2]

and covariance matrix

3 A
v |:_é_:| = PV(y)P' =02 |:———:| (A" | (I—-H)]
1 —H

e

, AA | A(l — H)
=0 —_—— — _ —
(I—H)A | (I-H)({I-H)
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Marginal distributions of multivariate normal distributions are
themselves normal. Hence, it follows that

B~N@B,c*(X'X)™") and e~ N(0,0%(I — H))

Equation (4.19) confirms our earlier results on the means and variances of
B and e in Eqgs. (4.13), (4.14) and (4.17), (4.18). Also note that the
matrices (X'X)~!, H, and (I — H) are very useful quantities, and they
will appear repeatedly.

Let Cov(e, 5’) represents the n x (p + 1) matrix of covariances
between the residuals é and the parameter estimates B That is,

Cov(er, Bo) Cov(er, B1) -+ Covley, Bp)
Cov(e, B) = : : : (4.20)
Cov(en, Bo) Cov(en, 1) -+ Cov(en, B))
Equation (4.19) shows that e and B are uncorrelated:
Cov(e, B) =0’

which is an n x (p + 1) matrix of zeros. Since they are jointly normal,
they are statistically independent and not just uncorrelated. This also
implies that § (B) = ¢’e, which is a function of just e, and B are statistically
independent (an alternate proof of this result is given in the appendix). It
should be noted that any linear combination a’3 of 3 is a linear
combination of normal random variables and hence itself normally
distributed. That is

adB~N@p, o X'X) a)

S(,@)/cr2 =eée/o? ~ lefpfl’ a chi-square distribution withn — p — 1
degrees of freedom. This result is shown in the appendix. The degrees of
freedom are easy to remember: n — p — 1 is the difference between the
number of observations and the number of estimated regression
parameters.

The appendix to Chapter 2 mentions that the mean of a chi-square
random variable is equal to its degrees of freedom. Hence,

E(e/e): E(ée'e) - p—1

o2 o2

and

/ R
S
s2-_c _ 50 421)
n—p—1 n—p-1

is an unbiased estimate of o2. You can see this from
E(e'e) o’n—p—1) 5
= =0".
n—p—1 n—p—1

E(s?) =
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Vii.

Viii.

The residuals e and the fitted values fi are statistically independent.

We have already shown that e and B are independent. X is a fixed
(nonrandom) matrix and hence e and X 3 = fi are separate nonoverlapping
functions of independent random variables. Hence, they are independent.
This can be proved directly as well; see Exercise 4.18.

Gauss—-Markov Theorem

Assume that the usual regression assumptions are satisfied and that the

n x 1 response vector y has mean E(y) = p = X3 and covariance matrix
V(y) =0o?1. The Gauss—Markov theorem says that among all linear
unbiased estimators, the LSE B = (X’X)~' X’y has the smallest variance.
“Smallest” variance means that the covariance matrix of any other linear
unbiased estimator exceeds the covariance matrix of 3 by a positive
semidefinite matrix.

Proof: The LSE 3= (X'X) !X’y is a linear combination of the random
response vector y. Consider any other linear transformation, for example,
b= M*y, where M*is a (p + 1) x n matrix of fixed coefficients. Define
M =M*— (X'X)"'X’, and write the new estimator as

b=M+XX)'XTly=[M+XX)"'X1[XB+ €]
= [MXB+Bl+[M+(X'X)"'X']e
The requirement of unbiasedness for b implies that MX = O, a

(p+ 1) x (p+ 1) matrix of zeros. With this condition imposed, the
covariance matrix for b becomes

V) =E[b-B3)b—B)1=E{M+X'X)"'Xe[M+ (X'X)'X'}

=[M+ (X'X)"'X'1E(e€)[M + (X'X)"' XY

=M+ X'X)"'X 162 1M+ X'X)"'X7T

=o’[M + (X'X)7'X'|IM + (X' X)"' X'V

=’ MM + X'X) N=c?X'X)" +o*MM'

=V(B) +o*MM
Here we have used the fact that M X = O, and hence MX(X'X)"'= 0
and (X'X)"'X'M' = 0.

This result shows that the variance of the new linear estimator b

exceeds the variance of the LSE 3 by the matrix o> M M’. However, this

matrix is positive semidefinite because for any vector a the quadratic form
aMMa=da=> (a)*>0. ]

The Gauss—Markov result also holds when estimating an arbitrary
linear combination of the regression parameters. Consider the linear
combination a’/3 and the two estimators a’/3 and a’b. The first estimator
uses the LSE, whereas the second uses the linear unbiased estimator
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studied previously. The variances of these estimators are given by
VB =o' (X'X)a
and
Vab)=c%a'(X'X) 'a+o’a’'MM'a

Since a’M M'a > 0, the estimator using the LSE has the smaller
variance. As a special case, consider the vector a with a one in the ith
position and zeros everywhere else. Then the Gauss—Markov result implies
that the LSE of the (individual) coefficient 8; has the smallest variance
among all other linear unbiased estimators.

Note that it is not necessary to make any assumption about the form of
the error distribution in order to get the Gauss—Markov property. However,
it must be emphasized that the result only proves that the LSE is best within
the class of linear estimators. For certain nonnormal error distributions, it
is possible to find a nonlinear estimator that has smaller variance than the

LSE. For normal errors, however, this cannot be done, and in this case the
LSE is the best estimator among all estimators—Iinear as well as nonlinear.

4.2.3 PRELIMINARY DISCUSSION OF RESIDUALS

The residual vector is e =y — fi. The ith component e¢; = y; — [i; is the residual
associated with the ith individual or case in the experiment. The residual repre-
sents the deviation between the response and the fitted value and hence estimates
the random component € in the model. Any misspecification or departure from
the underlying assumptions in the model will show up as patterns in the residu-
als. Hence, the analysis of the residuals is an effective way of discovering model
inadequacies. Let us examine some important properties of the residuals.

i. The vector of residuals e is orthogonal to L(X), and hence e'1 =0 if f is in
the model. This means that Y+, ¢; =0 and & =0.

ii. e is orthogonal to fi.

These two properties are direct consequences of the least squares fitting procedure.
They always hold, whether or not the model is adequate.

Next, let us summarize the properties of e that only hold if the model is
correct. We assume that the funtional form is correct; that is, E(y) is in L(X).
In addition, we suppose that the errors € are multivariate normal with covariance
matrix o21.

i. E(e)=0.1If E(y) is not in the subspace L(X) and the assumed functional
form of the model is incorrect, then this property does not hold. We will
discuss this more fully in Chapter 6.

ii. e and f1 are independent.

iii. e~N(0,0%(I — H)).
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FIGURE 4.4
Adequate Residual
Plots

If the errors € do not have a normal distribution with constant variance o2,

then the residuals e will not satisfy properties (ii) and (iii).

We construct several graphical residual checks that investigate whether the
residuals exhibit the properties in (i)—(iii). These graphs can tell us whether the
fitted model is an adequate representation. If the model is adequate, we do not ex-
pect systematic patterns in the residuals, and hence a plot of the residuals e; versus
the order i should exhibit the noninformative pattern depicted in Figure 4.4(a);
that is, the ¢;’s should fall within an approximate horizontal band around e = 0.
A similar plot should result if ¢; is plotted against the values of the jth pre-
dictor x;;, (j=1,2,..., p). Also, a plot of the residuals e; against the fitted
values f1; should show no systematic patterns and should look like Figure 4.4(b).
Departures from these patterns indicate model inadequacies, and we will discuss
those more fully in Chapter 6.
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UFFI Example Continued
Consider Example 1.2.5 in Chapter 1 and the data in Table 1.2, where we relate
the formaldehyde concentrations y; to the presence or absence of UFFI (x;; =1
or x;1 = 0) and the airtightness (TIGHT, x;,) of the home. The model in Eq. (4.2)
specifies y; = Bo + B1xi1 + Baxio + €;, with the usual assumptions on ¢;. The y
vector and the X matrix are given in Eq. (4.3). One can compute the LSE 3 and
52, the unbiased estimator of V (¢;) = o2, from Egs. (4.11) and (4.21).

B=X'X)""Xy
and

1 A A
sP=——(y - XB)(y — XP)
n—p—1
These computations are usually performed by a statistical software package (such
as S-Plus, R, Minitab, SAS, SPSS, or even EXCEL). Computational details (com-
mands and outputs from the well-known software S-Plus) are shown in Table 4.1.

TABLE 4.1 S-PLUS INPUT AND OUTPUT

> ch2o<-matrix(scan(‘uffi.dat’,multi.line = T),byrow = T,ncol = 3,nrow = 24)
> uffi<-ch2o[,1]

> tight<-ch2o[,2]

> form<-ch2o[,3]

> ch2fit<-lm(form ~ uffi+tight)

> summary(ch2fit)

Call: Im(formula = form ~ uffi 4 tight)

Residuals:
Min 1Q Median 3Q Max
—9.546 —3.131 —0.1389 3.578 8.362
Coefficients:

Value Std. Error t value Pr(> [t])
(Intercept) 31.3734 2.4607 12.7500 0.0000

uffi 9.3120 2.1325 4.3666 0.0003
tight 2.8545 0.3764 7.5843 0.0000

Residual standard error: 5.223 on 21 degrees of freedom

Multiple R-Squared: 0.7827

F-statistic: 37.82 on 2 and 21 degrees of freedom, the p-value is 1.095e-07
Correlation of Coefficients:

(Intercept) uffi
uffi —0.4449
tight —0.7903 0.0147

> X110

> par(mfrow = c(2,2))

> obsno< — 1:24

> plot(obsno,ch2fit$res,xlab = ‘Observation Number’,

+ylab = ‘Residuals’,main = ‘Residuals vs Obs. No.”)

> plot(ch2fit$ fit,ch2fit $ res,xlab = ‘Fitted Values’,

+ylab = ‘Residuals’,main = ‘Residuals vs Fitted Values’)
>plot(tight,ch2fit $ res, xlab = ‘Airtightness’,ylab = ‘Residuals’,
+ main = ‘Residuals Vs Airtightness’)
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You may want to consider other packages and convince yourself that the
output from other programs will be similar. For the time being, we ignore much of
the output and concentrate on the vector of LSEs ,é/ =(31.37,9.31, 2.85), the sum
of squared errors S(ﬁ) =572.72, and the estimate of 02, 5% = 572.72/21 =27.27.
The square root of s? is listed in the output. S-Plus calls it the residual standard
erTor.

In addition, the software can calculate and store the vector of fitted values
and the vector of residuals. This is useful for generating residual plots that help us
check the model assumptions. Figure 4.5(a) shows plots of the residuals ¢; against
the order i, Figure 4.5(b) residuals e; against fitted values /i;, and Figure 4.5(c)
residuals e; against the explanatory variable airtightness. These plots do not show
any systematic patterns in the residuals. Hence, we conclude, at least for now,
that the model assumptions are reasonable. We will revisit this topic in a later
chapter.

The estimate ,31 =9.31 implies that, on average, there is a difference of 9.31
parts per billion (ppb) in the ambient formaldehyde concentration in two homes
having identical airtightness but different insulations—one with UFFI present
and the other without it.

4.3 STATISTICAL INFERENCE

For the following discussion we assume that the errors in Eq. (4.6) are normally
distributed. We discuss how to construct confidence intervals and how to test
hypotheses.

4.3.1 CONFIDENCE INTERVALS AND TESTS OF HYPOTHESES
FOR A SINGLE PARAMETER

Usually, one is interested in making inferences about a single regression parameter
B; or about a single linear combination of the coefficients 0 = a’3. We have studied
the distribution of 3 previously and have found that

A 2 -1

B~N@B, o™ (X'X)™)
Suppose we are interested in making inferences about one of these coefficients,
Bi. The estimate of fB; is given by f;, and its variance is given by o?v;;, where

vi; is the corresponding diagonal element in the matrix (X’X)~!. The sampling
distribution of §; is

Bi~N(Bi.o?vii) 4.22)

The variance of the errors, o2, is unknown and must be estimated. As estimate

we use the unbiased estimator of o2,

st = ;S(ﬁ) (4.23)
n—p—1
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We know that
1. (Bi — Bi) /o /vii ~ N(O, 1). This follows from Eq. (4.22).
(n—p—1s2 )
T ~ X}’lfpfl .
iii. s2and B are independent .

The results in (ii) and (iii) were shown in Section 4.2.2 and are also shown

in the appendix. It follows from properties of the ¢ distribution (see appendix to
Chapter 2) that

T=ﬂi_ﬂi— Bi —P/ovii ~tn—p—1) (4.24)

S Vi \/(nfigl)ﬂ/n_p_l

This quantity is used to construct confidence intervals and to test hypotheses about
Bi. The ratio T is easy to remember:

estimate — parameter

s.e.(estimate)
relates the difference between the estimate and the true value to the standard
error of the estimate, s.e.(ﬂA,») =s,/vii- The standard error estimates the overall
variability of the estimate in repeated random samples.

UFFI Example Continued
In this example, B =(31.37,9.31,2.85), s =27.2, and

0.2219 —0.0856 —0.0268
X'X)"'=1| —0.0856  0.1667  0.0004
—0.0268  0.0004  0.0052

Let us study g, the effect of formaldehyde insulation on the ambient formalde-
hyde concentration. Is there a difference in the average concentration between
homes of equal airtightness but different UFFI insulation? If insulation does
not matter, then 8; =0. To answer this question, we test the hypothesis 8; =
0. We know that B; =9.31, V(B;) =0.166702, and s.e.(B1) =s5+/0.1667 =
5.224/0.1667 = 2.13. The ¢ statistic for the coefficient 3 is

10(B1) = (B1 —0)/s.e.(B1) =9.31/2.13=4.37

The subscript zero indicates that we test the hypothesis 8, = 0; the argument
B in parentheses indicates that the statistic refers to the estimate B1. If there
is no danger of confusion, we just write t(Bl). Since there are 24 observations
and three parameters in the model, the residual sum of squares has 21 degrees
of freedom. The probability value of this test statistic for a two-sided alternative
(B1 #0) is given by

P(|T|>4.37)=2P(T >4.37) ~0.0003
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Here, we use the ¢ distribution with 21 degrees of freedom. The probability is
very small—smaller than any reasonable significance level. Thus, there is very
strong evidence that B; differs from 0. There is very strong evidence that homes
with UFFI insulation have higher formaldehyde concentration levels.

A 95% confidence interval for g; is given by

B1 +£1(0.975; 21)s.e.(B),
9.31 + (2.08)(2.13), 9.31+4.43, or (4.88,13.74)

Note that #(0.975; 21) =2.08 and #(0.025; 21) = —2.08 are the 97.5th and the
2.5th percentiles of the ¢ distribution with 21 degrees of freedom, respectively.
We are 95% confident that the interval (4.88, 13.74) covers the true, but unknown,
difference in the average ambient formaldehyde concentration of homes with and
without UFFI insulation.

One can repeat these calculations for the other parameter 8, which represents
the effect of airtightness on the average ambient formaldehyde concentration. The
relevant diagonal element of (X' X)~! is 0.0052, and the standard error is

s.e.(B2) = s+/0.0052 = (5.22)+/0.0052 = 0.37

The 1 ratio, £ (B,) = (2.85 — 0)/0.37 = 7.58 is very large, and the probability of
obtaining such an extreme value from a ¢ distribution with 21 degrees of freedom
is negligible; the probability value for a two-sided alternative, 2P (T > 7.58), is
essentially zero. Hence, there is little doubt that airtightness of a home increases
the formaldehyde concentration in the home. A 99% confidence interval for g,
is given by

2.85£1(0.995; 21)(0.37)
2.85+(2.83)(0.37), or from 1.80to 3.90

We could repeat the calculations for the intercept 8y, which mathematically
is the average concentration for homes without UFFI and with airtightness zero.
Here (and also in many other applications) the intercept does not have much
physical meaning, and we skip the calculation.

Note that estimates, standard errors, ¢ ratios, and probability values for the
coefficients are standard output of all statistical software packages.

Linear Combination of Coefficients
Suppose that we are interested in a linear combination of the regression coeffi-
cients. For instance, suppose we are interested in estimating the average formalde-
hyde concentration in homes with UFFI and with airtightness 5. That is,we are
interested in

0=PBo+ B1+56=d'p
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wherea’ = (1, 1, 5) is a vector of known coefficients. The estimate of 6 is given
by
31.37
aB=(1,1,5| 931 |=54.96
2.85

Before we can construct a confidence interval for 6, we need to study the
sampling distribution of 6. From properties of linear combinations of normal
random variables, we know that

O=a'B~N@®,o% (X'X) a)

~

0

Replacing o2 by the estimate 52, and after going through similar steps as those in
Eq. (4.24), we find that

. b-0
sva' (X' X) la

Hence, a 95% confidence interval is given by

6 +1(0.975; 21)sva' (X'X)"la (4.26)

T ~1(21) (4.25)

With s =5.22 and
1
d(X'X)la=(1,1,5X'X)""| 1 | =0.0833
5

the 95% confidence interval for 0 is

54.96 £ 2.08(5.22+/0.0833),
54.96 £ (2.08)(1.51), 54.96 +3.13, or(51.83,58.09)

We are 95% confident that the interval (51.83, 58.09) will cover the true average
concentration of homes with UFFI and airtightness 5. Most statistics software
packages allow you to ask for this information.

Gas Consumption Example

In this example, we are interested in predicting the gas consumption of an auto-
mobile from its size and engine characteristics. The data are given in Table 1.4.
There are n =38 cars and measurements on fuel efficiency in miles per gallon
(y), weight (x;), engine displacement (x;), number of cylinders (x3), horsepower
(x4), acceleration (xs), and engine type (xg). Part of the data and variables x,
X3, and x3 were discussed in Chapter 1 and also at the beginning of this chapter.
Now let us consider all six regressor variables. Initial exploration with the data
indicates that it is preferable to consider z = 100/y, the gas consumption per 100
traveled miles, as the response. A thorough discussion of this point will be given
in Section 6.5 when we discuss transformations. In the following, we consider

z2=PBo + Bix1 + PBoxz + B3xz + Baxs + Bsxs + Bexe + € 4.27)
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TABLE 4.2 SAS OUTPUT OF THE FUEL CONSUMPTION EXAMPLE

The SAS System
Model: MODELI
Dependent Variable: Z
Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob > F
Model 6 46.41156 7.73526 79.015 0.0001
Error 31 3.03477 0.09790
C Total 37 49.44632

Root MSE 0.31288  R-square 0.9386
Dep Mean  4.33061 Adj R-sq 0.9267
C.V. 7.22491

Parameter Estimates

Parameter  Standard T for Hy:
Variable DF Estimate Error Parameter =0  Prob > |T'|
INTERCEP 1 —2.599749  0.66312133 —3.920 0.0005
X 1 0.787706  0.45173293 1.744 0.0911
X5 1 —0.004892  0.00269495 —1.815 0.0792
X3 1 0.444251  0.12263114 3.623 0.0010
Xy 1 0.023605  0.00673885 3.503 0.0014
X5 1 0.068804  0.04419393 1.557 0.1297
X6 1 —0.959720  0.26667148 —3.599 0.0011

Least squares estimates of the parameters, their standard errors, ¢ ratios, and
probability values are given in Table 4.2, the output from SAS, another popular
software package. Different software packages will use slightly different formats,
but all of them will supply most of the information in Table 4.2.

Furthermore, in this example, s2=0.0979, and the inverse of the matrix X’X,
is given by

x'x)™
[4.4918  0.6045 0.0019 —0.1734 —0.0210 —0.2361 0.1872]
2.0845 —0.0092 —0.2052 —0.0239 —0.1081 0.7099
0.0001 —0.0005 0.0001 0.0005 —0.0030
= 0.1536  0.0009 —0.0011 —0.2001

Symmetric 0.0005 0.0017 —0.0073
0.0200 —0.0051
0.7264

Consider the parameter s, which measures the effect of x5 (acceleration) on
the average fuel consumption. The estimate is 5 = 0.0688. From the relevant
diagonal element in (X'X)~!, we find that V (B5) = 0%(0.0200), and s.e.(B5) =

+/0.0979 v 0.0200 = 0.0442.
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For a test of the hypothesis 85 =0, we consider the ¢ statistic
t(Bs) = Ps/s.e.(Bs) =0.0688/0.0442 = 1.56
and its corresponding p value
P(T|>1.56)=2P(T > 1.56) =0.1297 (4.28)

Note that the appropriate degrees of freedom are n — 7 =38 —7=31.

The probability value indicates that at the 5% significance level one cannot
reject the hypothesis that 85 =0, given that the other variables x1, x3, X3, X4, X¢
have been included in the model. The ¢ ratio t(Bg) assesses the potential effect
of x5, having adjusted the analysis for all other variables in the model. The
result implies that on top of x1, x;, x3, X4, X¢ in the model, x5 is not an important
predictor of gas consumption. On the other hand, the probability value for B¢
indicates that there is evidence for rejecting the hypothesis that 8¢ = 0. It implies
that xg is important in predicting gas consumption, even if xj, x5, x3, X4, X5 are
already in the model.

We need to remember that any inference procedure depends on the validity of
the assumptions that we make about the errors €. We must always check the resid-
uals for any violations of the assumptions. The residual plots in Figure 4.6 [(a)
residuals against observation number, (b) residuals against fitted values, (c) resid-
uals against weight, and (d) residuals against displacement] indicate no systematic
unusual patterns, and we conclude that the model assumptions are justified.

4.3.2 PREDICTION OF A NEW OBSERVATION

Suppose that we are interested in predicting the response of a new case, for
example, the formaldehyde concentration in a new home with UFFI insulation
and airtightness 5. Let y,, represent this unknown concentration,

yp=Bo+Bil+BS5+e,=u,+e,
In other words, y, ~ N (i, 02). The mean np=(~1,1,58=a’p depends on
the specified (fixed) levels of the regressor variables and the parameter 3. If the
parameter 3 were known exactly, then we could use ), as our prediction. Any
other choice would have a larger expected squared error. You can see this by using
any other prediction f and considering the expected squared future error,

E(yp = f)* = ELp = ttp) + (p = P
= E(vp —ip)’ + (p = )+ (p = HEG)p — 1yp)
:Uz+(ﬂp_f)2202
However, since the parameter 3 and ), are unknown, we need to replace them
with their LSEs. Our point prediction for the response at the new case is given by
fi,=(1,1,5)3=>54.96. We had calculated this earlier, and had denoted it by 6.
To assess the precision of this prediction, we need to take account of two sources
of variability. First, we have only an estimate i, of 1 ,, and there is uncertainty

from the estimation. Second, there is variability of a single observation y, around
its mean ft,,. Consider the prediction error,

Yp—Hp=Hp—flp+e€p
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FIGURE 4.6
(Continued)
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Since we consider a new case, and since the error for a new observation is
independent of the errors in the observations that we used for estimating 3, the
two errors, (1, — [i,) and €, are independent. Hence, the variance is given by

V(= p) =V (i) + V(e,) =o’d (X' X) 'a+o?
=l +dX'X) 'a)o?

where in our special case a’ = (1, 1, 5). Hence,
Yp—Ap~N(©,0%(1 +a'(X'X) 'a))
and
Yp — Ap
svl+a(X'X) a

The denominator in this ratio is the standard error of the prediction error

se.(yp —f,)=sy1+a(X'X) la

Here we have used the same argument as in the derivation of the ¢ ratios for
individual coefficients; see Eq. (4.24).
This result implies that

p(_t(l_z;n_p_l)SMSt(l_%;n_p_l))=1_a
2 s.e.(yp — Ap) 2

A a A
P (,up —t(l —5inT P 1>s.e.(yp —Ap)

T = ~tn—p—1)

Y a Y
<yp<,up+t<1—§;n—p—1>s.e.(yp—,up)>:1—oe
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Hence, a 100(1 — «)% prediction interval for y, is given as
[, + z<1 _ %; n—p— 1>s\/1 Ta(X'X)a (4.29)

For our example withn — p — 1=24 —3=21,a’= (1, 1, 5), and the estimates
in Table 4.1, we obtain the 95% prediction interval

54.96 £ (2.08)(5.22)+/1 4 0.0833
54.96 £ (2.08)(5.43), 54.96 £11.30, or (43.66,66.26)

Our best prediction is 54.96; our uncertainty for the new value ranges from 43.7 to
66.3. Note that the prediction interval is much wider than the confidence interval
for the mean response 11, (= 6). This is because a prediction interval is concerned
with a single new observation and not the average for a fixed setting on the
regressor variables.

A Caution on Predictions  One should be cautious when predicting values of y
for sets of x’s that are very different from those that are used to fit the model.
Extrapolation beyond the experimental region may lead to unreasonable results
because the model is descriptive of the relationship between y and x, ..., x,
only in the region of the observed x’s. We are always unsure about the form
of the model in a region of the x’s for which we have no data. For illustration,
consider Figure 4.7, which displays the relationship between a dependent variable
y and a single regressor variable x. For values of x in the range from 50 to 120,
we entertain a quadratic model and the fitted curve is shown in the figure. Now
suppose that we had x only over the range from 50 to 80. Then a straight line
model will fit the data quite well. However, Figure 4.7 shows that the prediction
from the linear model of y for x = 120 would be very misleading.

Good predictions require a valid regression model—that is, a model in which
the predictor variables are significant. A model in which the influence of regressor
varibles is established poorly will not do much for prediction.

