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Preface

Regression modeling is one of the most useful statistical techniques. It is an
activity that leads to a functional relationship between a response and a set of
explanatory variables. Such modeling has many different purposes. A regression
model indicates which explanatory variables have an effect on the response, telling
us which explanatory variables to change in order to affect the response. The
functional relationship allows us to estimate the response for given values of
the explanatory variables and to infer the response for values of the explanatory
variables that were not studied directly. The regression model allows us to ask
“what—if” type questions; for example, what happens to sales if we keep the
product’s price the same, but increase the advertising by ten percent. The predic-
tion of future values of a response is another important purpose of regression;
a model relating sales at time t to sales at previous periods allows us to make
predictions of future sales. Furthermore, regression models may indicate that a
variable that is difficult and expensive to measure is well explained by other vari-
ables that are easy and cheap to obtain. Such information is useful as then the
cheaper measurements can be used as proxies for the more expensive ones.

This book is intended as a regression text for undergraduate and graduate
students in statistics, business, engineering, and the physical/biological sciences
desiring a solid introduction to this area. Our book is a blend of theory and
interesting applications. We explain in detail the theory behind regression,
using results from matrix algebra and adopting a data-driven approach that also
emphasizes regression applications. The book includes several case studies from
a wide range of application areas, and it covers the analysis of observational data
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as well as of data that arise from designed experiments. Special emphasis is given
to the difficulties when working with observational data, such as problems arising
from multicollinearity and “messy” data situations that violate some of the usual
regression assumptions.

The book goes beyond the typical linear regression model as it also covers
nonlinear models, regression models with time series errors, and logistic and
Poisson regression models. These topics are of great importance as the response
data in many application areas are categorical involving small counts, and because
observations often arise in the form of time series.

Prerequisites for this book are an introduction to linear algebra including
matrix operations, a first course in statistics, and knowledge of probability distri-
butions and introductory statistical inference including confidence intervals and
probability values.

WHY ANOTHER REGRESSION BOOK AND HOW THIS TEXT DIFFERS
FROM COMPETING BOOKS

People may ask why we have written yet another regression book as several other
successful regression texts are already available on the market. We have engaged
in this project because we believe that we can do better. Time will tell whether
we have been successful.

Students taking a course on regression must understand the purpose of
regression. Chapter 1 addresses this issue. Many regression books do not address
this topic in such detail as we have done in this book. We believe that students
should know how, when and where regression models work. Hence we have
included several case studies that illustrate the process of regression modeling,
emphasize its benefits, but also warn of its pitfalls and problems. We believe that
the data-driven approach used in our book will teach students practical modeling
skills.

We also believe that most students want to know why some things work and
why others do not. The text not only teaches students the use of regression, but
also provides a rigorous coverage of the theory behind regression. This gives
students the theoretical foundation that is needed for subsequent courses and
further self-study. Geometric interpretations complement the algebraic results
whenever possible.

EXERCISES, CASE STUDIES AND PROJECTS

Our book is unique because of the many excellent exercises, data sets, and project
suggestions that are drawn together from several different areas of application such
as engineering, business, social sciences, and the physical sciences. Projects in
this book address questions that will interest readers from diverse fields of study.
You may be interested whether and how it is possible to predict the price of fine
French wine, and how to predict the winner of the next U.S. presidential election.
You may want to know how to explain fuel efficiencies of automobiles, and
whether race places a role in death penalty sentencing. You may want to model
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the scholastic achievement of U.S. students and determine the driving factors
behind scholastic success. You may want to establish whether certain additives in
building materials affect the ambient air quality, infer the effect of advertisement
on the sales of a product, or learn about the factors that contributed to the survival
of the Donner party that attempted to cross the Sierra Nevada mountain range in
the 1840’s on their westward trek. This book will interest you if you want to find
the answers to these questions.

One learns statistics and regression modeling best by solving exercises that
emphasize theoretical concepts, by analyzing real data sets, and by working on
projects that require one to identify a problem of interest and to collect data that are
relevant to the problem’s solution. Suggestions for project topics and guidelines
for dealing with projects are provided in Chapter 8. Successful projects involve
the application of the studied regression techniques to solve real problems. Many
of our exercises are based on real situations giving the students ample chance to
practice on meaningful problems. Most exercises have been pre-tested in various
classes on regression, time series modeling (Chapter 10), and statistical methods
for business applications (Chapter 11 on logistic regression).

HOW TO USE THIS TEXT

Some parts of the book require more mathematical/statistical background than
others. However, the more theoretical portions of this book can be omitted without
compromising the main ideas. We suggest omitting the following sections when
teaching students with weaker mathematics/statistics background: Most of the
material in Chapter 3, except for elementary matrix algebra, can be skipped.
In Chapter 4, one can omit the geometric approach in section 4.2.1, many of
the derivations in sections 4.2.2 and 4.3, the discussion involving the geometric
approach in section 4.4.1, the derivations in section 4.4.2, the joint confidence
regions in section 4.4.3, generalized least squares in section 4.6, and the appendix.
In Chapter 6, one can skip section 6.2.2 on added variable plots, the derivations
in sections 6.4.1, section 6.5 on transformations, and the appendix.

The complete book (all 12 chapters) can be covered comfortably in two
terms. If only one term or only one semester is available, we suggest covering
Chapters 1 through 8 on the standard linear regression model, followed by a brief
introduction to one of the additional topics in Chapters 9 through 12. For students
with weaker background in mathematics/statistics we recommend that the more
theoretical sections listed previously are omitted. For a target audience that wishes
to concentrate on practical modeling we recommend that additional emphasis be
put on the case studies in Chapter 8.

Chapters 1–7 of the book are based on notes that have been used many times
at the University of Waterloo in an advanced undergraduate course on “Applied
Linear Models.” Students from Actuarial Science, Computer Science, Math-
Business and Math-Accounting, Operations Research, Statistics, and Systems
Design Engineering take this course. Materials from all chapters of the book have
been class-tested in several courses at the University of Iowa as well.
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SUPPLEMENTARY MATERIALS: SOLUTIONS TO EXERCISES, DATA FILES,
AND COMPUTER PROGRAMS

Several supplements for this book are available. Files containing the data sets used
throughout the text can be found on the enclosed data disk and on the webpage
http://statistics.brookscole.com/abraham ledolter/. The files are in ASCII format,
as well as in the format of frequently-used statistical software packages.

One cannot learn and understand regression without using statistical com-
puter software. Our text is not tied to a specific computer program, but we discuss
computer output from several commonly used packages such as Minitab, R,
S-Plus, SPSS, and SAS. Most packages are menu-driven and knowing one helps
you understand how to use the others. Since not all programs are alike, we en-
courage you to try and experiment with several.

An instructor’s manual and a student solutions manual are also available.
They provide solutions to many of the exercises, as well as helpful hints on how
to access and work with statistical computer software. Furthermore, brief answers
to selected exercises are listed in the back of the text.
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1 Introduction to
Regression Models

1.1 INTRODUCTION
Regression modeling is an activity that leads to a mathematical description of
a process in terms of a set of associated variables. The values of one variable
frequently depend on the levels of several others. For example, the yield of a
certain production process may depend on temperature, pressure, catalyst, and
the rate of throughput. The number or the rate of defectives of a process may
depend on the speed of the production line. The number of defective seals on
toothpaste tubes may depend on the temperature and the pressure of the sealing
process. The volume of a tree is related to the diameter of the tree at breast
height, the height of the tree, and the taper of the tree. The fuel efficiency of an
automobile depends, among others, on the weight of the car and characteristics of
its body and engine. Employee efficiency may be related to the performance on
employment tests, years of training, and educational background. The salaries of
managers, athletes, and college teachers may depend on their seniority, the size
of the market, and their performance. Many additional examples can be given,
and in Exercise 1.1 we ask you to comment on several other relationships in
detail.

The supply of a product depends on the price customers are willing to pay;
one can expect that more products are brought to market when the price is high.
Economists refer to this relationship as the production function. Similarly, the
demand for a product depends on the price of the item, the price of the competition,
and the amount spent on its advertisement. Economists refer to this relationship
as the demand function. One can expect lower sales if the price is high, in-
creased sales if the price of the competition is higher, and increased sales if more
money is spent on promotion. However, price and advertising may also interact.
Advertising may be more effective if the price is low; furthermore, the effect of
the competition’s price on sales may depend on one’s own price. Also, seasonal
components may have an impact on sales during a certain period because sales of
a summer item during winter months will be low in northern states, irrespective
of the product’s price.

1
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2 Introduction to Regression Models

In all these situations we are interested in obtaining a “model” or a “law” (i.e.,
a mathematical description) for the relationship among the variables. Regression
analysis deals with modeling the functional relationship between a response
variable and one or more explanatory variables. In some instances one has a
fairly good idea about the form of these models. Often the laws from physics or
chemistry tell us how a response is related to the explanatory variables. These laws
may involve complicated mathematical equations that contain functions such as
logarithms and exponentials. In some instances, the constants in the equations
are also known, but more often the constants need to be determined empirically
by “fitting” the models to data. In many social science applications, theoretical
models are absent, and one must develop empirical models that describe the main
features of the relationship entirely from data.

Let us consider a few illustrative examples in detail.

1.2 EXAMPLES
1.2.1 PAYOUT OF AN INVESTMENT

Consider the payout of a principal P that you invest for a certain number of years
(length of maturity) T , at an annual interest rate of 100R percent. We know from
simple actuarial mathematics that the payout is given by

Payout = f (P, R, T ) = P(1 + R)T (1.1)

provided that interest is compounded annually. With continuous compounding
the resulting payout is slightly different. In this case, it can be calculated from
Payout = PeRT , where e is Euler’s number (e = 2.71828 . . .).

This first example illustrates a deterministic relationship. Each investment
of principal P at rate R and maturity T leads to the exact same payout—nothing
more and nothing less. We are very familiar with this law, and we would not
need any data (or regression methods) to arrive at this particular model. However,
assume for a moment that one was unfamiliar with the theory but had data on the
payouts of different investments P , with different interest rates and maturities.
Since the relationship is deterministic, payouts from identical investments would
be identical and would not provide any additional information. Given this infor-
mation, one would—after some trial and error and carefully constructed plots of
the information—“see” the underlying functional relationship. This model would
“fit” the data perfectly.

We have actually used the previous relationship to generate payouts for dif-
ferent principals, interest rates, and maturities, and we ask you in Exercise 1.2 to
document the approach you use to find the model. You will experience firsthand
the value of good theory; good theory will avoid much trial and error. Note that for
payouts from continuous compounding, a plot of the logarithm of payout against
the product of interest rate and length of maturity (RT ) will show points falling
on a line with slope one and intercept log(P).



Abraham Abraham˙C01 November 8, 2004 0:33

1.2 Examples 3

1.2.2 PERIOD OF OSCILLATION OF A PENDULUM

Consider the period of oscillation (let us call it µ) of a pendulum of length L . It
is a well-known fact from physics that the period of oscillation is proportional to
the square root of the pendulum’s length L , µ = βL1/2. However, the value of the
proportionality factor β may be unknown.

In this example, we are given the functional form of the relationship, but
we are missing information on the key constant, the proportionality factor β.
In statistics we refer to unknown constants as parameters. The values of the
parameters are usually determined by collecting data and using the resulting data
to estimate the parameters.

The situation is also more complicated than in the first example because there
is measurement error. Although the length of the pendulum is easy to measure,
the determination of the period of oscillation is subject to variability. This means
that sometimes our measurement of the “true” period of oscillation is too high and
sometimes too low. However, for a calibrated measurement system we can expect
that there is no bias (i.e., on average there is no error). If measured oscillation
periods are plotted against the square roots of varying pendulum lengths, then the
points will not line up exactly on a straight line through the origin, and there will
be some scatter.

Mathematically, we characterize the relationship between the true period
of oscillation µ and the length of the pendulum L as µ = βL1/2. However, the
measured oscillation period OP is the sum of the true period (which we sometimes
call the signal) and the measurement error ε (which we sometimes call the noise).
Typically, we use a symmetric distribution about zero for the measurement error
since the error is supposed to reflect only unbiased variability; if there were some
bias in the measurement error, then such bias could be incorporated into the signal
component of the model. Combining these two components (the signal and the
noise) leads to the model

OP = µ + ε = βL1/2 + ε (1.2)

This model is similar to the one in Example 1.2.1 because we use theory (in
this case, physics) to suggest the functional form of the relationship. However, in
contrast to the previous example, we do not know certain constants (parameters)
of the function. These parameters need to be estimated from empirical informa-
tion. Furthermore, we have to deal with measurement variability, which leads to
variability (or scatter) around the function (here, a line through the origin). We in-
clude a stochastic component ε in the model in order to capture this measurement
variability.

1.2.3 SALARY OF COLLEGE TEACHERS

The third example represents a situation in which there is no theory about the
functional form of the relationship and there is considerable variability in the
measurements. In this situation, the data must perform “double duty,” namely



Abraham Abraham˙C01 November 8, 2004 0:33

4 Introduction to Regression Models

to determine the functional form of the model and the values of the parameters
in these functions. Moreover, the modeling must be carried out in the presence
of considerable variability. We refer to such models as empirical models (in
contrast to the theory-based models discussed in Examples 1.2.1 and 1.2.2), and
we refer to the process of constructing such models as empirical model build-
ing. Examples of this type arise in the social sciences, economics, and business,
where one usually has little a priori theory of what the functions should look
like.

Consider building a model that explains the annual salary of a college pro-
fessor. We probably agree that salary should be related to experience (the more
experience, the higher the salary), teaching performance (better teachers are paid
more), performance on research (significant papers and books increase the salary),
and whether the job includes administrative duties (administrators usually get paid
more). However, we are lacking a theory that tells us the functional form of the
model. Although we know that salary should increase with years of experience,
we do not know whether the function should be linear in years, quadratic, or
whether an even more complicated function of the number of years should be
used. The same applies to the other variables.

Moreover, we notice considerable variability in salary because professors
with virtually identical background often are paid vastly different salaries. So there
may be additional factors that one has overlooked. Feel free to brainstorm and add
to this initial list of variables. For example, salary may also depend on gender and
racial factors (use of these factors would be illegal), the year the professor was
hired, whether the professor is easy to get along with, whether the professor has
had a relationship with the dean’s spouse or had made an inappropriate remark
at last year’s holiday party, and so on. Knowing these factors may improve the fit
of the model to the data. However, even after factoring all these variables into the
model, substantial random variation will still exist.

Another aspect that makes the modeling within the social science context
so difficult is problems with measuring the variables. Consider, for example, the
teaching performance of an instructor. Although student ratings from end-of-the-
semester questionnaires could be used as an indicator of teaching performance,
one could argue that these ratings are only a poor proxy. Demanding teachers,
difficult subject matter, and lectures held in large classes are known to lower
these ratings, thus biasing the measure. Assessment of research performance is
another good case in point. One could use the number of publications and books
and use this as a proxy for research. However, such a simple-minded count does
not incorporate the quality of the publications. Even if one decides to somehow
incorporate publication quality, one notices very quickly that reasonable people
differ in their judgments. Of course, not being able to accurately measure the
factors that we believe to have an effect on the response affects the results of the
empirical modeling.

In summary, we find that empirical modeling faces many difficulties: little or
no theory on how the variables fit together, often considerable variability in the
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TABLE 1.1 HARDNESS DATA [DATA FILE: hardness]

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14

x = Temperature 30 30 30 30 40 40 40 50 50 50 60 60 60 60
y = Hardness 55.8 59.1 54.8 54.6 43.1 42.2 45.2 31.6 30.9 30.8 17.5 20.5 17.2 16.9

25 35 45 55 65
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FIGURE 1.1
Scatter plot of
hardness against
quench bath
temperature

response, and difficulties in obtaining appropriate measures for the variables that
go into the model.

1.2.4 HARDNESS DATA

The quench bath temperature in a heat treatment operation was thought to affect
the Rockwell hardness of a certain coil spring. An experiment was run in which
several springs were treated under four temperatures: 30, 40, 50 and 60◦C. The
springs used in this experiment were selected from springs that had been produced
under very similar conditions; all springs came from the same batch of material.
Table 1.1 lists the (coded) hardness measurements and the temperatures at which
the springs were treated.

We are interested in understanding how quench bath temperature affects
hardness. Knowing this relationship is useful because it allows us to select the
temperature that achieves a specified level of hardness.

Hardness is the dependent (or response) variable, and we denote it by y.
Quench bath temperature is the independent (predictor, explanatory) variable that
is supposed to help us predict the hardness; we denote it by x . For each experiment
(coil spring—also called run or case) i , we have available a temperature that we
select and control (the value xi ) and a measurement on the resulting hardness
that we determine from the manufactured part (the value yi ). A scatter plot of
hardness (yi ) against quench bath temperature (xi ) is shown in Figure 1.1.
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We want to build a model (i.e., a mathematical relationship) to describe y in
terms of x . Note that y cannot be a function of x alone since we have observed
different y’s (55.8, 59.1, 54.8, and 54.6) for the same x = 30. Furthermore, since
no theoretical information is available to us to construct the model, we have to
study the relationship empirically. The scatter plot of y against x indicates that y
is approximately linear in x .

The scatter plot suggests the following model:

y(hardness) = β0 + β1x(temperature) + ε (1.3)

where β0 and β1 are the constants (parameters), and ε is the random disturbance
(or error) that models the deviations from the straight line. The model is the
sum of two components, the deterministic part (or signal) µ = β0 + β1x and the
random part ε. The deterministic part µ = β0 + β1x is a linear function of x with
parameters β0 and β1. More important, it is linear in the parameters β0 and β1, and
hence we refer to this model as a linear model. The random component ε models
the variability in the measurements around the regression line. This variability
may come from the measurement error when determining the response y and/or
changes in other variables (other than temperature) that affect the response but
are not measured explicitly.

In order to emphasize that the model applies to each considered (and potential)
experiment, we introduce subscripts. The temperature and the hardness from the
ith experiment are written as (xi , yi ). With these subscripts, our model can be
expressed as

yi = β0 + β1xi + εi , where i = 1, 2, . . . , n (1.4)

We complete the model specification by making the following assumptions about
the random component ε:

E(εi ) = 0, V (εi ) = σ 2 for all i = 1, 2, . . . , n

εi and ε j are independent random variables for i �= j (1.5)

In this example, we treat xi as deterministic. The experimenter selects the
temperature and knows exactly the temperature of the quench bath. There is
no uncertainty about this value. In later sections of this book (Section 2.9), we
consider the case when the values of the explanatory variable are random. For
example, the observed temperature may only be a “noisy” reading of the true
temperature.

Our assumptions about the error ε and the deterministic nature of the ex-
planatory variable x imply that the response yi is a random variable, with mean
E(yi ) = µi = β0 + β1xi and variance V (εi ) = σ 2. Furthermore, yi and y j are in-
dependent for i �= j .

The mean, E(yi ) = µi = β0 + β1xi , is a linear function of x . The intercept
β0 represents E(y) when x = 0. If the value x = 0 is uninteresting or impossible,
the intercept is a rather meaningless quantity. The slope parameter β1 represents
the change in E(y) if x is increased by one unit. For positive β1, the mean E(y)
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TABLE 1.2 UFFI DATA [DATA FILE: uffi]

y = CH2O x = Air Tightness z = UFFI Present

31.33 0 0
28.57 1 0
39.95 1 0
44.98 4 0
39.55 4 0
38.29 5 0
50.58 7 0
48.71 7 0
51.52 8 0
62.52 8 0
60.79 8 0
56.67 9 0
43.58 1 1
43.30 2 1
46.16 2 1
47.66 4 1
55.31 4 1
63.32 5 1
59.65 5 1
62.74 6 1
60.33 6 1
53.13 7 1
56.83 9 1
70.34 10 1

increases for increasing x (and decreases for decreasing x). For negative β1, the
mean E(y) decreases for increasing x and increases for decreasing x .

Our assumption in Eq. (1.5) implies that V (y) = σ 2 is the same for each x .
This states that if we repeat experiments at a value of x (as is the case in this
example), we should see roughly the same scatter at each of the considered x’s.
Figure 1.1 shows that the variability in hardness at the four levels of temperature—
x = 30, 40, 50, and 60—is about the same.

1.2.5 UREA FORMALDEHYDE FOAM INSULATION

Data were collected to check whether the presence of urea formaldehyde foam in-
sulation (UFFI) has an effect on the ambient formaldehyde concentration (CH2O)
inside the house. Twelve homes with and 12 homes without UFFI were studied,
and the average weekly CH2O concentration (in parts per billion) was measured.
It was thought that the CH2O concentration was also influenced by the amount
of air that can move through the house via windows, cracks, chimneys, etc. A
measure of “air tightness,” on a scale of 0 to 10, was determined for each home.

The data are shown in Table 1.2. CH2O concentration is the response variable
(y) that we try to explain through two explanatory variables: the air tightness
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Scatter plot of CH2O
against air tightness
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of the home (x) and the absence/presence of UFFI (z). A scatter plot of CH2O
against air tightness for homes with and without UFFI is shown in Figure 1.2. The
absence/presence of UFFI is expressed through an indicator variable. If insulation
is present, then UFFI = 1; if it is absent, then UFFI = 0. The points in the scatter
plot are labeled with solid and open circles, depending on whether or not UFFI is
present. The plot shows strong evidence that CH2O concentrations increase with
increasing air tightness of the home.

It is important to emphasize that the data-generating mechanism in this ex-
ample differs from that in the previous one. In the previous example, we were able
to set the quench bath temperature at one of the four levels (30, 40, 50, and 60◦C),
conduct the experiment, and then measure the hardness of the spring. We refer to
this as a controlled experiment, one in which the experimenter sets the values of
the explanatory variable. In the current example, we select 12 houses with UFFI
present and 12 houses in which it is not and measure the CH2O concentration (the
response y) as well as the air tightness (the explanatory x variable). It is not possi-
ble to preselect (or control) the air tightness value; the x values become available
only after the houses are chosen. These data come from an observational study.

The basic objective of this particular observational study is to determine
whether differences in the CH2O concentrations can be attributed to the presence
of insulation. Note, however, that we want to take into account the effect of air
tightness. This can be achieved by considering the following model. Let

y = β0 + β1x + β2z + ε (1.6)

where

� y is the CH2O concentration,
� x is the air tightness of the house,
� z is 1 or 0, depending on whether or not UFFI is present,
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� ε is the error component that measures the random component, and
� β0, β1, and β2 are constants (parameters) to be estimated.

CH2O concentration is the response variable (y). It is the sum of a deter-
ministic component (β0 + β1x + β2z) and a random component ε. The random
component ε is again modeled by a random variable with E(ε) = 0 and V (ε) = σ 2;
it describes the variation in the CH2O concentration among homes with identi-
cal values for x and z. Large variation in CH2O concentration y among homes
with the same insulation and tightness is characterized by large values of σ 2. The
variability arises because of measurement errors (it is difficult to measure CH2O
accurately) and because of other aspects of the house (beyond air tightness and
the presence of UFFI insulation) that have an influence on the response but are
not part of the available information.

The deterministic component, β0 + β1x + β2z, is the sum of three parts.
The intercept β0 measures the average CH2O concentration for completely air-
tight houses (x = 0) without UFFI insulation (z = 0). The parameter β2 can be
explained as follows: Consider two houses with the same value for air tight-
ness (x), the first house with UFFI (z = 1) and the second house without it (z = 0).
Then β2 = E(y | house 1) −E(y | house 2) represents the difference in the average
CH2O concentrations for two identical houses (as far as air tightness is concerned)
with and without UFFI. This is exactly the quantity we are interested in. If β2 = 0,
we cannot link the formaldehyde concentration to the presence of UFFI.

Similarly, β1 is the expected change in CH2O concentrations that is due to
a unit change in air tightness in homes with (or without) UFFI. Model (1.6)
assumes that this change is the same for homes with and without UFFI. This is a
consequence of the additive structure of the model: The contributions of the two
explanatory variables, β1x and β2z, get added. However, additivity does not have
to be the rule. The more general model that involves the product of x and z,

y = β0 + β1x + β2z + β3xz + ε (1.7)

allows air tightness to affect the two types of homes differently. For a house
without UFFI, E(y) = β0 + β1x , and β1 expresses the effect on the CH2O con-
centrations of a unit change in air tightness. For a house with UFFI, E(y) =
(β0 + β2) + (β1 + β3)x , and (β1 + β3) expresses the effect of a unit change in
air tightness. The effect is now different by the factor β3.

1.2.6 ORAL CONTRACEPTIVE DATA

An experiment was conducted to determine the effects of five different oral con-
traceptives (OCs) on high-density lipocholesterol (HDLC), a substance found in
blood serum. It is believed that high levels of this substance (the “good” choles-
terol) help delay the onset of certain heart diseases. In the experiment, 50 women
were randomly divided into five equal-sized groups; 10 women were assigned
to each OC group. An initial baseline HDLC measurement was taken on each
subject before oral contraceptives were started. After having used the respective



Abraham Abraham˙C01 November 8, 2004 0:33

10 Introduction to Regression Models

TABLE 1.3 ORAL CONTRACEPTIVE DATA [DATA FILE: contraceptive]

OC1 OC1 OC2 OC2 OC3 OC3 OC4 OC4 OC5 OC5
y = Final HDLC z = Initial HDLC y z y z y z y z

43 49 58 56 100 102 50 57 41 37
61 73 46 49 52 64 50 55 58 60
45 55 66 64 49 60 52 64 58 39
46 55 59 63 51 51 58 49 69 60
59 63 71 90 48 59 65 78 68 71
57 53 64 56 51 57 71 63 64 63
56 51 53 46 40 63 52 62 46 51
68 74 50 64 52 62 49 50 56 64
46 58 68 75 44 61 49 60 51 45
47 41 35 58 50 58 58 59 57 58

drug for 6 months, a second HDLC measurement was made. The objective of
the experiment was to study whether the five oral contraceptives differ in their
effect on HDLC. The data are shown in Table 1.3. A scatter plot of final HDLC
against the initial readings, ignoring the information on the respective treatment
groups, is shown in Figure 1.3a. Figure 1.3b repeats this graph for groups 1, 2,
and 5, using different plotting symbols to denote the three OC groups. Such a
graph can highlight potential differences among the groups. (In order to keep the
graph simple, only three groups are shown in Figure 1.3b).

Let yi be the final HDLC measurement on subject i(i = 1, 2, . . . , 50) and
let zi be the initial HDLC reading. Furthermore, define five indicator variables
x1, . . . , x5 so that

xik = 1 if subject i is a participant in the kth OC group

= 0 otherwise

Here, we need two subscripts because there are five x variables. The first index in
this double-subscript notation refers to the subject or case i; the second subscript
refers to the explanatory variable (OC group) that is being considered. The fol-
lowing model relates the final HDLC measurement to six explanatory variables:
the initial HDLC reading (z) and the five indicator variables (x1, . . . , x5). For
subject i ,

yi = αzi + β1xi1 + β2xi2 + · · · + β5xi5 + εi (1.8)

The usual assumption on the random component specifies that E(εi ) = 0 and
V (εi ) = σ 2 for all i, and that εi and ε j , for two different subjects i �= j , are
independent.