100
Linear fit with x
%0 between 50 and 80
; 80
f=]
=}
2
& 70
60 Quadratic fit
with all data
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\ \ \ T T T T T
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4.4 THE ADDITIONAL SUM OF SQUARES PRINCIPLE

4.4.1

INTRODUCTION

In this section, we describe a procedure for testing simultaneous statements about
several parameters. For illustration, consider the model

y=PBo+ Bixi + foxa + Paxs + € (4.30)
Suppose that previous studies suggest
p1=2B, and B3=0
How can we simulteneously test these two restrictions? The restrictions specify

values for two linear combinations of the parameters. Our restrictions can be
restated in vector form as

Bo
[o 1 -2 0} B _[0}
00 0 1]|g]| Lo
B3

01 =20

or as A3 =0, where the 2 x 4 matrix A = [
00 01

and 0 = |:O:|
0

Note that the two linear restrictions are not linearly dependent, and hence the
matrix A hasrank 2. A situation in which this would not be the case is 8; = 28, and
48, = 8p,. In this case, the second condition is superfluous and can be ignored.
The rank of the implied A matrix would be one.

Under the null hypothesis Hp : A3 =0, the full model in Eq. (4.30) simplifies

} B' = (Bo, B1, B2, B3),

to
y=PBo+ f2(2x1 +x2) +€ (4.31)

We call this the restricted model because its form is constrained by Hy. For a test
of A3 =0 we compare two models: the full model in Eq. (4.30) and the restricted
model in Eq. (4.31). We illustrate the general approach with the following two
examples.

Gas Consumption Example Continued

Previously, we considered the model
z2=Po + Bix1 + Paxz + B3xz + Paxs + Psxs + Pexe + € (4.32)

The estimates, ¢ ratios, and probability values of the estimates were listed in
Table 4.2.

Consider a test of the hypothesis that the last three regressor variables can be
omitted from the model. The hypothesis

Ba=PBs=PBs=0



Abraham Abraham C04 November 8, 2004 1:29

4.4 The Additional Sum of Squares Principle 113

can be written in matrix form

H()ZAﬂZO
where the 3 x 7 matrix

Bo
00 0 O0T1TO0O0 8, 0
A=[0 0 0 0 0 1 Of|; B=]| . |; and 0=|0
00 0 0 0 0 1 ) 0

Be

Under Hy, the model reduces to the restricted model

z=Po+ Bix1 + Baxa + B3x; + € (4.33)

Note that we have reduced the number of model parameters from seven to four. The
matrix A has rank 3, and our hypothesis involves three independent restrictions.
Failing to reject the null hypothesis implies that the associated variables x4, x5, X¢
are not important, given that the rest of the variables are already in the model.
On the other hand, a rejection of the null hypothesis indicates that at least one of
the variables x4, x5, x¢ 1s important, in addition to the regressor variables x, x3,
and x3.

0C Example
Our model in Chapter 1 relates the HDL (cholesterol) at the end of the study (y)
to the initial HDL (z) and indicators for five different drug regimes,

y=oz+ Bix;+ -+ Bsxs +¢€ (4.34)

Herexy, ..., xs areindicator variables denoting the five oral contraceptive groups.
The most interesting question is whether there are differences among the five
groups. In terms of our parameters, we ask whether there is any evidence that
Bi, - .., Bs differ. To examine this question, we consider the hypothesis

Ho: pi=pr=PB3=Ps=ps
The model (4.34), written in vector notation, is
y=az+pixi+- -+ psxs+e (4.35)
Under the null hypothesis that the five 8’s are equal,
Br=Br=B3=Ps=Ps=vy (4.36)
the model becomes

y=az+yxi+yx2+yx3+yxs+yxs+e
=yl+taz+e 4.37)

since the indicator structure of x; implies thatxy +x2 +---+xs5=1,a (n x 1)
vector of ones. The full model contains six coefficients and the restricted model
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only two. Hence, we reduced the dimension of the model from six parameters
(o, B1, .-, Bs) in Eq. (4.35) to just two parameters (o, y) in Eq. (4.37).
Geometrically, one can visualize the restriction as follows. In the original

model, E(y) is an element of L(z,x1,...,Xs), a six-dimensional subspace of
R>°. Under the null hypothesis, E(y) is an element of L(z, 1), a two-dimensional
subspace of the subspace L(z, x1,..., Xs).
The restrictions in Eq. (4.36) are equivalent to
Br—pB=0
—Br=0
Pr=Pps (4.38)
Br—B+=0
B1—Bs=0
and can also be written as
AB=0 (4.39)
where
01 -1 0 0 0
o1 0 -1 0
A= ;B =la, Bi. B2, B3, Ba,
01 0 0 -1 0 B =la, B1, B2, B3, B4, Bs]
1

0 0O 0 0 -1

The rank of the matrix A is 4; we are testing four linearly independent restric-
tions among the six parameters. Note that there are many other ways of parame-
terizing the restrictions. One could write 8; = B2, B2 = B3, B3 = Pa, Pa = Ps, and

select
01 -1 0 0 0
O 0 1 -1 0 0
A=
0 0 O 1 -1 0
0O 0 O 0 | |

which is another matrix of rank 4. It turns out that the particular parameterization
does not matter. Testing the hypothesis in Eq. (4.39) is usually referred to as
testing a general linear hypothesis since the test involves linear functions of the
parameters.

4.4.2 TEST OF A SET OF LINEAR HYPOTHESES

Suppose we have the model

y=PBol+Bixi+ -+ Bpx,+e¢ (4.40)
and want to test the hypothesis that a certain set of linear combinations of
Bo, Bi. - .., By are zero. That is,

AB=0 (4.41)

where A is an/ x (p + 1) matrix of rank /.
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LX)

LX)

Our test procedure relies on the additional sum of squares principle. First,
we look at the problem geometrically. As usual, we write the model (4.40) in
vector notation,

y:u—{—E:X,@—i—e

The model component ¢ = X3 is in the p 4+ 1 dimensional subspace L(X) that
is spanned by the regressor vectors in X =[1, x1,...,x,].
Let

La(X)={Bpol+ Bixi+- -+ Bpx, | AB=0}

be the subspace spanned by all linear combinations of the regressor vectors
1, x1,...,x, with coefficients satisfying the restriction AB = 0. L 5(X) is a sub-
space of L(X), with dimension p 4+ 1 — . This is easy to see because every linear
combination in L4 (X) is also an element in L(X) (see Figure 4.8). If E(y) is an
element of L 4(X), then the hypothesis A3 = 0 is true exactly.

Let f1 be the orthogonal projection of y onto L(X), and let f14 be the orthog-
onal projection of y onto the subspace L 4 (X). If the null hypothesis is true, then
£ should be close to L 4(X), and the difference /&t — fi4 and its squared length
(fL— 1) (i — 1) = r — f1 411> should be small. We would be surprised if this
quantity was exactly 0 because there is random variation in the model. The for-
mal procedure takes this variability into account. In the results that follow, we
calculate the distribution of the random variable ||ft — fi 4 ||*> under the hypothesis
AB=0.

Once again, we use a technique similar to the one we used in showing that ,@
and the residual sum of squares S (,@) are independent.

Theorem

Suppose that y = X3 + €, e~ N(0,0>I). Let f1 be the orthogonal projection
of y onto L(X) and f1, the orthogonal projection of y onto L4(X). Assume
that AB=0. We can show that (i) ||z — f1,]|> /o> ~ x7, and (ii) || 2 — fu,]|* is
independent of S(ﬁ) =(y—p)'(y — ).
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Proof: See the appendix. [ |

The Theorem implies the following
Corollary: Under the hypothesis A3 =0, the ratio
A=Al /i
S SB/n—p-1)

has an F distribution with / and n — p — 1 degrees of freedom.

(4.42)

Proof: The Theorem states that
1A = Al o? ~
and that it is independent of § (,3). Earlier, we showed that
S(B)/0* ~ Xa—p

In the appendix to Chapter 2, we stated that the ratio of two independent normal-
ized chi-square distributions leads to an F distribution. Hence,

& — fal? /ol
S@B)/o*(n—p—1)
The quantity F in Eq. (4.42) helps us test the hypothesis A3 = 0. Large values
of F provide evidence against the hypothesis. [ ]

=F~F(l,n—p—1)

Comments

Itis easy tosee why F in Eq. (4.42)1is a sensible test statistic. The denominatorin F
is the unbiased estimator of o2, that we have used previously. It gives an estimate
of o2, irrespective of whether or not Hy is true. If A3 =0, the numerator has
distribution o2 x 12 /1 and expected value o . The numerator of F also estimates o2,
but only if A3 = 0. If the hypothesis is not true, we expect fi to differ substantially
from f1,, and as a consequence E (||t — f14]|> /1) will exceed o'. Hence, the ratio
F in Eq. (4.42) will tend to be larger than 1 if the hypothesis is false.

The term || & — fi,]|* can be interpreted as the “additional sum of squares,”
hence the title of this section. We can see this from the geometry. Look at the
diagram in Figure 4.9, now slightly relabeled. Consider the right-angled trian-
gle with end points ABC. Denote the squared distances between the points by
AB?, AC?, and BC?. You notice that

BC*=S(B), AB>=|p — pl*, AC* =S(Bo)
where S(3 4) is the minimum value of S(3) when (3 is restricted so that A3 =0.
Pythagoras theorem tells us that
s — fallP=AC? — BC*=5(B,) — S(B) (4.43)
Hence, the numerator of our test statistic in Eq. (4.42) is the difference of two
error sum of squares: S(3) = (y — X8)'(y — X3) is the error sum of squares in
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FIGURE 4.9
Geometric
Interpretation of
Additional Sum of

Squares L(X)

Ly (X

the full model and S(BA) =(y — XBA)’(y — XBA) is the error sum of squares
in the restricted model—that is, the model under A3 = 0. This cannot be smaller
than § (,@) because we have restricted the minimization. The difference S (,@ A) —
S(B) =|fx — f14]|? is the additional or extra sum of squares that our restricted
model has failed to pick up. We can also think of it as the extra sum of squares
that is picked up when omitting the constraints A3 =0.

Note
i. Here we have considered the hypothesis A3 = 0. The vector 0 on the
right-hand side can be replaced by any known vector, for example, 6. The
results will remain the same.
Consider the following illustration. Take the full model y = By + f1x1+
Brx» + € and the restriction 28; 4+ 38, = 5. We can write this restriction as
B> =(5/3) — (2/3)B; and obtain the restricted model as

y = Bo+ Bix1 +[(5/3) = (2/3)Bi1]x2 + €
= (5/3)x2+ Bo + Bilx1 — (2/3)x2] + €

The restricted estimates 34 can be obtained by regressing the transformed
response y — (5/3)x; on the new regressor x; — (2/3)x,. From the
estimates BO,A and BI,A we can obtain BZ,A =(5/3) — (2/3),31,A. From
these estimates we can obtain the residual vector
y = [Bo.a + B1.ax1 + B2.ax2] and compute S(3,).

ii. The test for the hypothesis A3 = é can be implemented in a slightly
different way as well. Consider the statistic

_(AB=8AX'X)"'AT(AB - 8)/1
SB)/(n—p—1)

where [ is the rank of the constraint matrix A as defined earlier. It can be
shown that F* has an F distribution with [ and (n — p — 1) degrees of
freedom, and that the test based on F* is identical to our earlier approach in
Eq. (4.42). Some software packages provide the F'* statistic and its
associated probability value automatically if you supply the A matrix and

F*
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the & vector. However, we prefer our approach in Eq. (4.42) because we
believe it to be more intuitive.

Gas Consumption Example Continued
Let us return to the restriction that we had specified,

Hy:Bs=PB5=PBs=0

Not rejecting this hypothesis implies that the variables x4, x5, and x¢ are not
important in predicting the fuel consumption z, given that the variables x;, x,, and
x3 are already in the model. On the other hand, rejecting the null hypothesis means
that one or more of the regressor variables x4, x5, or x¢ contribute explanatory
power beyond that provided by the variables xy, x;, and x3.

The restricted model under the null hypothesis is

2= o+ Bix1 + Baxa + B3x3 + € (4.44)

The LSEs can be obtained, and it turns out that the residual sum of squares from
this restricted model is S (B 1) =4.8036.

Previously, we obtained the residual sum of squares, S (ﬁ) =3.0348, withn —
p — 1 =38 —7=731 degrees of freedom. Hence, the additional sum of squares
is S(,@A) — S(B) =4.8036 — 3.0348 = 1.7688. The full model reduces the error
sum of squares by 1.7688; in other words, the constraints in the parameters have
cost us an extra sum of squares of 1.7688. This sum of squares has / = 3 degrees of
freedom since we have constrained three parameters, or equivalently since there
are three independent rows in A.
Thus,

Fo additional sum of squares/3  1.7688/3

! - =6.02
S(B)/31 3.0348/31

The sampling distribution of the F ratio under the null hypothesis is F* with
3 and 31 degrees of freedom. The probability value is given by

P(F(3,31)>6.02) ~0.01

The probability value expresses the likelihood of obtaining the observed F' ratio
6.02 under the null hypothesis. It is small, which makes the null hypothesis
unlikely. Hence, one can rule out the null hypothesis and reject 4 = s = B¢ = 0.
This implies that at least one of the variables x4, x5, and x¢ is important, even if
variables x1, x3, and x3 are already in the model.

Note that the ¢ tests on individual parameters that we discussed earlier can
also be carried out within the additional sums of squares framework. For example,
consider the test 85 = 0. This test can be formulated as testing the hypothesis

H()ZA,BZO

where A =(0,0,0,0,0,1,0) is a row vector, and 3 is the (7 x 1) vector of
parameters in the full model. Under this hypothesis, the restricted model becomes

z=fo + Bix1 + Paxz + B3x3 + Baxs + Pexe + € (4.45)
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It is the model without xs. Estimates in the restricted model, 3, can be ob-
tained. The residual sum of squares from this restricted model is S(3 4) = 3.2720.
Comparing this with the residual sum of squares from the original (full) model,
S(B) =3.0348, gives us the additional sum of squares S(BA) — S(B) =3.2720 —
3.0348 =0.2372. It has [ = 1 degree of freedom. Hence,

additional sum of squares/1 0.2372
SB)/n—p—1) T 3.0348/(38 — 7)
with probability value

=2.42 (4.46)

P(F(1,31)>2.42)=0.13

Note that the computed F in Eq. (4.46) is the square of the ¢ ratio for A5 in the full
model: 2.42 = (1.56)2. This equality can be shown in general. Furthermore, note
that the previous probability value is exactly the same as the one we found for the
t statistic for testing S5 = 0. Hence, the conclusions from both tests, the F test
for one extra parameter and the ¢ test for an individual coefficient, are identical.
We know in general that the square of a ¢ distributed random variable follows a
certain F distribution (tdzf = F (1, df); see Chapter 2, Exercise 2.2). Such F tests
for one extra parameter are referred to as partial F tests, and the additional sum
of squares is referred to as the partial sum of squares due to this extra variable
(in our case, xs), given that all other variables are already in the model.

0C Example Continued
The full model is
y=az+pixi+---+psxste (4.47)

A test of the hypothesis that there are no differences among the five drugs restricts
the parameters as follows:

B1=PBr=B3=Ps=PBs =y (say),

or
AB=0
where A and 3 are given in Eq. (4.39). The restricted model
y=yl+az+e (4.48)

can be estimated, and the residual sum of squares can be calculated. We find
S(B4) =2,932.0. The residual sum of squares of the full model in Eq. (4.47) is
given by S(3) =2, 505.0. Hence, the additional sum of squares is

I — fulP=S(B,) — S(B)=2,932.0 — 2, 505.0 = 427.0

We have placed / = 4 linear restrictions on the six coefficients «, f1, . .., Bs, and
therearen — p — 1 =50 — 6 =44 degrees of freedom for the error sum of squares
in the full model. Hence,

427/4

= 187
2,505/44
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We use the F'(4, 44) distribution to obtain the probability value,
pvalue= P(F(4,44) > 1.87) ~0.13

Since this is quite large (certainly larger than the commonly used significance
level 0.05), we believe in our null hypothesis. Hence, we find no real evidence
that the drugs differ in their effect on the final HDLC.

Next, suppose we are also interested in knowing whether or not the drugs

have an effect at all. This hypothesis specifies that 8; = - - - = 85 = 0. Under this
hypothesis, the model (4.47) becomes
y=oaz+e€ (4.49)

The LSE of « can be found (it is Gy = XZ::Zi;}i ) leading to the residual sum

1

of squares S(ﬁA) => (i~ Gazi)? =3, 410.68. Hence, the additional sum of
squares is

o —fal>=S(8,) — S(B) =3,410.68 — 2, 505.0 = 905.68

Since there are five restrictions, 5 degrees of freedom are associated with this
extra sum of squares. The test statistic for the previous hypothesis is

~905.68/5 3
©2505/44
The probability value is given by

P(F(5,44) > 3.18) ~0.02

The probability value is small—smaller than the usual significance level 0.05.
F =3.18 is an extreme value under the null hypothesis. We can reject Hy and
conclude that there is evidence that the drugs affect the final HDLC.

4.4.3 JOINT CONFIDENCE REGIONS FOR SEVERAL PARAMETERS

In the UFFI example, we constructed confidence intervals for individual param-
eters. For instance, the 95% confidence interval for 8, has the form

P(Li <p1 <U;)=0.95

where L :Bl —1(0.975;n — p — l)s.e.(Bl), U, :,31 +t(0975;n—p—1)
s.e.(,@l), and 1(0.975; n — p — 1) is the 97.5% percentile of a ¢ distribution with
degrees of freedom n — p — 1 (see Section 4.3.1). A 95% confidence interval
for B, has a similar form with lower and upper limits L, and U,. For our data,
L1 =4288,U;=13.74and L, =2.08, U, =3.62.

In some contexts, it may be necessary to make joint confidence statements
about B, and B,. For example, we may want to construct a confidence region CR
such that P ((B;, B2) is in CR) = 0.95. It is known that

PLi<B1 UL LB <U) <P <P SUDP(Ly < B <)
=0.952=0.9025
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The confidence level associated with the rectangular region obtained by taking
the two marginal intervals as shown above is less than 0.95.

There is a procedure, however, to construct a joint confidence region for a set
of parameters that has the required coverage. In the linear model with parameter
vector 3 it can be shown that

B-B'X'X(B-PB)
(p+ Ds?
where F(p+ 1,n — p — 1) denotes an F distribution with degrees of freedom
(p+1)and (n — p — 1). This result can be shown as follows.
For the linear model, y = X3 + € with the standard assumptions, B~N
(B, 02X’ X)), and hence (3 — B) ~ N(0, 02(X'X)~"). The results on the dis-
tribution of quadratic forms in Section 3.4 imply that

B-B XX B-B=B-BX'XB-PB)/0"~xp,
We also know from previous results in this chapter that (n — p — 1)s%/0? ~
x> p—1-and that B and s? are statistically independent. The ratio of two indepen-

dent chi-square random variables, standardized by their degrees of freedom, has
an F distribution; see the appendix in Chapter 2. Hence,

(B-B)X'XB-B)/(p+Do*> (B-B)XXB-P)

~F(p+1l,n—p—1)

~F(p+1l,n—p—1)

(n—p—1s?/(n—p—1o? (p+Ds?
This result implies that a 100(1 — o) % joint confidence region for all parameters
in 3 is given by
3-B)X'X(B -
B-P'X'X(PB 6>§F(1—a;p+1,n—p—1)

(p+ 1)s?
where F(1 —a; p+1,n— p —1) is the 100(1 — «) percentile of an F distri-
bution with degrees of freedom (p + 1) and (n — p — 1). Algebraically, and this
is somewhat cumbersome, one needs to find the values 3 such that the previous
equality is satisfied. Choosing submatrices of (X’ X)~! appropriately, confidence
regions for subsets of parameters in 3 can also be obtained. For example, a joint
confidence region for By, 8, uses a submatrix of (X'X )~! that corresponds to
these coefficients (see Exercise 4.24).

For a pair of parameters, the joint confidence region is an ellipse on a two-
dimensional plot. For more than two parameters it is an ellipsoid. Since joint
confidence regions are rarely used in practice, we will not pursue the topic further.

4.5 THE ANALYSIS OF VARIANCE AND THE COEFFICIENT
OF DETERMINATION, R?

Let us consider the general linear model

y=PBo+pixi+---+Bpx,+e€ (4.50)
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and the hypothesis
Hy:pi=p=---=p,=0
Under this hypothesis, the model reduces to
y=Bo+e 4.51)
This model implies that the response y has amean E (y) = S thatis not affected by
any of the explanatory variables. The hypothesis expresses the fact that x1, .. ., x,

do not influence the response.

We can use the additional sum of squares principle to test this hypothesis.
The residual sum of squares of the full model in (Eq. 4.50) is given by S (3). In
the restricted model (Eq. 4.51), the estimate of fj is given by y and the “residual
sum of squares” by

> i =) (4.52)
i=1

This is called the total sum of squares, corrected for the mean. It is a measure of
how the observations fluctuate around their mean. The additional sum of squares
from the p regressor variables is given by Y (y; — ¥)> — S (B3). It has [ = p de-
grees of freedom since our null hypothesis specifies p independent constraints.
This quantity is usually called the regression, or the model sum of squares. It
tells us how much variability is explained by the full model, over and above the
simple mean model. It can be shown that the regression sum of squares (SSR) is
given by

SSR=>"(yi =9’ =SB =yy —ny* - (y - XB)(y — XB)
=B'X'y —n3*=BX'XB —ny’ (4.53)

The three sums of squares—the regression sum of squares, the residual sum of
squares, and the total sum of squares—are usually displayed in a table called the
analysis of variance (ANOVA) table (Table 4.3).

The degrees of freedom column in the table contains the relevant degrees
of freedom. The regression sum of squares, SSR, has p degrees of freedom,
because there are p regressor variables that make up the model. The error sum of
squares has n — p — 1 degrees of freedom; the number of observations n minus
the number of parameters in the model, p + 1. The total sum of squares has

TABLE 4.3 ANALYSIS OF VARIANCE (ANOVA) TABLE

Source df Sum of Squares Mean Squares F
. oo > MSR
Model (Regression) p SSR=3 X'y —ny MSR =SSR/ p MSE
SSE

Residual (Error) n—p—1 SSE=SB)=(y—XB)(y — XB) MSE= P

Corrected total n—1 SST=Y(y — )
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n — 1 degrees of freedom, because there are n deviations from the mean, but the
sum of these deviations is zero.

The fourth column contains the mean squares, the sums of squares divided
by their respective degrees of freedom. The mean square error, MSE = SSE/(n —
p—1)=S(B)/(n — p — 1), was seen earlier. It is the unbiased estimator of &2
The fifth column contains the F ratio for testing the hypothesis Hy: ) = B> =
~-=B,=0,

additional sum of squares/ p SSR/p

S(B)/(n—p—1) SSE/(n—p —1)
Observe that, by construction, the regression sum of squares and the error sum of
squares must add up to the total sum of squares. Hence, the ANOVA table parti-
tions the variability (the total sum of squares) into two interpretable components:
a sum of squares that is explained by the model and a sum of squares that has
been left unexplained.

(4.54)

Gas Consumption Example Continued
The basic model is

z=100/y = Bo + Bix1 + Paxs + B3x3 + Paxs + PBsx5 + Bexs +€  (4.55)
The hypothesis
Hy:Bi=p=B3=B1=B5=Ps=0

can be written as A3 =0, where A is the 6 x 7 matrix of rank 6,

010 0 O0O0@O
0010000
A=0001000
00 0 O0OT1TO0TPO
000 O0O0OT1FO
00 0 0 O0 01

3 is the (7 x 1) vector of parameters, and 0 a (6 x 1) vector of zeros. Failure to
reject this hypothesis implies that none of the variables are important in predicting
the gas consumption of the vehicle. Rejection of the hypothesis implies that at
least one of the variables is important in predicting gas consumption. Under the
null hypothesis, the model reduces to

y=PHo+e (4.56)

Estimation of the full model in Eq. (4.55) gives SSE=S§ (,C:I) =3.0348. The
total sum of squares (corrected for the mean) is easy to calculate; SST =) (y; —
y2=> yi2 — ny? =49.4463. Hence, by subtraction, we find the regression sum
of squares, SSR = SST — SSE =46.4115. These are the sum of squares entries
in Table 4.4.

The degrees of freedom are 6 (as there are six regressor variables), 31 (because
we estimate seven coefficients from n = 38 cases), and 37 (=n — 1). The F ratio,
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TABLE 4.4 ANOVA TABLE FOR GAS CONSUMPTION DATA

Source df Sum of Squares Mean Squares F Prob > F
Model (Regression) 6 46.4115 7.7352 79.015 0.0001
Residual (Error) 31 3.0348 0.0979
Corrected total 37 49.4463

Note that this table was part of the SAS output; see Section 4.3.1.

F =79.015, is large; its probability value 0.0001 is tiny. It indicates that there
is strong evidence against the claim that none of the regressor variables have an
influence (81 = B> = B3 = B4 = PB5s = Bs = 0). In other words, we cannot discard
X1, X2, X3, X4, Xs, and x¢ simultaneously; at least one of the variables is important
in predicting z.

The F test in the ANOVA table is also known as a test for the overall signif-
icance of the regression. If we reject Hj, some regression relations exist. Which
ones, we do not know at this point.

4.5.1 COEFFICIENT OF DETERMINATION, R?

The ANOVA table partitions the total response variation into two components:
SST = SSR + SSE, the variation that is explained by the regression model (SSR),
and the variation that is left unexplained (SSE). The coefficient of determination
R? is defined as the proportion of the total response variation that is explained by
the model,
SSR  SST —SSE SSE
= = =1-— (4.57)
SST SST SST
For the gas consumption example and model (4.55), the total sum of squares is
SST =49.4463, the residual sum of squares (the unexplained response variation)
is SSE = 3.0348, and the response variation that is explained by the model (re-
gression sum of squares) is SSR =49.4463 — 3.0348 = 46.4115. Hence, R> =
46.4115/49.4463 = 0.9386. This means that 94% of the variation in the response
is explained by the linear model with the regressor variables x|, xp, x3, X4, X5, X¢-
R? is a useful summary measure. It provides an overall measure of how well
the model fits. It can also give feedback on the importance of adding a variable to
(or deleting a variable from) a model. For instance, if we delete x5, x¢ from
the model in Eq. (4.55), the regression sum of squares reduces to 44.9505 and
R?=0.9091. This is slightly smaller, but it appears that a model without x5 and
xg is not much worse than the full model. This casts doubt on the inclusion of
these two variables in the model. Note that adding a variable to a model increases
the regression sum of squares, and hence the R?. (In the worst case, it can stay
the same.) R? can be made 1 by adding increasingly more explanatory variables.
If we fit a model with (n — 1) explanatory variables to n cases, the fit is perfect;
the residual sum of squares will be zero, and R? = 1. One certainly does not want
to do this because one would “overfit” the data, trying to find an explanation
for every random perturbation. Hence, the use of large numbers of explanatory
variables, especially when n is small, is not a good idea.