The deterministic component of the model, E(yi ) = αzi + β1xi1 + β2xi2 +
· · · + β5xi5, represents five parallel lines in a graph of E(yi ) against the initial
HDLC, zi . The six parameters can be interpreted as follows: The parameter α

represents the common slope. The coefficients β1, β2, . . . , β5 represent the in-
tercepts of the five lines and measure the effectiveness of the five OC treatment
groups. Their comparison is of primary interest because there is no difference
among the five drugs when β1 = β2 = · · · = β5.
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Consider two subjects (subjects i and j), both from the same OC group. Since
the five indicator variables are the same on these two subjects (xi1 = x j1, . . . , xi5 =
x j5), the model implies E(yi ) − E(y j ) = α(zi − z j ). The parameter α represents
the expected difference in the final HDLC of two subjects who take the same
drug but whose initial HDLC measurements differ by one unit. Next, consider
two subjects with identical initial HDLC measurements but from different OC
groups. Assume that the first woman is from group r , whereas the second is from
group s. Then E(yi ) − E(y j ) = βr − βs , representing the expected difference in
their final HDLC measurements.

1.2.7 GAS CONSUMPTION DATA

Let us give another illustration of empirical model building. Assume that we are
interested in modeling the fuel efficiency of automobiles. First, we need to decide
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how to measure fuel efficiency. A typical measure of fuel efficiency used by the
Environmental Protection Agency (EPA) and car manufacturers is “miles/gallon.”
It expresses how many miles a car can travel on 1 gallon of fuel. However, there is
an alternative way to express fuel efficiency considering gallons per 100 traveled
miles, “gallons/100 miles.” It expresses the amount of fuel that is needed to travel
100 miles. The second measure is the scaled reciprocal of the first: [gallons/
100 miles] = 100/[miles/gallon]. In Chapter 6, we discuss how to intelligently
choose among these two measures. Assume for the time being, that we have
settled on the second measure, [gallons/100 miles].

Next, we need to think about characteristics of the car that can be expected to
have an impact on fuel efficiency. Weight of the car is probably the first variable
that comes to mind. Weight should have the biggest impact, as we know from
physics that we need a certain force to push an object, and that force is related
to the fuel input. Heavy cars require more force and, hence, more fuel. Size
(displacement) of the engine probably matters also. So does, most likely, the
number of cylinders, horsepower, the presence of an automatic transmission,
acceleration from 0 to 60 mph, the wind resistance of the car, and so on. However,
how many explanatory variables should be in the model, and in what functional
form should fuel consumption be related to the explanatory variables? Theory
does not help much, except that physics seems to imply that [gallons/100 miles]
should be related linearly to weight. However, how the other variables enter into
the model and whether there should be interaction effects (e.g., whether changes
in weight affect fuel efficiency differently depending on whether the car has a
small or large engine) are open questions.

Assume, for the sake of this introductory discussion, that we have settled
on the following three explanatory variables: x1 = weight, x2 = engine displace-
ment, and x3 = number of cylinders. Table 1.4 lists the fuel efficiency and the
characteristics of a sample of 38 cars. We assume that the data are a representa-
tive sample (random sample) from a larger population. You can always replicate
this study by going to recent issues of Consumer Reports and selecting another
random sample. If you have ample time, you can select all given cars and study
the population. The fact that we are dealing with a random sample is very im-
portant because we want to extend any conclusions from the analysis of these 38
cars to the larger population at hand. Our results should not be restricted to just
this one set of 38 cars, but our conclusions on fuel efficiency should apply more
generally to the population from which this sample was taken. If our set of 38
cars is not a representative sample, then it is questionable whether the inference
can be extended to the population.

Note that fuel consumption in Table 1.4 is given in “miles/gallon” and
“gallons/100 miles.” Convince yourself that the entries in the second column are
obtained through the simple transformation, [gallons/100 miles] = 100/[miles/
gallon]. In addition to data on weight, engine displacement, and number of
cylinders, the table includes several other variables that we will use in later
chapters.
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TABLE 1.4 GAS CONSUMPTION DATA [DATA FILE: gasconsumption]

Miles/ Gallons/ Weight, Displacement No. of Engine Type:
gallon 100 miles 1000 lb (cubic inches) Cylinders Horsepower Acceleration (sec) V(0), straight(1)

16.9 5.917 4.360 350 8 155 14.9 1
15.5 6.452 4.054 351 8 142 14.3 1
19.2 5.208 3.605 267 8 125 15.0 1
18.5 5.405 3.940 360 8 150 13.0 1
30.0 3.333 2.155 98 4 68 16.5 0
27.5 3.636 2.560 134 4 95 14.2 0
27.2 3.676 2.300 119 4 97 14.7 0
30.9 3.236 2.230 105 4 75 14.5 0
20.3 4.926 2.830 131 5 103 15.9 0
17.0 5.882 3.140 163 6 125 13.6 0
21.6 4.630 2.795 121 4 115 15.7 0
16.2 6.173 3.410 163 6 133 15.8 0
20.6 4.854 3.380 231 6 105 15.8 0
20.8 4.808 3.070 200 6 85 16.7 0
18.6 5.376 3.620 225 6 110 18.7 0
18.1 5.525 3.410 258 6 120 15.1 0
17.0 5.882 3.840 305 8 130 15.4 1
17.6 5.682 3.725 302 8 129 13.4 1
16.5 6.061 3.955 351 8 138 13.2 1
18.2 5.495 3.830 318 8 135 15.2 1
26.5 3.774 2.585 140 4 88 14.4 0
21.9 4.566 2.910 171 6 109 16.6 1
34.1 2.933 1.975 86 4 65 15.2 0
35.1 2.849 1.915 98 4 80 14.4 0
27.4 3.650 2.670 121 4 80 15.0 0
31.5 3.175 1.990 89 4 71 14.9 0
29.5 3.390 2.135 98 4 68 16.6 0
28.4 3.521 2.670 151 4 90 16.0 0
28.8 3.472 2.595 173 6 115 11.3 1
26.8 3.731 2.700 173 6 115 12.9 1
33.5 2.985 2.556 151 4 90 13.2 0
34.2 2.924 2.200 105 4 70 13.2 0
31.8 3.145 2.020 85 4 65 19.2 0
37.3 2.681 2.130 91 4 69 14.7 0
30.5 3.279 2.190 97 4 78 14.1 0
22.0 4.545 2.815 146 6 97 14.5 0
21.5 4.651 2.600 121 4 110 12.8 0
31.9 3.135 1.925 89 4 71 14.0 0

The first car on this list has weight 4,360 pounds (i.e., the value for variable
x1 for the first car is x11 = 4.360), cubic displacement of 350 in.3 (i.e., the value
for x2 for the first car is x12 = 350), eight cylinders (i.e., the value for x3 for the
first car is x13 = 8), and gets 16.9 miles to the gallon. The value of the response y,
fuel efficiency measured in gallons/100 miles, is y1 = 100/16.9 = 5.917; the car
needs 5.917 gallons to travel 100 miles. The second car of our data set measures
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at x21 = 4.054, x22 = 351, x23 = 8, and y2 = 100/15.5 = 6.452 (i.e., weight 4,054
pounds, 351 in.3 displacement, eight cylinders, and 6.452 gallons/100 miles).
The last car (car 38) measures at x38,1 = 1.925, x38,2 = 89, x38,3 = 4, and y38 =
100/31.9 = 3.135 (i.e., weight 1,925 pounds, 89 in.3 displacement, four cylinders,
and 3.135 gallons/100 miles).

Observe the notation that we use throughout this book. For the ith unit (in
this case, the car), the values of the explanatory variables x1, x2, . . . , x p (here,
p = 3) and the response y are denoted by xi1, xi2, . . . , xip, and yi . Usually, there
are several explanatory variables, not just one. Hence, we must use a double-
index notation for xi j , where the first index i = 1, 2, . . . , n refers to the case, and
the second index j = 1, 2, . . . , p refers to the explanatory variable. For example,
x52 = 98 is the value of the second explanatory variable (displacement, x2) of the
fifth car. Since we are dealing with a single response variable y, there is only one
index (for case) in yi .

A reasonable starting model relates fuel efficiency (gallons/100 miles) to the
explanatory variables in a linear fashion. That is,

y = µ + ε = β0 + β1x1 + β2x2 + β3x3 + ε (1.9)

As before, the dependent variable is the sum of a random component, ε, and a
deterministic component, µ = β0 + β1x1 + β2x2 + β3x3, which is linear in the
parameters β0, β1, β2, and β3.

Cars with the same weight, same engine displacement, and the same number
of cylinders can have different gas consumption. This variability is described by ε,
which is taken as a random variable with E(ε) = 0 and V (ε) = σ 2. If we consider
cars with the same weight, same engine displacement, and same number of cylin-
ders, then the average deviation from the mean value in gas consumption of these
“alike” cars is zero. The variance σ 2 provides a measure of the variability around
the mean value. Furthermore, we assume that E(ε) = 0 and V (ε) = σ 2 is the same
for all groups of cars with identical values on x1, x2, and x3. The variability is
there because of measurement variability in determining the gas consumption.
However, it also arises because of the presence of other characteristics of the car
that affect fuel consumption but are not part of the data set. Cars may differ with
respect to such omitted variables. If the omitted factors affect fuel consumption,
then the fuel consumption of cars that are identical on the measured factors will
be different.

The deterministic component µ = β0 + β1x1 + β2x2 + β3x3 is linear in the
parameters β0, β1, β2, and β3. We expect a positive value for the coefficient β1

because a heavier car (with fixed engine displacement and number of cylinders)
needs more fuel. Similarly, we expect a positive coefficient β2 because a larger
engine on a car of fixed weight and number of cylinders should require more fuel.
We also expect a positive coefficient for β3 because more cylinders on a car of
fixed weight and engine displacement should require more fuel.

In order to understand the deterministic component µ more fully, consider
two cars i and j with identical engine displacement and number of cylinders.
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Since xi2 = x j2 and xi3 = x j3, the difference

E(yi ) − E(y j ) = β1(xi1 − x j1)

Thus, β1 represents the difference in the mean values of y (the mean difference in
the gas consumption) of two cars whose weights (x1) differ by one unit but that
have the same engine displacement (x2) and the same number of cylinders (x3).
Similarly, β2 represents the difference in the mean values of y of two cars whose
engine displacements (x2) differ by one unit but that have the same weight (x1)

and the same number of cylinders (x3). The parameter β3 represents the difference
in the mean values of y of two cars whose number of cylinders (x3) differ by one
unit but that have the same weight (x1) and the same engine displacement (x2).

In the modeling context, one often is not certain whether the variables under
consideration are important or not. For instance, we might be interested in the
question whether or not x3 (number of cylinders) is necessary to predict y (gas
consumption) once we have included the weight x1 and the engine displacement
x2 in the model. Thus, we are interested in a test of the hypothesis that β3 = 0,
given that x1 and x2 are in the model. Such tests may lead to the exclusion of
certain variables from the model. On the other hand, other variables such as
horsepower x4 may be important and should be included. Then the model needs
to be extended so that its predictive capability is increased.

The model in Eq. (1.9) is quite simple and should provide a useful starting
point for our modeling. Of course, we do not know the values of the model
coefficients, nor do we know whether the functional representation is appropriate.
For that we need data. One must keep in mind that there are only 38 observations
and that one cannot consider models that contain too many unknown parameters.
A reasonable strategy starts with simple parsimonious models such as the one
specified here and then checks whether this representation is capable of explaining
the main features of the data. A parsimonious model is simple in its structure
and economical in terms of the number of unknown parameters that need to be
estimated from data, yet capable of representing the key aspects of the relationship.
We will say more on model building and model checking in subsequent chapters.
The introduction in this chapter is only meant to raise these issues.

1.3 A GENERAL MODEL
In all of our examples, we have looked at situations in which a single response
variable y is modeled as

y = µ + ε (1.10a)

The deterministic component µ is written as

µ = β0 + β1x1 + β2x2 + · · · + βpx p (1.10b)

where x1, x2, . . . , x p are p explanatory variables. We assume that the explana-
tory variables are “fixed”—that is, measured without error. The parameter
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βi (i = 1, 2, . . . , p) is interpreted as the change in µ when changing xi by one
unit while keeping all other explanatory variables the same.

The random component ε is a random variable with zero mean, E(ε) = 0,

and variance V (ε) = σ 2 that is constant for all cases and that does not depend on
the values of x1, x2, . . . , x p. Furthermore, the errors for different cases, εi and ε j ,
are assumed independent. Since the response y is the sum of a deterministic and
a random component, we find that E(y) = µ and V (y) = σ 2.

We refer to the model in Eq. (1.10) as linear in the parameters. To explain the
idea of linearity more fully, consider the following four models with deterministic
components:

i. µ = β0 + β1x

ii. µ = β0 + β1x1 + β2x2
(1.11)

iii. µ = β0 + β1x + β2x2

iv. µ = β0 + β1 exp(β2x)

Models (i)–(iii) are linear in the parameters since the derivatives of µ with re-
spect to the parameters βi , ∂µ/∂βi , do not depend on the parameters. Model
(iv) is nonlinear in the parameters since the derivatives ∂µ/∂β1 = exp(β2x) and
∂µ/∂β2 = β1x exp(β2x) depend on the parameters.

The model in Eqs. (1.10a) and (1.10b) can be extended in many different
ways. First, the functional relationship may be nonlinear, and we may consider
a model such as that in Eq. (1.11iv) to describe the nonlinear pattern. Second,
we may suppose that V (y) = σ 2(x) is a function of the explanatory variables.
Third, responses for different cases may not be independent. For example, we
may model observations (e.g., on weight) that are taken on the same subject over
time. Measurements on the same subject taken close together in time are clearly
related, and the assumption of independence among the errors is violated. Fourth,
several different response variables may be measured on each subject, and we
may want to model these responses simultaneously. Many of these extensions
will be discussed in later chapters of this book.

1.4 IMPORTANT REASONS FOR MODELING
Statistical modeling, as discussed in this text, is an activity that leads to a mathe-
matical description of a process in terms of the variables of the process. Once a
satisfactory model has been found, it can be used for several different purposes.

i. Usually, the model leads to a simple description of the main features of the
data at hand. We learn which of the explanatory variables have an effect on
the response. This tells us which explanatory variables we have to change in
order to affect the response. If a variable does not affect a response, then
there may be little reason to measure or control it. Not having to keep track
of something that is not needed can lead to significant savings.
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ii. The functional relationship between the response and the explanatory
variables allows us to estimate the response for given values of the
explanatory variables. It makes it possible to infer the response for values of
the explanatory variables that were not studied directly. It also allows us to
ask “what if”-type questions. For example, a model for sales can give us
answers to questions of the following form: “What happens to sales if we
keep our price the same, but increase the amount of advertising by 10%?”
or “What happens to the gross national product if interest rates decrease by
one percentage point?” Knowledge of the relationship also allows us to
control the response variable at certain desired levels. Of course, the quality
of answers to such questions depends on the quality of the models that are
being used.

iii. Prediction of future events is another important application. We may have a
good model for sales over time and want to know the likely sales for the next
several future periods. We may have developed a good model relating sales
at time t to sales at previous periods. Assuming that there is some stability
over time, we can use such a model for making predictions of future sales.

In some situations, the models seen here are well grounded in theory.
However, often theory is lacking and the models are purely descriptive of
the data that one has collected. When a model lacks a solid theoretical
foundation, it is questionable whether it is possible to extrapolate the results
to new cases that are different from the ones occurring in the studied data
set. For example, one would be very reluctant to extrapolate the findings in
Example 1.2.4 and predict hardness for springs that were subjected to
temperatures that are much higher than 60◦C.

iv. A regression analysis may show that a variable that is difficult and
expensive to measure can be explained to a large extent by variables that are
easy and cheap to obtain. This is important information because we can
substitute the cheaper measurements for the more expensive ones. It may be
quite expensive to determine someone’s body fat because this requires that
the whole body be immersed in water. It may be expensive to obtain a
person’s bone density. However, variables such as height, weight, and
thickness of thighs or biceps are easy and cheap to obtain. If there is a good
model that can explain the expensively measured variable through the
variables that are easy and cheap to obtain, then one can save money and
effort by using the latter variables as proxies.

1.5 DATA PLOTS AND EMPIRICAL MODELING
Good graphical displays are very helpful in building models. Let us use the
data in Table 1.4 to illustrate the general approach. Note that with one response
and p explanatory variables, each case (in this situation, each car) represents a
point in (p + 1) dimensional space. Most empirical modeling starts with plots
of the data in a lower dimensional space. Typically, one starts with pairwise
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(two-dimensional) scatter plots of the response against each of the explanatory
variables. The scatter plot of fuel consumption (gallons/100 miles) against weight
of the car in Figure 1.4a illustrates that heavier cars require more fuel. It also shows
that the relationship between fuel consumption and weight is well approximated
by a linear function. This is true at least over the observed weight range from
approximately 2,000 to 4,000 pounds. How the function looks for very light and
very heavy cars is difficult to tell because such cars are not in our group of
considered cars; extrapolation beyond the observed range on weight is certainly
a very tricky task.

Knowing that this relationship is linear simplifies the interpretation of the re-
lationship because each additional 100 pounds of weight increases fuel efficiency
by the same amount, irrespective of whether we talk about a car weighing 2,000
or 3,500 pounds. For a quadratic relationship the interpretation would not be as
straightforward because the change in fuel consumption implied by a change in
weight from 2,000 to 2,100 pounds would be different than the one implied by a
change in weight from 3,500 to 3,600 pounds.

Another notable aspect of the data and the graph in Figure 1.4a is that the
observations do not lie on the line exactly. This is because of variability. Our
model recognizes this by allowing for a random component. On average, the fuel
efficiency can be represented by a simple straight-line model, but individual ob-
servations (the fuel consumption of individual cars) vary around that line. This
variation can result from many sources. First, it can be pure measurement error.
Measuring the fuel consumption on the very same car for a second time may re-
sult in a different number. Second, there is variation in fuel consumption among
cars taken from the very same model line. Despite being from the same model
line and having the same weight, cars are not identical. Third, cars of identical
weight may come from different model lines with very different characteristics.
It is not just weight that affects the fuel consumption; other characteristics may
have an effect. Engine sizes may be different and the shapes may not be the
same. One could make the model more complicated by incorporating these other
factors into it. Although this would reduce the variability in fuel consumption,
one should not make the function so complicated that it passes through every
single point. Such an approach would ignore the natural variability in measure-
ments and attach too much importance to random variation. Henri Poincare, in
The Foundations of Science [Science Press, New York, 1913 (reprinted 1929),
p. 169] expresses this very well when he writes,

Pass to an example of a more scientific character. I wish to determine
an experimental law. This law, when I know it, can be represented by a
curve. I make a certain number of isolated observations; each of these
will be represented by a point. When I have obtained these different
points, I draw a curve between them, striving to pass as near to them as
possible and yet preserve for my curve a regular form, without angular
points, or inflections too accentuated, or brusque variation of the radius
of curvature. This curve will represent for me the probable law, and I
assume not only that it will tell me the values of the function intermediate
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(a) Pairwise
scatter plot of y
(gallons/100 miles)
against weight.
(b) Pairwise
scatter plot of y
(gallons/100 miles)
against
displacement.
(c) Pairwise
scatter plot of y
(gallons/100 miles)
against number of
cylinders. (d) Three-
dimensional plot of
y (gallons/100
miles) against
weight and
displacement

between those which have been observed, but also that it will give me the
observed values themselves more exactly than direct observation. This is
why I make it pass near the points, and not through the points themselves.

Here, we have described a two-dimensional representation of fuel consump-
tion y and weight x1. Similar scatter plots can be carried out for fuel consumption
(y) and displacement x2 and also fuel consumption (y) and number of cylinders
x3. The graphs shown in Figures 1.4b and 1.4c indicate linear relationships, even
though the strengths of these relationships differ.

We notice from Figure 1.4 that each pairwise scatter plot exhibits linear-
ity. Is this enough evidence to conclude that the model with the three explana-
tory variables should be linear also? The answer to this question is “no” in
general. Although the linear model, y = β0 + β1x1 + β2x2 + β3x3 + ε, may pro-
vide a good starting point, the model may miss more complicated associations.
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Two-dimensional displays are unable to capture the joint relationships among
the response and more than one explanatory variable. In order to bring out the
joint relationships between a response and two explanatory variables (e.g., weight
x1 and displacement x2), one needs to look at a three-dimensional graph of fuel
consumption y on both x1 and x2. This is done in Figure 1.4d. One notices that
in such graphs it becomes considerably more difficult to recognize patterns, es-
pecially when working with relatively small data sets. However, at least from
this graph it appears that the relationship can be approximated by a plane. The
equation of a plane is given by y(gallons/100 miles) = β0 + β1x1 + β2x2. This
function implies that for a fixed value of x2, a change in x1 by one unit changes
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the response y by β1 units. Similarly, for a fixed value of x1, a change in x2 by
one unit changes the response y by β2 units. The effects of changes in x1 and x2

are additive. Additivity is a special feature of this particular representation. It is
a convenient simplification but need not be true in general. For some relation-
ships the effects of a change in one explanatory variable depend on the value of
a second explanatory variable. One says that the explanatory variables interact
in how they affect the response y.

Up to now, we have incorporated the effects of x1 and x2. What about the effect
of the third explanatory variable x3? It is not possible to display all four variables
in a four-dimensional graph. However, judging from the pairwise scatterplots and
the three-dimensional representations (y, x1, x2), (y, x1, x3), and (y, x2, x3), our
linear model in x1, x2, and x3 may provide a sensible starting point.

1.6 AN ITERATIVE MODEL BUILDING APPROACH
An understanding of relationships can be gained in several different ways. One
can start from a well-developed theory and use the data mostly for the estimation
of unknown parameters and for checking whether the theory is consistent with the
empirical information. Of course, any inconsistencies between theory and data
should lead to a refinement of the model and a subsequent check whether the
revised theory is consistent with the data.

Another approach, and one that is typically used in the social sciences, is to
start from the data and use an empirical modeling approach to derive a model
that provides a reasonable characterization of the relationship. Such a model may
in fact lead to a new theory. Of course, theories must be rechecked against new
data, and in cases of inconsistencies with the new information, new models must
be developed, estimated, and checked again. Notice that good model building is
a continual activity. It does not matter much whether one starts from theory or
from data; what matters is that this process continues toward convergence.

A useful strategy for building such models is given in Figure 1.5. Initially, a
tentative model is specified from relevant data and/or available theory. In some
cases, theory will suggest certain models. In other situations, theory may not

Data

Specifications Estimation
Model checking:

No

Yes Use the
model

Theory

Is the model adequate?

FIGURE 1.5 A
model building
system



Abraham Abraham˙C01 November 8, 2004 0:33

22 Introduction to Regression Models

exist or may be incomplete, and data must be used to specify a reasonable initial
model; exploratory data analysis and innovative ways of displaying information
graphically are essential. The tentatively entertained model usually contains un-
known parameters that need to be estimated. Model fitting procedures, such as
least squares or maximum likelihood, have been developed for this purpose.
This is discussed further in the next chapter.

Finally, the modeler must check the adequacy of the fitted model. Inadequacy
can occur in several ways. For example, the model may miss important variables, it
may include inappropriate and unnecessary variables that make the interpretation
of the model difficult, and the model may misspecify the functional form. If the
model is inadequate, then it needs to be changed, and the iterative cycle of “model
specification—parameter estimation—model checking” must be repeated. One
needs to do this until a satisfactory model is obtained.

1.7 SOME COMMENTS ON DATA
This discussion shows that good data are an essential component of any model
building. However, not all data are alike, and we should spend some time dis-
cussing various types of data. We should distinguish between data arising from
designed experiments and data from observational studies.

Many data sets in the physical sciences are the result of designed studies that
are carefully planned and executed. For example, an engineer studying the impact
of pressure and temperature on the yield of a production process may manufacture
several products under varying levels of pressure and temperature. He or she may
select three different pressures and four different settings for temperature and
conduct one or several experiments at each of the (3) × (4) = 12 different factor-
level combinations. A good experimenter will suspect that other factors may
have an impact on the yield but may not know for sure which ones. It could be
the purity of the raw materials, environmental conditions in the plant during the
manufacture, and so on. In order to minimize the effects of these uncontrolled
factors, the investigator will randomize the arrangement of the experimental runs.
He or she will do this to minimize the effects of unknown time trends. For example,
one certainly would not want to run all experiments with the lowest temperature on
one day and all experiments using the high temperature on another. If the process
is sensitive to daily fluctuations in plant conditions, an observed difference in the
results of the two days may not be due to temperature but due to the different
conditions in the plant. Good experimenters will be careful when changing the
two factors of interest, keeping other factors as uniform as possible. What is
important is that the experimenter is actively involved in all aspects of obtaining
the data.

Observational data are different because the investigator has no way of im-
pacting the process that generates the data. The data are taken just as the data-
generating process is providing them. Observational data are often referred to as
“happenstance” data because they just happen to be available for analysis.
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Economic and social science information is usually collected through a cen-
sus (i.e., every single event is recorded) or through surveys. The problem with
many social science data sets is that several things may have gone wrong during
the data-gathering process, and the analyst has no chance to recover from these
problems. A survey may not be representative of the population that one wants
to study. Data definitions may not match exactly the factors that one wants to
measure, and the gathered data may be poor proxies at best. Data quality may
be poor because there may not have been enough time for careful data collection
and processing. There may be missing data. The data that come along may not
be “rich” enough to separate the effects of competing factors.

Consider the following example as an illustration. Assume that you want to
explain college success as measured by student grade point average. Your admis-
sion office provides the student ACT scores (on tests taken prior to admission),
and you have survey data on the number of study hours per week. Does this
information allow you to develop a good model for college success? Yes, to a
certain degree. However, there are also significant problems. First, college GPA
is quite a narrow definition of college success. GPA figures are readily available,
but one needs to discuss whether this is the information one really wants. Sec-
ond, the range of ACT scores may be not wide enough to find a major impact
of ACT scores on college GPA. Most good universities do not accept marginal
students with low ACT scores. As a consequence, the range of ACT scores at
your institution will be narrow, and you will not see much effect over that limited
range. Third, study hours are self-reported, and students may have a tendency to
make themselves look better than they really are. Fourth, ACT scores and study
hours tend to be correlated. Students with a high ACT scores tend to have good
study skills; it will be rare to find someone with a very high ACT score who does
not study. The correlation between the two explanatory variables, ACT score and
study hours, makes it difficult to separate the effects on college GPA of ACT
scores and study hours.

EXERCISES

1.1. Consider the following relationships.
Comment on the type of relationships that
can be expected, supporting your discussion
with simple graphs. In which of these cases
can you run experiments that can help you
learn about the relationship between the
response y and the explanatory variables x?

a. Tensile strength of an alloy may be related
to hardness and density of the stock.

b. Tool life may depend on the hardness of
the material to be machined and the depth
of the cut.

c. The weight of the coating of electrolytic
tin plate may be affected by the current,
acidity, rate of travel of the strip, and
distance from the anode.

d. The diameter of a condenser coil may be
affected by the thickness of the coil,
number of turns, and tension in the
winding.

e. The moisture content of lumber may
depend on the speed of drying, the drying
temperature, and the dimension of the
pieces.
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f. The performance of a foundry may be
affected by atmospheric conditions.

g. The life of a light bulb may vary with the
quality of the filament; the tile finish may
depend on the temperature of firing.

1.2. Consider the payout of the following 18
investments (data file payout). The
investments vary according to the invested
principal P , the monthly interest rate R, and
the length of maturity T (in months). The
data in the following table were generated
from the deterministic continuous
compounding model, Payout = PeRT . No
uncertainty was added to the equation.

It is reasonable to assume that the payout
increases with the principal, the interest rate,
and the maturity. However, without theory,
the form of the relationship is not obvious.
An empirical model building strategy that
does not utilize available theory will be
inefficient and may never find the hidden
model. Construct scatter plots of the response
(payout) on the explanatory variables
(principal, interest rates, and maturity), and
you will see what we mean. It is quite
difficult to “see” the correct relationship.