R2
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FIGURE 4.10
Different Data Plots
Yielding Identical
RZ
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R? is just one summary measure of the regression fit. It alone does not tell us
whether the fitted model is appropriate. Look at the data that are listed in Exercise
2.3 and plotted in Figure 4.10. It turns out (you should check this) that all four
data sets lead to the same least squares estimates, the same ANOVA table, and
identical R?. However, there is only one situation (case a) in which one would say
that a simple linear regression describes the data. One needs to be careful when

interpreting the R2.

4.6 GENERALIZED LEAST SQUARES
4.6.1 INTRODUCTION

The standard regression y = X3 + € assumes that the vector of errors € has zero
mean and covariance matrix V (€) = o2, which implies that all errors have the
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FIGURE 4.10
(Continued)
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same precision and that they are uncorrelated. In some situations, these assump-
tions will not be reasonable.

In certain applications, some errors have more variability than others. Con-
sider the situation in which the response for the ith case is obtained as an average
of several measurements and the number of measurements that go into that aver-
age changes from case to case. In this situation, V (y;) = V (¢;) =o*/n;, where
n; represents the number of measurements in the average y;. The assumption of
equal variance is clearly violated.

Consider the case in which responses are taken over time. For example, con-
sider modeling the relationship between the sales of your product, its price, as
well as the prices of major competitors, and the amount your company spends
on advertisement. Suppose that monthly observations (e.g., the past 5 years) are
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available to estimate the coefficients in the regression model. You expect that
a regression of sales on price and advertising will be useful, and that these re-
gressor variables will “explain” sales. However, even after controlling for prices
and advertising, deviations of the sales from their implied expected levels tend
to exhibit “runs.” If sales in a certain month are unusually high, then there is a
good chance that they will also be high in adjacent months. This is because the
economic “driving forces” (which are not in your model) are persistent, moving
only slowly over time; if the economy is poor today, then it tends to be poor also
in preceeding and following months. You could try to specify an additional vari-
able, “state of the economy,” and use this as an additional regressor variable. This
may help, but most likely there will be some other unknown and slowly changing
variables that affect your sales, and measurement errors from different periods
will tend to be correlated. We refer to this as autocorrelation or serial correla-
tion because the errors are correlated among themselves at different lags. Very
often, the amount of (auto)correlation diminishes with the lag. For example, ad-
jacent observations are the most strongly correlated, whereas errors several steps
apart are less correlated. Usually, one assumes a certain structure for the auto- (or
serial) correlation. Often, one assumes that Cov(e;, €;_;) = Cov(e;, €41) =0 2@,

Cov(e;, €i-2) =Cov(e;, €42) =02¢?, ..., Cov(e;, €—x) = Cov(e;, €i44) = o 2¢F,
for lags k=1, 2,.... In this case, the n x n covariance matrix of the errors is
given by
[ 6 ¢ ... o]
é 1 o ... ¢"?
2 1 n—3
V(e =o zg ¢ ¢
A U |

The model that corresponds to this covariance matrix is known as the first-order
autoregressive model. It is a particularly simple and useful parameterization
because it requires only one additional parameter, the autoregressive parameter
¢. However, many other models are available for representing autocorrelations
among observations. In Chapter 10 on regression time series models, we discuss
these models in detail.

A third example in which independence of the errors is violated arises when
spatial observations are involved. Consider measurements on a certain ground-
water pollutant that are taken at the same time but at different locations. In this
situation, it is likely that errors for measurements taken in close spatial proxim-
ity are correlated. Many different models have been developed to characterize
spatial correlation, and most express the spatial correlation as a function of the
(Euclidean) distance between the measurement locations. A common assumption
is that the correlation decreases with distance among measurement sites.
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Expand on this example, and consider the situation when spatial observations
are involved but when observations are also taken at several time periods. Here,
one faces the situation in which observations (or errors) exhibit a spatial as well as
a temporal correlation structure. A common approach is to model the covariance
matrix of the errors with several (hopefully few) additional parameters that char-
acterize the spatial and temporal correlations and then estimate the parameters in
the regression model y = X3 + € under this more general error model.

4.6.2 GENERALIZED LEAST SQUARES ESTIMATION

Assume that the vector of errors € in the regression model y = X3 + € has
zero mean and general covariance matrix V (€) = E(e€’) = o2V. Now V is no
longer the identity matrix. The proportionality coefficient, o2, is unknown, but
we assume—at least initially—that all elements in the matrix V are known.

We will try to find a linear transformation, Le of €, which satisfies the as-
sumptions of the standard model. The matrix V' is symmetric and positive definite,
and we can apply our results in Chapter 3 on the spectral decomposition of a sym-
metric matrix. We can write the matrix as V. = PAP’ = PAY2A'Y/2 P’ where the
matrix A is diagonal. Its elements A; > X, >--- > A, >0 are the eigenvalues
of the positive definite matrix V; the column vectors of the matrix P are the
corresponding normalized eigenvectors. Note that V! = (PAY2A1/2p") =1 =
PAT'PATI2P = L'L.

Premultiplying the regression model by the matrix L = A~!/2 P’ results in
the model

Ly=LXB+Le=LX3+¢

where the vector Ly represents the transformed response, and the columns in the
matrix L X represent the transformed regressor variables. Then E(€) = E(Le) =
LE(e) =0and

V@& =LV(e)L =LVLc*>=A""2P' PAV2AV2P PA~26% = [5?

The new disturbance vector € satisfies the standard regression assumptions.
According to the Gauss—Markov theorem, least squares—applied to the trans-
formed variables—will yield the best linear unbiased estimator of 3. Replacing
y and X in the standard least squares estimator in Eq. (4.11) by Ly and LX,
respectively, leads to the generalized least squares (GLS) estimator

B (X' L'LX) ' X'L'Ly =(X'V'X)" ' X'V-y (4.58)
and its covariance matrix

vi@°®) = (X'L'LX)"'X'L'V(Ly)LX(X'L'LX)""
=oX(X'L'LX)"'X'L'LX(X'L'LX)™!
=o>(X'L'LX) ' =c?(X'VX)"! (4.59)
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The GLS estimator can be used to compute the error sum of squares in the
transformed model,

S@B) = wy — Lx8%°y Ly — Lxp%")
= (y—x8"LLy - xp°)

= (y - x8"yv-(y —x8° (4.60)

The model in the transformed variables satisfies the standard regression as-

sumptions. Hence, § (BGLS) J/o? follows a chi-square distribution with n — (p +
1) degrees of freedom, where n represents the number of cases and p + 1 the
number of regression coefficients. Hence,

AGLS
seLs =SB )/ —p—1) (4.61)
is an unbiased estimator of o'. This can be used in Eq. (4.59) to obtain an estimate
AGLS
of V(B ).

What are the properties of the standard least squares estimator 8 = (X' X) ™!
X'y that has been derived under the wrong assumption of independent and equally
precise errors? It also is unbiased, but it is no longer “best” among all linear
unbiased estimators. The Gauss—Markov result has already shown us that it is

. ~GLS . . .
the GLS estimator 3 that has the smallest covariance matrix. The covariance
matrix of the standard least squares estimator

V(B) = VIX'X) ' X'yl=X'X)"' X' V()X (X'X)™!
=o?(X'X)'XVXX'X)"!

exceeds the covariance matrix in Eq. (4.59) by a positive semidefinite matrix.

Remark

So far, our analysis has assumed that all elements in the matrix V are speci-
fied. For this reason, we call the estimator in Eq. (4.58) the feasible generalized
least squares estimator. In the first example of our introduction, the precision
V(y;) =V (€;) =0*/n; depends on the known number of measurements that go
into the observation y;. Here, V is specified, and the generalized least squares
estimator can be calculated. In the second illustration, the matrix V contains the
autoregressive parameter ¢. In practice, this parameter is unknown, and one must
estimate the regression coefficients 3 and ¢ jointly. This issue will be addressed
in Chapter 10, when we discuss regression models with time series errors.

4.6.3 WEIGHTED LEAST SQUARES

Weighted least squares is a special case of generalized least squares. The weighted
least squares estimator minimizes the weighted error sum of squares

SB = wily —x;8)
i=1
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where w; > 0 are known specified weights. This criterion is equivalent to the
one for generalized least squares, with V! a diagonal matrix having diagonal
elements w;.

Equations (4.58) and (4.59) imply that the weighted least squares (WLS)
estimator is given by

n -1 n
BWLS = |:Z wixix§:| |:Z w,-x,-yi:| (462)
i=1 i=1

with variance

n —1
vig"") =02 [Z wixl-x;:| (4.63)
i=1

APPENDIX: PROOFS OF RESULTS

1.

MINIMIZATION OF S(3) IN EQ. (4.9)

We wish to minimize
n n
SB= i—u)’=) €
i=1 i=1
subject to the restriction that po = X 3. The elements of the vector p are given by
P
wi=PBo+ Pixit + -+ Bpxip=Po+ injﬁj
j=1

fori =1,2,...,n. The partial derivatives of S(3) with respect to the parameters

Bo, Bi, ..., By are

1S(B) < de g
=2 i—t =2 ;
3o ;6 3o ;6

=

and
aS(B) ~ ¢ = .
— =2 €; =-2 Xii€i, _]=1,2,...,p
B, ; 9B, ; !
At the minimum of S(3) these derivatives are zero. Hence,
&= (i —u)=0

i=1

n
Yoxij(yi—u)=0, j=1,2,....p
i=1

In vector form,

U(y—w=0
x’j(y—u)zo, j=1,2,...,p
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where the n x 1 vector 1, a vector of ones, and x;, the vector with elements
X1j,X2j, .., Xnj,arecolumns of the matrix X = [1, x1, ..., x,]. Combining these
p + 1 equations, we obtain
X' (y—-XB)=0
or
X'XB=X'y

Let B denote a solution of this equation. Solving the normal equations
(X'X)B=X'y leads to B=(X'X)"'X'y; the inverse (X'X)~! exists since we
assume that X has full column rank. In order to prove that 3 actually minimizes
S(B) we show that any other estimate will lead to a larger value of S(3):

SB) =(y—Xp)'(y —XB)
=(y—XB+XB-XB)(y—XB+XB~XP)
== XB)(y=XP)+(B-B'XXB~P)
since the normal equations imply that the cross-product term (3 — 3)'X'(y —
XB)=(B~B)(X'y — X'X)=0. Thus,
S(B)=SP) +c'e

where ¢ = X (8 — B). Since ¢'c = Y ¢? > 0, S(B) > S(3); the equality is true if
i=1
and only if B = ,@

2. ANOTHER PROOF OF THE UNBIASEDNESS OF s2 AS AN ESTIMATE OF o2:
EQ i 6)=(Mn—p—1)c?

Consider
E (ie?) =E(e)=E[y'(I—H)(I - H)y] since e=( — H)y
i=l =E[y'(I - H)y] since (I — H) is idempotent
= E[tr(y'(I — H)y)] since y'(I — H)y is a scalar
= E[tr(I — H)yy'] sincetr AB=tr BA
= t[(/ — H)E(yy")]
Now

E(yy) = E[(XB+e)(XB+¢€)]
= XBA'X + E(e)=XBAX +0o%I
Here we have used the fact that E(e) =0 and V (¢) = E(e€') = o>I. Hence,

E (Z e§> =tr[(I — H)(c’1 + XBB'X')]
=1 [l — H1o?, since tr(A+ B) = tr(A) +tr(B), and (I — H)X = O
=o’n—uX(X'X)"'X]
=o’ln—(p+Dl=@n—-p-1o’
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since tr[ X (X' X) ™' X'] = tr[(X'X) "' X'X] = tr(I,4,), where I,y isthe (p + 1) x
(p + 1) identity matrix.

3. DIRECT PROOF THAT 3 AND S(J3) ARE STATISTICALLY INDEPENDENT AND THAT
S(B)/o? FOLLOWS A x_,_, DISTRIBUTION

The set of all linear functions of L(X) = L(1, x1, ..., x,) forms a (p +1)-dimen-
sional subspace of R". We canalways find p + 1 orthonormal vectorscy, ..., €
(i.e.,cici=1,cic; =0,i # j) that form a basis of L(X). These orthonormal vec-
tors are linearly related to the regressor columns. The Gram—Schmidt orthogo-
nalization procedure (see Chapter 3) shows us how to obtain these vectors.

L(X) is a subset of R". Hence, we need to add (n — p — 1) additional or-
thonormal vectors¢ 42, ..., ¢, suchthat (cy, ..., ¢,) forms an orthonormal basis
of the larger space R". You can visualize the construction as follows:

C],...,CP+],CP+2,...,C,1
[ —
L(X)
Rn

The vectors in the matrix
P:(Clv"'scn)z(P15P2)

where P =(cy,...,cpr1)and Py = (cpy2,...,cp)aren X (p+ 1)andn x (n —
p — 1) matrices, provide an orthonormal basis. By construction, P is an orthog-
onal matrix. Thatis, PP =PP' =1.

Our model specifies y ~ N (i, o21), where p = X B is in L(X). Consider the

orthogonal transformation
.
1=Py= y
Py

Then z ~ N(P'p, 0*I) since P'P = 1. This says that the z;’s are independent
and have the same variance o 2. Furthermore,

P 0

since Py =0. This is because g is in L(X) and the columns of P, are perpen-
dicular to L(X).
Turning the transformation around results in

n
y=(P) 'z=Pz = Zcizi
i=1

p+l1 n
= E cizZi + E CiZi
i=1 i=p-+2

=p+y-p
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Here we have used the fact that P is orthogonal, and P~!'= P’ Now,

SB)=(y—XB)(y - XB) =lly - pl*= ( >, c,-z,-> ( >, c,-z,-)

i=p+2 i=p+2

n n
= E E zizjcic;

i=p+2 j=p+2
n
= Z 77 since ¢je; =1and ¢je; =0,i # j
i=p+2
Since z,42, ..., 2, are i.id. N(0, 02), it follows that

SB) _ § 2,2

2
o i=p+2

is the sum of (n — p — 1) independent Xlz random variables. It has a Xr%f -1
distribution. Furthermore, this is independent of z1, ..., z,4+1. Now

B=XX)"Xy=X'X)"'X'Pz
= (X'X)"'X'(P1, Pz
However, X'(P;, P) = (X'P;, O) since the columns of P, are perpendicular
to L(X) while rows of X’ are in L(X). Hence, 3= (X'X)"'X'Pz(1), where

zy=(1,..., z,,+1)/. The least squares estimator 3 depends on z, ..., Zp+1,
whereas S(3) depends on z,, 42, ..., z,. Thus, 3 is independent of S(3).

4. PROOF OF THEOREM

Proof: L ,(X) is a subset of L(X), and L(X) is a subset of R". L(X) is
of dimension p + 1. L4(X) imposes / independent restrictions on the subset
L(X). Hence, the dimension of L4(X) is p + 1 — [. Choose an orthonormal ba-
sis (¢1,...,¢py1-1) for L, (X) and extend it successively to form orthonormal
bases for L(X) and R". Visualize the process as follows:

Cl,..n,y cp+1—l9cp+2—la s 7cp+1vcp+2a B )
—_———
La(X)
L(X)

Rll
The vectors are collected in the n x n matrix P,

P=(ci,....cn)=(P1, P2, P3)
where Pl = (clv D) cp+17€)7 P2 = (Cp+27€? o ’cp+1)7 and P3 = (cp+2’ e cn)

aren X (p+1—1),nx1[,and n x (n — p — 1) matrices. The matrix P is or-
thogonal: PP'=P'P =1.
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EXERCISES

4.1. Consider the regression on time,
vi=Po+ Bit +e€,witht=1,2,...,n

Consider the orthogonal transformation z = P’y and its inverse

n
y=Pz = Zcizi
i=1

p+1-1 p+1
=Y an+ 3 aut Y e
i=p+2-I i=p+2

=pfa+ (R — )+ (y— )
where f1 4 is the projection of y on L 4(X), and /1 is the projection of y on L(X);
fa— fiyisin L(X) and perpendlcular to L4(X); |y — al>= > —p2 z S(B)

and ”N I‘I‘A”2 Zl =p+2— ZZ
Since y ~ N(p, o1), it follows thatz = P’y ~ N (P’p, o>I). Under the null
hypothesis A3 =0, the mean vector

Pip P
Plu=|Pu|=| 0
Pip 0

This is because under the null hypothesis ft = f1 4 is in L 4(X) and the columns
of P, are perpendicular to L4 (X). In addition, Pju = 0 since the columns of P;
are perpendicular to L(X). Hence,

i. 21,22, ..., 2, are independent normal random variables with variance 2.
il. Zpyo—,..., Zp+1 have zero means under the null hypothesis A3 =0.
iii. z,42,..., 2, have zero means under the original model, even if the null

hypothesis is false.
Thus,

il — il Jo?= Z"H ,z is the sum of / independent X12 random
variables. It has a Xl distribution.

ii. S(f)’) is a function of z 42, ..., z,, whereas || fi — f14]? is a function of
Zp42—1, - - - » Zp+1. Furthermore, z1, 22, . . ., 2, are independent. This shows
that S(B) and ||t — o A||2 are independent.

4.2. For the regression model y, = By + €, with
n=2andy = (2,4), draw the data in

Here, the regressor vector is x’ = (1, 2, ...,
n). Take n = 10. Write down the matrices
X'X, (X'X)~!, V(3), and the variances of B
and 31.

two-dimensional space. Identify the
orthogonal projection of y onto L(X) = L(1).
Explain geometrically ,30, [, and e.
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Consider the regression model
yi=Po+ Pixi +€,1=1,2,3. With

1 2.2
x=|3|y=|39
2 3.1

draw the data in three-dimensional space and
identify the orthogonal projection of y onto
L(X)=L(1, x). Explain geometrically ,5', [,
and e.

Consider the regression model
yi=po+ pixi +€,i=1,2,3. With

1 2
x=|3|y=1|4
2 6

draw the data in three-dimensional space and
identify the orthogonal projection of y onto
L(X)= L1, x). Explain geometrically B, [,
and e.

After fitting the regression model,
y=PBo+ Bixi + oxs + B3xz + €

on 15 cases, it is found that the mean square
error s2 =3 and

05 03 02 06
03 60 05 04
02 05 02 0.7
06 04 07 30

X'x)"'=

Find

a. The estimate of V(Bl).

b. The estimate of Cov(B1, B3).
c. The estimate of Corr(8, B3).
d. The estimate of V(ﬁl — ,33).

When fitting the model

E(y)=pBo+ Bix1 + fox2
to a set of n = 15 cases, we obtained the least
squares estimates By = 10, 8, = 12, B, =15,
and s2 = 2. It is also known that
1 0.25 0.25
X'X)"'=1025 05 —025
0.25 -0.25 2

a. Estimate V(ffz).
b. Test the hypothesis that 8, =0.

November 8, 2004 1:29

Exercises 135

c. Estimate the covariance between 3 1 and
Ba.

d. Test the hypothesis that 8, = B,, using
both the ¢ ratio and the 95% confidence
interval.

e. The corrected total sum of squares,
SST = 120. Construct the ANOVA table
and test the hypothesis that 8, = 8, =0.
Obtain the percentage of variation in y that
is explained by the model.

4.7. Consider a multiple regression model of the

price of houses (y) on three explanatory
variables: taxes paid (x;), number of
bathrooms (x;), and square feet (x3). The
incomplete (Minitab) output from a
regression on n = 28 houses is given as
follows:

The regression equation is price =—10.7 +
0.190 taxes + 81.9 baths + 0.101 sqft

Predictor Coef SECoef t p
Constant —10.65 24.02

taxes 0.18966 0.05623

baths 81.87 47.82

sqft 0.10063 0.03125

Analysis of variance

Source DF SS MS F p
Regression 3 504541

Residual Error

Total 27 541119

a. Calculate the coefficient of determination
R

b. Test the null hypothesis that all three
regression coefficients are zero (Hy: f1 =
B> = B3 =0). Use significance level 0.05.

c. Obtain a 95% confidence interval of the
regression coefficient for “taxes.” Can you
simplify the model by dropping “taxes”?
Obtain a 95% confidence interval of the
regression coefficient for “baths.” Can you
simplify the model by dropping “baths”?

4.8. Continuation of Exercise 4.7. The incomplete

(Minitab) output from a multiple regression
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of the price of houses on the two explanatory
variables, taxes paid and square feet, is given
as follows:

The regression equation is price =4.9 + 0.242
taxes + 0.134 sqft

Predictor Coef SE Coef ¢ p
Constant  4.89 23.08

taxes 0.24237 0.04884

sqft 0.13397 0.02537

Analysis of variance
Source DF SS MS F p

Regression 2 500074 250037
Residual Error
Total 541119

a. Calculate the coefficient of determination
R2.

b. Test the null hypothesis that both
regression coefficients are zero (Hy:
B1 = B> =0). Use significance level 0.05.

c. Test whether you can omit the variable
“taxes” from the regression model. Use
significance level 0.05.

d. Comment on the fact that the regression
coefficients for taxes and square feet are
different than those shown in Exercise 4.7.

4.9. Fitting the regression
yi = Bo + Bixi1 + Baxiz + & on n =30 cases
leads to the following results:

30 2,108 5,414
X'X=]2108 152,422 376,562
5,414 376,562 1,015,780

5,263
X'y = 346,867
921,939

and y'y=1,148317

a. Use computer software to find (X'X)~!.
Obtain the least squares estimates and
their standard errors.

b. Compute the ¢ statistics to test the simple
hypotheses that each regression coefficient
is zero.
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c. Determine the coefficient of variation R2.
(The complete data are given in the file
abrasion.)

4.10. The following matrices were computed for a

certain regression problem:

15 3,626 44,428
X'X =] 3,626 1,067,614 11,419,181 |,
| 44,428 11,419,181 139,063,428

2,259
X'y = | 647,107
| 7.096,619

X'x)"' =
1.2463484 2.1296642 x 1074  —4.1567125 x 104
7.7329030 x 107%  —7.0302518 x 1077 |,
1.9771851 x 1077

3.452613
B = | 0.496005
0.009191

y'y = 394,107

a. Write down the estimated regression
equation. Obtain the standard errors of the
regression coefficients.

b. Compute the 7 statistics to test the simple
hypotheses that each regression coefficient
is equal to zero. Carry out these tests. State
your conclusions.

4.11. A study was conducted to investigate the

determinants of survival size of nonprofit
U.S. hospitals. Survival size, y, was defined
to be the largest U.S. hospital (in terms of the
number of beds) exhibiting growth in market
share. For the investigation, 10 states were
selected at random, and the survival size for
nonprofit hospitals in each of the selected
states was determined for two time periods #:
1981-1982 and 1984-1985.

Furthermore, the following characteristics
were collected on each selected state for each
of the two time periods:

x1 = Percentage of beds that are in for-profit
hospitals.
x, = Number of people enrolled in health

maintenance organizations as a fraction
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of the number of people covered by
hospital insurance.
x3 = State population in thousands.
x4 = Percentage of state that is urban.
The data are given in the file hospital.
a. Fit the model

y=PBo+ B1x1 + Baxo + Baxz + Baxs + €

b. The influence of the percentage of beds in
for-profit hospitals was of particular
interest to the investigators. What does the
analysis tell us?

c. What further investigation might you do
with this data set. Give reasons?

d. Rather than selecting 10 states at random,
how else might you collect the data on
survival size? Would your approach be an
improvement over the random selection?

The amount of water used by the production

facilities of a plant varies. Observations on

water usage and other, possibily related,
variables were collected for 17 months.

The data are given in the file water. The

explanatory variables are

TEMP = average monthly temperature(°F)

PROD = amount of production
DAYS = number of operating days in the month

PAYR = number of people on the monthly
plant payroll
HOUR = number of hours shut down for
maintenance
The response variable is USAGE = monthly
water usage (gallons/100).

a. Fit the model containing all five
independent variables,

y = Bo + B1 TEMP + B, PROD + B3 DAYS

+ ﬂ4 PAYR + /35 HOUR + €

Plot residuals against fitted values and
residuals against the case index, and
comment about model adequacy.

b. Test the hypothesis that ; = 3 = 5 =0.
¢. Which model or set of models would you

suggest for predictive purposes? Briefly
justify.
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d. Which independent variable seems to be
the most important one in determining the
amount of water used?

e. Write a nontechnical paragraph that
summarizes your conclusions about plant
water usage that is supported by the data.

Data on last year’s sales (y, in 100,000s of
dollars) in 15 sales districts are given in the
file sales. This file also contains promotional
expenditures (x1, in thousands of dollars), the
number of active accounts (x;), the number of
competing brands (x3), and the district
potential (x4, coded) for each of the districts.

a. A model with all four regressors is
proposed:

v =PBo+ Bix1 + Paxo + B3xz + Paxs + €,
€~ N(0,0%)
Interpret the parameters Sy, B1, and fy.

b. Fit the proposed model in (a) and calculate
estimates of 8;,i =0, 1,...,4, and ol

c. Test the following hypotheses:

() Ba=0; (i) B3=P4=0;
(i) Br=p3; (V) Br=B=p3=p+=0
d. Consider the reduced (restricted) model
with 84 = 0. Estimate its coefficients and
give an expression for the expected sales.

e. Using the model in (d), obtain a prediction
for the sales in a district where
x1 =3.0, x, =45, and x3 = 10. Obtain the
corresponding 95% prediction interval.