Plot the logarithm of payout against the
product of interest rate and maturity, and
label the points on the scatter plot according
to the invested principal (1,000, 1,500, and
2,000). What do you see, and how does this
help you arrive at the correct model?

Principal Interest Rate Time (Months) Payout

1,000 0.001 12 1,012.1
1,000 0.002 24 1,049.2
1,000 0.003 12 1,036.7
1,000 0.001 36 1,036.7
1,000 0.002 12 1,024.3
1,000 0.003 36 1,114.0
1,500 0.001 36 1,555.0
1,500 0.002 24 1,573.8
1,500 0.003 24 1,612.0
1,500 0.010 12 1,691.2
1,500 0.010 36 2,150.0
1,500 0.010 12 1,691.2
1,200 0.015 12 1,436.7

Principal Interest Rate Time (Months) Payout

1,200 0.015 36 2,059.2
1,200 0.015 36 2,059.2
1,200 0.005 24 1,353.0
1,200 0.005 12 1,274.2
1,200 0.005 36 1,436.7

1.3. Look ahead in the book and read the problem
descriptions of several exercises in Chapters
2 and 4–8. Find examples where the data
originate from a designed experiment. Find
examples where the data are the result of
observational studies.

1.4. List other examples of designed experiments
and observational studies.

1.5. Look ahead in the text and consider the data
sets in Exercises 2.8, 2.9, 2.16–2.18, 2.21,
2.24, and 2.25 of Chapter 2. Construct
pairwise scatter plots of the response variable
against the explanatory variable(s). Discuss
whether a linear model gives an appropriate
description of the relationship. Speculate on
the reasons for the variability of the response
around the fitted line.

1.6. Experiment with three-dimensional displays
of the information. For example, consider the
data generated in Exercise 1.2. Consider the
logarithm of payout as the response and the
logarithm of the principal and the product of
interest rate and maturity as the two
explanatory variables. Discuss whether it is
easy to spot three-dimensional relationships
from such graphs. As a second example,
consider the silkworm data in Exercise 4.15
of Chapter 4.

1.7. Explain the statement that a nonlinear model
in the explanatory variables may turn out to
be linear in the parameters. Give examples.
For instance, is the quadratic model in x a
model that is linear in the parameters?
Explain.

1.8. Give examples of regression models that are
nonlinear in the regression parameters.

1.9. Can you think of situations in which the
variability in the response depends on the
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level of the explanatory variables? For
example, consider sales that increase over
time. Why is it reasonable to expect more
variability in sales when the sales are high?
Discuss.

1.10. Causality and correlation. Assume that a
certain data set exhibits a strong association
among two variables. Does this imply that
there is a causal link? Can you think of
examples where two variables are correlated
but not causally related? What about the
annual number of storks and the annual
number of human births? Assume that your
data come from a time period of increasing
prosperity, such as the one immediately
following World War II. Prosperity may
impact the storks, and it may also affect
couples’ decisions to have families. Hence,
you may see a strong (positive) correlation
between the number of storks and the number
of human births. However, you know that
there is no causal effect. Can you describe the
underlying principle of this example? Give
other examples?

1.11. Collect the following information. Obtain
average test scores for the elementary schools
in your state (region). Obtain data on the
proportion of children on subsidized lunch.
Construct scatter plots. Do you think that
there is a causal link between test scores and
the proportion of children on subsidized
lunch? If not, how do you explain the results
you see. What if you had data on average
income or the educational level of parents
in these districts? Do you expect similar
results?

1.12. Salary raises are usually expressed in
percentage terms. This means that two people
with the same percentage raise, but different
previous salaries, will get different monetary
(dollar) raises. Assume that the relative raise
(R = RelativeRaise = PercentageRaise/100)

is strictly proportional to performance (that
is, RelativeRaise = βPerformance).
a. A plot of RelativeRaise against
Performance exhibits a perfect linear
relationship through the origin. Would a plot
of AbsoluteRaise against Performance also
exhibit a perfect linear association? Would a
regression of AbsoluteRaise against
Performance lead to the desired slope
parameter β?
b. Consider the logarithmic transformation of
the ratio (CurrentSalary/ PreviousSalary).
What if you were to plot the logarithm of this
ratio against the performance? How would
this help you?

1.13. Consider Example 1.2.6 in which we studied
the effectiveness of five oral contraceptives.
We used model (1.8),

yi = αzi + β1xi1 + · · · + β5xi5 + εi

where zi and yi are the HDLC readings at the
beginning and after 6 months, and x1, . . . , x5

are indicators for the five treatment
(contraceptive) groups.

How would you convince someone that
this is an appropriate specification? In order
to address this question, you may want to
look at five separate scatter plots of y against
z, one for each contraceptive group. Make
sure these graphs are made with identical
scales on both axes. Have the statistical
software of your choice draw in the “best
fitting” straight lines. Your model in Eq. (1.8)
puts certain requirements on the slopes of
these five graphs. What are these
requirements?

How would you explain a model in which
α = 1? In this case, the emphasis is on
changes in the HDLC, and the question
becomes whether the magnitudes of the
changes are related to the contraceptives.
How would you analyze the data under this
scenario?
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2 Simple Linear
Regression

2.1 THE MODEL
In this chapter, we consider the linear regression model with a single predictor
(regressor) variable. The model is given as

y = µ + ε, where µ = β0 + β1x (2.1)

It is commonly referred to as the simple linear regression model because only
one predictor variable is involved. Suppose we have n pairs of observations (xi , yi )

i = 1, 2, . . . , n. Then we can characterize these observations as

yi = β0 + β1xi + εi , i = 1, 2, . . . , n

For the hardness data in Example 1.2.4 of Chapter 1, we have

55.8 = β0 + β1.30 + ε1

59.1 = β0 + β1.30 + ε2
...

...

16.9 = β0 + β1.60 + ε14

(2.2)

2.1.1 IMPORTANT ASSUMPTIONS

The standard analysis is based on the following assumptions about the regressor
variable x and the random errors εi , i = 1, . . . , n:

1. The regressor variable is under the experimenter’s control, who can set the
values x1, . . . , xn . This means that xi , i = 1, 2, . . . , n, can be taken as
constants; they are not random variables.

2. E(εi ) = 0, i = 1, 2, . . . , n.
This implies that µi = E(yi ) = β0 + β1xi , i = 1, 2, . . . , n.

3. V (εi ) = σ 2 is constant for all i = 1, 2, . . . , n.
This implies that the variances V (yi ) = σ 2 are all the same. All
observations have the same precision.

26
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4. Different errors εi and ε j , and hence different responses yi and y j , are
independent. This implies that Cov(εi , ε j ) = 0, for i �= j .

The model implies that the response variable observations yi are drawn from
probability distributions with means µi = E(yi ) = β0 + β1xi and constant vari-
ance σ 2. In addition, any two observations yi and y j , for i �= j , are independent.

2.1.2 OBJECTIVES OF THE ANALYSIS

Given a set of observations, the following questions usually arise:

1. Can we establish a relationship between y and x?

2. Can we predict y from x? To what extent can we predict y from x?

3. Can we control y by using x?

In order to answer these questions within the context of the simple linear regression
model with mean µ = β0 + β1x , we need to estimate β0, β1, and σ 2 from available
data (xi , yi ), i = 1, 2, . . . , n. The slope β1 is of particular interest, because a zero
slope indicates the absence of a linear association.

2.2 ESTIMATION OF PARAMETERS
2.2.1 MAXIMUM LIKELIHOOD ESTIMATION

This is a common method of estimating the parameters. Maximum likelihood es-
timation selects the estimates of the parameters such that the likelihood function
is maximized. The likelihood function of the parameters β0, β1, σ 2 is the joint
probability density function of y1, y2, . . . , yn , viewed as a function of the param-
eters. One looks for values of the parameters that give us the greatest probability
of observing the data at hand.

A probability distribution for y must be specified if one wants to use this
approach. In addition to the assumptions made earlier, we assume that εi has a
normal distribution with mean zero and variance σ 2. This in turn implies that yi

has a normal distribution with mean µi = β0 + β1xi and variance σ 2. We write
εi ∼ N (0, σ 2) and yi ∼ N (β0 + β1xi , σ

2).
The probability density function for the i th response yi is

p(yi |β0, β1, σ
2) = 1√

2πσ
exp

[
− 1

2σ 2
(yi − β0 − β1xi )

2

]
(2.3)

and the joint probability density function of y1, y2, . . . , yn is

p(y1, y2, . . . , yn|β0, β1, σ
2) =

(
1√
2π

)n

σ−n exp

[
− 1

2σ 2

n∑
i=1

(yi − β0 − β1xi )
2

]
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Treating this as a function of the parameters leads us to the likelihood function
L(β0, β1, σ

2|y1, y2, . . . , yn), and its logarithm

l(β0, β1, σ
2) = lnL(β0, β1, σ

2) = K − nlnσ − 1

2σ 2

n∑
i=1

(yi − β0 − β1xi )
2 (2.4)

Here, K = (−n/2)ln(2π) is a constant that does not depend on the parameters.
The maximum likelihood estimators (MLEs) ofβ0,β1,σ 2 maximize l(β0, β1, σ

2).
Maximizing the log-likelihood l(β0, β1, σ

2) with respect toβ0 and β1 is equivalent
to minimizing

∑n
i=1(yi − β0 − β1xi )

2. The method of estimating β0 and β1 by
minimizing S(β0, β1) = ∑n

i=1(yi − β0 − β1xi )
2 is referred to as the method of

least squares.

2.2.2 LEAST SQUARES ESTIMATION

This discussion shows that maximum likelihood estimation, with the assumption
of a normal distribution, leads to least squares estimation. However, least squares
can be motivated in its own right, without having to refer to a normal distribution.
One wants to obtain a line µi = β0 + β1xi that is “closest” to the points (xi , yi ).
The errors εi = yi − µi = yi − β0 − β1xi (i = 1, 2, . . . , n) should be as small as
possible. One approach to achieve this is to minimize the function

S(β0, β1) =
n∑

i=1

ε2
i =

∑
(yi − µi )

2 =
∑

(yi − β0 − β1xi )
2 (2.5)

with respect to β0 and β1. This approach uses the squared distance as a measure of
closeness. Note that other measures could be used, such as the absolute value of
the difference, or some other power of the absolute difference. We use a symmetric
loss function where positive and negative differences are treated the same. One
could also think of nonsymmetric loss functions where over- and underpredictions
are weighted differently. The squared error loss is the function that arises from
the maximum likelihood procedure.

Taking derivatives with respect to β0 and β1, and setting the derivatives to
zero,

∂S(β0, β1)

∂β0
= −2

∑
(yi − β0 − β1xi ) = 0

and
∂S(β0, β1)

∂β1
= −2

∑
(yi − β0 − β1xi )xi = 0

leads to the two equations:

nβ0 + (∑
xi

)
β1 = ∑

yi(∑
xi

)
β0 + (∑

x2
i

)
β1 = ∑

xi yi

(2.6)
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These are referred to as the normal equations. Suppose that β̂0 and β̂1 denote the
solutions for β0 and β1 in the two-equation system (2.6). Simple algebra shows
that these solutions are given by

β̂1 =
∑

xi yi − (
∑

xi)(
∑

yi)
n∑

x2
i − (

∑
xi)

2

n

=
∑

(xi − x̄)(yi − ȳ)∑
(xi − x̄)2

= sxy

sxx
(2.7)

β̂0 = ȳ − β̂1 x̄, where ȳ =
∑

yi

n
and x̄ =

∑
xi

n

They are called the least squares estimates (LSEs) of β0 and β1, respectively.

2.3 FITTED VALUES, RESIDUALS, AND THE ESTIMATE OF σ2

The expression µ̂i = β̂0 + β̂1xi is called the fitted value that corresponds to the
i th observation with xi as the value for the explanatory variable. It is the value
that is implied by the fitted model. Some textbooks refer to it as ŷi .

The difference between yi and µ̂i , yi − µ̂i = ei , is referred to as the residual.
It is the vertical distance between the observation yi and the estimated line µ̂i

evaluated at xi .
The simple linear regression model, sample data, and the fitted line are illus-

trated in Figure 2.1. The broken line represents the mean E(yi ) = µi = β0 + β1xi .
The data are generated from distributions with densities sketched on the graph.
The resulting data are used to determine the LSEs β̂0 and β̂1. The solid line on
the graph represents the estimated line µ̂i = β̂0 + β̂1xi . Imagine repeating this
experiment with another set of n observations yi at these specified x’s. Due to
the random component εi in the model, the observations will be different, and the
estimates and the fitted line would change.

ei
ei

(xi, yi)

R
es

po
ns

e 
y

xi

Regressor x

m = b0 + b1x (dashed line)

m^ 
= b^

0 + b^
1x (solid line)

FIGURE 2.1 Mean
Response and
Estimated
Regression Line:
Simple Linear
Regression
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2.3.1 CONSEQUENCES OF THE LEAST SQUARES FIT

Least squares estimates set the derivatives of S(β0, β1) equal to zero. The equa-
tions, evaluated at the least squares estimates,

∂S(β0, β1)

∂β0
= −2

∑
[yi − (β̂0 + β̂1xi )] = 0

and

∂S(β0, β1)

∂β1
= −2

∑
[yi − (β̂0 + β̂1xi )]xi = 0

imply certain restrictions:

i.
∑n

i=1 ei = 0. This can be seen from the derivative with respect to β0.

ii.
∑n

i=1 ei xi = 0. This follows from the derivative with respect to β1.

iii.
∑n

i=1 µ̂i ei = 0. This is because∑
µ̂i ei =

∑
(β̂0 + β̂1xi )ei = β̂0

∑
ei + β̂1

∑
xi ei = 0

due to the results in (i) and (ii).

iv. (x̄, ȳ) is a point on the line µ̂ = β̂0 + β̂1x . Evaluating the fitted model at x̄
leads to β̂0 + β̂1 x̄ = (ȳ − β̂1 x̄) + β̂1 x̄ = ȳ.

v. S(β̂0, β̂1) = ∑n
i=1 e2

i is the minimum of S(β0, β1).

2.3.2 ESTIMATION OF σ2

Minimization of the log-likelihood function l(β0, β1, σ
2) in Eq. (2.4) with respect

to σ 2 leads to the MLE

σ̂ 2 = S(β̂0, β̂1)

n
(2.8)

The numerator S(β̂0, β̂1) = ∑n
i=1(yi − (β̂0 + β̂1x))2 = ∑n

i=1 e2
i is called the

residual sum of squares; it is the minimum of S(β0, β1).
The LSE of σ 2 is slightly different. It is obtained as

s2 = S(β̂0, β̂1)

n − 2
(2.9)

It is also called the mean square error (MSE). The only difference between the
estimates in Eqs. (2.8) and (2.9) is in the denominator. The MLE divides by n,
whereas the LSE divides by n − 2.

The residual sum of squares, S(β̂0, β̂1) = ∑n
i=1 e2

i consists of n squared
residuals. However, the minimization of S(β0, β1) has introduced two constraints
among these n residuals; see (i) and (ii) given previously. Hence, only n − 2 resid-
uals are needed for its computation. The remaining two residuals can always be
calculated from

∑
ei = ∑

ei xi = 0. One says that the residual sum of squares
has n − 2 “degrees of freedom.” The number of degrees of freedom symbolizes
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the number of independent components that are needed to determine the sum of
squares.

The difference between the ML and the LS estimate of σ 2 is small, especially
if n is reasonably large. In practice, one prefers the LSE s2 because it is an
unbiased estimate of σ 2; this is discussed further in Chapter 4.

2.3.3 LEAST SQUARES CALCULATIONS FOR THE HARDNESS EXAMPLE

Here we have n = 14,
∑14

i=1 xi = 630,
∑14

i=1 yi = 520.2,
∑14

i=1 xi yi = 20,940,∑14
i=1 x2

i = 30,300:

β̂1 = 20,940 − (630 × 520.2/14)

30,300 − (6302/14)
= −1.266

β̂0 = 520.2

14
− (−1.266)

630

14
= 94.123

s2 = 1

12

14∑
i=1

e2
i = 2.235

The slope estimate β̂1 is negative. It implies lower than average hardness for items
produced under higher than average temperatures. Is the estimate β̂1 = −1.266
extreme enough to claim that the unknown (population) slope β1 is different from
zero? For the answer to this question, one needs to understand the sampling prop-
erties of the estimators. In other words, if the true slope were zero and if we
repeated the experiment many times at the same given temperature values, what
would be the natural variability in the estimates β̂1? Would the one observed
estimate β̂1 = −1.266 appear like an extreme realization from this sampling dis-
tribution? If our estimate is large compared to the sampling distribution that can
be expected, then the estimate suggests that β1 is different from zero.

2.4 PROPERTIES OF LEAST SQUARES ESTIMATES
Let us write the LSE of β1 in Eq. (2.7) in slightly more convenient form:

β̂1 =

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2

=

n∑
i=1

(xi − x̄)yi − ȳ
n∑

i=1
(xi − x̄)

n∑
i=1

(xi − x̄)2

=

n∑
i=1

(xi − x̄)yi

n∑
i=1

(xi − x̄)2

=
n∑

i=1

ci yi

where ci = (xi − x̄)/sxx are constants; sxx = ∑n
i=1(xi − x̄)2.
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The constants ci have several interesting properties:

i.
∑n

i=1 ci = ∑n
i=1(xi − x̄)/sxx = 0

ii.
∑n

i=1 ci xi = ∑n
i=1 xi (xi − x̄)/sxx = 1 (2.10)

iii.
∑n

i=1 c2
i = ∑n

i=1(xi − x̄)2/s2
xx = 1/sxx

These results can be used to derive the expected values and the variances of the
LSEs β̂0 and β̂1.

2.4.1 EXPECTED VALUES OF LEAST SQUARES ESTIMATES

1. E(β̂1) = E

(
n∑

i=1
ci yi

)
= ∑n

i=1 ci E(yi ) = ∑
ci (β0 + β1xi )

= β0
∑

ci + β1
∑

ci xi = 0 + β1 × 1 = β1 (2.11)

Since E(β̂1) = β1, we say that β̂1 is an unbiased estimator of β1. This
implies that when the experiment is repeated a large number of times, the
average of the estimates β̂1 [i.e., E(β̂1)] coincides with the true value β1.

2. Similarly,

E(β̂0) = E(ȳ − β̂1 x̄) = E(ȳ) − x̄ E(β̂1) = E(ȳ) − β1 x̄

However, E(ȳ) = E
(∑

yi/n
) = [∑n

i=1(β0 + β1xi )
]
/n = β0 + β1 x̄ .

Hence,

E(β̂0) = β0 + β1 x̄ − β1 x̄ = β0 (2.12)

Thus, β̂0 is also unbiased for β0.

3. The LSE of µ0 = β0 + β1x0 is given by µ̂0 = β̂0 + β̂1x0 and
E(µ̂0) = β0 + β1x0 = µ0. Hence, µ̂0 is unbiased for µ0.

4. It can also be shown that s2 is an unbiased estimator of σ 2. That is,

E(s2) = σ 2 (2.13)

This result will be proved in Chapter 4 for the general regression model.

2.4.2 VARIANCES OF LEAST SQUARES ESTIMATES

1. V (β̂1) = V (
∑n

i=1 ci yi ) = ∑
c2

i V (yi ) = ∑
c2

i σ
2 since the yi ’s are

independent and V (yi ) = σ 2 is constant.
Hence, from Eq. (2.10)

V (β̂1) = σ 2/sxx (2.14)

2. In order to obtain the variance of β̂0, we write the estimator β̂0 as follows:

β̂0 = ȳ − β̂1 x̄ =
n∑

i=1
(yi/n) − x̄

n∑
i=1

(xi − x̄)yi/sxx

=
n∑

i=1
ki yi , where ki = 1

n
− x̄(xi − x̄)

sxx
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Then,

V (β̂0) =
n∑

i=1

k2
i σ

2 = σ 2
[

1

n
+ x̄2

sxx

]
(2.15)

Simple algebra shows that
∑

k2
i equals the second factor in the previous

expression.

3. For the variance of V (µ̂0), we write

µ̂0 = β̂0 + β̂1x0 = ȳ − β̂1 x̄ + β̂1x0 = ȳ + β̂1(x0 − x̄)

=
n∑

i=1

{
yi

n
+ (x0 − x̄)

(xi − x̄)yi

sxx

}

=
n∑

i=1

{
1

n
+ (x0 − x̄)(xi − x̄)

sxx

}
yi

=
n∑

i=1

di yi , where di =
{

1

n
+ (x0 − x̄)(xi − x̄)

sxx

}
Then,

V (µ̂0) =
n∑

i=1

d2
i σ 2 = σ 2

[
1

n
+ (x0 − x̄)2

sxx

]
(2.16)

Simple algebra shows that
∑

d2
i equals the second factor in the previous

expression.

2.5 INFERENCES ABOUT THE REGRESSION PARAMETERS
The objective of most statistical modeling is to say something about the parameters
of the population from which the data were taken (sampled). Of course, the more
data, the smaller the uncertainty about the estimates. This fact is reflected in the
variances of the LSEs; the denominators in the variances in Eqs. (2.14)–(2.16)
increase with the sample size.

The uncertainty in the estimates can be expressed through confidence inter-
vals, and for that one needs to make assumptions about the distribution of the
errors. In the following discussion, we assume that the errors, and hence the
observations, are normally distributed. That is,

yi = β0 + β1xi + εi , where εi ∼ N (0, σ 2)

2.5.1 INFERENCE ABOUT β1

The question whether or not the slope β1 is zero is of particular interest. The slope
β1 expresses the effect on E(y) of a unit change in the x variable.

Linear combinations of normal random variables are again normally dis-
tributed. The estimator β̂1 = ∑n

i=1 ci yi , where ci = (xi − x̄)/sxx, is a linear
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combination of normal random variables and hence itself a normal random vari-
able. This result is shown in Chapter 3 for a more general situation. The mean
and the variance were obtained before. We find that

β̂1 ∼ N

(
β1,

σ 2

sxx

)
or, after standardization,

β̂1 − β1

σ/
√

sxx
∼ N (0, 1)

The factor σ 2 in the variance is unknown and must be estimated. For inferences
about β1 we replace the unknown σ 2 by its LSE s2 in Eq. (2.9). We consider the
ratio

T = (β̂1 − β1)

s/
√

sxx
= (β̂1 − β1)

σ/
√

sxx

/√
(n − 2)s2

σ 2(n − 2)
(2.17)

The last identity (which you can check easily) appears unnecessary. However,
the motivation for writing it in this form is that it facilitates the derivation of the
sampling distribution. It can be shown that

i. The first term Z = β̂1 − β1

σ/
√

sxx
follows a standard normal distribution.

ii.
(n − 2)s2

σ 2
follows a chi-square distributon with n − 2 degrees of freedom,

χ2
n−2 (see the appendix in Chapter 4 for the proof in the general case).

iii. s2 and β̂1 are independent (this is proved for the general case in Chapter 4).

iv. If Z ∼ N (0, 1), U ∼ χ2
v , and Z and U are independent, then it follows that

Z/
√

U/v has a Student t distribution with v degrees of freedom. We denote
this distribution as t (v).

From the results in (i)–(iv), it follows that

T = β̂1 − β1

s/
√

sxx
∼ t (n − 2) (2.18)

Standardization of β̂1 − β1 by the standard deviation of β̂1, σ/
√

sxx, leads to a
standard normal distribution. Standardization by the estimated standard devia-
tion, s/

√
sxx, leads to a t distribution. The estimated standard deviation of β̂1 is

also referred to as the standard error of the estimate β̂1, and we sometimes
write it as s.e.(β̂1) = s/

√
sxx. The standard error tells us about the variability of

the sampling distribution of β̂1; that is, the extent to which an estimate can differ
from the true (population) value.

Confidence Interval for β1
Let us use t (1 − α/2; n − 2) to denote the 100(1 − α/2) percentile of a t distri-
bution with n − 2 degrees of freedom. Since the t distribution is symmetric, we
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0.0t(a /2; n−2) t(1−a/2; n−2)

a /2a /2

FIGURE 2.2
t Distribution and
Confidence
Intervals

have that the 100(α/2) percentile is given by t (α/2; n − 2) = −t (1 − α/2; n − 2)

(Figure 2.2).
For example, the 97.5th and the 2.5th percentiles of the t (12) distribution are

given by t (0.975; 12) = 2.18 and t (0.025; 12) = −2.18, respectively.
The sampling distribution result in Eq. (2.18) implies

P

[
− t

(
1 − α

2
; n − 2

)
<

β̂1 − β1

s/
√

sxx
< t

(
1 − α

2
; n − 2

)]
= 1 − α

or

P

[
β̂1 − t

(
1 − α

2
; n − 2

)
s√
sxx

< β1 < β̂1 + t

(
1 − α

2
; n − 2

)
s√
sxx

]
= 1 − α

Hence, a 100(1 − α) percent confidence interval for β1 is defined by the previous
equation, and it is given by[

β̂1 − t

(
1 − α

2
; n − 2

)
s√
sxx

, β̂1 + t

(
1 − α

2
; n − 2

)
s√
sxx

]
(2.19)

Note the form of this interval. You get it by starting with the point estimate β̂1

and by adding and subtracting a certain multiple of its standard error. That is,

Estimate ± (t value)(standard error of estimate)

where the standard error of the estimate is the estimated standard deviation of
the sampling distribution of β̂1, given by s/

√
sxx. For a 95% confidence interval

and α = 0.05, one needs to look up the 97.5th percentile t (0.975; n − 2) and the
2.5th percentile, t (0.025; n − 2) = −t (0.975; n − 2).
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Testing a Hypothesis about β1
When testing H0 :β1 = 0 against the alternative H1 :β1 �= 0, one assesses the mag-
nitude of the t ratio

t0 = β̂1

s.e.(β̂1)
= β̂1

s/
√

sxx
(2.20)

The t ratio is the standardized difference of the estimate β̂1 from the null hy-
pothesis (which in this case is zero). The issue is whether the observed t ratio
is large enough in absolute value so that one can also claim that the population
parameter β1 is different from zero. A comment on notation: The subscript zero
in the observed t ratio t0 = β̂1/s.e.(β̂1) makes reference to the zero constraint
in the null hypothesis β1 = 0. We also write this t ratio as t0(β̂1) or simply as
t (β̂1).

Under the null hypothesis (β1 = 0), the t ratio, T = β̂1/s.e.(β̂1), follows a
t (n − 2) distribution. Hence, one can calculate the probability

p = P[|T | ≥ |t0|] = 2P[T ≥ |t0|] (2.21)

This is referred to as the p value, or the probability value. If this p value is small
(smaller than a selected significance level, usually 0.05), then it is unlikely that
the observed t ratio has come from the null hypothesis. In such case, one would
not believe in the null hypothesis and reject the hypothesis that β1 = 0. On the
other hand, if this p value is large (larger than the significance level), one would
conclude that the observed t value may have originated from the null distribution.
In this case, one has no reason to reject H0.

2.5.2 INFERENCE ABOUT µ0 =β0 + β1x0

We saw that µ̂0 = ∑n
i=1 di yi , where di = 1

n
+ (x0 − x̄)(xi − x̄)

sxx
. Since µ̂0 is a lin-

ear combination of normal random variables, µ̂0 is normal. Earlier we derived the
mean E(µ̂0) = µ0 = β0 + β1x0 and the variance

V (µ̂0) =
[

1

n
+ (x0 − x̄)2

sxx

]
σ 2

Hence, the standardized random variable

µ̂0 − µ0

σ
[

1
n + (x0−x̄)2

sxx

]1/2 ∼ N (0, 1)

Substitution of the estimate s for σ changes the sampling distribution from a
normal to a t (n − 2) distribution. As before, it can be shown that

T = µ̂0 − µ0

s
[

1
n + (x0−x̄)2

sxx

]1/2 = (β̂0 + β̂1x0) − (β0 + β1x)

s
[

1
n + (x0−x̄)2

sxx

]1/2 ∼ t (n − 2) (2.22)
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Using a t distribution with n − 2 degrees of freedom (d.f.), a 100(1 − α) percent
confidence interval for µ0 is given by

(β̂0 + β̂1x0)︸ ︷︷ ︸ ± t

(
1 − α

2
; n − 2

)
︸ ︷︷ ︸ s

[
1

n
+ (x0 − x̄)2

sxx

]1/2

︸ ︷︷ ︸
estimate t value s.e.(β̂0 + β̂1x0)

(2.23)

Recall our rule about the construction of such intervals. Start with the point
estimate and add/subtract a multiple of the estimated standard deviation of the
point estimate, which is also referred to as the standard error of the estimate.

For the special case when x0 = 0, µ0 simplifies to µ0 = β0 and we can obtain
a 100(1 − α) percent confidence interval for β0 by setting x0 = 0 in the previous
interval Eq. (2.23). This turns out to be

β̂0 ± t

(
1 − α

2
; n − 2

)
s

[
1

n
+ x̄2

sxx

]1/2

(2.24)

2.5.3 HARDNESS EXAMPLE CONTINUED

β̂0 = 94.134, β̂1 = −1.266, sxx = ∑
(xi − x̄)2 = 1,950, n = 14, s2 = 2.235. The

relevant degrees of freedom are n − 2 = 12. For a 95% confidence interval for β1,

we need t (0.975, 12) = 2.18; and
s√
sxx

=
√

2.235

1,950
= 0.034. The 95% confidence

interval for β1 is

β̂1 ± t (0.975; 12)
s√
sxx

−1.266 ± (2.18)(0.034)

−1.266 ± 0.072

The confidence interval for β1 extends from −1.338 to −1.194. Since “zero”
is not in this interval, the data provide substantial evidence to reject β1 = 0.
Temperature appears to have a significant effect on hardness. Since β̂1 is negative,
the hardness decreases as temperature increases.

Formally, one can test the null hypothesis β1 = 0 by calculating the t ratio

t0 = β̂1

s.e.(β̂1)
= −1.266

0.034
= −37.4

and its probability value, P(|T | > 37.4) ≈ 0.0001. Since this is extremely small,
there is overwhelming evidence against the hypothesis β1 = 0. Temperature has
a major impact on hardness.

A 95% confidence interval for β0 uses the standard error

s.e.(β̂0) =
√

s2

(
1

n
+ x̄2

sxx

)
= 1.575
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The interval is given by

β̂0 ± t (0.975; 12)s.e.(β̂0)

94.134 ± (2.18)(1.575) or 94.134 ± 3.434

90.700 < β0 < 97.578

The 95% confidence interval for the mean response µ0 = β0 + β1x0 when x0 = 55
is centered at

µ̂0 = 94.134 + (−1.266)(55) = 24.504

The standard error is

s.e.(µ̂0) =
√

s2

(
1

n
+ (x0 − x̄)2

sxx

)
=

√
2.235

(
1

14
+ 100

1950

)
= √

0.2742 = 0.524

The 95% confidence interval for the mean response at x0 = 55 is

24.504 ± (2.18)(0.524), 24.504 ± 1.142, or

23.362 < µ0 < 25.646

We are 95% confident that our interval from 23.362 to 25.646 covers the average
hardness for parts produced with temperature set at 55 degrees.

2.6 PREDICTION
We consider now the prediction of a single observation y, resulting from a new
case with level x p on the regressor variable. For illustration, in the hardness
example one may be interested in the next run with temperature 55, and one
may wish to predict the resulting hardness. Here, the emphasis is on a single
observation and not on the mean (average) response for a given x p.

The new observation yp is the result of a new trial that is independent of
the trials on which the regression analysis is based. However, we continue to
assume that the model used for the sample data is also appropriate for the new
observation.

The distinction between drawing inferences about the mean response µp =
β0 + β1x p and predicting a new observation yp must be emphasized. In the former
case, we discuss the mean of the probability distribution of all responses at x p. In
the latter case, we are concerned about an individual outcome from this probability
distribution (Figure 2.3).

The new observation can be written as

yp = β0 + β1x p + εp

where εp is a future unknown random error, and x p is assumed known. Initially, let
us assume that β0 and β1 are known. Then the “best” prediction of yp is obtained
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FIGURE 2.3
Prediction: Simple
Linear Regression

by replacing εp with its expected value, namely zero. If β0 and β1 are known, the
prediction is given by

ŷp = β0 + β1x p

and the prediction error by

yp − ŷp = εp

The variance of the prediction error is

V (yp − ŷp) = V (εp) = σ 2 (2.25)

In this case, the uncertainty about the prediction comes only through the random
error εp.

Next, suppose that β0 and β1 are unknown and that they are estimated by β̂0

and β̂1. Then the best prediction is obtained by

ŷp = β̂0 + β̂1x p

and the prediction error is

yp − ŷp = (β0 + β1x p) − (β̂0 + β̂1x p) + εp = µp − µ̂p + εp (2.26)

The prediction error is the sum of two components: the new random error εp,
and the error in estimating the mean response at x p, µp − µ̂p. The LSEs β̂0 and
β̂1, and hence the estimation error µ̂p − µp, are independent of εp since εp is a
future random error that is unrelated to the data at hand. Hence, using the variance
V (µ̂p) in Eq. (2.16), we find that the variance of the forecast error is

V (yp − ŷp) = V (µ̂p) + V (εp)

= σ 2
[

1

n
+ (x p − x̄)2

sxx

]
+ σ 2

=
[

1 + 1

n
+ (x p − x̄)2

sxx

]
σ 2 (2.27)
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Our uncertainty about the prediction ŷp comes from two sources: (i) the random
future error εp and (ii) the estimation of β0 and β1.

So far, we have discussed the properties (expectation and variance) of the pre-
diction error. For prediction intervals we need to study the distribution of the error.
Since the prediction error yp − ŷp is a linear combination of normal random vari-
ables, it is also normal. The mean

E(yp − ŷp) = µp − E(µ̂p) + E(εp) = µp − µp + 0 = 0

implying an unbiased forecast. The variance is given in Eq. (2.27). Therefore,

yp − ŷp

σ
[
1 + 1

n + (x p−x̄)2

sxx

]1/2 ∼ N (0, 1)

Replacing σ with its LSE s leads us to the ratio

T = yp − ŷp

s.e.(yp − ŷp)
(2.28)

where s.e.(yp − ŷp) = s

(
1 + 1

n
+ (x p − x̄)2

sxx

)1/2

. Following similar arguments

as before, it can be shown that T in Eq. (2.28) has a Student t distribution with
n − 2 degrees of freedom. Hence,

P

[
ŷp − t

(
1 − α

2
; n − 2

)
s.e.(yp − ŷp) < yp < ŷp

+ t

(
1 − α

2
; n − 2

)
s.e.(yp − ŷp)

]
= 1 − α

and a 100(1 − α) percent prediction interval for yp is given by

ŷp ± t

(
1 − α

2
; n − 2

)
s

[
1 + 1

n
+ (x p − x̄)2

sxx

]1/2

(2.29)

This interval is usually much wider than the confidence interval for the mean
response µp at x = x p. This is because of the random error εp reflecting the fact
that individual observations vary around the mean level µp.

2.6.1 HARDNESS EXAMPLE CONTINUED

Suppose we are interested in predicting the hardness in the forthcoming run with
temperature 55. Our prediction is ŷp = 94.134 + (−1.266) × (55) = 24.504. The
prediction error variance is estimated as

V (yp − ŷp) =
[

1 + 1

14
+ (55 − 45)2

1950

]
2.235 = 2.5093

and a 95% prediction interval is given by

ŷp ± t (0.975; 12)
√

2.5093

24.504 ± (2.18)(1.584), or 24.504 ± 3.453
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We are 95% confident that the interval from 21.051 to 27.957 will cover the
hardness of the next run at temperature 55 degrees.

Note that this interval is considerably wider than the interval for the mean
response µ0 in Section 2.5. This is because of the additional uncertainty that
comes through εp.

2.7 ANALYSIS OF VARIANCE APPROACH TO REGRESSION
In this section, we develop an approach for assessing the strength of the linear
regression relationship. This approach can be extended quite easily to the more
general regression models discussed in subsequent chapters.

Variability among the yi ’s is usually measured by their deviations from the
mean, yi − ȳ. Thus, a measure of the total variation about the mean is provided
by the total sum of squares (SST):

SST =
n∑

i=1

(yi − ȳ)2

If SST = 0, all observations are the same. The greater is SST, the greater is the
variation among the y observations. The standard deviation of the y’s is obtained
through

sy =
√

SST/(n − 1)

The objective of the analysis of variance is to partition the total variation SST
into two parts: (i) the variation that is accounted for by the model and (ii) the
variation that is left unexplained by the model. We can write the deviation of the
response observation from its mean as

yi − ȳ = (µ̂i − ȳ) + (yi − µ̂i ), i = 1, 2, . . . , n

where µ̂i = β̂0 + β̂1xi is the estimated (fitted) mean (Figure 2.4). The total sum

(xi, yi)

yi − m
^

i

yi − y

m^ i − y

R
es

po
ns

e 
y
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y

m^ = b^
0 + b^

1x

FIGURE 2.4
Decomposition of
the Variation:
Simple Linear
Regression
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TABLE 2.1 THE ANALYSIS OF VARIANCE TABLE

Source df SS MS F

Regression (Model) 1 SSR = ∑
(µ̂i − ȳ)2 MSR = SSR

1
SSR/1

s2

Residual n − 2 SSE = ∑
(yi − µ̂i )

2 MSE = SSE
n−2 = s2

Total (corrected) n − 1 SST = ∑
(yi − ȳ)2

of squares can be written as

SST =
∑

(yi − ȳ)2 =
∑

(µ̂i − ȳ)2 +
∑

(yi − µ̂i )
2 + 2

∑
(µ̂i − ȳ)(yi − µ̂i )

=
∑

(µ̂i − ȳ)2 +
∑

(yi − µ̂i )
2

= SSR + SSE (2.30)

since the cross-product term
∑

(µ̂i − ȳ)(yi − µ̂i ) = ∑
ei (µ̂i − ȳ) = ∑

ei µ̂i −
ȳ
∑

ei = 0; this follows from properties (i) and (iii) in Section 2.3.
The difference (yi − µ̂i ) = ei is the residual, and it reflects the component

in the response that could not be explained by the regression model. The second
term in Eq. (2.30), SSE = ∑

(yi − µ̂i )
2 = ∑

e2
i , is known as the residual (error)

sum of squares. It measures the variability in the response that is unexplained by
the regression model. The first component in Eq. (2.30), SSR = ∑

(µ̂i − ȳ)2, is
referred to as the regression sum of squares. The µ̂i are the fitted values of the
response variable that are implied by the model. SSR measures the variability in
the response variable that is accounted for by the model. SSR can also be written
in the following equivalent way:

SSR =
∑

(µ̂i − ȳ)2 =
∑

(β̂0 + β̂1xi − ȳ)2 =
∑

(ȳ − β̂1 x̄ + β̂1xi − ȳ)2

= β̂2
1

∑
(xi − x̄)2 (2.31)

This expression will be useful later on.
Equation (2.30) shows that the SST can be partitioned into these two com-

ponents: SST = SSR + SSE. The first component, SSR, expresses the variability
that is explained by the model; the second component, SSE, is the variability that
could not be explained. The decomposition of the SST is usually displayed in a
table, the so-called analysis of variance (ANOVA) table (Table 2.1).

Column 2 in the ANOVA table contains the degrees of freedom of the sum
of squares contributions. The degrees of freedom are the number of independent
components that are needed to calculate the respective sum of squares.

The total sum of squares, SST = ∑
(yi − ȳ)2, is the sum of n squared com-

ponents. However, since
∑

(yi − ȳ) = 0, only n − 1 components are needed for
its calculation. The remaining one can always be calculated from (yn − ȳ) =
−∑n−1

i=1 (yi − ȳ). Hence, SST has n − 1 degrees of freedom.
SSE = ∑

e2
i is the sum of the n squared residuals. However, there are

two restrictions among the residuals, coming from the two normal equations
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[
∑

ei = ∑
ei xi = 0]. Hence, only n − 2 residuals are needed to calculate SSE

because the remaining two can be computed from the restrictions. One says that
SSE has n − 2 degrees of freedom: the number of observations minus the number
of estimated regression coefficients β0 and β1.

This leaves SSR = β̂2
1

∑
(xi − x̄)2. Only one (linear) function of the re-

sponses, β̂1 = ∑
ci yi , is needed for its calculation. Hence, the degrees of freedom

for SSR is one. Observe that also the degrees of freedom add up: d.f. (SST) =
d.f. (SSR) + d.f. (SSE).

The sums of squares in column 3 are divided by their degrees of freedom
in column 2. The resulting ratios are called the mean squares: MSR = SSR/1 is
the mean square due to regression; s2 = MSE = SSE/(n − 2) is the mean square
due to residual; it is also called the mean square error (see our discussion in
Section 2.3).

The last column in the ANOVA table contains the F ratio:

F = MSR/MSE = SSR/s2 (2.32)

It will soon become clear why this is called the F ratio.
In Eq. (2.13) we mentioned that E(s2) = σ 2; MSE = s2 is an unbiased esti-

mate of V (εi ) = σ 2. One can show that the expectation of E(MSR) is given by

E(MSR) = E(SSR) = E
[
β̂2

1

∑
(xi − x̄)2

]
=

[ ∑
(xi − x̄)2

]
E

(
β̂2

1

)
=

[∑
(xi − x̄)2

] [
V (β̂1) +

[
E(β̂1)

]2
]

=
[∑

(xi − x̄)2
] [ σ 2∑

(xi − x̄)2
+ β2

1

]
= σ 2 + β2

1

∑
(xi − x̄)2 (2.33)

When β1 = 0, then also E(MSR) = σ 2. On the other hand, when β1 �= 0, E(MSR)

is greater than σ 2 since the term β2
1

∑
(xi − x̄)2 is always positive. Thus, a test

whether β1 = 0 can be constructed by comparing the MSR and the mean square
due to residuals MSE. A MSR substantially larger than s2 (the mean square of
residuals) suggests that β1 �= 0. This is the basic idea behind the analysis of
variance test which is discussed next.

Let us consider the ratio in the last column of the ANOVA table. We note the
following:

i. The variance of β̂1, V (β̂1) = σ 2/
∑

(xi − x)2 was derived in Eq. (2.14).

Since
(β̂1 − β1)

σ/{∑(xi − x̄)2}1/2
∼ N (0, 1), it follows that its square

(β̂1 − β1)
2

σ 2

∑
(xi − x̄)2 ∼ χ2

1 . Hence, for β1 = 0, we have that

β̂2
1

∑
(xi − x̄)2

σ 2
= SSR

σ 2
∼ χ2

1 .
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ii.
SSE

σ 2
= (n − 2)s2

σ 2
∼ χ2

n−2 (This is shown in the appendix in Chapter 4).

iii. SSR and SSE are independent. (This is proved in the appendix in Chapter 4).

These facts imply the following result for the ratio:

F =
SSR
σ 2

/1
SSE
σ 2

/(n − 2)
= SSR

s2

If β1 = 0 (i.e., there is no linear relationship between y and x), the F ratio
(Eq. 2.32) in the last column of the ANOVA table follows an F distribution
with 1 and n − 2 d.f. We write F ∼ F(1, n − 2). The degrees of freedom are easy
to remember because they stand in the d.f. column next to the respective sum of
squares. For β1 �= 0, we expect larger values for F . For testing the hypothesis that
β1 = 0, we calculate the probability value

p = P(F ≥ f0)

where f0 is the observed value of the F statistic. If the p value is small (smaller
than a preselected significance level, usually 0.05), then there is evidence against
the hypothesis β1 = 0. If the p value is large, then there is no evidence to reject
the null hypothesis that β1 = 0.

2.7.1 COEFFICIENT OF DETERMINATION: R 2

We now discuss a descriptive measure that is commonly used in practice to
describe the degree of linear association between y and x . Consider the identity

SST = SSR + SSE

The ratio

R2 = SSR

SST
= 1 − SSE

SST
(2.34)

is used to assess the “fit” of a regression model. It expresses the proportion of the
total variation of the response around the mean that is explained by the regression
model.

R2 must always be between 0 and 1: 0 ≤ R2 ≤ 1. R2 = 0 indicates that none of
the variability in the y is explained by the regression model. SSE = 0 and R2 = 1
indicate that all observations fall on the fitted line exactly.

Given the observations y1, y2, . . . , yn , SST is a certain fixed quantity. How-
ever, SSR (and SSE) change with the choice of the model. Models with larger
SSR (smaller SSE) and larger R2 are usually preferable to models with smaller
SSR (larger SSE) and smaller R2. However, a large R2 does not necessarily imply
that a particular model fits the data well. Also, a small R2 does not imply that
the model is a poor fit. Thus one should use R2 with caution. The coefficient of
determination R2 does not capture the essential information as to whether a given
relation is useful in a particular application. We will discuss this more fully in
Chapter 4.
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FIGURE 2.5 R 2 for Different Situations

It should also be emphasized that R2 is a measure of the linear association
between y and x . A small R2 does not always imply a poor relationship between
y and x . As indicated in Figure 2.5, the relation between y and x may be quadratic
and R2 could be a small value.

There is a simple relationship between the R2 in simple linear regression
and the correlation coefficient between y and x . R2 is the square of the sample
correlation coefficient r . You can see this by writing

R2 = SSR

SST
= β̂2

1

∑
(xi − x̄)2∑

(yi − ȳ)2

=
[ ∑

(xi − x̄)(yi − ȳ)
]2[ ∑

(xi − x̄)2
]2

∑
(xi − x̄)2∑
(yi − ȳ)2

=
[ ∑

(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2

√∑
(yi − ȳ)2)

]2

= r2 (2.35)

2.7.2 HARDNESS EXAMPLE CONTINUED

ANOVA TABLE FOR HARDNESS EXAMPLE

Source df SS MS F

Regression (Model) 1 3,126.134 3,126.134 1,398.7
Residual 12 26.820 2.235
Total (corrected) 13 3,152.954

Here, the F statistic has 1 and 12 df. From the F tables we find that

p = P(F ≥ 1, 398.7) < 0.0001

is tiny. Thus, there is considerable evidence in the data against the hypothesis β1 =
0. We can safely reject β1 = 0. There is a strong relationship between hardness
and temperature.
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Note

f0 = SSR

s2
= β̂2

1

∑
(xi − x̄)2

s2
=

[
β̂1

s/sxx

]2

= t2
0 (2.36)

where t0 is the t ratio in Eq. (2.20) in Section 2.5. The F statistic obtained here
is the square of the t statistic that was used earlier for testing β1 = 0. We know
that in general the square of a t (n − 2) random variable follows an F(1, n − 2)

distribution; see Exercise 2.2. Hence, the F test discussed here and the t ratio
discussed earlier represent two equivalent tests of the null hypothesis β1 = 0.

The coefficient of determination in this example is R2 = 3, 126.134/

3, 152.954 = 0.991. Thus, 99.1% of the total sum of squares is explained by
the regression model. Temperature is an important predictor of hardness.

2.8 ANOTHER EXAMPLE
This example addresses the variation in achievement test scores among Iowa
elementary schools. The test scores are the average “core” scores from the Iowa
Test of Basic Skills, a commonly used standardized test for elementary schools
in Iowa. The core score includes vocabulary, reading comprehension, spelling,
capitalization, punctuation, usage, expression, and math concepts and problems.
The data set in Table 2.2 contains the average fourth-grade tests scores of all
elementary schools in the six largest Iowa communities.

Average test scores vary from school to school. The average test score of
a school depends on, among other factors, the natural ability of the children
attending the school, the quality of the educational programs offered by the school,
and the support the children get from their parents. These explanatory factors tend
to be related to the economic situation that surrounds each school. Causal links
are complicated, but one can expect that richer communities tend to have more
resources, children of economically secure parents have more opportunities, and
well-to-do parents select their residences such that their children can go to “better”
schools. We use the percentage of students in the federal free and reduced-price
breakfast and lunch program as an economic indicator; it serves as a proxy for
“poverty.” Students qualify for this program if they come from families with
incomes at or below 130% of the poverty level. The information on n = 133
schools is taken from an article in the Des Moines Register, November 2000.
Poverty and test scores are from the 1999–2000 school year.

A scatter plot of test scores against poverty is shown in Figure 2.6. One
notices that average test scores of schools with a high percentage of children in
the subsidized lunch program are considerably lower than those of schools with
small percentages. The relationship between test scores and the proportion of
children on subsidized lunch is roughly linear, which leads us to the simple linear
regression model, y = β0 + β1x + ε, that we study in this chapter.
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TABLE 2.2 IOWA TEST OF BASIC SKILLS DATA [DATA FILE: iowatest]

School Poverty Test Scores City

Coralville Cen. 20 65 Iowa City
Hills 42 35 Iowa City
Hoover 10 84 Iowa City
Horn 5 83 Iowa City
Kirkwood 34 49 Iowa City
Lemme 17 69 Iowa City
Lincoln 3 88 Iowa City
Longfellow 24 63 Iowa City
Lucas 21 65 Iowa City
Mann 34 58 Iowa City
Penn 24 52 Iowa City
Roosevelt 35 61 Iowa City
Shimek 4 81 Iowa City
Twain 57 43 Iowa City
Weber 24 66 Iowa City
Wickham 10 62 Iowa City
Wood 31 65 Iowa City
Black Hawk 35 46 Waterloo
Edison 62 41 Waterloo
Elk Run 56 48 Waterloo
Grant 81 36 Waterloo
Irving 45 52 Waterloo
Jewett 50 44 Waterloo
Kingsley 15 76 Waterloo
Kittrell 40 48 Waterloo
Lincoln 74 30 Waterloo
Longfellow 99 27 Waterloo
Lowell 82 28 Waterloo
McKinstry 81 20 Waterloo
Orange 38 56 Waterloo
Roosevelt 80 23 Waterloo
Arthur 13 75 Cedar Rapids
Cleveland 27 55 Cedar Rapids
Coolidge 10 72 Cedar Rapids
Erskine 25 67 Cedar Rapids
Garfield 39 46 Cedar Rapids
Grant Wood 44 55 Cedar Rapids
Harrison 55 35 Cedar Rapids
Hiawatha 27 56 Cedar Rapids
Hoover 30 66 Cedar Rapids
Jackson 7 69 Cedar Rapids
Johnson 59 51 Cedar Rapids
Kenwood 41 75 Cedar Rapids
Madison 16 70 Cedar Rapids
Nixon 21 62 Cedar Rapids
Pierce 3 75 Cedar Rapids
Polk 80 54 Cedar Rapids
Taylor 78 36 Cedar Rapids

(Continued )
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TABLE 2.2 (Continued)

School Poverty Test Scores City

Truman 10 57 Cedar Rapids
Van Buren 52 43 Cedar Rapids
Wilson 39 41 Cedar Rapids
Wright 27 53 Cedar Rapids
Adams 17 52 Davenport
Blue Grass 9 53 Davenport
Buchanan 57 37 Davenport
Buffalo 31 43 Davenport
Eisenhower 40 58 Davenport
Fillmore 57 39 Davenport
Garfield 49 43 Davenport
Grant 38 47 Davenport
Harrison 22 56 Davenport
Hayes 61 30 Davenport
Jackson 58 34 Davenport
Jefferson 89 21 Davenport
Johnson 53 40 Davenport
Lincoln 59 56 Davenport
Madison 87 29 Davenport
McKinley 50 49 Davenport
Monroe 73 36 Davenport
Perry 51 20 Davenport
Truman 40 48 Davenport
Walcott 23 59 Davenport
Washington 71 38 Davenport
Wilson 39 53 Davenport
Adams 50 58 Des Moines
Brooks/Lucas 79 32 Des Moines
Cattell 49 50 Des Moines
Douglas 37 54 Des Moines
Edmunds 77 28 Des Moines
Findley 61 51 Des Moines
Garton 55 27 Des Moines
Granger 47 49 Des Moines
Greenwood 32 67 Des Moines
Hanawalt 12 79 Des Moines
Hills 31 57 Des Moines
Howe 50 50 Des Moines
Hubbell 22 81 Des Moines
Jackson 40 45 Des Moines
Jefferson 3 74 Des Moines
Longfellow 80 50 Des Moines
Lovejoy 62 40 Des Moines
Madison 52 45 Des Moines
Mann 65 32 Des Moines
McKee 57 31 Des Moines
McKinley 78 36 Des Moines
Mitchell 54 46 Des Moines
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TABLE 2.2 (Continued)

School Poverty Test Scores City

Monroe 45 53 Des Moines
Moore 40 53 Des Moines
Moulton 83 30 Des Moines
Oak Park 52 49 Des Moines
Park Avenue 42 36 Des Moines
Perkins 65 51 Des Moines
Phillips 29 61 Des Moines
Pleasant Hill 17 68 Des Moines
Stowe 53 47 Des Moines
Strudebaker 25 53 Des Moines
Wallace 77 24 Des Moines
Watrous 39 47 Des Moines
Willard 84 42 Des Moines
Windsor 32 62 Des Moines
Woodlawn 35 59 Des Moines
Wright 28 60 Des Moines
Bryant 32 56 Sioux City
Clark 4 78 Sioux City
Crescent Park 49 65 Sioux City
Emerson 53 40 Sioux City
Everett 79 48 Sioux City
Grant 50 45 Sioux City
Hunt 72 43 Sioux City
Irving 86 27 Sioux City
Joy 33 65 Sioux City
Leeds 46 42 Sioux City
Lincoln 14 76 Sioux City
Longfellew 34 40 Sioux City
Lowell 54 57 Sioux City
McKinley 84 37 Sioux City
Nodland 10 74 Sioux City
Riverview 60 59 Sioux City
Roosevelt 48 50 Sioux City
Smith 72 39 Sioux City
Sunnyside 14 73 Sioux City
Washington 20 57 Sioux City
Whittier 39 48 Sioux City

In a subsequent chapter, we will use this data set to illustrate model checking.
The question whether the model can be improved by adding a quadratic compo-
nent of poverty will be addressed in Exercise 5.17. In addition, we will investigate
whether “city” information adds explanatory power. It may be that irrespective
of the proportion of children on subsidized lunch, students in college communi-
ties (e.g., Iowa City) score higher. If that were true, one would need to look for
plausible explanations.
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TABLE 2.3 MINITAB OUTPUT OF TEST SCORES AGAINST
PROPORTION OF CHILDREN ON SUBSIDIZED LUNCH

Test Scores = 74.6 −0.536 Poverty

Predictor Coef SE Coef T P

Constant 74.606 1.613 46.25 0.000
Poverty −0.53578 0.03262 −16.43 0.000

s = 8.766 R2 = 67.3%

Analysis of Variance

Source DF SS MS F P

Regression 1 20731 20731 269.79 0.000
Residual Error 131 10066 77
Total 132 30798

The output from a standard regression program is listed below. Most com-
puter packages, such as Minitab, SPSS, and SAS, provide very similar output. In
Table 2.3, we show the output from Minitab, a popular statistics software.