The survival rate (in percentage) of bull
semen after storage is measured at various
combinations of concentrations of three
materials (additives) that are thought to
increase the chance of survival. The data
listed below are given in the file bsemen.

% Survival % Weight 1 % Weight 2 % Weight 3

62 (x1) (x2) (x3)
25.5 1.74 5.30 10.80
31.2 6.32 5.42 9.40
25.9 6.22 8.41 7.20
38.4 10.52 4.63 8.50
18.4 1.19 11.60 9.40
26.7 1.22 5.85 9.90
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9% Survival % Weight 1 % Weight 2 % Weight 3

) (x1) (x2) (x3)
26.4 4.10 6.62 8.00
259 6.32 8.72 9.10
32.0 4.08 4.42 8.70
25.2 4.15 7.60 9.20
39.7 10.15 4.83 9.40
35.9 1.72 3.12 7.60
26.5 1.70 5.30 8.20

4.15.

Assume the model y = By + B1x1 + Baxz +
Bax3 +e.
a. Compute X'X, (X'X)~", and X'y.

b. Plot the response y versus each predictor
variable. Comment on these plots.

c. Obtain the least squares estimates of 3 and
give the fitted equation.

d. Construct a 90% confidence interval for
i. the predicted mean value of y when
X1 :3,)62 :8, andx3 :9;
ii. the predicted individual value of y when
X1 :3,X2:8, andx3 =9.
e. Construct the ANOVA table and test for a
significant linear relationship between y
and the three predictor variables.

An experiment was conducted to study the
toxic action of a certain chemical on
silkworm larvae. The relationship of log;o
(survival time) to log;o(dose) and
logjo(larvae weight) was investigated. The
data, obtained by feeding each larvae a
precisely measured dose of the chemical in an
aqueous solution and recording the survival
time until death, are given in the following
table. The data are stored in the file silkw.

logio logio logio
Survival Time (y) Dose (x;) Weight (x,)
2.836 0.150 0.425
2.966 0.214 0.439
2.687 0.487 0.301
2.679 0.509 0.325
2.827 0.570 0.371
2.442 0.590 0.093

2421 0.640 0.140
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logio logio logio
Survival Time (y) Dose (x;) Weight (x;)
2.602 0.781 0.406
2.556 0.739 0.364
2.441 0.832 0.156
2.420 0.865 0.247
2.439 0.904 0.278
2.385 0.942 0.141
2.452 1.090 0.289
2.351 1.194 0.193

Assume the model y = B+ B1x1 + frx2 + €.

a. Plot the response y versus each predictor
variable. Comment on these plots.

b. Obtain the least squares estimates for 3
and give the fitted equation.

c. Construct the ANOVA table and test for a
significant linear relationship between y
and the two predictor variables.

d. Which independent variable do you
consider to be the better predictor of
log(survival time)? What are your reasons?

e. Of the models involving one or both of the
independent variables, which do you
prefer, and why?

4.16. You are given the following matrices

computed for a regression analysis:

9 136 269 260
iy _ | 136 2114 4176 3,583
269 4,176 8,257 7,104
| 260 3,583 7,104 12,276
[ 45
X'y — 648
1,283
| 1,821
9.610  0.008 —0.279 —0.044
X = 0.008  0.509 —0.258  0.001

—0.279 —-0.258 0.139  0.001
—0.044 0.001 0.001 0.0003
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—1.163461
0.135270
0.019950
0.121954

B=XX)"Xy)=

y'y =285

a. Use these results to construct the analysis
of variance table.

b. Give the computed regression equation
and the standard errors of the regression
coefficients.

c. Compare each estimated regression
coefficient to its standard error and use the
t test to test the simple hypotheses that
each individual regression coefficient is
equal to zero. State your conclusions about

B1, B2, and Bs.

Consider the following two models:

Model A: y; = Bo+ Bixi + €
Model B: y; = Bix; +€;

Suppose that model A is fitted to 22 data
points (x;, y;) with the following results:

B'=(Bo. B1)= (4.0, —4.5), V(Bo) =40,
V(B1)=9.0, and Cov(By, B)=0.0

a. Construct individual 95% confidence
intervals for By and for 8;. What
conclusions can you draw?

b. Construct a joint 95% confidence region
for (Bo, B1). Draw this confidence region
on the plane of possible values for
(Bo, B1)- On the basis of this region, what
conclusions can you draw about the
relative merits of models A and B?

¢. Do the results of (a) and (b) conflict?
Carefully explain your reasoning.

Consider the model

y=XB+e€ €~N(, o)

Let 3= (X'X)"'X'y, p=Hy, and

e= (I — H)y, where H=X(X'X)"'X".
Show that fi and e are statistically
independent.

November 8, 2004

1:29

Exercises 139

4.19. Consider a regression through the origin,

with E(¢;) =0,
i=12,...,12

yi = pBx; +¢€;,
V(ei) =02x,.2,

a. Derive the generalized least squares
estmate of B in Eq. (4.58) and obtain its
variance. Note that the covariance matrix
V and its inverse V! are diagonal
matrices. The generalized least squares
estimate minimizes a weighted sum of
squares with weights given by the diagonal
elements in V~!. Hence, one refers to it as
the weighted least squares estimate.

b. Suppose that z; = y; /x; and Y12, z; = 30.
Find the numerical value for the weighted
least squares estimate in (a) and express its
variance as a function of o2,

4.20. Consider a regression through the origin,

4.21.

with E(e;) =0,
i=1,2,...,10

yi =Bx;i + €,

V(e)=02x;, x>0,

a. Derive the generalized (weighted) least
squares estmator of 8 and obtain its
variance.

b. Assume that the experimenter recorded
only the sample means X = 15 and y = 30.
If possible, obtain a numerical value for
the weighted least squares estimate in (a)
and express its variance as a function
of o2.

The data are taken from Davies, O. L., and
Goldsmith, P. L. (Eds.). Statistical Methods
in Research and Production (4th ed.).
Edinburgh, UK: Oliver & Boyd, 1972. The
data are given in the file abrasion.

The hardness and the tensile strength of
rubber affect its resistance to abrasion. Thirty
samples of rubber are tested for hardness (in
degrees Shore; the larger the number, the
harder the rubber) and tensile strength (in
kilograms per square centimeter). Each
sample was subjected to steady abrasion for a
certain fixed period of time, and the loss of
rubber (in grams per hour of testing) was
measured.

Develop a model that relates the abrasion
loss to hardness and tensile strength.
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Construct scatter plots of abrasion loss
against hardness and tensile strength. Fit
appropriate regression models, obtain and
interpret the estimates of the coefficients,
calculate the ANOVA table, and discuss the
adequacy of the model fit. Use your model(s)
to obtain a 95% confidence interval for the
mean abrasion loss for rubber with hardness
70 and tensile strength 200.

y = Abrasion x; = Hardness x, = Tensile
Loss (g/hr)  (degree Shore) Strength (kg/cm?)

372 45 162
206 55 233
175 61 232
154 66 231
136 71 231
112 71 237

55 81 224

45 86 219
221 53 203
166 60 189
164 64 210
113 68 210

82 79 196

32 81 180
228 56 200
196 68 173
128 75 188

97 83 161

64 88 119
249 59 161
219 71 151
186 80 165
155 82 151
114 89 128
341 51 161
340 59 146
283 65 148
267 74 144
215 81 134
148 86 127

4.22. The data are taken from Joglekar, G.,

Schuenemeyer, J. H., and LaRiccia, V.
Lack-of-fit testing when replicates are not
available. American Statistician, 43,
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135-143, 1989. The data are given in the file
woodstrength.

The tensile strength of Kraft paper (in
pounds per square inch) is measured against
the percentage of hardwood in the batch of
pulp from which the paper was produced.
Data for 19 observations are given here.

Develop a model that relates tensile
strength to the percentage of hardwood in the
paper. Construct scatter plots of tensile
strength against the percentage of hardwood.

a. Fit a linear model and comment on your
findings.

b. Consider a model that also includes the
square of the percentage of hardwood. Fit
the quadratic model, obtain and interpret
the estimates of the coefficients, calculate
the ANOVA table, and discuss the
adequacy of the model fit. Add the fitted
line to your scatter plot. Discuss whether
the quadratic component is needed. Use
your model to obtain a 95% confidence
interval for the mean tensile strength of
paper with 6% hardwood content. How is
this interval different from a corresponding
prediction interval? Discuss whether it is
reasonable to obtain a confidence interval
for the mean tensile strength of paper with
20% hardwood content.

x = Hardwood y = Tensile
Concentration ~ Strength

1.0 6.3
1.5 11.1
2.0 20.0
3.0 24.0
4.0 26.1
4.5 30.0
5.0 33.8
55 34.0
6.0 38.1
6.5 39.9
7.0 42.0
8.0 46.1
9.0 53.1
10.0 52.0
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x = Hardwood y = Tensile x = Log y = Log
Concentration Strength Index Surface Temp Light Intensity
11.0 52.5 12 4.43 5.45
12.0 48.0 13 4.48 5.42
13.0 42.8 14 4.01 4.05
14.0 27.8 15 4.29 4.26
15.0 21.9 16 4.42 4.58
17 4.23 3.94
18 4.42 4.18

4.23. The data are taken from Humphreys, R. M.

Studies of luminous stars in nearby galaxies. ;(9) gig gég
I. Supergiants and O stars in the Milky Way. 21 4'29 4.38
Astrophysics Journal, Supplementary Series, ” 4' 29 4‘22
38, 309-350, 1978. The data are given in the 3 4'42 4‘42
file lightintensity. o 4'49 4.85
Light intensity and surface temperature )5 4.38 5'02
were determined for 47 stars taken from the % 4' 1 4‘66
Hertzsprung—Russel diagram of Star Cluster 7 4'29 4.66
CYG OBL1. The objective is to find a )3 4.38 4'90
relationship between light intensity and 29 4'22 4'39
surface temperature. 30 3.48 6‘05
Construct a scatter plot of light intensity a1 4.38 4'42
against surface temperature. Fit a quadratic 0 4.56 5'10
regression model, obtain and interpret the 3 4'45 5'22
estimates of the coefficients, calculate the 34 3'49 6.29
ANOVA table, and discuss the adequacy of 35 4' ” 4'34
the model fit. Add the fitted line to your 6 4.62 5.62
scatter plot. 37 4'53 5'10
What other interpretations of the scatter 13 4'45 5’22
plot are possible? For example, could it be 39 4'53 5.18
that four stars are different in the sense that 140 4'43 5'57
they do not follow the linear pattern 41 4.38 4.62
establlished by the other stars? What N 4 4'45 5.06
questions would you ask the astrophysicist? A3 450 534
x=Log y=Log 44 4.45 5.34
Index Surface Temp Light Intensity 45 4.55 5.54
| 437 523 46 4.45 4.98
’ 456 574 47 4.42 4.50
3 4.26 493
4 4.56 5.74
5 4.30 519 4.24. Consider the UFFI data set in Table 1.2
6 4.46 546 (n = 24 observations). Estimate the model
7 3.84 4.65 with three regression coefficients, y = Sy +
I 4.57 527 B1x1 (UFFI) 4+ Bx,(TIGHT) + ¢.
9 4.26 5.57 a. Use the statistical software of your choice
10 4.37 5.12 and confirm the regression results in
11 3.49 5.73 Table 4.1.
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b. Determine the 3 x 3 matrix X’X and its
inverse (X'X)~!. Determine the standard
errors of the three estimates and the
pairwise correlations among the estimates
(there are three correlations).

c. Determine a 95% confidence region
(ellipse) for the two slopes 8= (81, B2)".
We know that the marginal distribution of
,3 = (B1, B»)' is a bivariate normal
distribution with covariance matrix
o2A~", where A~ is the appropriate 2 x
2 submatrix of (X’X)~! found in (b).
Hence, the contours of the confidence
el}ipse can be traced out by solving
B-B)VAPB-P)=
252F(0.95; 2, n — 3). Here,

F(0.95;2,n —3=21) is the 95th
percentile of the F' distribution, and s2is
the mean square error.

4.25. Confidence intervals for regression

coefficients and the mean response and
prediction intervals for future observations in
Section 4.3 make use of the 7 distribution.
The ¢ distribution as the resulting sampling
distribution of the coefficient estimates in Eq.
(4.24) depends critically on the model
assumptions, in particular the assumption that
the independent errors are normally
distributed. The distribution in Eq. (4.24) is
not a ¢ distribution and it is no longer known
if the distribution of the errors is nonnormal.

Bootstrapping (or resampling) methods
are commonly used to overcome problems of
unknown sampling distributions. The
bootstrap, originally proposed by Efron
(1979), approximates the unknown theoretical
sampling distribution of the coefficient
estimates by an empirical distribution that is
obtained through a resampling process.

Several versions of the bootstrap are
proposed for the regression situation, and the
references listed at the end of this exercise
will give you more details. Here, we discuss
the “bootstrap in pairs” method, which
resamples directly from the original data
(yi,x;),i=1,2,...,n. This method repeats
the following steps B times. Sample with
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replacement n pairs from the original n
observations (y;, x;). From these n sampled
pairs, calculate the least squares estimates and
denote the jth coefficient estimate by A j(b).
The superscript asterisk denotes the fact that
the estimate is obtained from data generated
by the bootstrap procedure, the superscript b
denotes the bth replication, and the subscript
Jj refers to a particular scalar coefficient. The
B independent replications supply the
empirical bootstrap distribution function.

Percentile bootstrap intervals are proposed
as confidence intervals for the regression
coefficients. One approach determines the
100(«/2) and 100(1 — («/2)) percentiles of
the empirical bootstrap distribution function,
3;‘ (o/2) and 3}*(1 — (a/2)), and computes a
100(1 — )% bootstrap confidence interval
for the parameter B; as

Bi(@/2), Bl —(a/2)

Here, we have given the very simplest
bootstrap method for the regression situation.
Modifications that improve on this simple
procedure have been proposed and are
discussed in the references. The modifications
involve sampling residuals (compared to the
resampling of cases discussed here) and
refinements for improving the coverage
properties of percentile bootstrap intervals
[one modification calculates the lower and
upper limits as B; — [B7(1 — (/2)) — B;]
and B; — [Bj(«/2) — B;], where B; is the
estimate from the original sample].

a. Select one or more of the listed references
and write a brief summary that explains
the bootstrap methods in regression and
discusses their importance.

b. Consider the simple linear regression
model. Use the fuel efficiency data in
Table 1.3 and regress fuel efficiency
(gallons per 100 traveled miles) on the
weight of the car. Obtain a 95% bootstrap
confidence interval for the slope. Use B =
1,000 and 2,000 replications. Relate the
results to the standard confidence interval
based on the 7 distribution.
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Literature on the Bootstrap Efron, B., and Tibshirani, R. J. An Infroduction to
and Its Applications to Regression the Bootstrap. New York: Chapman & Hall,
Davison, A. C., and Hinkley, D. V. Bootstrap 1993.
Methods and Their Applications. New Horowitz, J. L. The Bootstrap. In Handbook of
York: Cambridge University Press, 1997. Econometrics (Vol. 6). Amsterdam: North
Efron, B. Bootstrap methods: Another look at the Holland, 1999.

jackknife. Annals of Statistics, 7, 1-26, 1979.
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Specification Issues
In Regression Models

In Chapter 4, we considered the general linear model
y=XB+e€ (5.1)

Wherey/:()’l, ---’yn)’ €/=(617 N "96}1),

I xi1 xi2 -+ Xip Bo
I x1 x» -+ X2
P Bi
X = . . . . 9 ﬂ - . 9
1 Xnl  Xn2 0 Xpp ,Bp

and € ~ N (0, 0>I). The model can also be writen as y ~ N (i, o>I), with mean
vector

rp=E(y)=Xp3 (5.2)

It is the mean vector g = X3 that is at the center of our interest. By properly
defining the X matrix and the 3 vector, we can adapt the mean vector to represent
various models of interest. Consider the following special cases.

5.1 ELEMENTARY SPECIAL CASES
5.1.1 ONE-SAMPLE PROBLEM

Suppose that yy, ..., y, are observations taken under uniform conditions from a
stable process with mean level ). We can write the data-generating model as

yi=pBo+e€ withmean E(y;)=pfo, i=1,2,...,n (5.3)
In this case

E(y)=Xp
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where
Vi 1
1
y=|71: x=|.|: ad B=p
Yn 1
5.1.2 TWO-SAMPLE PROBLEM
Suppose that the first m observations yi, ..., y, are taken under one set of con-
ditions (e.g., the standard process), whereas the remaining n — m observations
Ym+1s Ym+2s - - - » Yn are taken under a different set of conditions (the new process).
Let B; denote the mean of the standard process and S, that of the new process.

Then
Bi+e i=1,2,....,m
“Npte i=m+1,....n

This can also be written as

i

yi = Bixi1 + Boxin + €

5.4)
or  E(y) = Bixi1 + Baxiz
where x;; and x;, are indicator variables such that x;;=1if i=1,2,...,m
and zero fori=m+1,...,n, and x;p=01if i=1,2,...,m and one for i =
m+1,...,n.
The n equations can be combined as
_ N _ _ 1 _ - 0
Vi 1 0
E| — |=|—|B+]|— |8 (5.5)
Ym+1 0 1
| In L 0 | L1 ]
In matrix form
E(y)=XpB
where
- 0
1 0
X=(—— —
0 1
L0 1 ]

and B = [ﬁj
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Our interest is in examining whether the two processes have the same mean. We
wish to test the hypothesis f; = B5.

An Equivalent Formulation
Let us write

Bo=PB1+36

where § = 5, — f; represents the difference of the process means. Corresponding
to Eq. (5.4), the mean in our model becomes

E(yi) = B1 +dxiz (5.6)
where x;, is the indicator defined earlier,

Lo iti=12 .,
27V ifi=m4+1,....n

Hence,
oy ] 1 7] [ 0]
Yim 1 0
E| 22 |=|—|B+|—]5 (5.7)
Ym+1 1 1
| Vn L 1 _ | 1 |
or
E(y)=XpB
where
-1 0
1 0
X: i e ) 16= ﬂ]
1 1 8
L1 1

Our hypothesis of interest 81 = f is now expressed as § = o — 1 =0.

5.1.3 POLYNOMIAL MODELS

Let y;,i =1,2,...,n represent the yields of a chemical process at operating
temperatures 1, t2, . . ., t,. Suppose that the expected yield changes linearly with
temperature, suggesting a model of the form

yi = Bo + Biti + €, i=1,2,...,n
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In this case,

wi = E(y;) = Bo + Biti, i=1,2,...,n (5.8)
and = E(y) can be written as
E(y)=Xp

where

1 1

1 ¢

x=|. 7|; and B= o
Do B
1 1,

Next, let us assume that the expected yield is quadratic in time. That is,

wi = Po + Biti + Bat?, i=1,2,....n (5.9)
Then
E(y)=XpB

where

1 n

1 n 8} Po

X=|_ . . |; ad B=|§
R B2
1 t, t?

This model is quadratic in time but still linear in the parameters 3.

5.2 SYSTEMS OF STRAIGHT LINES

Suppose yi, ..., ¥, represent the yields of a chemical process at temperatures
ti, ..., t, inthe absence of a catalyst (x; =0), and y,,+1, - . ., Y2, represent yields
at the very same temperatures in the presence of the catalyst (x; = 1). Suppose
that the expected yield changes linearly with temperature. Several possibilities
exist.

Casea The catalyst has an effect, and this effect is the same at all temperatures:
| Bo+ Buiti i=1,2,....m
Bo+ B+ Biticw i=m+1,...,2m

The parameter 8, expresses the effect of the catalyst. Using an indicator variable
for the presence of the catalyst, we can write the model as

E(yi)=pBo+ piti + Boxi, i=1,2,...,2m (5.10)

i
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FIGURE 5.1 Same
Catalyst Effect for
All Temperatures

X x =1 (with catalyst): 1; =(By + B,) + Bit;
2
&
g B,
= x =0 (without catalyst): u; =, + Byt;
Temperature (7;)
where x; =0 if i=1,2,....mand 1l if i=m+1,...,2m,and t;y,, =t;, i =
1,2,...,m.
In matrix form,
E(y)=Xp
where
B Vi 7 1 n 0
V2 1 [5) 0
: : Bo
y — ym s X = 1 tm 0 N and ,8 == ﬂ]
Ym+1 1 f 1 B2
L Yom _| L 1 tm 1 ]

Figure 5.1 illustrates this model graphically. This model represents two parallel
straight lines (identical slopes); 8, represents the change due to the catalyst. The
effect of the catalyst is the same for all temperatures ¢, ..., t,. The hypothesis
B> =0 implies that the catalyst has no effect.

Case h  The catalyst has an effect, but its effect changes with temperature. This
situation can be expressed with the model

wi =E(y;)=Bo+ Biti + Boxi + Batix;, i=1,2,...,2m (5.11)
where x; is the indicator defined earlier.
If the catalyst is absent (x; =0),
wi=po+piti, i=1,2,....m
If the catalyst is present (x; = 1),
Wi = Bo+ Biti—m + Bo+ Batiw, i=m+1,...,2m

= (Bo+ B2) + (B1 + B3)ti—m



FIGURE 5.2
Catalyst Effect
Depends on
Temperature
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x =1 (with catalyst): 1; =(fBy + ) + (B + Bo);

x =0 (without catalyst): u; =y + fBi1;

Mean response U;

Temperature (t;)

In matrix form we can write this model as

p=E(y)=Xp
where
oy ] 1 4 0 0]
»2 1 %) 0 0

. . . Bo
y=| I |, x=|1 Im 0 0 1. and B= hi
" T .
ym.+1 . ‘1 . ‘1 B

| Yom | |1 tm 1 tm |

Graphically, this model represents a pair of straight lines with different intercepts

and different slopes; see Figure 5.2.

To test whether there is any catalyst effect, we test the hypothesis 8, = 3 =
0. If this hypothesis cannot be rejected, then the catalyst has no effect. A test
of just B3 =0 in the model (5.11) tests whether the catalyst effect depends on

temperature.

UFFI Example Revisited
For these data (see Figure 1.2 and Table 1.2), we consider the model

i = E(yi) = Bo + Bixi1 + Baxi2 (5.12)
where y; is the ambient formaldehyde concentration for house i,

P 1 if house i has UFFI
1710 otherwise

x;j» = Airtightness of house i
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TABLE 5.1 UFFI DATA: ESTIMATES, STANDARD ERRORS, t RATIOS, AND
p VALUES FOR MODEL (5.13)

Estimate Standard Error t Ratio p Value
Intercept 29.9976 3.0107 9.9635 0.0000
x; = UFFIL 12.4781 4.4746 2.7887 0.0113
x, = TIGHT 3.1208 0.5030 6.2049 0.0000
x1x2 = UFFI % TIGHT —0.6185 0.7665 —0.8069 0.4292

This model represents a pair of parallel lines when graphing p against x,. In
Chapter 4, we found that 8; was significant, which indicates that houses with
UFFI have increased levels of formaldehyde concentration. The model assumes
that this increase is the same for all levels of airtightness.

Next, consider the following more general model that allows the possibility
that the effect of UFFI depends on the level of airtightness:

E(y;) = Bo+ Bixi1 + Baxia + Baxjixip, i=1,2,...,24 (5.13)

where x;; and x;, are as defined before. For houses without UFFI (x;; =0),

E(yi) = Bo + Baxi2 (5.14)
whereas for houses with UFFI (x;; = 1),
E(yi)=(Bo+ B1) + (B2 + B3)xiz (5.15)

This model represents two lines with different slopes and intercepts. A test
of B3 = 0 examines whether the effect of UFFI depends on airtightness. A test of
B1 = B3 =0 indicates whether or not UFFI has any effect at all. The estimation
results for model (5.13) are given in Table 5.1.

The estimate B3 = —0.6185 and its standard error s.e.(83) = 0.7665 can be
used to test B3 = 0. The 7 ratio is #(83) = —0.6185/0.7665 = —0.81, and its prob-

ability value for a two-sided alternative is given by 2P (T > 0.81) = 0.4292. Note
that the degrees of freedomaren — p — 1 =24 — 4 =20. The probability value is
quite large (certainly larger than commonly used significance levels), indicating
that such a ¢ ratio could have easily resulted if the null hypothesis 83 = 0 actually
were true. This probability value indicates that 3 = 0 is a plausible hypothesis.
The effect of UFFI does not depend on the airtightness of the house.

Next, we test whether UFFI has an effect at all. This means testing §; = 3 =
0. This test cannot be performed by looking at the ¢ ratios in Table 5.1. We must
use the additional sum of squares principle to perform this test. Estimates of the
full model (5.13) are given in Table 5.1. The residual sum of squares is given by
S(B) =554.834, with 20 degrees of freedom. The null hypothesis 8 =83 =0
constrains the model to

E(yi) = Bo + Baxi2 (5.16)
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Fitting this model results in new estimates for By and B;, and the residual sum of
squares S(34) = 1,093.067 with 24 — 2 =22 degrees of freedom. The additional
sum of squares is given by

S(B4) — S(B) = 1,093.067 — 554.834 = 538.233

with 2 degrees of freedom.
The relevant test statistic for testing 8; = B3 =0 is given by

538.233/2

=—————=9.70
554.834/20

and the probability value using the F’ distribution with 2 and 20 degrees of freedom
is P(F>9.7)~0.001. The probability value is very small, providing strong
evidence against the hypothesis 8 = 83 = 0. This states that UFFI has an effect
on the ambient formaldehyde.