The fitted regression equation,

Test scores = 74.6 − 0.536 poverty (2.37)

implies that with each additional unit (1%) increase in the proportion on subsidized
lunch, average test scores decrease by 0.54 points.

The LSEs β̂0 = 74.606 and β̂1 = −0.536, their standard errors s.e.(β̂0) =
1.613 and s.e.(β̂1) = 0.033, and the t ratios 74.606/1.613 = 46.25 and −0.536/

0.033 = −16.43 are shown in the columns labeled Coef, SE Coef, and T . The last
column labeled “P” contains the probability value of the regression coefficients.
The t ratio for the slope β1 is −16.43. It leads to a very small probability value.
Under the null hypothesis of no relationship (β1 = 0), there is almost no chance to
get such an extreme value. Hence, we reject—very soundly—the null hypothesis
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β1 = 0. Yes, there is a very strong, and negative, association among test scores
and the proportion of children on subsidized lunch.

The sum of squares, the degrees of freedom (n − 1 = 133 − 1 = 132 for total,
n − 2 = 133 − 2 = 131 for error, and 1 for regression), and the mean squares are
shown in the ANOVA table. The R2 from the regression is 67.3%. We obtain this
value by dividing the regression sum of squares SSR = 20,731 by the total sum of
squares SST = 30,798. It says that 67.3% of the variation in average test scores
can be explained through the linear association with poverty.

Another interpretation of “model fit” focuses on standard deviations. The
standard deviation of the test scores, not keeping track of poverty, is given by sy =
[SST/(n − 1)]1/2 = [30,798/132]1/2 = 15.275. After factoring in (or adjusting
the analysis for) poverty, the standard deviation of the yet unexplained deviations
is given by s = [SSE/(n − 2)]1/2 = [10,066/131]1/2 = 8.766. This is the square
root of the MSE. The reduction from sy = 15.275 to s = 8.766 is 42.6%.

The last column of the ANOVA table contains the F ratio, F = (SSR/1)/

(MSE) = 269.79. It serves as a test of the null hypothesis β1 = 0. The probability
value to the right of this number is the probability that an F(1, 131) random
variable exceeds this value. The probability is virtually zero, implying a solid
rejection of the null hypothesis. Note that the F test in the simple linear regression
model is equivalent to the test that looks at the t ratio. The square of the t ratio,
(−16.43)2 = 269.79, is identical to the F ratio.

2.9 RELATED MODELS
2.9.1 REGRESSION THROUGH THE ORIGIN

Theory or the patterns in the scatter plot may imply that the straight line should
pass through the origin. Theory may suggest that the relationship between y and
x is strictly proportional, implying that the line in the model yi = βxi + εi passes
through the origin. The slope coefficient β can be estimated by minimizing the
sum of squares

S(β) =
∑

(yi − βxi )
2 (2.38)

The minimization leads to

β̂ =
∑

xi yi

/ ∑
x2

i (2.39)

and the residuals yi − µ̂i = yi − β̂xi . The LSE of σ 2 is

s2 =
∑

(yi − β̂xi )
2/(n − 1) (2.40)

Note that we divide by (n − 1) degrees of freedom, because there is only one
restriction among the residuals,

∑
ei xi = 0.

One can show that β̂ is unbiased [i.e., E(β̂) = β] and that its variance is given
by

V (β̂) ≡ V

[∑
xi yi∑
x2

i

]
= V

( ∑
xi yi

)
[ ∑

x2
i

]2 = σ 2 ∑
x2

i[ ∑
x2

i

]2 = σ 2∑
x2

i

(2.41)
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Inference about β is similar to the one in the model with intercept, yi =
β0 + β1xi + εi , except that now s2 has (n − 1) rather than (n − 2) degrees of
freedom.

A 100(1 − α) percent confidence interval for β is given by

β̂ ± t

(
1 − α

2
; n − 1

)
s.e.(β̂) (2.42)

where s.e.(β̂) = s/
√∑

x2
i .

A 100(1 − α) percent confidence interval for the mean response at x0, µ0 =
βx0, is

µ̂0 ± t

(
1 − α

2
; n − 1

)
s.e. (µ̂0) (2.43)

where

µ̂0 = β̂x0 and s.e. (µ̂0) = s|x0|/
√∑

x2
i

A 100(1 − α) percent prediction interval for a future observation yp at x p is

ŷp ± t

(
1 − α

2
; n − 1

)
s

√
1 +

(
x2

p/
∑

x2
i

)
(2.44)

where ŷp = µ̂p = β̂x p.

2.9.2 THE CASE OF RANDOM x ’S

In our discussions so far we have assumed that the x’s are fixed constants. Thus,
our inferences are based on repeated sampling, when the x’s are kept the same
from sample to sample.

Frequently, this assumption is not appropriate since fixed x’s may not be
possible. It may be preferable to consider both y and x as random variables
having some joint distribution. Do the results of the previous sections still hold
true in this situation?

We assume that y and x are jointly distributed as a bivariate normal
distribution

f (y, x) = 1

2πσxσy

√
1 − ρ2

exp

{
− 1

(1 − ρ2)
Q

}
(2.45)

where

Q =
(

y − µy

σy

)2

+
(

x − µx

σx

)2

− 2ρ

(
y − µy

σy

)(
x − µx

σx

)
Here, µy = E(y), µx = E(x) are the means; σ 2

y = V (y), σ 2
x = V (x) are the vari-

ances, and ρ = E(y − µy)(x − µx)/σxσy is the correlation between y and x .
It can be shown that the conditional distribution of y given x is also normal

with conditional mean E(y|x) = β0 + β1x and conditional variance V (y|x) =
σ 2

y (1 − ρ2). The regression coefficients β0 and β1 are related to the parameters of
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the bivariate normal distribution: β1 = (σy/σx)ρ and β0 = µy − ρ(σy/σx)µx .
Zero correlation (ρ = 0) implies β1 = 0; then there is no linear association be-
tween y and x .

In this more general setup, one can also show that the maximum likelihood
estimates of β0 and β1 are given by

β̂0 = ȳ − β̂1 x̄, β̂1 = sxy/sxx

which are exactly the previous estimates. Furthermore, ρ̂ = sxy/
√

sxxsyy = β̂1

√
sxx

syy
.

Hence, the regression model in which y and x are jointly normally distributed
can be analyzed using the methods that treat x as fixed.

APPENDIX: UNIVARIATE DISTRIBUTIONS
1. THE NORMAL DISTRIBUTION

We say Y is a normal random variable if the density function of Y is given by

f(y) = 1√
2πσ

exp

{
− 1

2σ 2
(y − µ)2

}
, −∞ < y < ∞

We use the notation Y ∼ N (µ, σ 2). Note that E(Y ) = µ and V (Y ) = σ 2. The
density function of the standard normal distribution with mean 0 and variance 1
is shown in Figure 2.7a.

To calculate probabilities for Y , we use the representation Y = µ + σ Z , where
Z is the standard normal distribution. Hence,

P(Y ≤ y) = P(µ + σZ ≤ y) = P

(
Z ≤ y − µ

σ

)
Table A at the end of the book gives the cumulative probabilities P(Z ≤ z)
for the standard normal distribution. For example, P(Z ≤ 0) = 0.5, P(Z ≤ 1) =
0.8413, P(Z ≤ −0.85) = 0.1977. The 97.5th percentile of the standard normal is
1.96; the 95th percentile is 1.645.

2. THE χ2 DISTRIBUTION

We say that U follows a chi-square distribution with v degrees of freedom if the
density function of U is given by

f (u) = cu(v/2)−1e−u/2 for u ≥ 0

c is a constant that makes the density integrate to 1. The parameter v is called
the degrees of freedom. We write U ∼ χ2

v . The density functions of three chi-
square distributions (v = 3, 6, 10) are shown in Figure 2.7b. The mean of the chi-
square distribution is given by E(U ) = v , and the variance is given by V (U ) = 2v .
Table B (at the end of the book) gives selected percentiles. For example, in a χ2

5
distribution, the 50, 95, and 99th percentiles are 4.3515, 11.0705, and 15.0863,
respectively.
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Suppose Z1, . . . , Zv are independent N (0, 1) variables. Then Z2
1 has a χ2

distribution with 1 degree of freedom, and U = Z2
1 + Z2

2 + · · · + Z2
v has a χ2

distribution with v degrees of freedom.

3. THE STUDENT t DISTRIBUTION

We say that T follows a Student t distribution if the density function of T is given
by

f (t) = c(
1 + t2

v

)(v+1)/2
, −∞ < t < ∞

c is a constant that makes the density integrate to 1. We write T ∼ t (v). The
parameter v is called the degrees of freedom. The density functions of two t
distributions with v = 3 and v = 10 degrees of freedom are shown in Figure
2.7c. The t distribution is symmetric with mean E(T ) = 0 and variance V (T ) =
v/(v − 2) and is similar to the standard normal distribution, but with slightly
heavier tails. As can be seen from Figure 2.7c, the t distribution is close to the
standard normal distribution when the degrees of freedom (v) is large. Table C
(at the end of the book) gives selected percentiles of Student t distributions. For
example, for v = 10 d.f., the 90th percentile is 1.372, and the 5th percentile is
−1.812.

Suppose Z ∼ N (0, 1) and U ∼ χ2
v , with Z and U independent. Then T =

Z/
√

U/v has a Student t distribution with v degrees of freedom.

4. THE F DISTRIBUTION

We say that F follows an F distribution if the density function is given by

g( f ) = c
f (v/2)−1(

1 + v
w f

)(v+w)/2
, f ≥ 0
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c is a constant that makes the density integrate to 1. We write F ∼ F(v, w). The in-
teger parameters v and w are called the degrees of freedom. The density functions
of four F distributions are shown in Figure 2.7d. The mean of an F distribution is
given by E(F) = w/(w − 2); it depends only on the second degrees of freedom
and is slightly larger than 1. The variance depends on both v and w . Table D
(at the end of the book) gives selected percentiles. For example, the 95 and 99th
percentiles of an F(5,8) distribution are given by 3.69 and 6.63, respectively.

Suppose U ∼ χ2
v and V ∼ χ2

w , with U and V independent. Then F = U/v
V/w has

an F distribution with v and w degrees of freedom.
A comment on statistical tables: Most computer programs calculate cumu-

lative probabilities and percentiles (the “inverse” of the cumulative probabilities)
for a wide selection of distributions. For some programs (such as EXCEL) the
calculation of percentiles requires the specification of the upper tail area.

EXERCISES
2.1. Determine the 95 and 99th percentiles of

a. The normal distribution with mean 10 and
standard deviation 3;

b. The t distributions with 10 and 25 degrees
of freedom;

c. The chi-square distributions with 1, 4, and
10 degrees of freedom;

d. The F distributions with 2 and 10, and 4
and 10 degrees of freedom.

2.2. It is a fact that two distributions are the same
if (all) their percentiles are identical.

a. Convince yourself, by looking up several
percentiles, that the square of a standard
normal distribution is the same as a
chi-square distribution with one degree
of freedom. Determine the percentile of
the χ2

1 and the percentile of the square of
a standard normal distribution, Z2, and
show that they are the same. Use the fact
that P(Z2 ≤ z) = P(−√

z ≤ Z ≤ √
z).

Hence, for example, the 95th percentile
of Z2 is the same as the 97.5th percentile
of Z .

b. Convince yourself, by looking up several
percentiles, that the square of a t
distribution with v degrees of freedom is
the same as the F(1, v) distribution.

2.3. For each of the four sets of data given below
(see Anscombe, 1973), plot y versus x . The
data are given in the file anscombe. Fit a
straight line model to each of the data sets
giving least squares estimates, ANOVA table,
and R2. Compute the correlation coefficient
between y and x for each data set. Comment
on your results. Would a linear regression of
y on x be appropriate in all cases? Discuss.

Set 1 Set 2 Set 3 Set 4
x y x y x y x y

4 4.26 4 3.10 4 5.39 8 6.58
5 5.68 5 4.74 5 5.73 8 5.76
6 7.24 6 6.13 6 6.08 8 7.71
7 4.82 7 7.26 7 6.42 8 8.84
8 6.95 8 8.14 8 6.77 8 8.47
9 8.81 9 8.77 9 7.11 8 7.04

10 8.04 10 9.14 10 7.46 8 5.25
11 8.33 11 9.26 11 7.81 8 5.56
12 10.84 12 9.13 12 8.15 8 7.91
13 7.58 13 8.74 13 12.74 8 6.89
14 9.96 14 8.10 14 8.84 19 12.50

2.4. A car dealer is interested in modeling the
relationship between the weekly number of
cars sold and the daily average number of
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salespeople who work on the showroom
floor during that week. The dealer believes
that the relationship between the two
variables can be described by a straight line.
The following data were supplied by the car
dealer:

Average. No.
No. of Cars of Sales

Sold People on Duty
Week of y x

January 30 20 6
June 29 18 6
March 2 10 4
October 26 6 2
February 7 11 3

a. Construct a scatter plot (y vs x) for the
data.

b. Assuming that the relationship between
the variables is described by a straight
line, use the method of least squares to
estimate the y intercept and the slope of
the line.

c. Plot the least squares line on your scatter
plot.

d. According to your least squares line,
approximately how many cars should the
dealer expect to sell in a week if an
average of five salespeople are kept on the
showroom floor each day?

e. Calculate the fitted value µ̂ for each
observed x value. Use the fitted values to
calculate the corresponding residuals. Plot
the residuals against the fitted values. Are
you satisfied with the fit?

f. Calculate an estimate of σ 2.

g. Construct a 95% confidence interval for
β1 and use it to assess the hypothesis that
β1 = 0.

h. Given the results of (a)–(g), what
conclusions are you prepared to draw
about the relationship between sales and
number of salespeople on duty.

i. Would you be willing to use this model to
help determine the number of salespeople
to have on duty next year?

2.5. Use S-Plus or any other available statistics
software for Exercise 2.4. Check your hand
calculations with the results from these
programs.

2.6. Dr. Joseph Hooker collected a set of 31
measurements on the boiling temperature of
water (TEMP; in degrees Fahrenheit) and the
atmospheric pressure (AP; in inches of
mercury) at various locations in the Himalaya
Mountains (see Weisberg, 1980). The data are
given in the file hooker.

a. Plot TEMP vs AP. Does a linear model
seem appropriate?

b. Repeat (a), plotting TEMP versus
x = 100ln(AP).

c. Fit a linear model

TEMP = β0 + β1x + ε

and calculate the estimates of β0, β1, and
σ 2. Draw the fitted line ŷ = β̂0 + β̂1x on
the plot in (b). Does the model seem
appropriate?

d. Find a 95% confidence interval for

i. β1;
ii. the average temperature when the

pressure is 25.

e. Suppose the temperature had been
measured in ◦C instead of ◦F. Explain
(think about it, but don’t compute) how
the estimates in (c) and the confidence
intervals in (d) would change.

2.7. a. Consider the model

yi = β + εi , E(εi ) = 0, V (εi ) = σ 2,

Cov(εi , ε j ) = 0 for i �= j, i = 1, 2, . . . , n

Find the LSEs of β and σ 2.

b. Discuss the following statements:

i. For the linear model

yi = β0 + β1xi + εi , i = 1, 2, . . . , n

a 95% confidence interval for
µk = β0 + β1xk is narrower than a
95% prediction interval for yk .
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ii. For the linear model

yi = β0 + β1xi + εi , i = 1, 2, . . . , n

a 99% prediction interval for yk is
wider than a 95% prediction interval
for yk .

iii. For a certain regression situation it is
reported that SST = 25, SSR = 30,
and SSE = −5. These calculations are
correct since SST = SSR + SSE.

2.8. Consider the annual number of cars sold and
the revenues of the 10 largest car companies:

Cars Sold Revenues
Company (Millions) (in Million Euros)

General Motors 8,149 1,996
Ford/Volvo 7,316 2,118
Renault/Nissan 4,778 1,174
Volkswagen 4,580 943
DaimlerChrysler 4,506 1,813
Toyota 4,454 1,175
Fiat 2,535 628
Honda 2,291 605
PSA 2,278 465
BMW 1,187 447

Consider the results of a simple linear
regression model of y = revenues on x =
sales:

a. Test whether the number of cars sold is an
important predictor variable (use
significance level 0.05).

b. Calculate a 95% confidence interval for
the regression coefficient of number of
cars sold.

c. Calculate a 90% confidence interval for
the regression coefficient of number of
cars sold.

d. Obtain the coefficient of determination.

e. Determine the standard deviation among
revenues (y), after factoring in the
explanatory variable sales (x). Compare
this standard deviation to the standard
deviation of y without considering the
explanatory variable.

f. Estimate the revenues for BMW.

2.9. Grade point averages of 12 graduating MBA
students, GPA, and their GMAT scores taken
before entering the MBA program are given
below. Use the GMAT scores as a predictor of
GPA, and conduct a regression of GPA on
GMAT scores.

x = GMAT y = GPA

560 3.20
540 3.44
520 3.70
580 3.10
520 3.00
620 4.00
660 3.38
630 3.83
550 2.67
550 2.75
600 2.33
537 3.75

a. Obtain and interpret the coefficient
of determination R2.

b. Calculate the fitted value for the second
person.

c. Test whether GMAT is an important
predictor variable (use significance level
0.05).

2.10. The following are the results of a regression
of fuel efficiency (gallons per 100 miles
traveled) on the weight (in pounds) of the car.
A total of 45 cars were considered.

The regression equation is

Gall/100 miles = 0.560 + 0.00102 Weight

Predictor Coef SE Coef t p

Constant 0.5598 0.1983 2.82 0.007
Weight 0.00102418 0.00007103 14.42 0.000

R2 = 82.9% R2(adj) = 82.5%

Analysis of Variance

Source DF SS MS F p

Regression 1 13.709 13.709 207.91 0.000
Error 43 2.835 0.066
Total 44 16.544
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a. Determine an approximate 95% prediction
interval for the fuel efficiency of an
automobile weighing 2000 pounds.
The computer output does not give you the
information to construct exact prediction
intervals. Approximate the prediction
intervals, assuming that the sample size n
is large enough to allow you to ignore the
parameter estimation uncertainty.

b. Determine an approximate 95% prediction
interval for the fuel efficiency of an
automobile weighing 1500 pounds.

2.11. Discuss the functional relationship between
the coefficient of determination R2 and the
F ratio.

2.12. Occasionally, a model is considered in which
the intercept is known to be zero a priori.
Such a model is given by

yi = β1xi + εi , i = 1, 2, . . . , n

where the errors εi follow the usual
assumptions.

a. Obtain the LSEs
(
β̂1, s2

)
of

(
β1, σ

2
)
.

b. Define ei = yi − β̂1xi . Is it still true that∑n
i=1 ei = 0? Why or why not?

c. Show that V
(
β̂1

) = σ 2/
∑n

i=1 x2
i .

2.13. The data listed in the file sriver include the
water content of snow on April 1 (x) and the
water yield from April to July (y) in the
Snake River watershed in Wyoming.
Information on n = 17 years (from 1919 to
1935) is listed (see Weisberg, 1980).

a. Fit a regression through the origin
(y = β1x + ε), and find β̂1 and s2. Obtain
a 95% confidence interval for β1.

b. A more general model for the data
includes an intercept,

y = β0 + β1x + ε.

Is there convincing evidence that suggests
that the simpler model in (a) is an
appropriate representation?

2.14. Often, researchers need to calibrate
measurement processes. For that they use a

set of known x’s to obtain observed y’s, then
fit a model called the calibration model and
use this model to convert future measured y’s
back into the corresponding x’s.

The following is an example taken from
analytical chemistry where the process is the
assay of the element calcium. Determining
calcium in the presence of other elements is
quite tricky. The following table records the
quantities of calcium in carefully prepared
solutions (x) and the corresponding analytical
results (y):

x 4 8 12.5 16 20 25 31 36 40 40
y 3.7 7.8 12.1 15.6 19.8 24.5 31.1 35.5 39.4 39.5

a. Fit a simple linear regression of y as a
function of x . List the assumptions that
you make.

b. Calculate a 95% confidence interval for
the intercept of your model.

c. Calculate a 95% confidence interval for
the slope of your model.

d. In this context two properties may be
expected:

i. When x = 0, then y = 0; if there is no
calcium present, your technique
should not find any.

ii. If the empirical technique is any good
at all, then the slope in the simple
linear regression should be 1.

Is there evidence for (i)? For (ii)?

e. If you accept (i) as a condition to be
imposed on the model a priori, then the
model reduces to

y = βx + ε

Redo part (c) and reexamine property
(ii) for your new model.

f. Explain why the results in (d) and (e) are
different.

2.15. The following data give the monthly machine
maintenance cost (y) in hundreds of dollars
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and the number of machine hours per month
(x), taken over the last 7 months.

Cost (y) Hours (x)

26 110
25 98
20 121
18 116
30 90
40 88
30 84

a. Fit a linear regression. Construct the
ANOVA table. Find R2 and test the
hypothesis that β1 = 0 using the F ratio.

b. Obtain the standard errors of β0 and β1.
Using the t distribution, test the
hypothesis: (i) β0 = 0; (ii) β1 = 0.
Construct a 99% confidence interval for
β1.

c. Find the fitted value µ̂ at x = 100 and
estimate its standard error. Calculate the
95% confidence interval for β0 + β1100.

d. Repeat (c), only this time take x = 84.
Explain the change in the interval length.

2.16. A company builds custom electronic
instruments and computer components. All
jobs are manufactured to customer
specifications. The firm wants to be able to
estimate its overhead cost. As part of a
preliminary investigation, the firm decides to
focus on a particular department and
investigates the relationship between total
departmental overhead cost (y) and total
direct labor hours (x). The data for the most
recent 16 months are given below. They are
also given in the file overhead.

Month Total Departmental Total Direct
Number Overhead (y) Labor Hours (x)

1 25,835 878
2 27,451 1,088
3 28,611 1,281
4 32,361 1,340
5 28,967 1,090
6 24,817 1,067

Month Total Departmental Total Direct
Number Overhead (y) Labor Hours (x)

7 29,795 1,188
8 26,135 928
9 31,361 1,319

10 26,006 790
11 27,812 934
12 28,612 871
13 22,992 781
14 31,836 1,236
15 26,252 902
16 26,977 1,140

The two objectives of this investigation are

a. Summarize for management the
relationship between total departmental
overhead and total direct labor hours.

b. Estimate the expected and predict the
actual total departmental overhead from
the total direct labor hours.

Analyze the overhead data and write a brief
paragraph for your manager that summarizes
the results that you have obtained about the
two objectives. Include the computer output
that you think is necessary for clarification of
your discussion.

2.17. The following data, in the file turtles, are
measurements on length and width (both in
mm) of 10 painted female turtles (Chrysemys
picta marginta):

Length (y) Width (x)

100 81
103 86
109 88
123 94
133 102
134 100
137 98
141 105
150 107
155 115

a. Plot y against x on a scatter plot.
Comment on this plot.
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b. Assuming the model y = β0 + β1x + ε,
obtain the LSEs of the coefficients and
their corresponding 95% confidence
limits.

c. Graph the fitted line on the plot in (a). Is
this a good fit? Explain.

d. Predict the length of a female turtle if it is
100 mm wide, and obtain the 95%
prediction limits.

e. Is the linear relationship a strong or a
weak one? Explain.

2.18. The following data, in the file bloodpressure,
are measurements of systolic blood pressure
(SBP) and age for a sample of 15 individuals
older than age 40 years:

SBP (y) Age (x)

164 65
220 63
133 47
146 54
162 60
144 44
166 59
152 64
140 51
145 49
135 57
150 56
170 63
122 41
120 43

a. Plot systolic blood pressure against age.
Comment on the plot.

b. Assuming the model y = β0 + β1x + ε,
obtain the fitted equation.

c. Construct an ANOVA table for the simple
linear model.

d. Use the results from the ANOVA table and
the F ratio to test for a significant linear
relationship at the 5% level.

e. Test the hypothesis H0 : β1 = 0 at the 5%
level using a t test. Does your conclusion
agree with the finding in part (d)?

f. Do you think that the individual with
x = 63 and y = 220 is an unusual
observation? Why? Check if this
observation is influential. Remove it from
the data set and redo steps (b)–(e). The
observation is influential if there are
substantial changes in the resulting fit. Do
you think that there are substantial
changes? Explain.

2.19. An experiment was conducted to determine
the extent to which the growth rate of a
certain fungus can be affected by filling test
tubes containing the same medium at the
same temperature with different inert gases.
Three such experiments were performed for
each of six different gases, and the average
growth rate from these three tests was used as
the response. The following table gives the
molecular weight (x) of each gas used and the
average growth rate (y) in milliliters per hour:

Average Molecular
Gas Growth Rate (y) Weight (x)

A 3.85 4.0
B 3.48 20.2
C 3.27 28.2
D 3.08 39.9
E 2.56 83.8
F 2.21 131.3

a. Find the LSEs of the slope and the
intercept for the linear model
y = β0 + β1x + ε, and draw the fitted line
on the scatter plot.

b. Is there a significant linear relationship
between y and x at the 1% level?
Comment on the fit of the line.

c. What information has not been used that
may improve the sensitivity of the
analysis?

d. Would it be appropriate to use this fitted
line to estimate the growth rate of the
fungus for a gas with a molecular weight
of 200? Explain.

2.20. An investigation involving five factors has
singled out temperature as having the greatest
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impact on the accelerated lifetime of a special
type of heater. On the advice of the process
engineer, temperatures 1,520, 1,620, 1,660,
and 1,708◦ F were chosen.

Twenty-four heaters were selected at
random from the current production and split
randomly among the four temperatures. The
life times of these heaters are given below.

Temperature
T Lifetime y (Hours)

1,520 1,953 2,135 2,471 4,727 6,143 6,314
1,620 1,190 1,286 1,550 2,125 2,557 2,845
1,660 651 837 848 1,038 1,361 1,543
1,708 511 651 651 652 688 729

a. Plot the data and summarize the
important features of the relationship.

b. Transform the y’s to LY = ln y and replot
the data. Comment on the functional
relationship.

c. Fit the model

LY = β0 + β1T + ε

i. Assess the fit by adding the fitted line
to the scatter plot.

ii. If you are not satisfied with the fit,
state why. What other approach might
you take to get a better fitting model?

2.21. The data are taken from Roberts, H. V., and
Ling, R. F. Conversational Statistics with
IDA. New York: Scientific Press/McGraw-
Hill, 1982.

The iron content of crushed blast furnace
slag needs to be determined. Two methods
are available. One involves a chemical
analysis in the laboratory, which is
time-consuming and expensive. The other is a
much cheaper and quicker magnetic test that
can be carried out on-site. Measurements on
53 consecutive slags are listed below. The
data are given in the file ironcontent.

Graph the results of the chemical test for
iron (y) against the magnetic test (x). Fit a
simple linear regression. Calculate and
interpret the coefficient of determination R2.
Investigate the extent to which the results of

the chemical tests of iron content can be
predicted from a magnetic test of iron content.

y = Chemical x = Magnetic

24 25
16 22
24 17
18 21
18 20
10 13
14 16
16 14
18 19
20 10
21 23
20 20
21 19
15 15
16 16
15 16
17 12
19 15
16 15
15 15
15 15
13 17
24 18
22 16
21 18
24 22
15 20
20 21
20 21
25 21
27 25
22 22
20 18
24 21
24 18
23 20
29 25
27 20
23 18
19 19
25 16
15 16
16 16
27 26
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y = Chemical x = Magnetic

27 28
30 28
29 30
26 32
25 28
25 36
32 40
28 33
25 33

2.22. The data are taken from Mosteller, F.,
Rourke, R. E. K. and Thomas, G. B.:
Probability with Statistical Applications, (2nd
ed.). Reading, MA: Addison-Wesley, 1970.