5.3 COMPARISON OF SEVERAL “TREATMENTS”

This is also known as one-way classification, or the k-sample problem. We gen-
eralize the previously considered two-sample problem in Section 5.1.2 to k > 2
groups. This situation arises, for example, if we compare (i) the output from sev-
eral machines, (ii) the reliability of several suppliers, or (iii) the effectiveness of
several catalysts.

Suppose we are concerned with the effects of k catalysts on the yield of
a chemical process. Assume that we take n; observations with the ith catalyst,
resulting in a total of n =n; + ny + - - - + ny observations. The data can be orga-
nized as in the following table:

Catalyst Observations
1 i oYz o--o o Vin
2 Y21 Y22 cee Yo
k VI V2 e Vim

As an example, consider k =4 groups and an equal number of observations in
each group, ny =ny, =n3 =ny4 =5. The observations for a special example are
listed here, as are the averages for the four catalysts:

Catalyst Observations Vi
1 91.5 921 939 91.0 945 92.60
2 94.1 91.7 935 899 920 92.24
3 84.4 857 865 885 874 86.50
4 86.0 873 855 848 832 8536
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Our model assumes different means for the k (catalyst) groups. Let y;; be the
Jjth observation from the ith catalyst group. We assume that E(y;;) = B; for all
j=1,2,...,n;. As in all our previous regression models, we assume that the
observations are independent and normally distributed with constant variance o2.

In matrix notation, the mean vector of our response becomes

E(y)=XB=pBix1+ Paxa + - - - + Prxx (5.17)

The regressor vectors x; are strings of zeros and ones, indicating the group mem-
bership of the observations. Thatis, x ;; = 1 if y;; is from group i, and O otherwise.
For k =4 groups,

Y11 1 0 0 0
Vin 1 0O 0 O
21 0 1 0 0
: AR B
YVon 0 1 0 O
y=|"_|; X=[x1x2x3x4]=|—— — —— ——|; and B= N
Y31 0O 0 1 0 B3
: oo Ba
y3n3 0 0 1 0
;47 0O 0 O 1
| Van, | L0 0 O 1

The least squares estimator of 3= (81, B, ..., fr), B=(X'X)"' X'y, is easy
to obtain. Its elements are the respective group means, B =y, fo =2, ...,
B = .

The hypothesis of interest is the equality of the k means, g1 =p,=...=
Br. An equivalent, but for the following discussion somewhat more convenient,
representation relates the group means to the mean of a reference group; in our
case, the mean of the first group, f;.

Let B; =1 +6;,i =2, 3, ..., k. Then we can write the model as

Bi for catalyst i =1
E(yij) = . (5.18)
B1+8; forcatalysti, i=2,...,k

The mean vector of the response is

E(y)=XB=I[1,x2,x3,...,x¢]3 (5.19)



Abraham Abraham C05 November 8, 2004 1:32

5.3 Comparison of Several “Treatments” 153

For k =4 groups, the matrix X and the vector of parameters 3 are given as

1 0 0 07

: B

1 1 0 0 5
X=|-— — —— ——|; and B=

1 0 1 0 83

) 5

The null hypothesis is now expressed as §; = 63 = §4 = 0. If this hypothesis cannot
be rejected, then the process means can be considered the same. If the hypothesis
is rejected, then at least one of the means differs from the others.

Let y; = (Z;”:l Vi j) /n; denote the average of the ith group, and let y =
( Zf: I Z'}‘:l yii)/( Zle n;) be the overall average. The least squares estimator
of B in model (5.19) is given by

Vi
. 2=y
5:@Wrww=: (5.20)
k=
The regression sum of squares is given by
k
BX'y —ny’ =) nm(i—3y)’ (5.21)

i=1

Since there are k — 1 “regressor” variables (in addition to the intercept), the
degrees of freedom for the regression sum of squares are k — 1. You can convince
yourself of the sum of squares result by first working out the inverse of (X'X);
this is somewhat cumbersome because (X’X) is not diagonal. Even simpler, you
can work from the estimates ,ffl =y, and SA, =y, —y,fori=2,... k.

As an illustration consider the data set given earlier. The corresponding anal-
ysis of variance (ANOVA) table is given in Table 5.2.

The residual sum of squares is given by

k  n;
SB=yy—-BXy=)3 (ij—5)’ (5.22)

i=1 j=1
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TABLE 5.2 ANOVA TABLE FOR THE CATALYST DATA

Source df Sum of Squares MS F p Value
Regression k—1=3 ZLI ni(y; — y)> =214.17 71.39 29.12 < 0.0001
(Treatment)
Residual Y= =16 Y Y (v — )2 =39.22 245
(Error)
Total Y —1=19 Y5 3 (- $)2=253.40

The associated degrees of freedom are n — k, where n = Zle n;. Note that in
this example k =4, n; =ny=n3=n4=5,n=20,and n — k = 16.

We are interested in testing the null hypothesis 8; = 8, = 83 = B4, or equiv-
alently, 6, =83 =64 =0. The F statistic

__regression SS/(k — 1)
"~ residual SS/(n — k)

in the fifth column of the ANOVA table can be used. We find that F is very large,
and its probability value P (F (3, 16) > 29.12) is very small. Hence, there is ample
evidence to reject the hypothesis §, = §3 = §4 = 0. This implies that at least one
of the means is different from the others.

When testing the equality of group means, we often attach different labels
to the sums of squares in the ANOVA table. We refer to the regression sum of
squares as the treatment sum of squares or the between group sum of squares.
This is because this sum of squares picks up the variablity between the groups.
The residual sum of squares is sometimes called the within group sum of squares.

(5.23)

5.4 X MATRICES WITH NEARLY LINEAR-DEPENDENT COLUMNS

In the general linear model we assumed that the columns (1, x, ..., x,) of the
X matrix are not linearly dependent. In some contexts, especially when working
with observational data, these columns are close to being linearly dependent.
What are the consequences of such a situation? The following illustration will
show us what can happen.

EXAMPLE: PIZZA SALES DATA
A manager of a pizza outlet has collected monthly sales data over a 16-month
period. During this time span, the outlet has been running a series of different
advertisements. The manager has kept track of the cost of these advertisements (in
hundreds of dollars) as well as the number of advertisements that have appeared.
The data are shown in Table 5.3, where
y = Sales (in thousands of dollars)
x1 = Number of advertisements

x, = Cost of advertisements (in hundreds of dollars)
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TABLE 5.3 PIZZA SALES DATA

Month Number of Ads Cost of Ads (Hundred $) Sales (Thousand $)
Jan 11 14.0 494
Feb 8 11.8 47.5
Mar 11 15.7 52.6
Apr 14 15.5 493
May 17 19.5 61.1
Jun 15 16.8 53.2
Jul 12 12.8 47.4
Aug 10 13.6 49.4
Sep 17 18.2 62.0
Oct 11 16.0 47.9
Nov 8 13.0 47.3
Dec 18 20.0 61.5
Jan 12 15.1 54.2
Feb 10 14.2 44.7
Mar 13 17.3 53.6
Apr 12 159 554

Figure 5.3 shows the scatter plots of sales against the number of advertise-
ments and sales against the cost of advertisements. The graphs show that sales
increase as the number of advertisements increases and also as the amount spent
on advertising increases. The manager fits the model

yi =Bo + Bixi1 + Baxix + € (5.24)

The results are given in Table 5.4.

The R? from this regression, R? = 348.1428 /446.9644 = (.78, indicates that
the regressors x; and x, explain a large part of the variability in sales. The F ratio
in the ANOVA in Table 5.5 (F = 22.90, with probability value 0.0001) indicates
that there is strong evidence to reject the hypothesis 8; = 8, = 0. This means that
at least one of the coefficients 8; and B, is nonzero. In other words, at least one
of the x variables is important in explaining the variation in y.

However, an examination of the individual p values (0.24 and 0.10 for §;
and B,) in Table 5.4 indicates that we cannot reject the hypothesis 8; =0 if x;
is already included in the model. Similarly, we cannot reject 8, =0 if x; is in
the model. In other words, if one of the variables is in the model, then the extra
contribution of the other variable toward the regression is not important. Keep in
mind the correct interpretation of the individual probability values. The individual
t test results in Table 5.4 state that you do not need one variable if you already
have included the other. This is certainly not an indication that you can omit from
the model both x; and x; at the same time.

What would happen if you consider a model with just one of the two x
variables? The results of fitting the regressions of sales on each variable separately,
and the results of fitting sales on both x; and x,, are shown in Table 5.6.
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FIGURE 5.3 Plots for Pizza Sales
TABLE 5.4 LEAST SQUARES ESTIMATES FOR THE PIZZA SALES DATA
Estimate Standard Error t Value p Value
Intercept 24.8231 5.6611 4.3848 0.0007
Number of ads, x; 0.6626 0.5386 1.2303 0.2404
Cost of ads, x, 1.2329 0.6962 1.7709 0.1000
TABLE 5.5 ANOVA TABLE FOR THE PIZZA SALES DATA
Source df SS MS F p Value
Regression 2 348.1428 174.0714 22.8990 0.0001
Residual 13 98.8216 7.6017
Total 15 446.9644




Abraham Abraham C05 November 8, 2004 1:32

5.4 X Matrices with Nearly Linear-Dependent Columns 157

TABLE 5.6 SUMMARY OF THE REGRESSION RESULTS FOR PIZZA SALES
DATA?

Coefficients
Variables in the Model Bo By B> Regression SS R?
x1 only 33.3473 1.5223 324.3042 0.7256
(0.0000) (0.0000)
X, only 21.0278 2.0050 336.6371 0.7532
(0.0007) (0.0000)
X1, X2 24.8231 0.6626 1.2329 348.1428 0.7789

(0.0007) (0.2404) (0.1000)

¢ Numbers in parentheses are the probability values

We find:

i. A regression on x; alone explains 72.56% of the variability in sales. A
regression on x, alone explains 75.32%. Both together (x; and x, in the
model) explain 77.89%.

ii. In the single-variable model y on xi, the regression coefficient 8, = 1.5223
is highly significant. In the two-variable model, | = 0.6626 is not signifi-
cant, given that x; is in the model. Also notice that the estimate of 8; changes
considerably. The same comments apply to ;. In the single-variable model,
B> =2.0050 is highly significant. In the two variable model, the estimate of
B> is not significant, and the estimate of 3, changes considerably.

iii. If x, is in the model, then it is not important to include x; (and vice versa).
In the presence of one variable, the other is not important enough to have it
included. This is because variables x; and x, are highly correlated. The two
variables express the same information, so there is no point to include both.
A graph of x; against x; in Figure 5.3 shows that x; is strongly linearly
related to x,. This phenomenon is known as multicollinearity.

In the general linear model we assumed that the columns (1, x1, ..., x,) of
the X matrix are not linearly dependent. When the regressor columns are close to
being linearly dependent, then we can approximate one of the columns in the X
matrix as a linear combination of the others. This states that one of the regressor
variables is strongly influenced by some or all of the other explanatory variables.
Hence, the fitting results of one variable are strongly affected by the presence or
absence of other variables in the model. This is a consequence of multicollinearity,
and this is exactly what we see in the pizza sales data. When x, is in the model,
x1 has little to contribute because it is highly “correlated” with x,. A model with
x, alone is sufficient. Note that the increase in R? from 0.75 in the model with
just x; to R% =0.78 with both x; and x, included is rather small. Also, the plot
of the residuals vs fitted values from the simple model with just x, in Figure 5.3
indicates no systematic patterns.
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What happens if the multicollinearity is perfect? What happens if the corre-
lation between x; and x, is 41 or —1, exactly? Algebraically, the n x 3 matrix X
has rank 2, and not 3= p + 1 as usually assumed. As a consequence, the 3 x 3
matrix X’X has rank 2, and it is not possible to obtain the inverse (X'X)~!. The
computer program would crash, or at least complain about the multicollinearity.

5.4.1 DETECTION OF MULTICOLLINEARITY

Correlations Among Regressor Variables
Suppose we have p regressors and we calculate the sample correlations, r;;,
between pairs of regressors x; and x;,

Y (xig — X)) (xj¢ — X))
rij = ———t . Lj=1,2,....p (5.25)
Do (i = Xi)? ) (xje — Xj)?
=1 =1

where X; denotes the average of the measurements on the variable x;. The sample
correlation r;; measures the linear association between x; and x;. A matrix of the

correlations
1 ri2 e T1p
r2 1 s T2p
c=| . . ] (5.26)
rp Ty 1

provides an indication of the pairwise associations among the explanatory vari-
ables. If the off-diagonal elements of C are large in absolute value (close to
+1), then there is strong pairwise linear association among the corresponding
variables. For instance, if r}, is large, then x; and x; are linearly associated and
multicollinearity exists. For the pizza sales data in Tall;‘;.&

C = 1 I _ 1 0.8
2 1] 08518 1

Hence, the correlation between x; and x, is high and the two regressors are
strongly linearly related. There is no need to have both variables together in the
model. It should be noted that if the r;;’s in the correlation matrix C are zero, then
the regressor variables are orthogonal to each other. We discuss this situation
later.

Variance Inflation Factors
Consider the regression model in Eq. (5.1) with an intercept and p regressors.
Suppose we standardize the y and x variables,
y;k:yl Y and Zij = X J: j=1’2""’p
Sy S


Ledolter
Sticky Note
Correlation is 0.9015
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where y and X; are the corresponding sample means, and s, and s; are the
appropriate sample standard deviations. Hence, the linear model can be expressed
as

Vi=ozi+a+ o Fapz, +€” (5.27)

Note that there are only p regression coefficients and that there is no intercept in
this model. The covariance matrix of the least squares estimates of the parameters
in the linear model Eq. (5.1) is given by V(,é) = (X'X) 'o2. In the standardized
model (Eq. 5.27), the matrix that corresponds to X’X reduces to the correlation
matrix C. Hence, V(&) =C o2, where a = (v, . . ., «,)". The diagonal ele-
ments of C~! are the scaled variances of the least squares estimates, V (c;) /o2,
For illustration, consider the special case, p = 2. Then the model is

yi=o1z1 +arzo +€* (5.28)

1 r _ 1 —r
C= Pl withe T =(1-r3) " .
2 1 —r2 1

Via) Via) _1
o2 = o2

and

If r1, were zero, then C~! has ones in its diagonal, and

If rip is large, then the diagonal elements of C 1 are larger than one, and
V(@) Vi) Vi(d) . . o
5— =——>— > L. The values 5—i=1,2 are called variance inflation

o o o
factors (VIF) because they measure how the correlation among the regressor
variables inflates the variance of the estimates. If these factors are much larger

than one then there@ulticollinearity. For the pizza sales data,

1 1 0.8518 3.6439 —3.1038
r

1 0.8518 1 —3.1038 3.6439

Thus, VIF; =VIF, = 3.6439. The varianc nflated 3.64-fold. This is consid-
erably larger than one; hence, there is evidence of multicollinearity.

In the general case of p regressors, it can be shown that the VIF of the
coefficient estimate corresponding to the jth regressor x; is

VIF; =1/(1—R3) (5.29)

where RJZ. is the coefficient of determination (see Section 4.5.1) from the regression
of x; on all other regressors. If x; is linearly dependent on the other regressors,
then Rf will be large (close to one), and VIF; will be large as well. Values of VIF
larger than 10 are taken as solid evidence of multicollinearity.

5.4.2 GUARDING AGAINST MULTICOLLINEARITY

How can you guard against multicollinearity and its associated problems? A
careful model specification is the key. You should avoid adding regressor variables


Ledolter
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r12 = 0.9015

Ledolter
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more than once. For example, in a model for a car’s fuel efficiency, you would not
want to include both weight in kilograms and weight in pounds. This example is
trivial because no reasonable person would make the mistake of including both.
In many observational studies, however, the decision is not as clear-cut. Consider
describing the state of the economy with such variables as interest rates, gross
national product, employment, unemployment, etc. Although these variables are
not perfectly related, some fairly strong relations are certain to exist.

5.5 X MATRICES WITH ORTHOGONAL COLUMNS

In many experimental situations, experimenters can set the values of the explana-
tory variables in such a way that the columns of the X matrix (also called the
design matrix) are orthogonal. Orthogonality is an attractive property and there
are advantages to choosing the regressor vectors as orthogonal. We illustrate this
by considering an example.

Example: Excess Shrinkage Data
In an investigation to find the causes of excess shrinkage of parts produced by
an injection molding operation, the team considered the following design factors
(regressor variables): x; = mold temperature (7"), x, = holding pressure (P), and
x3 = screw speed (5). It was decided to study these variables at two levels each,
with coding —1 (low) and +1 (high). A total of eight runs were taken. The values
of the design variables and the corresponding results, shrinkage (y in percent),
are given in Table 5.7. The first run describes the experiment in which all three
variables are at their low values. The second run has P and S at the low levels,
whereas T is set at its high level. Table 5.7 lists the eight runs in standard order
in which “—"" and “+” signs alternate in groups of one, two, and four. This order
makes it easy to write down the settings for the eight runs. However, note that the
order in which the runs are carried out should be randomized.
Consider a linear model of the form

y=PB0+ Bix1 + Paxr + B3x3 + € (5.30)

TABLE 5.7 SHRINKAGE DATA

Run T P S Shrinkage

1 -1 -1 -1 19.7

+1 -1 -1 19.1
-1 +1 -1 20.0
+1 +1 -1 19.5
-1 -1 +1 15.9

+1 -1 +1 15.3
-1 +1 +1 25.5
+1 +1 +1 249

[e BRI e NIV, SNV I (S )




Abraham Abraham C05 November 8, 2004 1:32

5.5 X Matrices with Orthogonal Columns 161

In matrix form this model can be written as

y=XB+e€ (5.31)
where

719.77] 1 —1 —1 —17]

19.1 1 1 -1 -1
20.0 1 -1 1 -1 Bo €
195, |1 1 L =1 . B _|e
Y=1s59 s X =[1,x1,x2,x3] = | -1 -1 1,5— 5, ;and € = :
15.3 1 1 —1 1 B3 €3

25.5 1 —1 1 1

| 24.9 | 1 1 1 1]

Convince yourself that the columns in the matrix X are orthogonal. Itis easy to
see that 1x; = 1'x; = 1'x3 = 0. Furthermore, check that x{ x, = xx3 = x5x3 =0.
The matrix XX is diagonal with diagonal element 8.

Fitting the model in Eq. (5.30) with least squares leads to the estimates

8 0 0 07| 2V 19.9875

N 0 8 00 Yo X1y —0.2875
=X'X)"'x’ = 532
F=XX07X=10 0 8 0| | Ty, 24875 | %

00 0 8 S 0.4125

Changing x; (temperature) by one unit reduces shrinkage by 0.2875%. A change
in temperature from the low to the high level reduces shrinkage by (2)(0.2875) =
0.575%. A similar interpretation applies to the other coefficients. The regression
sum of squares due to xi, xp, x3 is given by SSR(xy, x2, x3) :B’X’y — n)')z =
51.5238, with 3 degrees of freedom. The residual sum of squares is SSE =
42.7850, withn — 4 =8 — 4 =4 degrees of freedom. The F'statistic for the overall
significance and ¢ ratios for each coefficient can be readily obtained.

Suppose that we consider the regression of y on x; alone, y = By + B1x; + €.
The least squares estimates are

Bo=19.9875 and B, =—0.2875

and the regression sum of squares due to x; is SSR(x;) = 0.6613. We note that the
estimate of i, ﬁl = —0.2875, is the same whether x; is the only variable in the
model or all three (x;, x;, x3) are included. Table 5.8 shows the results of fitting
all possible models with the three variables. There are three models with just
one x variable, three models with two x variables, and one model with all three
variables. The results show that 3 is the same in all models. It does not matter
whether the estimate comes from a one-variable model (x; alone), a two-variable
model [(x1, x») or (x1, x3)], or the three-variable model (x1, x», x3). This is true
for the other parameter estimates as well.
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TABLE 5.8 REGRESSION RESULTS FOR SHRINKAGE DATA

Coefficients
Variables in the Model Bo B B> B3 Regression SS (SSR)

X1 19.9875  —0.2875 0.6613
X2 19.9875 2.4875 49.5012
X1, X2 19.9875  —0.2875  2.4875 50.1625

X3 19.9875 0.4125 1.36125
X1, X3 19.9875  —0.2875 0.4125 2.0225
X2, X3 19.9875 24875  0.4125 50.8625
X1, X2, X3 19.9875  —0.2875 24875 04125 51.5238

Another point to note from Table 5.8 concerns the regression sums of squares.
One notices that they are additive:

SSR(x1, x2) =SSR(x1) + SSR(x;), or 50.1625=0.6613 +49.5012
SSR(x1, x3, x3) = SSR(x1) + SSR(x») + SSR(x3) or
51.5238 =0.6613 +49.5012 + 1.3613

etc.

The nonchanging estimates and the additivity of the regression sums of
squares are special consequences of orthogonality. The special orthogonal struc-
ture of the design matrix X implies a diagonal X’ X matrix, with diagonal elements
x.x;. Consequently, the inverse (X' X)~! is also diagonal with diagonal elements
(xgxi)*l. In our case,

1
800 0 g 000
0 8 00 0 L 0 0
X'X = d X'X)'= 8 5.33
0080’an() 00 ! o0 (5.33)
00 0 8 000 !

With orthogonality, the least squares estimates @ =(X'X)"'X’y in the general
regression model y = Boxo + Bix1+ - - - + B,x, + € (where, xg =1) are given
by Bi = (x}y)/(x/x;). The estimate of f; in the model with just x;, y = Bix; + e,
is given by §; = (x;y)/(x;x;), and we can see that the two estimates are the same.

The regression sum of squares of the full model is SSR = ﬁ’X 'y = Zf’:o
Bi (x;y). Note that here we are not correcting this sum of squares for the con-
stant. Correcting for the constant would require the subtraction of S (xoy) =
[(1'y)/1'1](1'y) = ny?. The regression sum of squares of the model y = B;x; + €
is given by SSR(x;) = ; (x;y). This shows that the regression sums of squares
are additive.

We also note that V(,é) = (X'X)~'o2. With orthogonality, this is a diagonal
matrix and the covariances between the elements of B’ = (Bo, B1, P2, B3) are
zero. The additional assumption of normal errors implies that the least squares
estimators are statistically independent.
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EXERCISES

5.1

5.2.

5.3.

Consider the following regression model:
Salary (in $1,000) =20 + 2x + 5z + 0.7xz
where x is the number of years of experience,

and z is an indicator variable that is 1 if you
have obtained an MBA degree and 0
otherwise; xz is the product between years of
experience and the indicator variable z.

Graph salary (y) against years of
experience (x). Do this for both groups
(without MBA and with MBA) on the same
graph, and comment on the degree of
interaction.

You are interested in the starting salaries of
accounting, management information
systems, and economics majors. You
consider a model that factors in the GPA of
students, obtaining the following regression
model:

Salary (in $1,000) = —15 + (18)GPA

November 8, 2004

+ (3)INDyce + (2.1)INDipyis

IND,. is an indicator variable that is 1 if the
student is in accounting and 0O otherwise.
IND,,s is an indicator variable that is 1 if the
student is an MIS student and O otherwise.

a. Calculate the expected salary difference
between an accounting and an economics
student with the same GPA.

b. Calculate the expected salary difference
between an accounting and an MIS student
with the same GPA.

The data are taken from Mazess, R. B.,
Peppler, W. W., and Gibbons, M. Total body
composition by dualphoton (1*Gd)
absorptiometry. American Journal of Clinical
Nutrition, 40, 834-839, 1983. The data are
given in the file bodyfat.

A new method of measuring the body fat
percentage is investigated. The body fat, age
(between 23 and 61 years), and gender (4
males and 14 females) of 18 normal adults
are listed below.

Graph body fat against age and gender
(you may want to overlay these two on the
same graph). Consider a regression model

5.4.

1:32
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with age and gender as the explanatory
variables. Interpret the results, and discuss
the effects of age and gender. Is it useful to
include an interaction term for age and
gender?

y=% Fat x;=Age x;= Gender

9.5 23 1
27.9 23 0

7.8 27 1
17.8 27 1
314 39 0
25.9 41 0
27.4 45 1
25.2 49 0
31.1 50 0
34.7 53 0
42.0 53 0
29.1 54 0
32.5 56 0
30.3 57 0
33.0 58 0
33.8 58 0
41.1 60 0
34.5 61 0

You are regressing fuel efficiency (y) on
three predictor variables, x;, x», and x3, and
you obtain the following fitted regression
model:

L= PBo+ Bix1 + Boxz + Baxs

The coefficient of determination for this
regression model is R? =90%.

A regression of x; on x5, x3 gives you an R?
of 60%;

A regression of x» on x1, x3 gives you an R>
of 80%; and

A regression of x3 on xi, x, gives you an R>
of 90%.

Calculate and interpret the variance inflation
factors for the regression coefficients 5y, 5,
and 3.
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5.5.

5.6.

5.7.

Which one of the following statements
suggests the presence of a multicollinearity
problem:

a. High R? and high ¢ ratios

b. High correlation between explanatory
variables and dependent variable

c. Low pairwise correlation among
independent variables

d. Low R? and low ¢ ratios
e. High R?and mostly insignificant ¢ ratios

The data are taken from Latter, H. O. The
cuckoo’s egg. Biometrika, 1, 164—176, 1901.
The data are given in the file cuckoo.

The female cuckoo lays her eggs into the
nest of foster parents. The foster parents are
usually deceived, probably because of the
similarity in the sizes of the eggs. Latter
investigated this possible explanation and
measured the lengths of cuckoo eggs (in
millimeters) that were found in the nests of
the following three species:

Hedge Sparrow:
22.0 239 209 238 250 240
217 238 228 231 23.1 235
23.0 230

Robin:
21.8 230 233 224 230 230
23.0 224 239 223 220 226
220 221 21.1 230

Wren:
19.8 221 215 209 220 21.0
223 21.0 203 209 220 20.0
20.8 212 21.0

Obtain the analysis of variance table and test
whether or not the mean lengths of the eggs
found in the nests of the three species are
different. Display the data graphically, and
interpret the results.

Percentage yields from a chemical reaction
for changing temperature (factor 1), reaction
time (factor 2), and concentration of a certain
ingredient (factor 3) are as follows:

November 8, 2004
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Average y;
Factor 1: Factor 2: Factor 3: from 5

X1 X2 X3 Experiments
-1 -1 —1 79.7

1 —1 —1 74.3
—1 1 —1 76.7

1 1 -1 70.0
—1 —1 1 84.0

1 —1 1 81.3
-1 1 1 87.3

1 1 1 73.7

Each listed yield is actually the average of
five individual independent experiments. The
variance of individual measurements can be
estimated from the five replications in each
cell. It is found that

5
> iy — 3)?
— J=l
S 8(5-1

L]

2! —40.0

a. Estimate the effects of factors 1-3. That is,
estimate the coefficients in the regression
model

y=PBo+ Bix1 + Boxa + B3xz + ¢

Calculate the standard errors of the
coefficients and interpret the results.
Comment on the nature of the design
matrix.

b. Is it possible to learn something about
interactions? Consider the interaction
effect between factors 1 and 2. Write out
the X'matrix of the regression model y =
Bo + Bix1 + Baxa + Baxs + Baxixz + &.
Estimate the model and comment on this
issue.

In a study on the effect of coffee consumption
on blood pressure, 30 patients are selected at
random from among the patients of a medical
practice. A questionnaire is administered to
each patient to get the following information:

x1: Average number of cups of coffee
consumed/day
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X, 1 A measure of daily exercise

x3: Age

x4 Sex(x4 =0 for males, x4 =1
for females)

y: Systolic blood pressure during the
last visit to the practice
A linear model of the form
y=Bo + Bix1 + Baxa + B3x3 + Baxs + €,
e ~N(0,0?)
is considered.

a. Explain carefully the meaning of the
parameter By.

b. Why is the error term € present in the

model?

c. If B is very large, can we conclude from
this study that increased coffee
consumption causes increased blood
pressure? Discuss.

d. Another model

y = Bo+ Bix1 + Baxa + Bax3 + Baxs
~+ Bsxi1x4 + €

is fit to the data. Explain the meaning of
the hypothesis s = 0.

a. Suppose that y is the average price (in
thousands of dollars) of a typical
three-bedroom home in a large Canadian
city. Fourteen consecutive observations
Y1, Y2, - - -, Y14 are taken at consecutive
6-month intervals over 7 years. At the
beginning of the eighth interval the
government implemented steps to slow
down the rate of the price increases. A
possible model for these data specifies that
prices increase linearly with time until the
time point 8, at which time the rate of
increase (slope) changes. Such a model
consists of a pair of straight lines
intersecting at time point 8. Formulate this
as a linear model y = X3 + €. Explicitly
define the parameters you are using and
write out the X matrix.

b. An alternative model specifies that the

government’s actions had no effect on
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prices, and that prices continued to
increase at the same constant rate. Set up
the appropriate linear model y = X3 + €.

c. Suppose you found that the residual sum
of squares in (a) is 6.12 and that in (b) is
37.25. What evidence does this provide
with regard to whether model (a) is better
than model (b)?

, y12 were collected
over 12 consecutive yearst = 1,2, ..., 12. At
the end of the sixth year, a change in safety
regulations occurred. For each of the
following situations, set up a linear model of
the form y = X3 + €. Define X and 3
appropriately.
a. The accident rate y is a linear function of ¢
with the new safety regulations having no
effect.

b. The accident rate y is a quadratic function
of t with the new regulations having no
effect.

c. The accident rate y is a linear function of
t. The slope for ¢t > 7 is the same as for
t < 7. However, there is a discrete jump in
the function at r = 7.

d. The accident rate y is a linear function of

t. After t =7, the slope changes, with the
two lines intersecting at r = 7.

A consumer group conducted an experiment
to compare the effectiveness of three
commercially available weight-reducing
diets, A, B, and C. The group wanted to
answer the following questions.

i. Are the three diets achieving similar
weight reductions?

ii. Does the weight loss depend on the
initial weight, and if so, is this effect the
same for the three diets?

Thirty volunteers were randomly
assigned to the three diets (10 to each diet).
Their weights (in pounds) were recorded at
the beginning and after 1 month on the
respective diets. The resulting data are
given in the file weightloss and are shown
here:
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Diet A Diet B Diet C
X Weight Y Weight X Weight Y Weight X Weight Y Weight
Before Loss Before Loss Before Loss
227 14 255 19 206 7
286 16 193 8 222 9
180 -2 186 4 168 2
176 8 145 15 132 0
204 15 219 16 173 -3
155 5 273 19 210 8
303 17 289 25 269 10
146 7 168 6 275 51
215 15 194 12 241 8
187 6 248 21 219 5
a. What regression models would you use to

5.12.

investigate the previous questions? Write
out the models in matrix form.

. In nontechnical language, briefly describe
the relationship between diets and weight
loss that the models selected in (a)
describe.

. If you wanted to use these results as a basis
for recommending one of these diets to
other potential dieters, what assumptions
would you have to make? What reservations
might you have about these assumptions?

. Use the models to analyze the data. What
are your conclusions?

An exploratory study on the influence of
formaldehyde concentration (x), catalyst
ratio (x;), curing temperature (x3), and
curing time (x4) on the wrinkle resistance of
cotton cellulose (y) was carried out. Small
values of y indicate low wrinkle resistance.
The method of data collection consisted of
taking 30 samples of cotton cellulose from
the last 60 production days, measuring the
wrinkle resistance of the sampled items, and
looking up the corresponding values of xi, x»,
x3, and x4 for the sample from production
records. The data are given in the file
cellulose.

a. By means of pairwise scatter plots of y
versus each explanatory variable, make an
assessment of the model to be fitted.
Specify your model.

5.13.
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b. Fit the model

y=PBo+ Bixi + Baxa + B3xs + Baxg + €
Assess the adequacy of this model. Check
for any unusual points.
Assess the following hypotheses:
@ B =0
(i) B3 = fa=0;
(i) g1 = Bo=P3=p1=0
c. The investigator believes that there could
be interactions between catalyst ratio and
curing time and between catalyst ratio and
curing temperature. Write down an

appropriate model and assess if these
hypotheses are supported by the data.

d. Give a model that you believe describes
the data set. What manufacturing strategy
would you pursue if

i. low wrinkle resistance is preferred?

ii. high wrinkle resistance is preferred?

e. The data obtained are observational
(because the investigator took what the
process provided in terms of values for x,
X2, X3, and x4). What restriction does this
place on the conclusions that we draw
from the model? Can you suggest a way
that could get us around this restriction?

A team of anthropologists and nutrition
experts investigated the influence of protein
content in the diet on the relationship
between age and height of children in an
underdeveloped country. Data on height (cm)
and age for children fed on a protein-rich diet
and for children on a protein-poor diet were
obtained. The data are given in the file diet.

Protein-rich diet

Age (x) 02 05 08 10 1.0 14 138
Height (y) 54 543 63 66 69 73 82
Age (x) 20 20 25 25 30 27
Height (y) 83 803 91 932 94 94
Protein-poor diet
Age (x) 04 07 10 10 15 20 20
Height (y) 52 55 61 635 66 685 679
Age (x) 24 28 30 13 18 02 3.0
Height (y) 72 76 74 65 69 51 77
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a. Plot height versus age on a single graph
using different symbols for the two diets.

b. Carry out a test of significance to
determine if the linear relationship
between height and age is the same for
both diets.

a. Assume that the columns of the matrix X
in the model y = X3 + €, e ~ N(0, 021)
are orthogonal. Show that ; and 8 ; are
independent.

b. Suppose an extra term is added to the

model,
y=XB+zy +e

Assume that z is orthogonal to the
columns of X. Show that the estimate
of 3 in the expanded model is the same
as the estimate in the original model
and prove that it has the same
distribution. (Note that X need not have
orthogonal columns for this result to
hold.)

c. Consider the linear model y = X3 + € in
which the first column of X is a column
of 1’s and the remaining columns are
centered about their means. Show that
Bo = y. Furthermore, show that if the
errors are independent N (0, o'2), the
estimator By is distributed independently
of (Bi, ..., Bp)

In a study to examine the fuel efficiency of an
automobile as a function of its engine
characteristics, 20 automobiles are
considered. The following information is
collected for each car: y = fuel efficiency,
x1 = weight (in 1,000 lbs), and x, = engine
type (A or B). Assume that the first 10 cars
have type A engine, and the rest have type B
engine. Set up a linear model, carefully
defining the X matrix and the 3 vector for
each of the following situations:

a. Itis believed that expected fuel efficiency
depends on the weight of the car and types
of the engine.

b. It is suspected that the effect of weight on

expected fuel efficiency depends on the
different types of engines.
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5.16. In an experiment to study the effect of

temperature (x) on the yield of a chemical
reaction (y), 30 experimental runs were
conducted. The level of temperature was
carefully controlled at each of five levels,
coded as x =—2, —1, 0, 1, 2. Two catalysts
were used. For each catalyst three runs were
taken at each level of temperature, and the
yield was measured. The model

y=Bo+ Bix + Pox? + iz + ¢,
€~ N(0, %)
was considered, where z = 0 for catalyst 1
and z = 1 for catalyst 2.

a. Carefully interpret the parameter 5 in this
model.

b. The model was fit to the data and the
output is summarized below. The residual
sum of squares is 25.05, and

Parameter Estimate  Standard Error

Bo 29.83 0.33
B 0.95 0.13
B> 0.41 0.11
B3 —0.32 0.36

Is there any evidence of a difference in the
two catalysts? Find a 95% confidence
interval for f,.

c. We also know that

0114 0  —0.023 —0.067

Gxi—| 0 0017 0 0
—0.023 0 0012 0
—0.067 0 0 0.133

i. Explain why 8, and j; are independent
random variables.

ii. Find a 95% confidence interval for the
expected yield when the standard
temperature (x = 0) and catalyst 2 are
used.

iii. Find a 95% prediction interval for the
yield of a new experiment run under
standard temperature (x = 0) and with
catalyst 2.
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d. It was thought that the effects of temperature 5.17. Consider the data in Table 2.2. In Eq. (2.37)
differ for the two catalysts. Accordingly, the of Section 2.8 we considered the linear
model regression of test scores on poverty.

y = Bo+ Bix + Box’ + B3z + Pazx a. Investigate whether the model can be
+Bszx+ e improved by including the square of
was fit to the data, leading to a residual sum poverty as an additional regressor variable.
of squares of 19.70. Is there any evidence that b. Check whether it is necessary to introduce
the effects of temperature differ for the two an indicator for students in a college

catalysts? community such as Iowa City.
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6.1 INTRODUCTION

In previous chapters, we considered the linear regression model and discussed in
detail the assumptions that complete its specification. Chapters 2 and 4 described
the inference within a specified model, assuming that all assumptions are met.
We also illustrated how such models can be used for prediction as well as other
purposes.

Computer packages (such as S-Plus, SAS, and Minitab) can fit any model
one supplies, but usually they do so without questioning whether or not the model
is adequate. The fact that estimation today is so easy has led to an abundance of
models being fit to data sets. However, many of these models will be inappropriate,
and model checking becomes very important. One needs to make sure that the
adopted models are adequate and satisfy all model assumptions.

As shown in Chapter 1, the essence of model building can be represented
by the diagram in Figure 6.1. Initially, a model is specified from available data
and/or theory. In some circumstances, good theory and prior studies are available.
In other cases, no such information is available, and the model needs to be specified
from the data at hand; well-chosen plots of the information can greatly help with
the model specification. The specified model is then estimated and submitted to
extensive diagnostic checking. If the model is found adequate, it can be used for
the purposes for which it was designed. However, if the model is found inadequate,
the specification must be modified and the model-building cycle continued until
a satisfactory structure is obtained.

A number of assumptions are made when specifying a model, and these as-
sumptions need to be checked. A fitted model can be inadequate for several
reasons:

i. The functional form of the model may not be adequate. The model may be

missing needed variables and nonlinear components, such as squares of
covariates and interactions among covariates.

169
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FIGURE 6.1 Model
Building Framework
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ii. The error specification may be incorrect. In particular, the error variances
V (¢;) may not be constant, the errors may not be normally distributed, and
the errors may not be independent.

iii. Unusual observations in the data may have an undue influence on the model
fit. There may be outlying data points that have a major impact on the
estimates and the conclusions.

In Section 6.2, we examine the residuals as a whole. Residual plots can tell us
whether the functional form is misspecified and whether the usual assumptions
on the error terms are violated. Residual plots can also draw attention to particular
cases that seem “odd” when judged in comparison to the rest of the data; in Section
6.3, we study specific case diagnostics that assess the influence of individual
cases on the model results. In Section 6.4, we discuss goodness-of-fit tests that
tell us whether our model provides an adequate representation of the functional
relationship between the response and the explanatory variables.

6.2 RESIDUAL ANALYSIS
6.2.1 RESIDUALS AND RESIDUAL PLOTS

The residual vector is given by e =y — [, the difference between the observed
response and the fitted value; the ith component e¢; = y; — [i; corresponds to the
ith case in the data set. The residual estimates the random component € in the
model. Misspecification and departures from the underlying assumptions in the
model are reflected in the pattern of the residuals. Hence, a thorough residual
analysis and a graphical display of the residuals provide an effective method of
discovering model inadequacies.

The discussion in Chapter 4 has shown that the vector of residuals e is or-
thogonal to the vector space L(X)=L(1, x1, X2, ..., xp) that is spanned by the
regressor vectors. We assume that the unit vector, and hence an intercept term,
is included in the model. The residuals are orthogonal to the regressor vectors
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1,x1,x2,...,%, and also orthogonal to f1=X ,@ because the vector of fitted
values is in the space L(X). Orthogonality implies that
n n n n

Zei =Z€ixi1 ="'=Z€ixip=zeiﬂi =0

i=1 i=1 i=1 i=1
These residual properties are consequences of the adopted least squares fitting
procedure. They hold, irrespective of whether or not the model is adequate.

What happens to the residuals if some model assumptions are violated? For

example, what happens to the expected value of the residuals? The expected value
of the residual vector can be written as

E(e)=E(y —p)=E[U—-H)yl=U—-H)E(y) (6.1)

The residuals have mean vector zero if the “true” expected value E(y) is a vec-
tor in the space L(X)=L(1,xy,X2,...,Xx,). Any element in the linear vec-
tor space can be written as E(y) = X «, for some «, and hence (I — H)Xa =
(I - X(X'X)"'X")X o =0. For a correctly specified functional relationship, the
residuals will have expectation zero. On the other hand, for a misspecified model
where E(y) is not in the space L(X), E(e) # 0 (see the appendix, No. 1, for
details). Assume, for example, that the true model is given by E(y) = X3 +
uy, where u is an additional regressor vector that is not part of L(X), and y
a parameter. Fitting the model without u leads to the residuals e = (I — H)y
and

E()=(I - HE(y) = —-HXB+uy)=y(I —Hu#0 (62

The vector (I — H)u is not zero because u is not in L(X). Equation (6.2) shows
that the residuals obtained from the model without u are related to u. Hence, a
graph of the residuals obtained from the model without u against the variable
u reveals a pattern. Graphs of the residuals against variables that are not part
of the specified model but are thought to have an effect on the response should
be considered as diagnostic tools. Patterns in such plots indicate that needed
terms have been omitted. Also, one is always concerned about whether a linear
specification in the regressor variables is sufficient or whether quadratic terms are
needed. Since quadratic terms are not part of L(X), scatter plots of the residuals
from the linear model against the explanatory variables already part of the model
should also be considered. Nonlinear patterns would arise in these graphs if a
model that is linear in the covariates is not adequate.

Under the model assumptions, the vector of residuals e = (I — H)y and the
vector of fitted values f1 are uncorrelated. This was shown in Eq. (4.19). This states
that the fitted values should not carry any information on the residuals. Hence,
for a correctly specified model, a graph of the residuals against the fitted values
should show no patterns. On the other hand, violations of the model assumptions
introduce correlations among e and fi, and a graph of the residuals against fitted
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values would reflect an association. Hence, a graph of the residuals against the
fitted values should be part of the standard diagnostic-checking repertoire.

If all standard assumptions are met, the residuals e =y — [t have mean zero
and covariance matrix o2(I — H), where H = X (X'X)~!' X’ is the usual “hat”
matrix. The residuals follow a multivariate normal distribution if the errors are
normal. This result implies that

V(e)=0?(1 —hy) and Cov(e;,e;)=—0o’h;; for i#j (6.3)

where A;; is the (i, j)th element of H. Since h;;’s are not necessarily the same for
all i, the variances of the residuals, V (¢;), are not identical, although V (¢;) = o'
is constant. Similarly, although Cov(e;, €;) =0, Cov(e;, e;) = —o*h;; will not
equal zero because /;; is not necessarily zero. The nonconstancy of the variance
of the residuals and the slight dependence among the residuals are consequences
of the model fitting.

Residuals are often standardized so that they have mean zero and variance
one. Since residuals are estimates of the errors, and since the unobserved errors
have variance o2, one computes
=4 (6.4)

s
where s> =e’e/(n — p — 1) is the usual estimate of o>. The residuals in Eq. (6.4)
are called the standardized residuals. Their variance is approximately one, but
only approximately because their definition does not take account of the correct
variance of the residuals given in Eq. (6.3). The studentized residuals are given by

dj = e,-/s\/ 1-— hii (65)

This standardization uses the correct variance of the residual, V (¢;) = o 2(1 — h;;).
The exact distribution of the studentized residuals (as well as that of the standard-
ized residuals) is complicated because s and e; are not statistically independent.
However, with normal errors, the distribution of the studentized residuals is ap-
proximately normal with mean zero and variance one. A histogram or a dot plot
of the studentized residuals helps us assess whether one or more of the residuals
are unusually large. A studentized residual d; larger than 2 or 3 in absolute value
would make us question whether the model is adequate for that case i. It may be
that the response y; for this particular case is an “outlier” due to a poor design
or a recording mistake. However, it could also be that our model is missing an
important component.

The properties of the residuals that we have discussed here help us devise
useful residual plots for model checking. For adequate models, we do not expect
any systematic patterns in the residuals. Hence, plots of the residuals against (i) the
case order if cases have been ordered by time, (ii) the explanatory variables in the
model, (iii) other variables not in the model but considered important, and (iv)
the fitted values should all show random scatter. Since the mean of the residuals
is zero (e = 0, as long as a constant is included in the model), the residuals should
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lie within a horizontal band around zero and should not exhibit any interpretable
patterns. Usually, one works with standardized or studentized residuals, and then
the horizontal bands at £2 have special meaning. Approximately 95% of these
residuals should be within 42, and almost all of them should be within +3.
Patterns in the residuals indicate that the functional form of the model is not
correct, that important variables have been omitted, and that perhaps the error
variance is not constant.

Figure 6.2 shows various residual plots for illustration. If a model is adequate,
then a plot of the residuals ¢; against i should exhibit the random pattern depicted
in Figure 6.2(a).

A similar plot [Figure 6.2(b)] should result if the residuals e; are plotted
against the fitted values, against any of the p explanatory variables, or against
any other regressor variable that is not in the model. Figures 6.2(c)—6.2(g) show
departures from random scatter. The plot in Figure 6.2(c) indicates that the ad-
dition of a linear term in another regressor variable can improve the model. Fig-
ure 6.2(d) shows that the model lacks a quadratic term of the included regressor
x; the inclusion of such a term will improve the model. Figures 6.2(e) and 6.2(f)
show that the variance of the residuals increases with the regressor variable x and
the level. Later, we discuss how to modify the model in such situations. If the
pattern in the residual plot is similar to that in Figure 6.2(f), a transformation of
the response y is necessary. This will be discussed in Section 6.5.

6.2.2 ADDED VARIABLE PLOTS

An added variable plot is useful when deciding whether a new regressor variable
(that currently is not in the model) should be included. It turns out to be a more
powerful graph than the plot of the residuals against the new regressor variable.

Let e be the residual vector from a fit of y on X. Let u be the vector of
observations on a new regressor variable that is not part of X, and suppose that
e, is the residual vector of the regression of # on X. Then a plot of e against e,
is called an added variable plot. If this plot indicates random scatter without an
apparent relationship, then there is no need to include u in the model. Systematic
patterns in the plot indicate that the variable u should be included.

How can one justify this plot? Assume that u is part of the model y = X3 +
uy + €; y is the regression parameter that corresponds to u. A regression of y
on X alone (without the regressor u) leads to the residuals e = (I — H)y, where
H = X (X'X)~' X' is the usual hat matrix. The residuals of the regression of  on
X are given by e, = (I — H)u. Note that the mean of either residual sequence is
zero. Hence, the slope in the regression of e on e, is given by

!
7 =cle/eje =0

u(l — H)u

Now consider the complete model y = X3 + uy + €, and the regression of
y on both X and u. The least squares estimate of the parameter vector (3, y) is

(6.6)
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given by

N -1 -1
Bo| | XX Xu Xy | | An An X'y ©.7)
P |l wX wu u'y N Ay Axn u'y '

We have used 3, to denote the least squares estimate of 3 to distinguish it from
the least squares estimate 3 in the regression of y on X alone. Using the result on
the inverse of a partitioned matrix given in the appendix, we find that the estimate
of y (the coefficient that corresponds to u) is

P =—By BuX'y + Byu'y = By [=BuX'y +u'y] (6.8)

where By =wu—u'X(X'X)"'Xu=u'(I — H)u and By =u'X(X'X)"".
Hence, we find that
u'(I —H)y

1
A:——/H ! = T =9 6.9
Ve —mu Y = L T = ©9

the slope in the scatter plot of e against ¢, in Eq. (6.6). Hence, a linear relationship
and a nonzero slope 7 in the added variable plot of e against ¢, indicates that the
variable u should be included in the model.

One can also show that the strength of the association in the added variable
plot gives evidence on whether the effect of the added variable u is statistically
significant. Consider the square of the correlation coefficient between e and e,
as a measure of the strength of the linear association in the added variable plot.
That is,

l 2
(ree) = —— U = HDy] (6.10)
y'(I — H)yllw' (I — H)u]
Consider the square of the ¢ ratio (or the partial F statistic) of the estimate P in
the regression model on both X and u,

@P W — HyP
$2B;,"  s*uw'(I — Hu]

(t;)* = (6.11)
where s2=y'(I — H,)y/(n — p —2) is the estimate of o in the model y =
XB +uy + € and H, is the hat matrix calculated with the matrix [X, u]. Here,
we have used the result in Eq. (6.9) and the expression for B,. With this, we can
write Eq. (6.10) as

2

I H,
~ (1) /(n—p—2) (6.12)

The stronger the association is in the added variable plot, the stronger the evidence
that the variable u should be included in the model.
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6.2.3 CHECKING THE NORMALITY ASSUMPTION

We look at the residuals ey, e;, ..., e, to check the assumption that the unob-
served errors (the ¢;’s) in the model are normally distributed. Even better, we
look at the studentized residuals d, . . ., d,, because they standardize the residu-

als for the differing variances. The simplest approach to check for normality is
to plot a histogram and check whether it resembles that of a N (0, 1) distribution.
Most of the residuals (approximately 95%) should fall between —2 and +2, and
the histogram should be bell shaped and symmetric about 0.

Another, preferable, approach is to prepare a normal probability plot. The
basic idea of this plot is simple. First, we order the studentized residuals d, . . . , d,
from the smallest to the largest. Let the result be denoted by d(y), ..., d(»). Note
that d(;) will be negative and d,) positive. Let Z be a N (0, 1) random variable
with cumulative distribution function ®(z) = P(Z < z). If the residuals are from
a standard normal distribution, then the expected value of the ith smallest residual
d(;y should be the normal percentile (quantile) of order p; = (i — 1/2)/n. That s,

E(dg) ~ > (pi)

Hence, a plot of the residuals d(;) versus the implied normal percentiles (normal
scores) ®~!(p;),fori =1,2, ..., n, should show points that are scattered around
a straight line. Deviations from a straight line pattern, which are easy to detect by
the eye, indicate a lack of normality.

Figure 6.3 shows probability distributions and corresponding normal proba-
bility plots for four data sets. Figure 6.3(a) is the ideal (straight line); it confirms
a normal distribution. Figure 6.3(b) gives the probability plot (S shaped) of a
light-tailed (uniform) distribution. The plot (inverted S shape) in Figure 6.3(c) is
that of a heavy-tailed distribution. The plot in Figure 6.3(d) comes from a skewed
distribution. The plots in Figures 6.3(b)-6.3(d) indicate lack of normality.

It should be noted that some computer programs (such as Minitab) reverse the
axes and plot the normal percentiles (i.e., the normal scores) against the residuals.
This does not matter because one only checks for linearity. We prefer to plot the
residuals against the normal scores to be consistent with the other residual plots
that graph the residuals against the case index, the fitted values, etc.

If the normal probability plots are prepared by hand, then it is easier to use
a special graph paper called the normal probability paper. On this paper one
plots d(;) against p; and the scale on the x axis of the paper is drawn to perform
the ®~! transformation. However, since most software packages supply normal
probability plots automatically, we will not discuss its construction further.