Average percentage memory retention was
measured against passing time (in minutes).
The measurements were taken five times
during the first hour after the experimental
subjects memorized a list of disconnected
items and then at various times up to 1 week
later. The data given in the file memory.

Graph memory retention (y) against time
(x). Consider transformations such as the
logarithm of y and/or the logarithm of x .
Estimate and check the appropriate
regression models.

A model such as y = α exp(−βTime)
indicates geometric loss of memory. Discuss
whether this is an appropriate model or
whether there are other models that are
equally (or better) suited to describe the data.

x = Time (Minutes) y = Memory Retention (%)

1 0.84
5 0.71

15 0.61
30 0.56

60 (1 hour) 0.54
120 0.47
240 0.45
480 0.38
720 0.36

1,440 0.26
2,880 0.20
5,760 0.16

10,080 0.08

2.23. The data are taken from Gilchrist, W.
Statistical Modelling. Chichester, UK: Wiley,
1984. These data give the distance by road
and the straight line distance between 20
different pairs of points in Sheffield. The data
are given in the file distance.

What is the relationship between the two
variables? How well can you predict the road
distance (y) from the linear distance (x)?

x = Linear Distance y = Road Distance

9.5 10.7
5.0 6.5

23.0 29.4
15.2 17.2
11.4 18.4
11.8 19.7
12.1 16.6
22.0 29.0
28.2 40.5
12.1 14.2

9.8 11.7
19.0 25.6
14.6 16.3

8.3 9.5
21.6 28.8
26.5 31.2

4.8 6.5
21.7 25.7
18.0 26.5
28.0 33.1

2.24. The data are taken from Risebrough, R. W.
Effects of environmental pollutants upon
animals other than man. In Proceedings of the
6th Berkeley Symposium on Mathematics and
Statistics, VI. Berkeley: University of
California Press, 1972, pp. 443–463.

Polychlorinated biphenyl (PCB), an
industrial pollutant, is thought to have
harmful effects on the thickness of egg shells.
The amount of PCB (in parts per million) and
the thickness of the shell (in millimeters) of
65 Anacapa pelican eggs are given below. The
data are also given in the file pelicaneggs.

Investigate the relationship between the
thickness of the shell and the amount of PCB
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in pelican eggs. Construct a scatter plot and
fit a linear regression model. Calculate a 95%
confidence interval for the slope. Obtain the
ANOVA table and the coefficient of
determination R2. Interpret the results and
comment on the adequacy of the model.

x = Concentration of PCB y = Thickness

452 0.14
139 0.21
166 0.23
175 0.24
260 0.26
204 0.28
138 0.29
316 0.29
396 0.30

46 0.31
218 0.34
173 0.36
220 0.37
147 0.39
216 0.42
216 0.46
206 0.49
184 0.19
177 0.22
246 0.23
296 0.25
188 0.26

89 0.28
198 0.29
122 0.30
250 0.30
256 0.31
261 0.34
132 0.36
212 0.37
171 0.40
164 0.42
199 0.46
115 0.20
214 0.22
177 0.23
205 0.25
208 0.26

x = Concentration of PCB y = Thickness

320 0.28
191 0.29
305 0.30
230 0.30
204 0.32
143 0.35
175 0.36
119 0.39
216 0.41
185 0.42
236 0.47
315 0.20
356 0.22
289 0.23
324 0.26
109 0.27
265 0.29
193 0.29
203 0.30
214 0.30
150 0.34
229 0.35
236 0.37
144 0.39
232 0.41

87 0.44
237 0.49

2.25. The data are taken from Wallach, D., and
Goffinet, B. Mean square error of prediction
in models for studying ecological and
agronomic systems. Biometrics, 43, 561–573,
1987.

The energy requirements (in Mcal/day)
for a sample of 64 grazing merino sheep
are given below, together with their body
weights (kg). The data are given in the file
energyrequirement. Construct a scatter plot
and establish a model that explains the energy
requirements as a linear function of body
weight. Obtain a 95% confidence interval for
the slope. Calculate and interpret the
coefficient of determination R2. Comment on
the adequacy of the model. Discuss whether



Abraham Abraham˙C02 November 8, 2004 0:36

Exercises 65

or not the variance of the measurements is
constant across weight.

x = Weight y = Energy Requirement

22.1 1.31
26.2 1.27
33.2 1.25
34.3 1.14
49.0 1.78
52.6 1.70
27.6 1.39
31.0 1.47
32.6 1.75
44.6 2.25
52.6 3.73
28.6 2.13
34.4 1.85
25.1 1.46
27.0 1.21
33.2 1.32
34.9 1.00
49.2 2.53
53.3 2.66
28.4 1.27
31.0 1.50
33.1 1.82
52.1 2.67
46.7 2.21
29.2 1.80
34.4 1.63
25.1 1.00
30.0 1.23
33.2 1.47
42.6 1.81
51.8 1.87
23.9 1.37
28.9 1.74
31.8 1.60
34.1 1.36
52.4 2.28
37.1 2.11
26.2 1.05
26.4 1.27
25.7 1.20
30.2 1.01
33.9 1.03
43.7 1.73
51.8 1.92

x = Weight y = Energy Requirement

25.1 1.39
29.3 1.54
32.0 1.67
34.2 1.59
52.7 3.15
31.8 1.39
45.9 2.36
27.5 0.94
25.9 1.36
30.2 1.12
33.8 1.46
44.9 1.93
52.5 1.65
26.7 1.26
29.7 1.44
32.1 1.80
44.4 2.33
53.1 2.73
36.1 1.79
36.8 2.31

2.26. The data are taken from Atkinson, A. C.
Plots, Transformations, and Regression.
Oxford: Clarendon Press, 1985.

Here, we list 17 observations on the
boiling point (◦F) and the barometric pressure
(in inches of mercury). The data are given in
the file boiling. Relate boiling point to
barometric pressure. Construct a scatter plot
and establish a model that relates the boiling
point to barometric pressure. Test the
regression coefficients for their significance.
Calculate and interpret the coefficient of
determination R2. Comment on the fit and the
adequacy of the model.

Note that this exercise deals with the same
problem as Exercise 2.6 but uses different
data. Plot the data of the two exercises on the
same graph, and add the two fitted regression
lines that you found. Comment on the graph.

y = Boiling Point x = Barometric Pressure

194.5 20.79
194.3 20.79
197.9 22.40
198.4 22.67
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y = Boiling Point x = Barometric Pressure

199.4 23.15
199.9 23.35
200.9 23.89
201.1 23.99
201.4 24.02
201.3 24.01
203.6 25.14
204.6 26.57
209.5 28.49
208.6 27.76
210.7 29.04
211.9 29.88
212.2 30.06

2.27. The data are taken from Bissell, A. F. Lines
through the origin—IS NO INT the answer?
Journal of Applied Statistics, 19, 193–210,
1992.

In a chemical process, batches of liquid
are passed through a bed containing a certain
ingredient. The ingredient gets absorbed by
the liquid, and usually approximately 6–6.5%
of the weight of the ingredient gets absorbed.
In order to be sure that there is enough
material, the bed is supplied with
approximately 7.5% material. Excess
material is costly and should be minimized
because any excess cannot be recovered.

The interest is in the relationship between
the material supplied (x) and the amount
and/or the percentage of absorption. Develop
appropriate regression models for both
expressions of the response (in kg and as a
percent) and comment on their fit and
adequacy. The data are given in the file
absorption.

x = Liquid y = Take-up (kg) y = Take-up (%)

310 14.0 4.52
330 17.1 5.18
370 21.3 5.76
400 20.4 5.10
450 27.4 6.09
490 27.2 5.55
520 28.4 5.46

x = Liquid y = Take-up (kg) y = Take-up (%)

560 32.5 5.80
580 31.9 5.50
650 34.1 5.25
650 39.8 6.12
650 38.5 5.92
760 50.4 6.63
800 43.8 5.48
810 50.4 6.22
910 53.5 5.88

1,020 71.3 6.99
1,020 64.3 6.30
1,160 79.6 6.86
1,200 80.8 6.73
1,230 78.5 6.38
1,380 98.9 7.17
1,460 105.6 7.23
1,490 98.6 6.62

2.28. Search the Web for useful regression applets.
Many such applets are available.

After entering points on a scatter plot,
these applets calculate the least squares
estimates, draw in the fitted regression line,
and calculate summary statistics, such as
the correlation coefficient or the coefficient
of determination R2. Applets allow you to
change points and they illustrate the
effect of such changes on the regression
results.

Applets also illustrate the standard errors
of the estimates. They take repeated samples
of a certain size from a given population of
points and for each sample they calculate an
estimate of the regression slope. The results
of repeated draws from the population are
displayed in the form of histograms. This
illustrates the sampling variability of the
estimate.

Experiment with these applets and write a
short discussion of what you can learn from
them. Note that these applets are designed for
the bivariate regression situation mostly
because it is difficult to draw observations in
higher dimensional space.
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3
A Review of Matrix
Algebra and Important
Results on Random
Vectors

In Chapter 2, we considered regression models that involve a single explanatory
(regressor) variable. In the following chapters, we discuss regression models that
contain several explanatory variables. Many of the results in Chapter 2 require
tedious algebraic manipulations, and extending these results to more elaborate
models would involve a considerable amount of complicated algebra. Much of the
tedious work can be avoided if we perform the analysis with vectors and matrices.
This chapter summarizes basic results on vectors and matrices that are needed in
subsequent chapters, and we translate the regression results of Chapter 2 into the
language of vectors and matrices. The chapter also includes a general discussion
of random vectors and a summary of important results on the multivariate normal
distribution.

3.1 REVIEW OF MATRIX ALGEBRA
Matrix A matrix A of dimension p × q is an array of pq elements, arranged in
p rows and q columns. We write A = (ai j ), where ai j is the entry in row i and
column j of the matrix. A matrix is called square, if it has the same number of
rows and columns (p = q). The identity matrix I is a square matrix with ones
in the diagonal and zeros everyplace else. The zero matrix O is a matrix of all
zeros.

Examples The 3 × 2 matrix A =

2 5

1 3
1 2


 ; the 3 × 3 identity matrix I =


1 0 0

0 1 0
0 0 1


 ; the

2 × 2 square matrix B =
[

4 2
1 3

]
. �

67



Abraham Abraham˙C03 November 8, 2004 14:18

68 A Review of Matrix Algebra and Important Results on Random Vectors

Vector A p × 1 (column) vector x = (xi ) is a matrix consisting of a single
column with elements x1, x2, . . . , x p. The unit vector, 1, is the vector with all its
elements equal to one. The zero vector, 0, is the vector with all its elements equal to
zero. A p-dimensional vector x with elements x1, x2, . . . , x p can be represented
geometrically in p-dimensional space as a directed line with component x1 along
the first axis, component x2 along the second axis, . . . , and component x p along
the pth axis.

Examples The 4 × 1 vector x =




3
2
5
1


 ; the 4 × 1 unit vector 1 =




1
1
1
1


 ; the 4 × 1 zero vector

0 =




0
0
0
0


 . �

Matrix /Vector Addition and Subtraction Let A and B be two matrices (or vec-
tors) of the same dimension. Then A + B = B + A = (ai j + bi j ), and A − B =
(ai j − bi j ). If c and d are two scalars, then cA + d B = (cai j + dbi j ). Matrix
addition/subtraction is defined elementwise.

Matrix / Vector Multiplication Let A = (ai j ) be a p × q matrix, and B = (bi j ) a
q × t matrix. Then the matrix product C = AB = (ci j ) is a (p × t) matrix with
elements ci j = ∑q

r=1 air br j .

Example The 3 × 2 matrix A and the 2 × 4 matrix B are given as

A =

2 5

1 3
1 2


 ; B =

[
3 5 −1 2

−1 3 2 2

]
.

The product is a 3 × 4 matrix given by

C = AB =

1 25 8 14

0 14 5 8
1 11 3 6


 �

Transpose of a Matrix Let A = (ai j ) be a (p × q) matrix. The transpose A′ =
(a ji ) is the q × p matrix obtained by interchanging rows and columns. Note that
(AB)′ = B ′ A′. A square matrix A is symmetric if A = A′.

The transpose of a (p × 1) column vector x is the (1 × p) row vector x′. It
is a matrix consisting of a single row.
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Example The transpose of the 3 × 2 matrix A given previously is the 2 × 3 matrix A′ =[
2 1 1
5 3 2

]
. The transpose of the 4 × 1 column vector x given previously is the

1 × 4 row vector x′ = [3 2 5 1]. �

Product of Two Vectors The (inner) product of two (p × 1) vectors x and y is
defined as the scalar x′y = ∑p

i=1 xi yi . Two vectors x and y are called orthogonal
if their inner product x′y = 0. ‖x‖ = (x′x)1/2 = [

∑p
i=1(xi )

2]1/2 is known as the
Euclidean norm, or the length of the vector x.

Example Consider the 4 × 1 vector x given previously and the 4 × 1 column vector y =


3
0

−2
1


 . The inner product x′y = (3)(3) + (2)(0) + (5)(−2) + (1)(1) = 0. The

two vectors x and y are orthogonal. The length of the vector x is given by ‖x‖ =
(x′x)1/2 = (39)1/2 = 6.245. The length of y is ‖y‖ = (14)1/2 = 3.742. �

Linearly Dependent and Linearly Independent Vectors A set of n × 1 vectors x1, x2,

. . . , xk is said to be linearly dependent if there exist scalars c1, c2, . . . , ck , not
all simultaneously zero, such that c1x1 + c2x2 + · · · + ck xk = 0; otherwise, the
set of vectors is called linearly independent. Linear dependence implies that at
least one vector can be written as a linear combination of the remaining ones.

Example Consider the following four 5 × 1 vectors x1, x2, . . . , x4, which we have repre-
sented as the four columns in a 5 × 4 matrix X :

X = [x1 | x2 | x3 | x4] =




1 2 3 7
1 3 4 6
1 5 6 4
1 2 3 7
1 1 2 8




Consider the first two vectors. These two vectors are linearly independent. Only
the trivial solution c1 = c2 = 0 achieves c1x1 + c2x2 = 0. Now consider the first
three vectors. One recognizes that x1 + x2 = x3. Hence, one can find coeffi-
cients c1 = 1, c2 = 1, and c3 = −1 such that c1x1 + c2x2 + c3x3 = 0. The first
three vectors are linearly dependent. It is now obvious that the four vectors are also
linearly dependent. Just set the coefficient c4 = 0, and you have a nontrivial solu-
tion c1 = 1, c2 = 1, c3 = −1, c4 = 0 resulting in c1x1 + c2x2 + c3x3 + c4x4 = 0.
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In this example, every possible set of three vectors from this matrix X results
in three vectors that are linearly dependent. We already saw it for x1, x2, and x3.
The same is true for x1, x3,and x4, as x4 = 10x1 − x3. Also for x1, x2, and x4, as
x4 = 10x1−x3 = 10x1−(x1 + x2) = 9x1 −x2. Hence, we only need two columns
to create the remaining columns of the matrix X . �

Rank of a Matrix The rank of a p × q matrix A is the largest number of linearly
independent columns (or equivalently, the largest number of linearly independent
rows). The p × p square matrix AA′ has the same rank as the p × q matrix A.

A m × m square matrix A is called nonsingular if its rank is m. We call the
matrix singular if its rank is less than m.

Example The rank of the matrix X in the previous example is 2. Consider

A =

2 5

1 3
1 2


 and A′ =

[
2 1 1
5 3 2

]

The rank of A, and also the rank of A′, is 2. The 3 × 3 matrix

AA′ =

29 17 12

17 10 7
12 7 5




Observe that the third column in this matrix is the difference of the first two. The
matrix AA′ has rank 2 (which is the rank of A). �

Determinant of a Square Matrix The determinant of an m × m square matrix A =
(ai j ) is the real value defined by |A| = ∑ ±a1i a2 j . . . amp, where the summation
is taken over all permutations (i, j, . . . , p) of (1, 2, . . . , m), with a plus sign
if it is an even permutation and a minus sign if it is an odd permutation. A
permutation is called even (odd) if its number of inversions is even (odd). An
inversion in a permutation occurs whenever a larger integer precedes a smaller
one. The determinant of A is different from zero if and only if the matrix A is
nonsingular (i.e., has full rank m). For two m × m square matrices A and B, it
holds that |AB| = |A||B|.

Example Consider the 2 × 2 and 3 × 3 matrices

A =
[

4 2
1 3

]
and B =


2 1 3

1 2 3
4 6 10




The determinants are given by |A| = (4)(3) − (2)(1) = 10 and |B| = (2)(2)(10) +
(1)(6)(3) + (1)(3)(4) − (4)(2)(3) − (6)(3)(2) − (1)(1)(10) = 0. The matrix B
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is singular, and its rank is less than 3. We notice that the third column of B is
the sum of the first two columns; hence, the matrix has rank at most 2. The
matrix has rank 2 because we can find one pair of vectors that are linearly
independent. �

Inverse of a Nonsingular Matrix The inverse of a nonsingular matrix A is denoted
by A−1. The inverse A−1 satisfies AA−1 = A−1 A = I . If A and B are nonsingular
(m × m) matrices, then (AB)−1 = B−1 A−1. Various algorithms are available for
numerically determining the inverse. Most algorithms become unstable if the
matrix is close to a singular matrix.

Example Consider the 2 × 2 matrix A of the previous example. The inverse is given by

A−1 =
[

0.3 −0.2
−0.1 0.4

]
Convince yourself that AA−1 = A−1 A = I , where I is the 2 × 2 identity
matrix. �

Quadratic Forms Consider the n × 1 vector y = (y1, y2, . . . , yn)
′. We call y′ Ay a

quadratic form in y provided that the n × n matrix A is symmetric (i.e., A = A′).

Positive Definite Matrix A symmetric matrix A is called positive definite if for all
vectors y �= 0 the quadratic form y′ Ay > 0. We call the matrix positive semidefi-
nite if the quadratic form y′ Ay ≥ 0 for all y and y′ Ay = 0 for some vector y �= 0.

We call the symmetric matrix A negative definite if for all vectors y �= 0 the
quadratic form y′ Ay < 0. We call the matrix negative semidefinite if the quadratic
form y′ Ay ≤ 0 for all y and y′ Ay = 0 for some vector y �= 0.

Orthogonal Matrix A square matrix A is called orthogonal if AA′ = I . Since
A′ = A−1 is the inverse of A, it follows that A′ A = I . Hence, an orthogonal
matrix satisfies AA′ = A′ A = I . The rows of an orthogonal matrix are mutu-
ally orthogonal and the length of the rows is one. The same can be said about
the columns of A. Furthermore, the determinant |A| = ±1. This follows since
|AA′| = |A||A′| = |A|2 = |I | = 1.

Example Consider the 2 × 2 matrix A =
[

1/
√

2 −1/
√

2

1/
√

2 1/
√

2

]
. The inverse of this matrix is

the same as the transpose, A′. The rows (columns) of the matrix are orthogonal,
and the length of each row (column) vector is 1. A is an orthogonal matrix. The
determinant of A is +1. �
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Trace of a Square Matrix The trace of a square m × m matrix A is defined as the
sum of its diagonal elements; that is, tr(A) = ∑m

i=1 aii . The definition implies that
tr(A) = tr(A′), tr(A + B) = tr(A) + tr(B). Provided that the matrices C, D, and
E are conformable, tr(C DE) = tr(EC D) = tr(DEC). Conformable means that
the dimensions of the matrices are such that all these products are defined.

Idempotent Matrix A square matrix A is idempotent if AA = A. The determinant
of an idempotent matrix is either 0 or 1. The rank of an idempotent matrix is equal
to the sum of its diagonal elements.

Example Consider the n × p matrix X , with p ≤ n, and assume that the matrix X has full
column rank, p. Now consider the matrix X ′ X . This is a p × p matrix. The matrix
is symmetric since (X ′ X)′ = X ′(X ′)′ = X ′ X . Furthermore, it is nonsingular with
rank p, and the inverse (X ′ X)−1 exists.

Define the n × n matrix H = X (X ′ X)−1 X ′. H is symmetric [since the trans-
pose (X (X ′ X)−1 X ′)′ = X (X ′ X)−1 X ′]. H is idempotent since H H = X (X ′ X)−1

X ′ X (X ′ X)−1 X ′ = X (X ′ X)−1 X ′ = H . The rank of H is equal to the sum of
its diagonal elements. The trace of H is given by tr(H) = tr(X (X ′ X)−1 X ′) =
tr(X ′ X (X ′ X)−1) = tr(Ip) = p since (X ′ X) is a p × p matrix and Ip is the p × p
identity matrix. This shows that the rank of the n × n matrix H is p, the rank of
X . The matrix H will become very useful in regression. �

Vector Space A vector space V is the set of all vectors that is closed under
addition and multiplication by a scalar and that contains the null vector 0. A set
of linearly independent vectors x1, x2, . . . , xn is said to span a vector space of di-
mension n; any other member of this vector space can be generated through linear
combinations of these vectors. We call this set a basis of the vector space. Basis
vectors are not unique. Sometimes it is useful to work with orthonormal basis
vectors. That is, vectors u1, u2, . . . , un that are orthogonal (u′

i u j = 0 for i �= j)
and have length one (u′

i ui = 1). Such orthonormal basis vectors always exist, and
the Gram–Schmidt orthogonalization shows how they can be constructed from
a given set of linearly independent basis vectors x1, x2, . . . , xn. The procedure
works as follows:

u1 = x1

u2 = x2 − a21u1

u3 = x3 − a32u2 − a31u1

. . .

ui = xi − ai,i−1ui−1 − ai,i−2ui−2 − · · · − ai,1u1

. . .

The coefficients in the i th equation (i = 2, . . . , n) are determined by setting
the inner product of ui with each of the previous vectors ui−1, . . . , u1 equal to zero.
We start with u1 = x1. We select a21 such that u′

1(x2 − a21u1) = 0, which implies
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that a21 = (u′
1x2)/(u′

1u1). Next we determine a32 and a31 from u′
1(x3 − a32u2 −

a31u1) = u′
1(x3 − a31u1) = 0, and u′

2(x3 − a32u2 − a31u1) = u′
2(x3 − a32u2) = 0.

This implies a31 = (u′
1x3)/(u′

1u1) and a32 = (u′
2x3)/(u′

2u2), and so on. This pro-
cess generates orthogonal vectors ui . The last step normalizes the vectors by
dividing each vector ui by (u′

i ui )
0.5. The denominator is always different from

zero, because the initial basis vectors are linearly independent.
The Euclidean space Rn is a vector space. The vectors ui , with all zero

elements except for a one in the i th row, provide one natural orthonormal basis
(but by no means the only one).

Subspace of Rn Consider k < n linearly independent vectors in Rn, x1, x2, . . . , xk.
The linear combinations of x1, x2, . . . , xk span a certain k-dimensional subspace
Rk within Rn . The Gram–Schmidt orthogonalization can be used to construct an
orthonormal basis for this subspace.

Linear Transformations Matrices arise naturally in the study of linear transforma-
tions. A linear transformation of the n × 1 vector x into the n × 1 vector y is
written as y = Ax, where A is the n × n transformation matrix. For nonsingular
matrices A the transformation is one-to-one.

Orthogonal Transformations A linear transformation y = Ax is called orthogonal
if A is an orthogonal matrix satisfying AA′ = A′ A = I ; that is, a matrix with
mutually orthogonal rows (columns) of unit lengths. Orthogonal transformations
correspond to rotations and reflections in n-dimensional space, and they preserve
lengths (i.e., y′y = x′ A′ Ax = x′x) and also volumes.

Projections Projection of a vector x in Rn on to a subspace S of Rn is the linear
transformation y = Px, where the n × n matrix P is symmetric (P = P ′) and
idempotent (satisfying P P = P).

The subspace S onto which we project is spanned by the columns (or rows)
of P , and the dimension of S is given by the rank of this matrix P . Since y =
Px, y is a member of that subspace. The fact that P y = P Px = Px and hence
P(x − y) = P ′(x − y) = 0 implies that x − y is orthogonal to the subspace S.

Eigenvalues and Eigenvectors of a Square Matrix The eigenvalues (or character-
istic roots) λ1, λ2, . . . , λm of an m × m matrix A are the m solutions to the
characteristic equation (determinant equation) |A − λI | = 0. The eigenvectors
v1, v2, . . . , vm of the matrix A are the (vector) solutions of the equations (A −
λi I )v i = 0, for i = 1, 2, . . . , m.

For symmetric matrices the eigenvalues are real numbers. For symmetric
positive definite matrices all eigenvalues are positive. For symmetric positive
semidefinite matrices one or more of the eigenvalues will be zero.

Spectral Representation (Canonical Reduction) of a Symmetric Matrix Let A be an m ×
m symmetric matrix (i.e., A′ = A). Then there exist an orthogonal matrix P (i.e.,
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satisfying P ′ P = P P ′ = I ) and a diagonal matrix 
 with elements λ1 ≥ λ2 ≥
· · · ≥ λm such that P ′ AP = 
. Hence, A = P
P ′.

The elements λ1 ≥ λ2 ≥ · · · ≥ λm of the diagonal matrix 
 are the real-
valued eigenvalues of the matrix A, and the m column vectors of the matrix
P = [p1, p2, . . . , pm] are the corresponding eigenvectors, that satisfy A pi = λi pi

and have been normalized to lengths one.

3.2 MATRIX APPROACH TO SIMPLE LINEAR REGRESSION
In Chapters 1 and 2, we considered the hardness (y) and the temperature (x) of
14 coil springs. The linear model

y = β0 + β1x + ε

led us to the 14 equations in Eq. (2.2). These may be written as


55.2
59.1

...

16.9


 =




β0 + β1 · 30

β0 + β1 · 30
...

β0 + β1 · 60


 +




ε1

ε2
...

ε14




(3.1)
y = Xβ + ε

where y and ε are (14 × 1) column vectors, β is a (2 × 1) column vector, and X
is a (14 × 2) matrix. Specifically,

y =




y1

y2
...

y14


 =




55.2
59.1

...

16.9


; ε=




ε1

ε2
...

ε14


; β =

[
β0

β1

]
; X =




1 x1

1 x2
...

...

1 x14


 =




1 30
1 30
...

...

1 60




With n cases, y and ε are (n × 1) vectors, and X is a (n × 2) matrix.

3.2.1 LEAST SQUARES

The least squares estimates of β minimize the error sum of squares

S(β) = S(β0, β1) =
n∑

i=1

ε2
i = ε′ε= ( y − Xβ)′( y − Xβ)

The minimization with respect to β leads to the normal equations in Eq. (2.6),
which can be written in vector/matrix form as[

n
∑

xi∑
xi

∑
x2

i

] [
β0

β1

]
=

[ ∑
yi∑

xi yi

]
,
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or

(X ′ X)β = X ′y (3.2)

The solution to this matrix equation, β̂, is given by

β̂ = (X ′ X)−1 X ′y (3.3)

provided that the matrix X ′ X can be inverted (i. e., the matrix X has full column
rank 2, which implies that X ′ X is nonsingular).

The fitted values and residuals can also be expressed in vector form. The
vector of fitted values is given by

µ̂=


µ̂1

...

µ̂n


 =


β̂0 + β̂1x1

...

β̂0 + β̂1xn


 =


1 x1

...
...