6.2.4 SERIAL CORRELATION AMONG THE ERRORS

Standard regression inference assumes that the €’s, or equivalently the observa-
tions y’s, are independent. If a regression model is fit to time series data (i.e.,
data observed sequentially in time such as monthly, quarterly, or yearly data)
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it is likely that the errors are serially correlated. Serial correlation or auto-
correlation indicates that errors at adjacent time periods are correlated. Many
business and economic data are positively autocorrelated; that is, a positive error
last month implies a similar positive error for this month. A detailed discussion
of autocorrelations and models for autocorrelation is given in Chapter 10. There,
we also show that standard inference procedures derived under the independence
assumption (and that ignore serial correlation) can have a major effect on the
standard errors of the regression coefficients and that the associated significance
tests may be misleading. Hence, a check for serial correlation among the errors
is of special importance if regression models are fit to time series data. Since the
case index i reflects time, we replace it by .

A straightforward approach to check for the serial correlation among the
errors of a regression model is to focus on the residuals and calculate the lag k
sample autocorrelation of the residuals,

n
Z €r€r_k

_ t=k+1

n
Y el

t=1

, k=1,2,... (6.13)

Tk

We always assume that an intercept is in the model, forcing the mean of the resid-
uals to be zero, ¢ = 0. The autocorrelation in Eq. (6.13) is the sample correlation
between e; and its kth lag, e¢,_;. Think about ¢, as y, and ¢, as x;, and write
down the usual correlation coefficient between x; and y;. Ignoring “end” effects,
the correlation coefficient simplifies to the expression in Eq. (6.13). The lag k
autocorrelation is always between — 1 and +1; it measures the association within
the same series (residuals) k steps apart. Hence, its name, autocorrelation. If the
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errors in the regression model are uncorrelated, then it can be shown that
1
E(ri)=Z0 and V(@) =- for k>0
n

In addition, for reasonably large sample size n, the distribution of r; is approxi-

mately normal. A simple check for serial correlation compares r;, with its standard

error —.
Nz
We can graph the autocorrelations r; as a function of the lag k. We refer
to such a graph as the autocorrelation function of the residuals. Note that by
definition ro = 1. Two horizontal bands at twice the standard error, £2/./n, are
usually added to the graph. Sample autocorrelations that are outside the limits
are indications of autocorrelation. On the other hand, if all (or most) of the auto-
correlations are within these limits, the assumption of independent errors can be
adopted. A word of caution must be added here. This approach involves multiple
significance tests at the 5% level and not just a single test for which the signif-
icance level would be appropriate. Hence, the results should not be taken too
literally. Autocorrelations that are barely outside the limits at higher lags and are
difficult to explain should not be taken as conclusive evidence of autocorrelation.
The Durbin—Watson test statistic examines the lag 1 autocorrelation r; in
more detail. It is given by

Yler—e1)? el el 2 e
D="= === = ~2(1—r)  (6.14)

n n
>el el
=1 t=1

In the last step of Eq. (6.14), we have ignored end effects of the sum in the nu-
merator. The distribution of this statistic under independent errors can be derived.
It is complicated, and special tables of critical values are needed to carry out the
test. For independent errors, the Durbin—Watson test statistic is approximately 2;
for correlated errors the test statistic is either smaller or larger than 2. The special
tables of critical values tell us how far from 2 the statistic must be before one
can conclude that independence is violated. Note that the Durbin—Watson statistic
examines just the lag 1 autocorrelation. Autocorrelations at lags higher than 1 are
ignored. Hence, one should always supplement this test with a graph of the sam-
ple autocorrelation function of the residuals and also examine autocorrelations at
higher lags.

Another simple graphical procedure is to plot e, versus e,_; and assess vi-
sually whether there is any apparent relationship between these variables. If the
plot indicates a random scatter, then there is no correlation among errors k steps
apart. On the other hand, if the plot shows an association, then there is evidence
of serial correlation. Such scatter plots for lag k = 1 are shown in Figure 6.4. No
serial correlation at lag 1 is indicated in Figure 6.4(a), whereas Figures 6.4(b)
and 6.4(c) indicate positive and negative lag 1 serial correlations, respectively.




Abraham

Abraham C06

«
_ .
E «3 ° oo
h=] ° oo .

.

o. ‘e o.’
.
LIS * M

Residual (lag 1)

(a) No Autocorrelation

L] L]
L]
L]
L] . L]
—_— L4 .
E )
.’g : L] ° L]
L]
& . '. LI
oo ©
."' .o... ° .
o’ o %
L[]
L]
Residual (lag 1)
(b) Positive Autocorrelation
L]
L]
(1]
. . ® . .
—_— L]
=t hd ® e ®
17 L] ..
& o« eu Wt
L] . .
L] . Y
L] L]
° L]
L] L]

Residual (lag 1)

(c) Negative Autocorrelation

November 8, 2004

ACF

ACF

ACF

14:19

6.2 Residual Analysis

1.0
0.5
0.0 ﬁ—l—-—-—-—l—-—-—l
—0.5
P B —
o 1 2 3 4 5 6 7 8 9 10
Lag
1.0
0.5
0.0 I | I . | -
sl
e L ————
0 1 2 3 4 5 6 7 8 9 10
Lag
1.0
0.5
0.0 I I I 1 | I |
s
—1.0 -

FIGURE 6.4 Plots of e; against e, for Three Generated Series and the Associated Autocorrelation Functions

181




182 Model Checking

Abraham Abraham C06 November 8, 2004 14:19

We have not shown scatter plots of e, versus e,_; for k > 1. The sample autocor-
relation functions in the right panels of Figures 6.4(b) and 6.4(c) indicate serial
correlations at higher lags (k > 1).

The calculations of the Durbin—Watson statistic and the autocorrelation func-
tion of the residuals are called for if the ordering of the cases is meaningful—that
is, if the case index i stands for time or run order. These statistics are not ap-
propriate in the cross-sectional situation because the arrangement of the cases is
arbitrary. For example, in a regression that involves data from the 50 U.S. states,
it is arbitrary whether the states are ordered alphabetically, by the length of their
names, or by the number of vowels. The Durbin—Watson test and the autocor-
relation function of the residuals have no place in such analysis. For example,
these statistics are not meaningful in the context of the urea formaldehyde foam
insulation (UFFI) data.

6.2.5 EXAMPLE: RESIDUAL PLOTS FOR THE UFFI DATA

Residual plots for this data set are given in Figure 6.5. The plots do not show
any systematic patterns in the residuals. The normal probability plot indicates an
approximate straight line pattern. Thus, it seems that all model assumptions are
satisfied.

6.3 THE EFFECT OF INDIVIDUAL CASES

So far, we have considered methods that assess the global adequacy of our fitted
model with respect to the form of the model and its error structure. The next step
of model criticism examines the question whether all observations arise from the
same model. At the same time, we will check whether some of the observations
have an unduly large influence on the fit of the model.

6.3.1 OUTLIERS

Anoutlying caseis defined as a particular observation (y;, x;1, . . ., X;p,) thatdiffers
from the majority of the cases in the data set. Since several variables are involved
in each case, one must distinguish among outliers in the y (response) dimension
and outliers in the x (covariate) dimension.

Outliers in the x dimension are cases that have unusual values on one or
more of the covariates. Since we do not attempt to model the x variables, it is
just their detection that matters. If there is only one dimension, a simple dot
diagram or histogram of the values of the single covariate will reveal outliers.
If there are two covariates, a scatter plot of one variable against the other can
identify unusual cases. Note that a case may not be aberrant when looking at
each dimension individually but may be quite unusual if both dimensions are
considered simultaneously. Of course, the detection becomes tricky if more than
two dimensions are involved.
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Outliers in the y dimension are linked to the regression model as one tries to
explain the response as a function of the covariates. Outliers in the y dimension
may be due to many different reasons:

i. The random component in the regression model may be unusually large.

ii. The response y or the covariates x may have been recorded incorrectly. The
x variables may be measured correctly, but the y value may be incorrect.
Also, the x variables may be recorded incorrectly, in which case the value of
v, which would be reasonable for the correct values of x, becomes
unreasonable.

iii. It could be that both y and x variables are correct, but that there is another
covariate that is missing from the model and that can explain the “strange”
observation.
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With the correct tools it is not too difficult to spot outliers. The tools that
are discussed in this section will help us do this. However, finding the causes
of outliers and deciding what to do with them is a more difficult issue. Careful
detective work and consultation with individuals who are involved with the col-
lection of the data are essential. The treatment of outliers that are due to obvious
misrecordings is straightforward; we omit such points from the analysis if they
cannot be corrected. However, the strategy is more difficult if causes and reasons
cannot be found. A conservative approach is to fit the model twice: once with all
cases and once with the outlying case removed. If the conclusions are unaffected,
then the case in question does not cause difficulties because it does not matter
whether the suspect case is kept as part of the data. If the conclusions are changed
greatly, any statements originating from the data set must be very tentative. If
possible, further data should be collected. Outliers should not automatically be
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FIGURE 6.6 Scatterplots Showing Three Types of Outliers

thought of as nuisances. Often, unusual outlying cases are very interesting and
informative. A study of the causes of unusual values can reveal a great deal about
the situation under study.

Let us illustrate the issue of outliers graphically within the context of the
simplest situation with one response y and one covariate x. Consider the scatter
plots in Figure 6.6. We can spot three unusual observations.

Case A is not unusual with regard to its covariate (x); its x value is in the
center of the observed covariate region. It is the response corresponding to this
setting of x that is highly unusual. Case A represents an outlier in the y dimension.

Consider the other two cases, B and C. These two cases are unusual with
regard to the covariate. Their x values are very different from all others; they are
much larger. Cases B and C are outliers with respect to the x dimension. What
about the y dimensions for these two cases? Assume that the model—derived from
the majority of the cases—is appropriate. Then the response for case B is right on
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the “model trajectory.” Hence, there is no evidence that this point is outlying in
the y dimension. Case B is outlying in only the x dimension. Case C is different
because its response y is far from the trajectory determined by the majority of the
observations. Hence, case C is outlying in the x as well as the y dimension.

Many complicated procedures for detecting outliers have been devised. A
simple first step involves the studentized residuals in Eq. (6.5),

di =€l'/S\/ 1 - hii

which follow an approximate N (0,1) distribution as long as the model assumptions
are satisfied. Large values of d;, for example, |d;| > 2.5, are unexpected and are
indicative of aberrant behavior in the response (y) dimension. A histogram or a
dot plot of the studentized residuals will show such cases. These cases are also
indicated in the normal probability plot as points with unusually low and high
values on the y axis that fail to fall within the expected straight line pattern.
However, this simple diagnostic tool—graphs of the studentized residuals—is
not without problems. As the following discussion shows, a case may be quite
peculiar and nevertheless have a small studentized residual.

Case A in Figure 6.6 would certainly be flagged on such a residual graph.
Case B, on the other hand, would show a rather unremarkable residual.

6.3.2 LEVERAGE AND INFLUENCE MEASURES

We say that an individual case has a major influence on a given statistical procedure
if the conclusions of the analysis are significantly altered when the case is omitted
from the analysis. Influence depends on the statistical procedure that one has in
mind. The focus could be the fitted line, a particular parameter estimate, or all
parameter estimates considered as a group. Consider case C in Figure 6.6. It is an
influential case because the fitted line is radically different if this case is omitted
from the analysis. However, case B is not influential since the fitted line does
not change when it is omitted from the analysis. As another example, consider
the graph in Figure 6.7, in which we can see one outlying case with a very
different value for the covariate. When fitting a straight line model without the
case (Figure 6.7b) the fitted regression line has a negative slope. With the case
(Figure 6.7a) the fitted least squares line is “attracted” by the response of the
outlying case, the line gets “pulled” up, and the slope becomes positive.

Leverage

Before we can define influence measures, we need to discuss the concept of
leverage, the “pull” that individual cases exert. Recall that the vector of fitted
values can be written as a linear transformation of the response vector,

p=XX'X)"'X'y=Hy
with the hat matrix providing the coefficients. The ith fitted value can be written as

i =hiyi + Y hijy; (6.15)
J#i
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The weight h; indicates how heavily y; contributes to the fitted valuefi;. If h;; is
large (compared to other #;;’s), then h;y; dominates fi;. Recall that the residual
e; has variance V (¢;) = o>(1 — h;;), and hence h; < 1. If h;; is close to one, then
V(e;) =0 and [i; = y;. This implies that the fitted model will pass very close to
the data point (y;, x;1, ..., X;,). We say that case i exerts high leverage on the
fitted line, in the sense that the fitted value [i; is attracted to the response of the ith
case. We refer to A, the ith diagonal element of the hat matrix, as the leverage
of case i. Large values of h; indicate large leverage.
Let us establish a few useful properties of leverage:

i. The leverage h;; is a function of the covariates but does not include the
response vector y.

1
ii. — <h; <1.The result h; <1 was shown earlier. The fact that 4; > 1/n is
n

shown in Exercise 6.4.

iii. The leverage h;; is small for cases with x;1, ..., x;, near the centroid
(X1, ..., Xxp) that is determined from all cases. The leverage h;; is large
when (x;1, ..., x;p) is far from the centroid. Take the case of a single
explanatory variate, p = 1. In this case,

)
hii = l + %
no Y- X)?
The leverage is smallest if x; — X =0, and it is large if x; is far from Xx.
iv.
n
Z hi=t[H] =t [X(X'X) "' X' =X’ X(X'X) " N=tll,. ]=p+1
i=1

where tr[ A] is the trace of a matrix A.

The average leverage in a model with (p + 1) regression parameters (column
dimension of the X matrix) is

o=l _P +1

n n
A comparison of the leverage of a particular case with its average provides a sim-
ple rule for spotting cases with unusual leverage. A case for which the leverage

. . - 2p+1) . .
exceeds twice the average, that is h; > 2h = ——, is usually considered a
n

high-leverage case. Cases with high leverage need to be identified and examined
carefully. High leverage may have many reasons; the case may include mis-
recorded covariates, or the case may reflect a design point that has been selected
very differently from the rest. Low-leverage cases will not influence the fit much
because they do not have much pull on the fitted model. High leverage is a pre-
requisite for making a case a high influence point, but as the following section
shows, not every high-leverage case is influential.
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TABLE 6.1 LEVERAGE FOR A SMALL DATA SET WITH ONE COVARIATE

X 1.1 1.3 1.2 1.4 1.4 1.5 1.5 1.6 1.7 8.0
y 2.3 2.2 2.2 1.9 2.0 1.9 1.8 1.6 1.7 53
Leverage 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.10 0.99

Let us consider the n = 10 cases in Table 6.1. These data are used in the plots
of Figure 6.7. The case with x = 8 has the highest leverage,

1 (8 —2.07)?

h,‘,‘ = E 10 3 = V.
> —2.07)

The value 8 is far from the average x = 2.07. The average leverage is 2/10 = 0.20,
and twice the average leverage is 0.40. The leverage of the case with x =815 0.99
and is much larger than 0.40; hence, this case is flagged as having large leverage.

Cook’s Influence Measure

One way to express influence is to study how the deletion of a case affects the
parameter estimates. Suppose we delete the ith case and fit the regression model
y =X+ € to the remaining n — 1 cases. Let B(,-) denote the estimate of (3
without the ith case and ,[;' the estimate with all cases. Then the change in ﬁ that
is due to deleting the ith case, 5’ - ﬁ(i), is a good measure of the influence of the
ith case on the vector of parameter estimates. We can calculate this change for
alli=1,2,...,n. At first, it appears as if one would need to calculate the least
squares estimates for n + 1 data sets: the data set with all cases and the n data
sets that are missing exactly one of the cases. However, this is not true because
one can show (see the appendix) that

€

8 —
Bi=0 <l_h”>(XX) X (6.16)

where x; is the ith row of X that corresponds to the deleted case. Hence, the
difference in the estimates is given by

€
= hi

B—Bi= (X'X) i (6.17)
All n differences can be obtained as a by-product of a single regression. All one
needs to store is the residuals e=y — X B and the leverages h;;. Note that the
expression in Eq. (6.17) represents a vector of p + 1 components. Large changes
in any component make the ith case influential. It is often useful to condense
the vector of changes into a single number. The magnitude of the change in the
estimates needs to be assessed by comparing the change to the inherent variability
of the estimates. If the inherent variability is large, one should not get overly
concerned. We know that an estimate of the covariance matrix of the estimates
is given by V(B) =s%(X'X)~!. Using the inverse of the covariance matrix as
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weights and standardizing the result by the number of parameters leads to the
summary measure

D; = (B(i) - B)/(X/X)(:é(i) - B)/(P + 1)s? (6.18)
Substituting from Eq. (6.17) into this expression yields
XXXy hid?
S (U=h?(p+Ds? (L=hp)(p+1)

where d; is the studentized residual. The expression in Eq. (6.18) is known as
Cook’s D statistic, and it is standard output of most regression programs.

What does it take to get a sizeable influence measure D;? One needs both a
large leverage h;, or ratio h; /(1 — h;;), and a large studentized residual d;. Large
leverage alone does not do it. If the residual is small (and the response at the
high-leverage case is on the overall model trajectory), then the influence will be
small also. A large residual alone does not do it either. If the case has no leverage,
the influence will be small. Thus, a large leverage and a large studentized residual
are needed to make a case influential. Of course, the influence is zero if ,C:l(i) = B

Cook’s D statistic can alternatively be written as

(6.19)

i

(XB=XBo) (XB=XBo) _ (A=po) (B—e) (o0
(p + 1)s? (p+1)s? '

1

where 1 = X3 is the vector of fitted values that is determined from all cases, and
1y = X B is the vector of fitted values with the ith case deleted; the ith element
of f1;) is the “out-of-sample” prediction of y;.

PRESS Residuals

A related quantity of interest is the prediction error
eh=yi— Yo, i=12,....n (6.21)

where J) = xéB(i) is the prediction of y; that is obtained from fitting the model
without the ith case. The e(;’s are called the PRESS residuals since the sum of
squares of these residuals Y -_, e%l.) is referred to as the prediction error sum of

squares (PRESS). Using Egs. (6.21) and (6.16), we can write
' A s aX'X) 'y
e(l) - yl xiﬂ(l) _yl xi [18 (1 _ hii) :|
eih €

=T U (=

(6.22)

The computation of the PRESS residuals is easy; only the residuals ¢; and the
leverages h;(i =1,2,...,n) from the regression on the complete data set are
required.
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The DEFITS Statistics

Another measure that expresses the effect of deleting the ith case compares the

ith fitted value fi; to the prediction J;) of y; thatis obtained from fitting the model

to the data set without the ith case. This can be written as

e eihi;
= —¢ =
= hy) (I = hy)
The change is small if either e; is small or &;; is near 0. Note that the difference
in Eq. (6.23) compares the fitted value fi; to the prediction y;,, whereas the
PRESS residual in Eq. (6.21) compares the observation y; to y(;). We define the
standardized difference (also referred to as delta fits) as
DEFITS; = (M; yﬁ/)z) = e’h’z’ 7
[S(,-)hii] (1I- hii)(s h")

(l) 113
- [Di (p+ 1)32/53)]1/2

fi—30=i— o) — Gi— ) =eq) — e (6.23)

(6.24)

where
A 2
2 Zj;éi ()’j _x,/;ﬂ(i))
R
is the unbiased estimator of o> without the ith case. We show in the appendix
that it can be written as

, n—p—-1s*—e} /(0 —hy)]
Sty = (6.25)
(n—p—2)
The DEFITS; in Eq. (6.24) is a slight variant of D;. The ratio s*/s(;, will usually
be small, and DEFITS; approximates the square root of (p + 1) D;.

Summary

The leverage h;; is used to assess whether a case is unusual with regard to its
covariates (the x dimension). One compares the leverage to twice the average
leverage, 2(p 4+ 1)/n, and flags values that exceed this bound. High-leverage
cases may have a large influence on the model fit. The influence of a case is
evaluated by calculating how certain aspects of the model fit change when the
case is omitted from the analysis. Usually, one looks at changes in individual
components of the vector of estimates, at the Cook’s distance as an overall measure
involving all components of the parameter vector, and at differences between
predicted values that are obtained without the use of the case and observed and
fitted values. Cook’s distance is by far the most popular measure. The question
about a bound for Cook’s D arises. How large must Cook’s D be before one should
start to get concerned? The issue of tests of significance is not straightforward.
Furthermore, we believe that influence measures are best suited for comparative
purposes, assessing whether the influence of one case is much larger than that of
others. Nevertheless, cutoffs have been recommended in the literature. Values of
D that are larger than 1 are certainly of great concern. Even values larger than
0.50 should be scrutinized.
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Plots of the residuals (ordinary, studentized, and PRESS residuals) are quite
useful because they draw attention to outliers in the y dimension. The difference
between the ordinary and the PRESS residuals is that PRESS residuals omit the ith
case when determining the implied (fitted) value. Studentizing the residuals helps
because the residuals can be compared with the bounds £-2. Studentized residuals,
leverages, and Cook’s distances are standard output of most computer packages.

6.3.3 EXAMPLE: FORESTRY DATA

The information in Table 6.2 (also given in the file forestry) represents a subset
of a larger data set on the results of a forestry experiment. Several unimportant

TABLE 6.2 FORESTRY DATA

NA HT CAL HTCAL
101.51 36.5 1.10 40.150
79.54 33.0 1.00 33.000
20.62 22.0 0.30 6.600
53.07 26.0 0.50 13.000
43.02 24.0 0.50 12.000
31.88 24.0 0.40 9.600
26.78 21.0 0.40 8.400
29.93 26.0 0.40 10.400
18.90 16.5 0.36 5.940
54.30 34.5 0.89 30.705
51.30 23.0 0.47 10.810
35.50 20.0 0.47 9.400
13.30 17.0 0.37 6.290
25.10 19.0 0.51 9.690
18.70 17.5 0.42 7.350
21.50 16.5 0.33 5.445
14.80 16.5 0.31 5.115
21.20 19.0 0.48 9.120
21.60 16.0 0.39 6.240
20.70 17.0 0.40 6.800
30.90 17.0 0.46 7.820
32.50 19.0 0.44 8.360
11.18 17.0 0.37 6.290
186.00 51.0 0.70 35.700
163.00 41.0 0.73 29.930
130.50 37.0 0.65 24.050
139.00 44.0 0.69 30.360
132.00 43.0 0.66 28.380
171.00 36.0 0.70 25.200
155.00 40.0 0.62 24.800
93.00 41.5 0.59 24.485
161.00 45.5 0.80 36.400
87.00 36.5 0.53 19.345
127.00 41.0 0.64 26.240

140.00 39.0 0.64 24.960
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TABLE 6.3 S-PLUS STATEMENTS AND OUTPUT: MODEL (6.26) RESIDUAL
ANALYSIS FOR FORESTRY DATA (READ ACROSS)

# Reading in the data as a matrix ‘forest’ from the file ‘forestry.dat’

> forest<—matrix(scan(‘'forestry.dat’,multi.line = T),byrow = T,ncol = 4,nrow = 35)
> na<—forest[,1]

# Deleting column 1 from the matrix ‘forest’

> xv<—forest[,—1]

> forestfit<—1sfit(xv,na)

# Residual Analysis: Leverages, Cook’s distancs etc (some part is deleted)

> fordiag<—ls.diag(forestfit)

> fordiag

Shat

[1] 0.4484* 0.3087* 0.1005 0.0782 0.0761 0.0547 0.0470 0.0704 0.1013 0.1578
[11] 0.0610 0.0633 0.0848 0.1016 0.0585 0.1406 0.1748 0.0736 0.0824 0.0666
[21] 0.0714 0.0534 0.0848 0.2843 0.0738 0.0659 0.1032 0.0923 0.0610 0.0881
[31] 0.1236 0.2565 0.1358 0.0829 0.0726

stud.res
1] —0.630 —0.581 —1.061 —0.141 —0.158 —0.806 —0.369 —1.397 0.192 —2.492*
111 0.453 0.382 —-0.181 0.172 0.059 0.272 —0.110 —0.069 0.494 0.237

21] 0.854 0.421 —0.286 .044 1.544 0.990 —0.444 —0.495 3.915* 1.505
31]1-2.162 0.120 —1.041 —-0.206 0.955

o

$
[
[
[
[

$cooks

[1] 0.0823 0.0385 0.0313 0.0004 0.0005 0.0095 0.0017 0.0358 0.0011 0.2491"
[11] 0.0034 0.0025 0.0008 0.0009 0.0001 0.0031 0.0007 0.0001 0.0056 0.0010
[21] 0.0141 0.0026 0.0019 0.0002 0.0455 0.0173 0.0058 0.0064 0.1703* 0.0525
[31] 0.1473 0.0013 0.0424 0.0010 0.0179

explanatory variables have been deleted. The objective of the experiment was
to build a model to predict total needle area (NA) of a seedling from its caliper
(CAL; a measure of trunk size), height (HT), and a derived measure HTCAL
(product of HT and CAL) that is related to the volume of the trunk.

The first step is to fit a linear model

NA = By + B1CAL + BHT + BsHTCAL + ¢ (6.26)

The fit produces fitted values, residuals, and various other quantities, such as
leverages and Cook’s D. Some of these are listed in Table 6.3, where “hat” refers
to leverages (h;;), “stud.res” to studentized residuals, and “cooks” to Cook’s D
statistics. The following observations can be made:

i. The leverages h1; and hj; are quite large (0.4484 and 0.3087, respectively;
entries with an asterisk). Note that the average of the leverages
h=(p+1)/n=4/35=0.1143 and 2h = 0.2286. Thus, & and h, are
larger than 2h. Looking at the raw data, this seems to be due to the large
values for CAL. Upon further checking, it was found that these two values
had been measured incorrectly. The first two observations were deleted in
subsequent runs.

ii. The studentized residuals for cases 10 (—2.492) and 29 (3.915) are
unusually large, as are their Cook’s distances (entries with an asterisk).
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Upon checking, it was found that the CAL measurement on case 10 was
incorrect, and hence this case was also deleted. The measurements on case
29 were checked, found to be correct, and hence left unchanged.

The residuals e; are plotted in Figure 6.8 against the fitted values and the three
independent variables. A normal probability plot of the studentized residuals is
also shown. Because this data set is cross-sectional and since the ordering of the
cases is arbitrary, there is no reason to investigate a potential lack of independence
and calculate the autocorrelation function of the residuals.