1 xn




[
β̂0

β̂1

]
= X β̂ (3.4)

The vector of residuals is

e =




e1
...

en


 =




y1 − µ̂1
...

yn − µ̂n


 = y − µ̂= y − X β̂ (3.5)

The least squares estimator of σ 2 is given as

s2 = 1

n − 2

n∑
i=1

e2
i = 1

n − 2
e′e (3.6)

Since β̂ is the solution of Eq. (3.2), X ′ X β̂ = X ′y, we find that

X ′( y − X β̂) = X ′e = 0 (3.7)

The equation

[
1 1 · · · 1
x1 x2 · · · xn

] 


e1
...

en


 = 0

implies
∑

ei = 0 and
∑

xi ei = 0, the two restrictions seen earlier.
Furthermore, through substitution of µ̂= X β̂, we find that the scalar∑

µ̂i ei = µ̂′e = (X β̂)′e = β̂′ X ′e = 0 (3.8)

which is another consequence of the least squares fit seen earlier.
This discussion shows that with vector/matrix algebra a number of results

can be established quite easily. Without vector algebra, the analysis involves
considerable algebraic manipulations. The results in Eqs. (3.7) and (3.8) also have
interesting and useful geometric interpretations, which are discussed in Chapter 4.
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3.2.2 HARDNESS EXAMPLE

Using the data in Chapter 2, we find

X ′ X =
[

14 630
630 30300

]
, (X ′ X)−1 =

[
1.1099 −.0231
−.0231 .0005

]

X ′y =
[

2520.2
20940.0

]
β̂ = (

X ′ X
)−1

X ′y =
[

94.134
−1.266

]

µ̂ =




µ̂1

µ̂2
...

µ̂14


 =




β̂0 + β̂1 · 30
β̂0 + β̂1 · 30

...

β̂0 + β̂1 · 60


 =




56.1495
56.1495

...

18.1648




e =




e1

e2
...

e14


 =




55.2
59.1

...

16.9


 −




56.1495
56.1495

...

−18.1648


 =




−0.3495
2.9505

...

−1.2648




3.3 VECTORS OF RANDOM VARIABLES
Equation (3.1) expresses the simple linear regression model in vector notation. The
vectors ε= (ε1, . . . ,εn)

′ and y = (y1, . . . ,yn)
′ are called random vectors because

their elements are random variables. In this section, we review random vectors and
their properties. This will help us establish the general regression results. Note that
in Chapter 2 we made a careful distinction between a random variable (denoted by
capital letter Y ) and a possible value of this random variable (denoted by lowercase
letter y). From now on, we will not make this distinction and throughout this text
we will use lowercase letters for random variables.

Definition The expected value of a random vector y is defined as

E( y) = (E(y1), E(y2), . . . ,E(yn))
′

The expected value of a random vector is the vector of the respective expected
values; we also call it the mean of the random vector. Similarly, if W is a matrix
of random variables, then the expected value of W, E(W ), is the corresponding
matrix of expected values.

For single random variables y1 and y2 and constants a1 and a2, we know that

(i) E(a1 y1 + a2) = a1 E( y1) + a2, (ii) E(a1 y1 + a2 y2) = a1 E( y1) + a2 E( y2)

The second property is very important. It states that the expected value of a linear
combination of random variables is the linear combination of the expected values.
For vectors we have the corresponding properties

(i) E(ay + b) = aE( y) + b, (ii) E(A1 y) = A1 E( y); E(y′ A2) = E(y)′ A2
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where a is a scalar constant, b is a vector of constants, and A1 and A2 are matrices
of constants. These results follow easily by writing out the expressions after the
expectation sign and using the definition of the expectation of a random vector.

Recall that for scalar random variables y1 and y2 with means E(y1) = µ1 and
E(y2) = µ2, the variances of y1 and y2 are

V (y1) = E(y1 − µ1)
2 and V (y2) = E(y2 − µ2)

2

and the covariance between y1 and y2 is

Cov(y1, y2) = E(y1 − µ1)(y2 − µ2)

In the context of a (n × 1) random vector y we collect both variances and covari-
ances in a single matrix called the covariance matrix V ( y).

Definition Let y = (y1, . . . ,yn)
′ be a vector of random variables with mean vector E( y) =

µ= (µ1, . . . , µn)
′. The covariance matrix V ( y) is the matrix with diagonal ele-

ments V (yi ) and (i, j)th off-diagonal elements Cov(yi , y j ). That is,

V ( y) =




V (y1) Cov(y1, y2) · · · Cov(y1, yn)

V (y2) · · · Cov(y2, yn)
...

...

Cov(yn, y1) · · · V (yn)




�

Here we list several important properties of vectors of random variables:

i. The covariance matrix � = V ( y) is symmetric (� = �′) since
Cov(yi , y j ) = Cov(y j , yi ).

ii. For uncorrelated random variables y1, . . . ,yn with Cov(yi , y j ) = 0, i �= j ,
the covariance matrix V (y) is diagonal.

iii. We can express the covariance matrix as

V ( y) = E( y −µ)( y −µ)′

One can see this by writing

E( y −µ)( y −µ)′ = E

{[
y1 − µ1

· · ·
yn − µn

]
[y1 − µ1, . . . , yn − µn]

}

=




E(y1 − µ1)
2 E(y1 − µ1)(y2 − µ2) · · · E(y1 − µ1)(yn − µn)

E(y2 − µ2)
2 · · · E(y2 − µ2)(yn − µn)

Symmetric
...

E(yn − µn)
2




= V ( y)

iv. Consider a system of p linear transformations u = Ay, where A is a p × n
matrix of constants. The p × 1 vector u is a random vector. Its mean vector



Abraham Abraham˙C03 November 8, 2004 14:18

78 A Review of Matrix Algebra and Important Results on Random Vectors

is given by the p × 1 vector E(u) = E(Ay) = AE(y) = Aµ. The p × p
covariance matrix of u is given by V (u) = V (Ay) = AV ( y)A′. The result
for the mean vector follows from the definition. The result on the
covariance matrix can be proved as follows:

V (u) = E[u − E(u)][u − E(u)]′

= E[(Ay − Aµ)(Ay − Aµ)′]
= E[A( y −µ)( y −µ)′ A′]
= AE[( y −µ)( y −µ)′]A′

= AV ( y)A′

If the linear transformation includes a constant vector b (i.e., u = b + Ay),
then the mean vector changes to E(u) = b + Aµ. However, since b is
nonstochastic, the covariance matrix is as given previously.

Example Consider the random vector y = (y1, y2, y3)
′ such that E( y) =µ= (1, 2, 3)′ and

V ( y) =

1 0 1

0 2 −1
1 −1 3




Consider the system of linear combinations

u1 = y1 − y2 + 2y3

u2 = y1 + y3

That is, u = Ay, where A =
[

1 −1 2
1 0 1

]
. Then

E(u) = Aµ=
[

1 −1 2
1 0 1

] 
1

2
3


 =

[
5
4

]

and

V (u) =
[

1 −1 2
1 0 1

] 
1 0 1

0 2 −1
1 −1 3





 1 1

−1 0
2 1


 =

[
23 11
11 6

]

This implies that V (u1) = 23, V (u2) = 6, Cov(u1, u2) = 11, and

Corr(u1, u2) = Cov(u1, u2)√
V (u1)V (u2)

= 11√
23

√
6

= 0.936 �

v. Consider p = 1, and the single linear combination u = a′y, where
a′ = (a1, . . . , an) is a 1 × n row vector. The mean of the scalar random
variable u is E(u) = a′µ and its variance is V (u) = a′V ( y)a.
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vi. The covariance matrix � = V ( y) must be positive semidefinite. Variances
of linear combinations a′y can never be negative; hence, we require that
V (a′y) = a′V ( y)a ≥ 0. Note that the requirement of being positive
semidefinite allows for nontrivial linear combinations of y with zero
variance. In such cases, we have deterministic linear relationship(s) among
the n random variables, and the distribution of y can be defined on a lower
(lower than n) dimensional space. In this case, the covariance matrix V ( y)

is singular.

vii. Eigenvalues of a positive semidefinite symmetric matrix are nonnegative.
Hence, the covariance matrix � of a random vector y can always be written
as � = P
1/2
1/2 P ′ = P∗ P∗′

, where P∗ = P
1/2, and where 
1/2 is the
diagonal matrix with elements (λ1)

1/2 ≥ (λ2)
1/2 ≥ · · · ≥ (λm)1/2.

This is an important result. For any random vector y with general
nonsingular covariance matrix � = P
P ′ = P∗ P∗′

, we can find a linear
transformation z = (
−1/2 P ′)y that transforms the correlated random
variables y into uncorrelated random variables with unit variances. Here,

−1/2 is a diagonal matrix with elements
(λ1)

−1/2 ≤ (λ2)
−1/2 ≤ · · · ≤ (λm)−1/2, and P is the matrix of normalized

eigenvectors of �.
You can see this result from our general result on covariance matrices

of linear transformations. The covariance matrix of z is given by
(
−1/2 P ′)�(P
−1/2) = 
−1/2

−1/2 = I . Note that we have assumed
that the covariance matrix � is nonsingular. In this case, all eigenvalues
(λ1, λ2, . . . , λm) are strictly larger than zero, and it is possible to take the
reciprocal of the eigenvalues.

Example Consider the 2 × 2 matrix � =
[

1 0.5
0.5 1

]
. This is a symmetric and positive def-

inite matrix. It is a nonsingular covariance matrix of a bivariate (nondegenerate)
random vector. The eigenvalues are the solution to the equation (1 − λ)(1 − λ) −
0.25 = 0, and they are given by 0.5 and 1.5. The eigenvector corresponding to

the first eigenvalue satisfies the equation

[
1 0.5

0.5 1

] [
x1

x2

]
− (0.5)

[
x1

x2

]
=

[
0
0

]
.

This leads to the equation x1 + x2 = 0 (note that the second equation is identi-
cal). Solving this equation and imposing the restriction that the length of the
resulting solution is 1 [i.e., (x1)

2 + (x2)
2 = 1] leads to the first eigenvector

p1 =
[

1/
√

2
−1/

√
2

]
. The second eigenvector satisfies the equation

[
1 0.5

0.5 1

] [
x1

x2

]
−

(1.5)

[
x1

x2

]
=

[
0
0

]
, which leads to the equation x1 − x2 = 0 and the second
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eigenvector p2 =
[

1/
√

2

1/
√

2

]
.Hence, the orthogonal matrix P =

[
1/

√
2 1/

√
2

−1/
√

2 1/
√

2

]

and 
 =
[

0.5 0
0 1.5

]
. You can convince yourself that � = P
P ′. �

So far, we have discussed the mean E( y) and the covariance matrix V ( y) of
a random vector y. We can also consider the distribution of random vectors. Such
distributions are referred to as multivariate distributions. The most important
multivariate distribution is the multivariate normal distribution.

3.4 THE MULTIVARIATE NORMAL DISTRIBUTION
In the Appendix in Chapter 2, we discussed the univariate normal distribution
with mean µ and standard deviation σ > 0. The density function of the univariate
normal distribution is given by

f (y) = 1

(2π)1/2σ
exp

[
− 1

2σ 2
(y − µ)2

]
for −∞ < y < ∞

The standard normal distribution is the normal distribution with mean 0 and
variance 1. Percentiles of the standard normal distribution are given in Table A
at the end of this book.

The n variate normal distribution for an n × 1 random vector y = (y1, y2,

. . . , yn)
′ with mean vector µ= (µ1, µ2, . . . , µn)

′ and n × n covariance matrix
� = (σi j ) is given by

f ( y) =
[

1

2π

]n/2

|�|−1/2 exp

[
−1

2
( y −µ)′�−1( y −µ)

]
for −∞ < yi < ∞

The distribution is completely specified by a mean vector µ and a symmetric pos-
itive definite covariance matrix �. This assumption ensures that � is nonsingular
and has an inverse. Note that a positive semidefinite covariance matrix � implies
at least one nontrivial linear combination of y with zero variance. In this case,
there exists a deterministic linear relationship among the n random variables, and
the distribution of y can be defined on a lower (lower than n) dimensional space.
The resulting covariance matrix � is singular, and one needs to consider a special
type of inverse called generalized inverse of �.

Important properties of the multivariate normal distribution are listed as fol-
lows:

i. The reproductive property: Linear transforms of multivariate normals
are again normal.
Consider the (vector) linear transformation of y, u = Ay, where u is a p × 1
vector with p ≤ n, and where A is a p × n matrix of rank p. It follows that
u has a p variate normal distribution with mean vector E(u) = Aµ and
covariance matrix A� A′.
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The result about the mean vector and covariance matrix of a (vector)
linear transformation was shown in Section 3.3. The importance of the
present result is that the distribution of linear combinations of a multivariate
normal vector is again multivariate normal.

As a special case, consider a single linear transformation u = a′y,
where a = (a1, a2, . . . , an)

′ is a known n × 1 vector of constants. The
(scalar) random variable u follows a univariate normal distribution with
mean a′µ and variance a′�a.

ii. Marginal distributions of multivariate normals are again normal.
Consider y1, a p × 1 subvector of the n × 1 vector y = (y1, y2, . . . , yn)

′.
Assume without loss of generality that y1 consists of the first p components

of y. Partition the vector y accordingly, and let y =
[

y1

y2

]
, with mean

vector µ=
[
µ1

µ2

]
and covariance matrix � =

[
�11 �12

�′
12 �22

]
. We can write y1

as a (vector) linear combination of y. That is,

y1 = [
Ip×p Op×(n−p)

]
y

where Ip×p is the p × p identity matrix, and Op×(n−p) is the p × (n − p)

matrix of zeros.
Applying property i , we find that y1 has a p variate normal distribution

with mean vector µ1 and covariance matrix[
Ip×p Op×(n−p)

] [
�11 �12

�′
12 �22

] [
Ip×p

O(n−p)×p

]
= �11

Let us consider p = 1 and an individual component yi (where i is any index
between 1 and n). It follows that the distribution of yi is univariate normal
with mean µi and variance σi i .

iii. Conditional distributions of multivariate normal distributions are
again normal.
Partition the multivariate normal vector y into nonoverlapping subvectors
y1 and y2 as shown in (ii). The conditional distribution of y1 given certain
specified values for y2 is a p variate normal distribution with the p × 1
mean vector

µ1·2 =µ1 + �12(�22)
−1( y2 −µ2)

and the p × p covariance matrix

�1·2 = �11 − �12(�22)
−1�′

12

iv. Equivalence of zero covariance and independence.
We know that for any distribution, the independence of (two) random
variables implies zero covariance between the random variables. Under a
multivariate normal distribution, the converse also holds, and zero
covariance implies statistical independence.
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You can see that with σ12 = Cov(y1, y2) = 0, the bivariate normal
density of y1 and y2 factors into

f (y1, y2) = 1

(2π)(σ11σ22)1/2
exp

[
− (y1 − µ1)

2

2σ11
− (y2 − µ2)

2

2σ22

]

=
{

1

(2π)1/2σ
1/2
11

exp

[
− (y1 − µ1)

2

2σ11

]} {
1

(2π)1/2σ
1/2
22

exp

[
− (y2 − µ2)

2

2σ22

]}
,

the product of two marginal normal densities.
The assumption of joint normality is essential for the equivalence of

uncorrelatedness and independence. The following example shows that, in
general, uncorrelated random variables need not be independent. Take the
random variable y with zero odd moments; that is, E(y) = E(y3) =
E(y5) = · · · = 0. Take as a second random variable x = y2. Then
Cov(x, y) = E[(y2 − E(y2))(y − E(y))] = E(y3) − E(y)E(y2) = 0, but x
and y are functionally related and hence not independent.

Consider two (vector) linear transforms of a multivariate normal random
vector y with covariance matrix �. That is, z1 = A1 y and z2 = A2 y, where
A1 and A2 are matrices of dimensions p1 × n and p2 × n. The transforms
are independent if and only if A1� A′

2 = O , a matrix of p1 × p2 zeros.

Result i implies that the vector z =
[

z1

z2

]
=

[
A1

A2

]
y has a multivariate

normal distribution with covariance matrix[
A1

A2

]
�

[
A′

1 A′
2

] =
[

A1� A′
1 A1� A′

2

A2� A′
1 A2� A′

2

]
. The covariance is zero if and

only if A1� A
′
2 = O .

3.5 IMPORTANT RESULTS ON QUADRATIC FORMS
We call Q = y′ Ay a quadratic form in y = (y1, y2, . . . , yn)

′ provided that the
n × n matrix A is symmetric (i.e., A = A′).

i. The distribution of quadratic forms
Assume that the n × 1 vector y = (y1, y2, . . . , yn)

′ follows a multivariate
normal distribution with mean vector zero and nonsingular covariance
matrix �. Assume that the symmetric n × n matrix A has rank r ≤ n. A
necessary and sufficient condition that Q = y′ Ay follows a chi-square
distribution with r degrees of freedom is provided by the matrix equality
A� A = A.

Consider the special case in which y1, y2, . . . , yn are independent
univariate normal random variables with means zero and a constant
variance σ 2. This implies that the n × 1 vector z with elements



Abraham Abraham˙C03 November 8, 2004 14:18

Exercises 83

z1 = y1/σ, z2 = y2/σ, . . . , zn = yn/σ follows a multivariate normal
distribution with mean vector zero and covariance matrix In . Hence, the
quadratic form Q = y′ Ay/σ 2 follows a chi-square distribution with r
degrees of freedom if and only if the matrix A is idempotent (AA = A).

ii. Independence of two quadratic forms
Assume that the n × 1 vector y = (y1, y2, . . . , yn)

′ follows a multivariate
normal distribution with mean vector zero and nonsingular covariance
matrix �. Consider the two quadratic forms Q1 = y′ Ay and Q2 = y′ B y,
where A and B are symmetric n × n matrices. The random variables
Q1 = y′ Ay and Q2 = y′ B y are independent if and only if A�B = O , an
n × n matrix of zeros. If � = σ 2 I , the condition simplifies to AB = O .

iii. Results on the distribution of a sum of quadratic forms
Assume that the n × 1 vector y = (y1, y2, . . . , yn)

′ follows a multivariate
normal distribution with mean vector zero and nonsingular covariance
matrix � = σ 2 I . Let Q = Q1 + · · · + Qk−1 + Qk , where Q, Q1, . . . ,

Qk−1, Qk are k + 1 quadratic forms in y. Let Q/σ 2 be chi-square with r
degrees of freedom, let Qi/σ

2 be chi-square with ri degrees of freedom
(i = 1, 2, . . . , k − 1), and let Qk be nonnegative. Then the random variables
Q1, . . . , Qk−1, Qk are mutually independent and, hence, Qk/σ

2 is
chi-square with rk = r − (r1 + r2 + · · · + rk−1) degrees of freedom.

EXERCISES
3.1. Consider the matrix

A =

2 0 1

3 2 2
2 1 4




a. Obtain the transpose A′ of A.

b. Calculate A′ A.

c. Obtain the trace tr(A) of A; obtain
tr(A′ A).

d. Calculate the determinant det(A) of A;
obtain det(A′ A).

3.2. Consider the matrix

X =




1 −1 −1
1 +1 −1
1 −1 +1
1 +1 +1


 and the vector y =




4
3
5
7




a. Find X ′ X , (X ′ X)−1, X ′y, and (X ′ X)−1

X ′y.

b. Describe the structure of X ′ X and
(X ′ X)−1.

3.3. Consider the matrix

X =




1 x11 x12

1 x21 x22

1 x31 x32

1 x41 x42

1 x51 x52




a. Find X ′ X .

b. Obtain
5∑

i=1

xi1,

5∑
i=1

xi2,

5∑
i=1

x2
i1,

5∑
i=1

x2
i2,

and
5∑

i=1

xi1xi2

How are these quantities related to the
elements of the X ′ X matrix?

3.4. Consider the matrix

A =
[

2 −1
−1 2

]
a. Calculate the determinant and the inverse

of the matrix A.
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b. Obtain the eigenvalues and the
eigenvectors of the matrix A.

c. Determine the spectral representation of
the matrix A.

d. Determine whether the matrix A can be a
covariance matrix. If so, determine the
corresponding correlation matrix.

3.5. Consider the matrix

A =


3 1 1

1 4 2

1 2 2




a. Calculate the determinant and the inverse
of the matrix A.

b. Obtain the eigenvalues and the
eigenvectors of the matrix A.

c. Determine the spectral representation of
the matrix A.

d. Determine whether the matrix A can be a
covariance matrix. If so, determine the
corresponding correlation matrix.

3.6. Consider the matrix

A =

2 1 1

1 4 0
1 0 1




a. Calculate the determinant and the inverse
of the matrix A.

b. Obtain the eigenvalues and the
eigenvectors of the matrix A.

c. Determine whether or not the matrix A can
be a covariance matrix. If so, determine
the corresponding correlation matrix.

3.7. Consider the matrix

A =

2 1 3

1 2 3
3 3 6




a. Calculate the determinant and the inverse
of the matrix A.

b. Obtain the eigenvalues and the
eigenvectors of the matrix A.

c. Determine whether the matrix A can be a
covariance matrix. If so, determine the
corresponding correlation matrix. Identify

the linear combination that has
variance zero.

3.8. Consider the matrices

A =
[

1 4 2
3 1 2

]
and B =


4 1

2 2
2 4




a. Determine the matrix product AB and
obtain its rank.

b. Determine the matrix product B A and
obtain its rank.

3.9. Obtain a 3 × 3 orthogonal matrix other than
the trivial case of the identity matrix.

3.10. Specify a linear regression model for the
hardness data in Table 1.1. Specify the 14 × 2
matrix X and the 14 × 1 vector of responses
y. Determine the 2 × 2 matrix X ′ X and its
inverse (X ′ X)−1. Using matrix algebra, write
down the expression for the least squares
estimates in β̂ = (X ′ X)−1 X ′y.

3.11. Consider a trivariate normal distribution
y = (y1, y2, y3)

′ with mean vector
E( y) = (2, 6, 4)′ and covariance matrix

V ( y) =

1 0 1

0 2 −1
1 −1 3




a. Determine the marginal bivariate
distribution of (y1, y2)

′.
b. Determine the conditional bivariate

distribution of (y1, y2)
′, given that y3 = 5.

3.12. Let z1, z2, z3 be random variables with mean
vector and covariance matrix

µ=

 1

2
3


 ; V =


3 2 1

2 2 1
1 1 1




Define the new variables
y1 = z1 + 2z3; y2 = z1 + z2 − z3;

y3 = 2z1 + z2 + z3 − 7

a. Find the mean vector and the covariance
matrix of (y1, y2, y3).

b. Find the mean and variance of

y = 1

3
(y1 + y2 + y3).

3.13. Let X be an n × p matrix. Assume that the
inverse (X ′ X)−1 exists, and define
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A = (X ′ X)−1 X ′ and H = X A.

a. Show that (i) H H = H ;
(ii) (I − H)(I − H) = (I − H); and
(iii) H X = X .

b. Find (i) A(I − H); (ii) (I − H)A′;
(iii) H(I − H); and (iv) (I − H)′ H ′.

3.14. Suppose that the covariance matrix of a vector
y is σ 2 I , where I is an n × n identity matrix.
Using the matrices A and H in Exercise 3.13,
find the covariance matrix of

a. Ay

b. H y

c. (I − H)y

d.

[
A

−−
I − H

]
y

3.15. Consider the bivariate random vector with
covariance matrix

A =
[

1 ρ

ρ 1

]
;

|ρ| < 1 is the correlation coefficient

a. Show that the eigenvalues of the matrix A
are given by 1 + ρ and 1 − ρ.

b. Show that the normalized eigenvectors
that correspond to these two eigenvalues
are given by

p1 =
[

1/
√

2

1/
√

2

]
and p2 =

[
−1/

√
2

1/
√

2

]

c. Confirm the spectral representation of the
covariance matrix A. That is, show that

P
P ′ =
[
1/

√
2 −1/

√
2

1/
√

2 1/
√

2

] [
1 + ρ 0

0 1 − ρ

]
[

1/
√

2 1/
√

2

−1/
√

2 1/
√

2

]
= A =

[
1 ρ

ρ 1

]
d. Generate n = 20 independent random

vectors from a bivariate normal
distribution with mean vector zero and
covariance matrix A.

The result in (c) helps you with the
generation (simulation) of correlated random
variables. Assume that you want to generate

bivariate normal random variables (y1, y2)

with covariance matrix A given previously.
You can achieve this by generating
independent random variables (x1, x2) with
variances 1 + ρ and 1 − ρ and applying the
transformation

[
y1

y2

]
=

[
1/

√
2 −1/

√
2

1/
√

2 1/
√

2

] [
x1

x2

]

The resulting random vector (y1, y2) has a
bivariate normal distribution with covariance
matrix A.

Most computer programs make it easy to
generate univariate normal random variables,
but they lack routines for simulating
correlated random vectors. For generating
multivariate normal random variables with a
certain specified covariance matrix, one can
use the spectral representation of the
covariance matrix to determine the matrix
that transforms independent random variables
into correlated random variables.

3.16. The linear regression model in Chapter 2,
y = β0 + β1x + ε, assumes that the settings
of the regressor variable are fixed
(nonstochastic). In Section 2.9.2, we showed
that the standard regression results still apply
in the random x case, provided that the
random components on the right-hand side of
the model (the regressor x and the error ε) are
independent. As this exercise now shows,
difficulties arise if the error and the regressor
are dependent.

Assume that the vector (ε, x) in the linear
regression model y = β0 + β1x + ε follows a
bivariate normal distribution with mean
vector (0, µx ) and covariance matrix

V (ε, x) =
[

σ 2
ε ρεxσεσx

ρεxσεσx σ 2
x

]

ρεx is the correlation between the error and
the random regressor.

a. Use the result on linear transformations of
( jointly) normal random variables in
Section 3.4 and show that the distribution
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of [
y
x

]
=

[
β0

0

]
+

[
β1 1

1 0

] [
x
ε

]

is bivariate normal with mean vector
(β0 + β1µx , µx )

′ and covariance matrix

V (y, x) =
[

σ 2
y ρyxσyσx

ρyxσyσx σ 2
x

]

=
[
(β1)

2σ 2
x + 2β1ρεxσεσx + σ 2

ε β1σ
2
x + ρεxσεσx

β1σ
2
x + ρεxσεσx σ 2

x

]

b. Use the result in Section 3.4 on
conditional distributions and show that the
conditional distribution of y given x is
(univariate) normal with mean

µy.x = β0 + β1µx + β1σ
2
x + ρεxσεσx

σ 2
x

(x − µx )

= [β0 − (σε/σx )ρεxµx ] + [β1 + (σε/σx )ρεx ] x

= β∗
0 + β∗

1 x

and variance

σ 2
y.x = σ 2

y −
[
ρyxσyσx

]2

σ 2
x

= σ 2
y

(
1 − ρ2

yx

)
c. Interpret the result in (b).

The least squares estimate
β̂1 = ∑

(xi − x̄)yi/
∑

(xi − x̄)2 estimates
the slope in the conditional expectation
µy.x = β∗

0 + β∗
1 x . The slope β∗

1 = β1 +
(σε/σx )ρεx equals β1 only if the error and
the covariate are independent. This result
shows that with correlation between the
error and the regressor, the least squares
estimate is no longer an unbiased estimate
of β1. Discuss why this has important
implications. Can you think of situations
in which the error in the regression

relationship depends on the value of the
regressor variable?