The following observations can be made:

i. From the plot of the residuals against the fitted values [1;, it appears that the
variance is larger for seedlings with larger needle area. This suggests fitting
a model in terms of the logarithm of NA. We will explain this in more detail
in Section 6.5.

ii. Plots of the residuals against the explanatory variables reveal no obvious
patterns.

iii. The normal probability plot of the residuals has a single large value that
fails to fall within the straight line pattern; the aberrant point corresponds to
case 29.

Based on these diagnostics, we changed the model and considered
In(NA) = a9 + a1 CAL + oo HT 4+ a3HTCAL + € (6.27)

Note that the regression coefficients o, o1, o2, and o3 in this model are different
from the B8’s in the model (6.26) since In(NA) is considered in Eq. (6.27). Cases
1, 2, and 10 were deleted from the data set. Fitting the model (6.27) leads to the
results in Table 6.4 (on p. 199). Only part of the output is shown here.

We also generated the usual residual plots (see Figure 6.9 on p. 197). The
results in Table 6.4 and the plots in Figure 6.9 indicate the following:

i. All leverages are relatively small. Case 29 (case 32 in the earlier run) has
the highest leverage of 0.4249. However, no problem with the
measurements could be found. The studentized residual corresponding
to this observation is small. A further run without this observation
produced little change. Also, Cook’s influence measure (0.1154) is
unremarkable.

ii. The plot of the residuals against the fitted values shows that the log
transformation has reduced the dependency of the variance on the level.

iii. Plots of the residuals against the three explanatory variables show no
apparent patterns. The model form seems acceptable. The normal
probability plot of the studentized residuals reveals no serious departures
from normality.
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FIGURE 6.8
(Continued)
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FIGURE 6.9
(Continued)
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TABLE 6.4 PARTS OF S-PLUS OUTPUT: MODEL (6.27)
ADJUSTED FORESTRY DATA

$hat

[1] 0.2258 0.0830 0.0852 0.0881 0.0532 0.1341 0.1033 0.0644 0.0798 0.0859
[11]  0.1655 0.0662 0.1509 0.1960 0.1066 0.0882 0.0703 0.1096 0.0608 0.0859
[21]  0.2958 0.1447 0.0814 0.1090 0.0926 0.1454 0.0923 0.1598 0.4249 0.1922
[31] 0.0839 0.0753

$stud.res

[1] 0.350 0.383 —0.121 0.079 0.128 —0.823 0.602 1.470 0.474 —1.448
[11] —1.805 —0.925 1.982 0471 —2.020 0.778 0.081 0.799 0.869 —2.433
[21] —0.208 0.360 0.553 —0.533 —0.434 1.598 1.134 —1.437 —0.785 —0.104
[31] —0.149 0.640

$cooks

[1] 0.0092 0.0034 0.0004 0.0002 0.0002 0.0265 0.0107 0.0357 0.0050 0.0474
[11] 0.1495 0.0152 0.1580 0.0139 0.1096 0.0148 0.0001 0.0199 0.0123 0.1183
[21]  0.0047 0.0057 0.0069 0.0089 0.0050 0.1028 0.0324 0.0946 0.1154 0.0007
[31] 0.0005 0.0085

Coefficients:
Value Std. Error t value Pr(> |t])
(Intercept) —0.4465 0.6044 —0.7388 0.4662
ht 0.1051 0.0240 4.3823 0.0001
cal 6.0217 1.3007 4.6296 0.0001
htcal  —0.1082 0.0398 —2.7204 0.0111

Residual standard error: 0.2204 on 28 degrees of freedom
Multiple R-Squared: 0.9471
F-statistic: 167.1 on 3 and 28 degrees of freedom, the p-value is O

iv. The 7 ratios in Table 6.4 indicate that on the log scale, all three explanatory
variables are important.

v. The plot of exp {/1} against observed y (NA) in the last panel of Figure 6.9
shows that the model fits the data reasonably well and suggests that the
model should produce reasonable predictions.

vi. One area for further exploration is suggested by the fact that the cases
separate into two groups. In the original numbering, cases 24-35 are made
on much larger trees. One should check whether the same model is
appropriate for both groups of trees.

6.4 ASSESSING THE ADEQUACY OF THE FUNCTIONAL FORM:
TESTING FOR LACK OF FIT

A formal test of model adequacy can be performed if one has repeated observations
at some of the constellations of the explanatory variables. For simplicity, we
consider the case of a single regressor variable first. Suppose that our data set



200 Model Checking

Abraham Abraham C06 November 8, 2004 14:19

includes replicated observations at some of the considered x values:

X100 Vi1 Y125 -+« 5 Vin
X! N T
' 2 ?721 y22 Y2n, (6.28)
xk: yklv )’k2a--~7)’knk
This means that at setting x;, n; response observations y;, yi2, ..., Yip,(i =1,
2, ..., k) are available. We assume that these are genuine replications and not

just additional measurements on the same experiment.

We are interested in modeling the relationship between y and x. In regression,
one typically uses residuals from a parametric model fit to obtain an estimate of
o2. If the model is incorrect, then this estimate is not appropriate. With repeated
observations at some of the covariate constellations, one has the oppportunity to
calculate an estimate of o' that does not depend on the assumed model. We can
use the resulting information to construct a test of model adequacy.

The data in (6.28) resemble observations from k groups and can be charac-
terized as

Vij = Wi + €ij, i=1,2,...,k,j=1,2,...,n,~ (6.29)
with E(€;;) =0and V(¢;;) = 2. This can be written in the linear model form
y=XB+e€

where y is the n x 1 vector of responses (n = Zle n;), B= (w1, w2, ..., ur)
is the vector of unknown means, X is the n x k design matrix with ones and
zeros representing the k groups, and € is the vector of errors satisfying the usual
assumptions. This formulation is identical to the one in the k sample problem in
Chapter 5 (Section 5.3).

The least squares estimate of the group means p; is given by

B= (1, ... ) =1 F2s .- 50
where y; = Z';"zl vij/ni,i=1,2,..., karethesample group means. The residual
sum of squares is given by
k n;
SB=Y_ (ij— )’ (6.30)
i=1 j=1
Ithas n — k degrees of freedom because we are estimating k parameters. This sum
of squares is referred to as the pure error sum of squares (PESS). It is called
pure error because it does not depend on any functional representation of the ;.
Note that this is the same as the within sum of squares discussed in Section 5.3.
Now suppose that we entertain the parametric model u; = o + B1x; and
fit the parameters in y;; = Bo + P1x; + €;; by least squares. Minimizing S(3) =
Zf;l Zj‘i:l(yij —Bo— ﬂlx,-)2 with respect to fy and B, \ive obtain estimates
Bo and B and can calculate the residual sum of squares S(34). It is larger than
S(B) = PESS since the minimization is restricted. It involves only two parameters,
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Bo and By, compared to the k parameters (means) that led to S (ﬁ). S (B 4) has
(n — 2) degrees of freedom. The additional sum of squares is given by
k  n k  ni
SBA =SB =YY ij—Bo—Bix)* =) > vy =) (63D
i=1 j=1 i=1 j=1
It is useful to write S(34) in a slightly different form,
k  n;
SBa) =YY ij =i + 3 — Po— Bix;)’

i=1 j=1

k  n; k
=D > i =3+ > i — Bo— Pixi)’
i=1 j=1 i=1
k
=SB+ nii—Po—Pixi)’ (6.32)
i=1

The sum of the cross-products is zero. The additional sum of squares,

k
SBr) =SB =Y _nGi —Po— pix)’ (6.33)
i=1
involves the squared distances between the group means and the linear fit. The
weights n; correspond to the number of observations at x;. The additional sum
of squares measures the lack of fit of the linear model. Hence, it is referred to as
the lack-of-fit sum of squares (LFSS). It has (n —2) — (n — k) =k — 2 degrees
of freedom. The full model involves the k means, whereas the restricted model
parameterizes the k means with two parameters as u; = By + B1x;. The test of
the restriction u; = By + B1x; is given by the F statistic
additional sum of squares/(k — 2)

residual sum of squares from the unrestricted model/(n — k)

_[S(Ba) —SB)]I/(k—2)  LFSS/(k —2)

S(B)/(n — k) PESS/(n — k)

If this statistic is small, then we cannot reject the parametric model. If itis large, we

rejectthe model ; = By + B1x;. Thetestin Eq. (6.34) assesses the adequacy of the

model. Hence, it is also called a goodness-of-fit test. Under the hypothesis that the

restriction is true (i.e., the true model is linear) this ratio is distributed as F'(k — 2,
n — k). Large values of F provide evidence against the hypothesis of linearity.

(6.34)

Example: Chemical Yield
An experiment was conducted to study the relationship between the yield from
a chemical reaction (y) and the reaction temperature (x). All other factors were
held constant. Table 6.5 lists data obtained from 12 runs.
A previous study with temperatures ranging from 60 to 90 °C suggested that
the response (yield) is approximately linear in temperature,

y=Ppo+pix +e (6.35)
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TABLE 6.5 CHEMICAL YIELD DATA

Reaction
Temperature (°C), x Yield (gs), y Vi
60 51 51.0
70 82,78 80.0
80 91,96 93.5
90 98.,89,99 95.3
100 82,83 82.5
110 54,52 53.0

TABLE 6.6 ANOVA TABLE FOR CHEMICAL YIELD (/i =93.29 — 0.16x)

Source df SS MS F
Model 1 69.31 69.31 0.20
Residual 10 3,393.60 339.36

Lack-of-Fit 4 3,309.93 827.48 59.34
Pure Error 6 83.67 13.95

The fitted regression line is given by
A =93.29 — 0.16x

and the analysis of variance (ANOVA) table is shown in Table 6.6.

The top part of Table 6.6 (with F' =0.20) gives the wrong impression that
the variation in y cannot be explained by x. However, this F test assumes that
the linear model in Eq. (6.35) is correct. The adequacy of this model can be
checked with a lack-of-fit test, as we have replicated observations at some of the
temperatures. The replications in the design give us the opportunity to test the
model adequacy.

The PESS is given by

S(B) = PESS = (82 — 80)* + (78 — 80)> + (91 — 93.5)> + (96 — 93.5)>
+ (98 — 95.3)% + (89 — 95.3)% + (99 — 95.3)?
+ (82 — 82.5)% + (83 — 82.5)> + (54 — 53)% + (52 — 53)?
= 83.67

and its degrees of freedom are 1 + 1 +2 4+ 1 + 1 = 6. Alternatively, one can get
these degrees of freedom from the number of observations (n = 12) minus the
number of groups (k = 6).

We already estimated the linear model and found that § (B 4) = 3,393.60.
Hence, the sum of squares due to lack of fit is

LFSS = S(34) — S(B) = SSE — PESS = 3,393.60 — 83.67 = 3,309.93

The degrees of freedom for lack of fit are 4 because there are six separate covariate
constellations and two parameters in the linear model. These quantities are shown
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in the bottom half of Table 6.6. The F ratio
B 3,309.93/4
~ 83.67/6

is huge, much larger than any reasonable percentile of the F'(4, 6) distribution.
The probability value

=59.34

P(F(4,6)>59.34) <0.001

is tiny. Hence, we reject the linear model. We have found serious lack-of-fit, which
makes the earlier F test, ' =0.20, meaningless. One needs to develop a better
model before one can test for a relationship with x.

One could have seen this from the graph of y against x. The graph in
Figure 6.10 shows convincingly that a model linear in x is not appropriate. The
numerical (lack-of-fit test) analysis alone does not show the nature of inadequacy.
A scatter plot of the data reveals that the inadequacy comes from the curvlinear na-
ture of the data in the range considered. We are trying to fit a straight line through
a set of points that clearly indicate a quadratic pattern. Although it may have been
appropriate to fit a linear model (in x) over the temperature range 60-90°C, such
a model is certainly not appropriate over the wider range of 60—-110°C.

Figure 6.10 leads us to modify the initial linear model in x and consider a
quadratic one,

y=PBo+ Pix + fax? + e (6.36)

The fitted model is 1 = —422.98 + 12.17x — 0.07x2, and the ANOVA table is
given in Table 6.7.

As before, a lack-of-fit test for the model Eq. (6.36) can be performed.
The residual sum of squares from the quadratic model is (B4) =89.01; it has
12 — 3 =9degrees of freedom. The pure error sum of squares is still S (,é) =83.67
because we have the same constellations with replications on x and x2. The sum
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TABLE 6.7 ANOVA TABLE FOR CHEMICAL YIELD
(fi=—422.98 +12.17x— 0.07x?)

Source df SS MS F
Model 2 3,373.90 1,686.95 170.57
Residual 9 89.01 8.89

Lack-of-Fit 3 5.34 1.78 0.13
Pure Error 6 83.67 13.95

of squares due to lack of fit is SSLF = S(ﬁA) — S(ﬁ) =89.01 — 83.67=15.34,
with 9 — 6 =3 degrees of freedom. The lower part of Table 6.7 shows this de-
composition. The lack-of-fit test statistic
5.34/3
- 83.67/6
is very small and not significant. Hence, there is no evidence to contradict the
quadratic model.

Over the range 60-90°C, the linear model in x provides a reasonable approx-
imation. However, if that model is used to predict the yield beyond the range from
60 to 90°C, for example at 110°C, the predictions will fall apart. Extrapolations to
situations outside the range considered by the experiment can be very dangerous.

6.4.1 LACK-OF-FIT TEST WITH MORE THAN ONE INDEPENDENT VARIABLE

When there are two or more regressor variables, replicate measurements need to be
in agreement on all regressors. We require replications at covariate constellations.
The data should look like the following:

Constellation at  x11, X12,...,X1,: 71y replications yii, Y12, ..., Yin,

Constellation at X217, X22, ..., X207y replications ys1, ¥22, ..., Yon,

Constellation at  xzq, Xk2, ..., Xgp: 1y replications yii, yia, ..., Yin,
Corresponding to the ith constellation (x;1, x;2, . .., X;,) we assume that we have
n; observations y;, ..., Yin, available.

The calculation of the pure error sum of squares S(3) = S(ft1, fi2, ..., [r) 1S

unchanged. The restricted model is now the model with (p + 1) < k coefficients,
vij =Bo + Bixi1 + - - -+ Bpxip + €;j. Least squares estimates can be calculated
and the residual sum of squares S (,@ 4) can be obtained. S (ﬁ sAhas(n—p—1)
degrees of freedom. The lack-of-fit sum of squares, S (B a)—S (B), has (k — p —
1) degrees of freedom. The lack-of-fit statistic (also called the goodness-of-fit
test),

p_SB) =SV k—p—1

S(B)/(n — k)
follows an F(k — p — 1, n — k) distribution under the hypothesis that the para-
metric model is appropriate. Large values of F lead us to reject this model.

(6.37)
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6.5 VARIANCE-STABILIZING TRANSFORMATIONS

The plot of the residuals (e;) against the fitted values (/;) in Figure 6.8 for the
forestry data set (Table 6.2) shows a “funnel” shape indicating that the constant
variance assumption is violated. In the subsequent analysis of the data, we con-
sidered a logarithmic transformation of the response y. Figure 6.9 shows that this
transformation is successful in making the variance constant. In situations such as
these, we need a certain transformation to stabilize the variance. In this section,
we illustrate how one can select the correct transformation of the response. We
consider the general regression model

vi=f(xi;B) +e=n+¢ (6.38)

where n; = E(y;) = f(x;; 3) is the mean of the response. In addition, we assume
that the variance of ¢; is related to the mean 7; such that

V(i) =V(e)=[h(n)]o? (6.39)

where £ is a known function.

We like to find a transformation g (y;) of the response y; such that the variance
of g(y;) is constant. For this we approximate the function g(y;) by a first-order
Taylor series around 7;:

gy~ gmi) + (i —ni)g (i) (6.40)

where g’(n;) is the first derivative of g(y;) evaluated at ;. Then the variance of
the transformed variable g(y;) can be approximated as

Vg1~ Vigm) + i — n)g' )l =18 )PV (yi) = [g' )P [h(n:)]1*o?

(6.41)
To stabilize the variance, we need to choose the transformation g(.) such that
g (i) =1/h(n;) (6.42)

Often, we find that these transformations, in addition to stabilizing the variance,
lead to simplifications in the functional form of the regression model.

We now consider two special cases that arise quite often in practical
applications.

Example 1 h(n;) = n;; the standard deviation of the response is proportional to
the mean level. Then the transformation g(n;) has to satisfy g’(n;) = 1/n;. This
means that g(n;) =In(#n;), where In is the natural logarithm. Hence, in cases in
which the standard deviation of y is proportional to its mean, one should consider
the logarithmic transformation of y and regress In(y; ) on the explanatory variables.
This is what we did in the forestry example of Section 6.3.

Example 2 h(n;) = nil / 2; the variance is proportional to the mean level. In this
case, ¢'(n;) =n; /> and g(n;) =2n,"*. The square root transformation y'/? sta-
bilizes the variance.
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6.5.1 BOX-COX TRANSFORMATIONS

We now outline a special class of transformations called the Box—Cox transfor-
mations or the power transformations (Box and Cox, 1964),

g =y —1)/x (6.43)

If A =1, no transformation is needed and we analyze the original data. If A = —1,
we analyze the reciprocal 1/y;. If A = 1/2, we analyze yl.l/ 2 (Example 2). It can be
shown that limit;t_>0[(yiA — 1)/X] =1In(y;); we analyze In(y;) if A =0 (Example
1). The two examples that we considered previously are special cases of this class.

Box and Cox (1964) show that the maximum likelihood estimate of A min-
imizes SSE(A), where SSE(X) is the residual sum of squares from fitting the
regression model with transformed response

=0k =) /a5

ye=[1T, y,»]]/n is the geometric mean of the ys. If 1 =0, we take
v =limit, _oy™ = 3, In(y;)

To illustrate the use of Box—Cox transformations, we consider the gas consump-
tion data in Chapter 1 (Table 1.4). This data set is also analyzed in Chapter 4. The
dependent varable is y = fuel efficiency (in miles per gallon). Although there are
six regressor variables, for simplicity we consider only one of them, x = weight
of the automobile. We estimate the regression parameters and obtain the residual
sum of squares [SSE(1)] for several values of A in the model

-1
A
The results are shown in Table 6.8. The minimum of SSE(}) is at A = —0.75.

Abraham and Ledolter (1983) showed, with a finer grid on A, that the actual
optimum is A = —0.65. One can also calculate confidence intervals for A (Box

=pBo+ Bixi +¢€ (6.44)

TABLE 6.8 RESIDUAL SUM OF SQUARES
SSE(A): GAS CONSUMPTION DATA

A SSE(1)
1.00 292.58
0.50 257.74
0.25 245.47
0.00 (In y;) 236.34

—0.25 230.23

—0.50 227.07

-0.75 226.07

~1.00 229.67

—1.25 235.63

-1.50 244.98
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and Cox, 1964). In fact, the value A = —1.0is in the 95% confidence interval. This
value leads to a reciprocal transformation z =1/y (fuel consumption in gallons
per traveled mile or per 100 miles if multiplied by 100) considered in Chapter 4
(see Section 4.3.1).

6.5.2 SEVERAL USEFUL RESULTS FOR LOGARITHMIC TRANSFORMATIONS
Logarithm and Elasticity
Expanding In(x + Ax) in a Taylor series around x gives for small Ax,

Ax
In(x + Ax) Z1n(x) + —
X

Elasticity is defined as the percentage change in the response y that results from
a percentage change in the input variable x. That is,

Ay/y
Ax/x

Elasticity =

For example, an elasticity of 43 implies that a 1% change in the input x results
in a 3% change in the response y.

Estimation of Elasticities in Log-Log Regressions: Consider a regression of
the logarithm of y on the logarithm of x. That is,

E[In(y)] = o + 1 In(x)

The slope B, in this model represents the elasticity. Consider a change in the input
of magnitude Ax. Then the resulting change in y is given by

Efln(y + Ay) — In(y)] = Bo + Bi1 In(x + Ax) — [Bo + 1 In(x)]
= BilIn(x + Ax) — In(x)]

Applying the fact given above leads to
Ay - Ax
E[ln(y) + S In()]=Ailln(x) + —= —In(x)]

~ E[Ay/y]

or B = Axjx The slope in the log—log regression measures the elasticity.

Logarithm and Proportional Increase in a Time Series
Suppose y,(t=1,2,...,) are time series observations that increase proportion-
ally. Thatis, y; = y;—1(1 + r;), where 100r, represents the percentage increase of
the series. Then In(y;) = In(y,—;) + In(1 + r;). Expanding In(1 + r;) in a Taylor
series around 1, we obtain In(1 + r;) =In(1) + r, = r;. Thus, In(y;) = In(y;—;) +
r;. Hence, the proportional changes in a time series can be expressed as successive
differences of the logarithms of the series. That is, r; = In(y;) — In(y;—1).
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Appendix
1. EFFECTS OF MISSPECIFICATION

Assume that the true linear model is y = X3 4+ U~ + €, where X and U are n x
(p + 1) and n x g matrices. Suppose that B= (X'X)~'X'y is the least squares
estimate from the incorrect model y = X3 + €, and e = (I — H)y is the corre-
sponding residual, where H =1 — X (X'X)~!'X’. Then

EB=XX)"'XEy=XX)""X'(XB+Uy) =8+ X'X)"'X'Uy

The least squares estimate obtained under the incorrect model is biased, and the
bias amounts to (X’X)~'X'U~. The bias disappears if X'U = O, a matrix of
zeros. Furthermore,

E(e)=(—-HE(y)=(U—-HI[XB+U~]=U—-HU~y#0

The first term in the previous equation is zero since (I — H)X=(I —
X(X'X)"'X)X =0, an n x (p + 1) matrix of zeros. The second term is a non-
zero vector because U is not in L(X). Hence, the expected value of the residual
vector from the incorrect model is not 0.

2. SOME USEFUL MATRIX RESULTS

Suppose that « is a scalar, u and v are n x 1 vectors, and A is an n X n invertible
matrix.

A A

, where A; and A, are
21 Ax

i. Consider the partitioned matrix A = |:

square matrices whose inverses exist. Define By, = Ay — A21A1_11A12,
B, = AfllAlz, and By; = Ay Afll. Then the inverse of A is given by

Al |:A1_11 + B12B;, Ba —31232_21:|
—B,,' By By,

ii.

!/

(I —aw’) ' =1+ % (6.45)
iii.
1 _ A luy’ A1
(A — uv/) =A ! + m (646)

Note that 7 is the identity matrix of order n, and (1 — av'u) and
(1 —v’A~1u) are scalars. The results in (i)—(iii) can be shown by
confirming that AA~' = A~ 1A=1.
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3. A USEFUL RESULT FOR 3

Consider the linear model y = X3 + € and the parameter estimate ﬁ =(X'X)"!
X'y seen in Chapters 4-6. Let X(;, denote the X matrix with the ith row x|
deleted, and let y ;) and € denote respectively the vectors y and € without the
ith element. Then we can write without loss of generality

X . .
X:(?) mdy:Cm> (6.47)
X; Yi
Without the ith observation the model and the estimate of 3 become
” —1
yo=XoB+en. and By =(XnXo) Xpye (6.48)
From Eq. (6.47) we can write
X'X =Xy X +xix; and X'y =X,y +xiyi (6.49)
Then we have
Bi = X'X —xix)) " (X'y —xiy)

pon—1 - (XX exl(X'X) ! ,
= |:(X X) + l_x{(X,X)_lxi }[Xy_xtyl]

B (XX x4 [(X’X>—1x,-x;3—(X’Xrlx,-h,-iyi}
- M i)i

1—hy
8- 7(}((1/{)}1;;” [yi(1 = hi) = X B + hiryi]
= B - (}((1/{7);;;&()’:‘ —x,{B)
=3—g§25?- (6.50)

4. A USEFUL EXPRESSION FOR s(f)

We can write

> - x’,ﬂ(i))z =(yo) — XoBo) (vi) — X Bw) (6.51)
7
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where y ;) and X ;) are defined previously. In addition, let x} be the ith row of X.
Hence, the right-hand side of Eq. (6.51) is equal to

(y— X/é(i))/(y - XB(:’)) — (i —x§B(i))2
=[y-xB+X(B-B80)|ly-xB+X(8-Bw)]- i —xBn)
=[e+X(B-B0)|[e+X(B-Bw)] - <
=e'e+ (B —Bu)X'X(B-Buw)— e(zi) (the other terms are zero since X'e = ()

=ee+(p+1)D;s* — e,

‘e + hiieiz :
=e'e —
(1 —hy)? (A —hy)?
, ¢
—ee— ——
(I — hy)
Hence,
2

S =

EXERCISES

6.1. A research team studies the influence of body

weight (g) and heart weight (mg) on the
kidney weight (mg) of rats. Ten rats were
selected over a range of body weights, and
the following results were recorded. The data
are given in the file kidney.

Kidney Body Heart
weight (mg) weight (g) weight (mg)
y X1 X2
810 34 210
480 43 223
680 35 205
920 33 225
650 34 188
650 26 149
650 30 172
620 31 164
740 27 188
600 28 163

a. Consider the following models:
y=PB+pixI+e
y=PBo+Brxr+¢
y = PBo+Bixi+ oxr+e¢

(D; is Cook’s distance)

(using Eq. 6.19 and Eq. 6.22)

=(m—p—Ds*—el /(1 —hy)

[(n—p—1Ds?—ef /(1 —hy)]

6.2.

6.3.

(n—p-=2)

Which of these models are appropriate?
Discuss.

b. Determine if there are any unusual data
points. If there are, does their removal
have an effect on the fitting results for the
models in (a)? If there are cases with large
effects, how would you present the results
to the research team?

The cloud point of a liquid is a measure of the
degree of crystalliz