In Section 2.9.2, we assumed that the
conditional expectation µy.x is β1, tacitly
implying that ρεx = 0. In this situation, the
least squares estimate is an unbiased
estimate of β1.

d. Consider the following simulation
experiment. Generate n = 20 independent
random vectors (ε, x)with mean vector
(0, 1)and covariance matrix V (ε, x) =[

1 ρεx

ρεx 1

]
; ρεx = 0.5. Use the approach

in Exercise 3.15(d) if your computer
software does not allow you to simulate
multivariate normal random variables.
Generate the 20 × 1 response vector y
from y = 2x+ ε (i.e., β0 = 0 and β1 = 2).
Obtain the least squares estimate β̂1.
Repeat this exercise for 1,000 independent
samples, and obtain the sampling
distribution of β̂1. Confirm that the mean
of the sampling distribution is given by
β1 + ρεx = 2 + ρεx . Repeat the simulation
experiment for ρεx = −0.5 and ρεx = 0.
Demonstrate that the ordinary least
squares estimate is not an unbiased
estimate of β1 if the independence between
the regressor and the error is violated.

3.17. Consider a trivariate normal distribution
y = (y1, y2, y3)

′ with mean vector zero and
covariance matrix V ( y) = σ 2 I . Determine
the distribution of the quadratic form
y2

1 + 0.5y2
2 + 0.5y2

3 + y2 y3.

3.18. Consider a bivariate normal distribution
y = (y1, y2)

′ with mean vector zero and
covariance matrix V ( y) = σ 2 I . Show the
independence of the two quadratic forms
(y1 − y2)

2and (y1 + y2)
2.
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4 Multiple Linear
Regression Model

4.1 INTRODUCTION
In this chapter we consider the general linear model introduced in Eq. (1.10),

y = β0 + β1x1 + · · · + βpx p + ε (4.1)

which links a response variable y to several independent (also called explanatory
or predictor) variables x1, x2, . . . , x p. We discuss how to estimate the model
parameters β = (β0, β1, . . . , βp)

′ and how to test various hypotheses about them.
You may find the subsequent discussion interesting from a theoretical standpoint
because it uses linear algebra to establish general results. It also maps out an
elegant geometric approach to least squares regression. Be prepared for subspaces,
basis vectors, and orthogonal projections.

4.1.1 TWO EXAMPLES

In order to motivate the general notation, we start our discussion with two ex-
amples: the urea formaldehyde foam insulation (UFFI) example and the gas con-
sumption data of Chapter 1.

UFFI Example
In Example 1.2.5 of Chapter 1, we considered 12 homes without UFFI (x1 = 0)

and 12 homes with insulation (x1 = 1). For each home we obtained an air-tightness
measure (x2) and a reading of its ambient formaldehyde concentration (y). The
model in Eq. (1.6) relates the ambient formaldehyde concentration (y) of the i th
home to its air tightness (x2) and the presence of UFFI (x1):

yi = β0 + β1xi1 + β2xi2 + εi , i = 1, 2, . . . , 24 (4.2)

Table 1.2 lists the information on the 12 houses without UFFI (x1 = 0) first; the
remaining 12 homes with UFFI (x1 = 1) are listed second. Note that Chapter 1

87
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uses z and x for the predictors x1 and x2. The 24 equations resulting from
model (4.2),

31.33 = β0 + β10 + β20 + ε1

28.57 = β0 + β10 + β21 + ε2
...

...

56.67 = β0 + β10 + β29 + ε12

43.58 = β0 + β11 + β21 + ε13
...

...

70.34 = β0 + β11 + β210 + ε24

can be written in vector form,


31.33

28.57
...

56.67

43.58
...

70.34




=




1 0 0

1 0 1
...

...
...

1 0 9

1 1 1
...

...
...

1 1 10





β0

β1

β2


 +




ε1

ε2
...

ε12

ε13
...

ε24




In short,

y = Xβ + ε (4.3)

where

y =




31.33

28.57
...

70.34


 ; X =




1 0 0

1 0 1
...

...
...

1 0 9

1 1 1
...

...
...

1 1 10




; β =


β0

β1

β2


 ; and ε=




ε1

ε2
...

ε24




Gas Consumption Data
In Example 1.2.7 of Chapter 1 we relate the fuel efficiency on each of 38 cars to
their weight, engine displacement, and number of cylinders. Consider the model

yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi , i = 1, 2, . . . , 38 (4.4)

where yi = gas consumption (miles per gallon) for the i th car

xi1 = weight of the i th car

xi2 = engine displacement for the i th car

xi3 = number of cylinders for the i th car
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The resulting 38 equations

16.9 = β0 + β14.360 + β2350 + β38 + ε1

15.5 = β0 + β14.054 + β2351 + β38 + ε2
...

...
...

31.9 = β0 + β11.925 + β289 + β34 + ε38

can be written in vector form as


16.9

15.5
...

31.9


 =




1 4.360 350 8

1 4.054 351 8
...

...
...

...

1 1.925 89 4







β0

β1

β2

β3


 +




ε1

ε2
...

ε38




In short,

y = Xβ + ε

where

y =




16.9

15.5
...

31.9


 ; X =




1 4.360 350 8

1 4.054 351 8
...

...
...

...

1 1.925 89 4


 ; β =




β0

β1

β2

β3


 ; and ε=




ε1

ε2
...

ε38




(4.5)

4.1.2 THE GENERAL LINEAR MODEL

These two examples show us how we can write the general linear model (4.1)
in vector form. Suppose that we have information on n cases, or subjects i =
1, 2, . . . , n. Let yi be the observed value on the response variable and let xi1,

xi2, . . . , xip be the values on the independent or predictor variables of the i th case.
The values of the p predictor variables are treated as fixed constants; however,
the responses are subject to variability. The model for the response of case i is
written as

yi = β0 + β1xi1 + · · · + βpxip + εi

= µi + εi (4.6)

whereµi = β0 + β1xi1 + · · · + βpxip is a deterministic component that is affected
by the regressor variables and εi is a term that captures the effect of all other
variables that are not included in the model.

We assume that εi is a random variable with mean E(εi ) = 0 and variance
V (εi ) = σ 2, and we suppose that the εi are normally distributed. Furthermore, we
assume that the errors from different cases, ε1, . . . , εn , are independent random
variables. These assumptions imply that the responses y1, . . . , yn are independent
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normal random variables with mean E(yi ) = µi = β0 + β1xi1 + · · · + βpxip and
variance V (yi ) = σ 2.

We assume that the variance V (yi ) is the same for each case. Note that this
is an assumption that needs to be checked because one needs to check all other
model assumptions, such as the form of the deterministic relationship and the
normal distribution of the errors.

The n equations in (4.6) can be rewritten in vector form,
 y1

...
yn


 =




β0 + β1x11 + · · · + βpx1p
...

β0 + β1xn1 + · · · + βpxnp


 +


 ε1

...
εn




In short,

y = Xβ + ε (4.7)

where

y =




y1

y2
...

yn


; X =




1 x11 x12 · · · x1p

1 x21 x22 · · · x2p
...

...
...

...

1 xn1 xn2 · · · xnp


; β =




β0

β1
...

βp


; and ε=




ε1

ε2
...
εn




You should convince yourself that this representation is correct by multiplying
out the first few elements of Xβ.

The assumptions on the errors in this model can also be written in vector
form. We write ε∼ N (0, σ 2 I ), a multivariate normal distribution with mean
vector E(ε) = 0 and covariance matrix V (ε) = σ 2 I . Similarly, we write y ∼
N (Xβ, σ 2 I ), a multivariate normal distribution with mean vector E( y) = Xβ
and covariance matrix V ( y) = σ 2 I .

4.2 ESTIMATION OF THE MODEL
We now consider the estimation of the unknown parameters: the (p + 1) re-
gression parameters β, and the variance of the errors σ 2. Since yi ∼ N (µi , σ

2)

with µi = β0 + β1xi1 + · · · + βpxip are independent, it is straightforward to write
down the joint probability density p(y1, . . . , yn |β, σ 2). Treating this, for given
data y, as a function of the parameters leads to the likelihood function

L(β, σ 2 | y1, . . . , yn) = (1/
√

2πσ)n exp

[
−

n∑
i=1

(yi − µi )
2/2σ 2

]
(4.8)

Maximizing the likelihood function L with respect to β is equivalent to minimiz-
ing S(β) = ∑n

i=1(yi − µi )
2 with respect to β. This is because the exponent in

Eq. (4.8) is the only term containing β. The sum of squares S(β) can be written
in vector notation,

S(β) = ( y −µ)′( y −µ) = ( y − Xβ)′( y − Xβ), sinceµ= Xβ (4.9)
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The minimization of S(β) with respect toβ is known as least squares estimation,
and for normal errors it is equivalent to maximum likelihood estimation. We
determine the least squares estimates by obtaining the first derivatives of S(β)with
respect to the parameters β0, β1, . . . , βp, and by setting these (p + 1) derivatives
equal to zero.

The appendix shows that this leads to the (p + 1) equations

X ′ X β̂ = X ′y (4.10)

These equations are referred to as the normal equations. The matrix X is assumed
to have full column rank p + 1. Hence, the (p + 1) × (p + 1) matrix X ′ X is
nonsingular and the solution of Eq. (4.10) is given by

β̂ = (X ′ X)−1 X ′y (4.11)

The estimate β̂ in Eq. (4.11) minimizes S(β), and is known as the least squares
estimate (LSE) of β.

4.2.1 A GEOMETRIC INTERPRETATION OF LEAST SQUARES

The model in Eq. (4.7) can be written as

y = β01 + β1x1 + · · · + βpx p + ε

= µ+ ε (4.12)

where the (n × 1) vectors y and ε are as defined before, and the (n × 1) vec-
tors 1 = (1, 1, . . . , 1)′ and x j = (x1 j , x2 j , . . . , xnj )

′, for j = 1, 2, . . . , p, represent
the columns of the matrix X . Thus, X = (1, x1, . . . , x p) and µ= Xβ = β01 +
β1x1 + · · · + βpx p.

The representation in Eq. (4.12) shows that the deterministic component µ is
a linear combination of the vectors 1, x1, . . . , x p. Let L(1, x1, . . . , x p) be the set
of all linear combinations of these vectors. If we assume that these vectors are not
linearly dependent, L(X) = L(1, x1, . . . , x p) is a subspace of Rn of dimension
p + 1. Note that the assumption that 1, x1, . . . , x p are not linearly dependent is
the same as saying that X has rank p + 1.

We want to explain these concepts slowly because they are essential for under-
standing the geometric interpretation that follows. First, note that the dimension
of the regressor vectors 1, x1, . . . , x p is n, the number of cases. When we display
the (p + 1) regressor vectors, we do that in n-dimensional Euclidean space Rn .
The coordinates on each regressor vector correspond to the regressor’s values on
the n cases. For example, the regressor vector x may represent the air tightness
of a home, and the dimension of this vector is 24, if measurements on 24 homes
are taken. Note that for models with an intercept, one of the regressor columns is
always the vector of ones, 1.

Obviously, it is impossible to graph vectors in 24-dimensional space, but
you can get a good idea of this by considering lower dimensional situations.
Consider the case in which n = 3, and use two regressor columns: the unit vector
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(−0.3, 0.5, 0.7)

FIGURE 4.1 Two
Vectors in
Three-Dimensional
Space, and the
Two-Dimensional
Space Spanned by
These Two Vectors

1 = (1, 1, 1)′ and x = (−0.3, 0.5, 0.7)′. These two vectors are graphed in three-
dimensional space in Figure 4.1. Any linear combination of these two vectors
results in a vector that lies in the two-dimensional space that is spanned by the
vectors 1 and x. We highlight this by shading the plane that contains all linear
combinations. We see that L(1, x) is a subspace of R3, and its dimension is 2.

Observe that we have selected two vectors 1 and x that are not linearly
dependent. This means that one of the two vectors cannot be written as a multiple
of the other. This is the case in our example. Note that the matrix

X = [1, x] =


1 −0.3

1 0.5

1 0.7




has full column rank, 2.
What would happen if two regressor vectors were linearly dependent; for ex-

ample, if 1 = (1, 1, 1)′ and x = (0.5, 0.5, 0.5)′? Here, every linear combination of
1 and x, α11 + α2x = α11 + α2(0.5)1 = (α1 + 0.5α2)1, is a multiple of 1. Hence,
the set of all linear combinations are points along the unit vector, and L(1, x)

defines a subspace of dimension 1. You can also see this from the rank of the
matrix X : The rank of

X = [1, x] =


1 0.5

1 0.5

1 0.5




is one; X does not have full column rank.
If we contemplate a model with two regressor columns, 1 and x, then we

suppose that 1 and x are not linearly dependent. If they were linearly dependent,
we would encounter difficulties because an infinite number of linear combinations
could be used to represent each point in the subspace spanned by 1 and x. You
can see this from our example. There is an infinite number of values for α1 and
α2 that result in a given value α1 + 0.5α2 = c.
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L(X)

y

m

FIGURE 4.2
Geometric
Representation of
the Response Vector
y and the Subspace
L (X )

Now we are ready to go to the more general case with a large number of cases,
n. Suppose that there are two regressors (p = 2) and three regressor columns 1,
x1, and x2. We assume that these three columns are not linearly dependent and that
the matrix X = [1, x1, x2] has full column rank, rank 3. The regressor vectors are
elements in Rn , and the set of all linear combinations of 1, x1, x2, L(1, x1, x2),
defines a three-dimensional subspace of Rn . If 1, x1, x2 were linearly dependent,
then the subspace would be of lower dimension (either 2 or 1).

Now we consider the case with p regressors shown in Figure 4.2. The oval
represents the subspace L(X). The vector µ= β01 + β1x1 + · · · + βpx p is a lin-
ear combination of 1, x1, . . . , x p, and is part of the subspace L(X). This picture is
simplified as it tries to illustrate a higher dimensional space. You need to use your
imagination.

Until now, we have talked about the subspace of Rn that is spanned by
the p + 1 regressor vectors 1, x1, . . . , x p. Next, let us add the (n × 1) response
vector y to the picture (see Figure 4.2). The response vector y is not part of the
subspace L(X). For a given value of β, Xβ is a vector in the subspace; y − Xβ
is the difference between the response vector y and the vector in the subspace,
and S(β) = ( y − Xβ)′( y − Xβ) represents the squared length of this difference.
Minimizing S(β) with respect to β corresponds to finding β̂ so that y − X β̂ has
minimum length.

In other words, we must find a vector X β̂ in the subspace L(X) that is “clos-
est” to y. The vector in the subspace L(X) that is closest to y is obtained by making
the difference y − X β̂ perpendicular to the subspace L(X); see Figure 4.3. Since
1, x1, . . . , x p are in the subspace, we require that y − X β̂ is perpendicular to 1,
x1, . . . , and x p.

This implies the equations

1′( y − X β̂) = 0

x′
1( y − X β̂) = 0

· · ·
x′

p( y − X β̂) = 0

Combining these p + 1 equations leads to

X ′( y − X β̂) = 0
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L(X)

y
y − X b^

X b^

FIGURE 4.3 A
Geometric View of
Least Squares

and

X ′ X β̂ = X ′y

the normal equations in Eq. (4.10) that we previously derived algebraically.
We assume that X has full column rank, p + 1. Hence, X ′ X has rank (p +

1), the inverse (X ′ X)−1 exists, and the least squares estimate is given by β̂ =
(X ′ X)−1 X ′y. Notice that we have obtained the LSE solely through a geometric
argument; no algebraic derivation was involved.

The vector of fitted values is given by µ̂= X β̂, and the vector of resid-
uals is e = y − µ̂= y − X β̂. The geometric interpretation of least squares is
quite simple. Least squares estimation amounts to finding the vector µ̂= X β̂ in
the subspace L(X) that is closest to the observation vector y. This requires that
the difference (i.e., the residual vector) is perpendicular (or othogonal) to the
subspace L(X). Hence, the vector of fitted values µ̂= X β̂ is the orthogonal
projection of y onto the subspace L(X). In algebraic terms,

µ̂= X β̂ = X (X ′ X)−1 X ′y = H y

where H = X (X ′ X)−1 X ′ is an n× n symmetric and idempotent matrix. It is easy
to confirm that H is idempotent as

H H = X (X ′ X)−1 X ′ X (X ′ X)−1 X ′ = H

The matrix H is an important matrix because it represents the orthogonal
projection of y onto L(X). It is referred to as the “hat” matrix.

The vector of residuals e = y − µ̂= y − X (X ′ X)−1 X ′y = (I − H)y is also
a projection of y, this time on the subspace of Rn that is perpendicular to L(X).

The vector of fitted values µ̂= X β̂ and the vector of residuals e are orthog-
onal, which means algebraically that

X ′e = X ′( y − X β̂) = 0

See the normal equations in Eq. (4.10). Hence, least squares decomposes the
response vector

y = µ̂+ e = X β̂ + ( y − X β̂)

into two orthogonal pieces. The vector of fitted values X β̂ is in L(X), whereas
the vector of residuals y − X β̂ is in the space orthogonal to L(X).

It may help you to look at this in the very simplest special case in which we
have n = 2 cases and just a single regressor column, 1 = (1, 1)′. This represents
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the “mean” regression model, yi = β0 + εi , with i = 1, 2. How does this look geo-
metrically? Since the number of cases is 2, we are looking at the two-dimensional
Euclidean space. Draw in the unit vector 1 = (1, 1)′ and the response vector y =
(y1, y2)

′. For illustration, take y = (0, 1)′. We project y = (y1, y2)
′ = (0, 1)′ onto

the subspace L(1), which is the 45-degree line in the two-dimensional Euclidean
space. The projection leads to the vector of fitted values µ̂= 0.51 = (0.5, 0.5)′ and
the LSE β̂0 = 0.5. The estimate is the average of the two observations, 0 and 1. The
residual vector e = y − µ̂= (0 − 0.5, 1 − 0.5)′ = (−0.5, 0.5)′ and the vector of
fitted values µ̂= (0.5, 0.5)′ are orthogonal; that is, e′µ̂= −(0.5)2 + (0.5)2 = 0.

4.2.2 USEFUL PROPERTIES OF ESTIMATES AND OTHER RELATED VECTORS

Recall our model

y = Xβ + ε

where X is a fixed (nonrandom) matrix with full rank, and the random error ε
follows a distribution with mean E(ε) = 0 and covariance matrix V (ε) = σ 2 I .
Usually, we also assume a normal distribution. The model implies that E( y) =
Xβ and V ( y) = σ 2 I . The LSE of the parameter vector β is β̂ = (X ′ X)−1 X ′y.
The vector of fitted values is µ̂= X β̂ = H y and the residual vector is e = y − µ̂=
(I − H)y. We now study properties of these vectors and other related quantities,
always assuming that the model is true.

i. Estimate β̂:

E(β̂) = E(X ′ X)−1 X ′y

= (X ′ X)−1 X ′E( y) = (X ′ X)−1 X ′ Xβ =β (4.13)

showing that β̂ is an unbiased estimator of β.

V (β̂) = V [(X ′ X)−1 X ′y]

= (X ′ X)−1 X ′V ( y)X (X ′ X)−1

= (X ′ X)−1 X ′(σ 2 I )(X ′ X)−1

= (X ′ X)−1 X ′ X (X ′ X)−1σ 2 = (X ′ X)−1σ 2 (4.14)

The matrix in Eq. (4.14) contains the variances of the estimates in the
diagonal and the covariances in the off-diagonal elements. Let vi j denote
the elements of the matrix (X ′ X)−1. Then V (β̂ i ) = σ 2vii ,

Cov(β̂ i , β̂ j ) = σ 2vi j , and Corr(β̂ i , β̂ j ) = vi j

(vii v j j )1/2
.

ii. Linear combination of estimates, a′β̂:
The linear combination a′β, where a is a vector of constants of appropriate
dimension, can be estimated by a′β̂. We find

E(a′β̂) = a′E(β̂) = a′β
and

V (a′β̂) = a′V (β̂)a = a′(X ′ X)−1aσ 2 (4.15)
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iii. Fitted values µ̂= X β̂:

E(µ̂) = E(X β̂) = X E(β̂) = Xβ =µ

and

V (µ̂) = V (X β̂) = X V (β̂)X ′ = X (X ′ X)−1 X ′σ 2

= Hσ 2 (4.16)

where H = X (X ′ X)−1 X ′ is the idempotent projection matrix defined
earlier.

iv. Residual vector e = y − X β̂:

E(e) = E( y − X β̂) = E( y) − X E(β̂) = Xβ − Xβ = 0 (4.17)

V (e) = V [(I − H)y] = (I − H)V ( y)(I − H)′

= (I − H)(I − H)σ 2 = (I − H)σ 2 (4.18)

v. Statistical independence between β̂ and e: We stack the (p + 1) vector β̂
and the (n × 1) vector of residuals e to obtain the (p + 1 + n) × 1 vector

 β̂
− − −

e


 =


 A− − −

I − H


 y = P y

with A = (X ′ X)−1 X ′ and H = X (X ′ X)−1 X ′. The stacked vector is a linear
transformation of y. Our assumption of independent normal random
variables for yi implies a multivariate normal distribution for the vector y.
Hence, the linear transform P y follows a multivariate normal distribution
with mean

E

[
β̂

− − −
e

]
= P E( y) =

[
A

− − −
I − H

]
Xβ =

[
β

− − −
0

]

and covariance matrix

V

[
β̂

− − −
e

]
= PV ( y)P ′ = σ 2

[
A

− − −
I − H

]
[ A′ | (I − H) ]

= σ 2

[
AA′ | A(I − H)

− − − − − −
(I − H)A′ | (I − H)(I − H)

]

= σ 2

[
(X ′ X)−1 | O
− − − − − −

O ′ | (I − H)

]

Hence,(
β̂

e

)
∼ N

{(
β

− − −
0

)
,

[
(X ′ X)−1σ 2 | O

− − − − − −
O ′ | (I − H)σ 2

]}
(4.19)
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Marginal distributions of multivariate normal distributions are
themselves normal. Hence, it follows that

β̂ ∼ N (β, σ 2(X ′ X)−1) and e ∼ N (0, σ 2(I − H))

Equation (4.19) confirms our earlier results on the means and variances of
β̂ and e in Eqs. (4.13), (4.14) and (4.17), (4.18). Also note that the
matrices (X ′ X)−1, H , and (I − H) are very useful quantities, and they
will appear repeatedly.

Let Cov(e, β̂) represents the n × (p + 1) matrix of covariances
between the residuals ê and the parameter estimates β̂. That is,

Cov(e, β̂) =




Cov(e1, β̂0) Cov(e1, β̂1) · · · Cov(e1, β̂p)

...
...

...

Cov(en, β̂0) Cov(en, β̂1) · · · Cov(en, β̂p)


 (4.20)

Equation (4.19) shows that e and β̂ are uncorrelated:

Cov(e, β̂) = O ′

which is an n × (p + 1) matrix of zeros. Since they are jointly normal,
they are statistically independent and not just uncorrelated. This also
implies that S(β̂) = e′e, which is a function of just e, and β̂ are statistically
independent (an alternate proof of this result is given in the appendix). It
should be noted that any linear combination a′β̂ of β̂ is a linear
combination of normal random variables and hence itself normally
distributed. That is

a′β̂ ∼ N (a′β, σ 2a′(X ′ X)−1a)

vi. S(β̂)/σ 2 = e′e/σ 2 ∼ χ2
n−p−1, a chi-square distribution with n − p − 1

degrees of freedom. This result is shown in the appendix. The degrees of
freedom are easy to remember: n − p − 1 is the difference between the
number of observations and the number of estimated regression
parameters.

The appendix to Chapter 2 mentions that the mean of a chi-square
random variable is equal to its degrees of freedom. Hence,

E

(
e′e
σ 2

)
= E(e′e)

σ 2
= n − p − 1

and

s2 = e′e
n − p − 1

= S(β̂)

n − p − 1
(4.21)

is an unbiased estimate of σ 2. You can see this from

E(s2) = E(e′e)
n − p − 1

= σ 2(n − p − 1)

n − p − 1
= σ 2.
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vii. The residuals e and the fitted values µ̂ are statistically independent.
We have already shown that e and β̂ are independent. X is a fixed
(nonrandom) matrix and hence e and X β̂ = µ̂ are separate nonoverlapping
functions of independent random variables. Hence, they are independent.
This can be proved directly as well; see Exercise 4.18.

viii. Gauss–Markov Theorem
Assume that the usual regression assumptions are satisfied and that the
n × 1 response vector y has mean E( y) =µ= Xβ and covariance matrix
V ( y) = σ 2 I . The Gauss–Markov theorem says that among all linear
unbiased estimators, the LSE β̂ = (X ′ X)−1 X ′y has the smallest variance.
“Smallest” variance means that the covariance matrix of any other linear
unbiased estimator exceeds the covariance matrix of β̂ by a positive
semidefinite matrix.

Proof: The LSE β̂ = (X ′ X)−1 X ′y is a linear combination of the random
response vector y. Consider any other linear transformation, for example,
b̂ = M∗y, where M∗ is a (p + 1) × n matrix of fixed coefficients. Define
M = M∗ − (X ′ X)−1 X ′, and write the new estimator as

b̂ = [M + (X ′ X)−1 X ′]y = [M + (X ′ X)−1 X ′][Xβ + ε]

= [M Xβ + β] + [M + (X ′ X)−1 X ′]ε

The requirement of unbiasedness for b̂ implies that M X = O , a
(p + 1) × (p + 1) matrix of zeros. With this condition imposed, the
covariance matrix for b̂ becomes

V (b̂) = E[(b̂ −β)(b̂ −β)′] = E{[M + (X ′ X)−1 X ′]εε′[M + (X ′ X)−1 X ′]′}
= [M + (X ′ X)−1 X ′]E(εε′)[M + (X ′ X)−1 X ′]′

= [M + (X ′ X)−1 X ′]σ 2 I [M + (X ′ X)−1 X ′]′

= σ 2[M + (X ′ X)−1 X ′][M + (X ′ X)−1 X ′]′

= σ 2[M M ′ + (X ′ X)−1] = σ 2(X ′ X)−1 + σ 2 M M ′

= V (β̂) + σ 2 M M ′

Here we have used the fact that M X = O , and hence M X (X ′ X)−1 = O
and (X ′ X)−1 X ′M ′ = O .

This result shows that the variance of the new linear estimator b̂
exceeds the variance of the LSE β̂ by the matrix σ 2 M M ′. However, this
matrix is positive semidefinite because for any vector a the quadratic form
a′M M ′a = ã′ã = ∑

(ãi )
2 ≥ 0. �

The Gauss–Markov result also holds when estimating an arbitrary
linear combination of the regression parameters. Consider the linear
combination a′β and the two estimators a′β̂ and a′b̂. The first estimator
uses the LSE, whereas the second uses the linear unbiased estimator
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studied previously. The variances of these estimators are given by

V (a′β̂) = σ 2a′(X ′ X)−1a

and

V (a′b̂) = σ 2a′(X ′ X)−1a + σ 2a′M M ′a

Since a′M M ′a ≥ 0, the estimator using the LSE has the smaller
variance. As a special case, consider the vector a with a one in the i th
position and zeros everywhere else. Then the Gauss–Markov result implies
that the LSE of the (individual) coefficient βi has the smallest variance
among all other linear unbiased estimators.

Note that it is not necessary to make any assumption about the form of
the error distribution in order to get the Gauss–Markov property. However,
it must be emphasized that the result only proves that the LSE is best within
the class of linear estimators. For certain nonnormal error distributions, it
is possible to find a nonlinear estimator that has smaller variance than the
LSE. For normal errors, however, this cannot be done, and in this case the
LSE is the best estimator among all estimators—linear as well as nonlinear.

4.2.3 PRELIMINARY DISCUSSION OF RESIDUALS

The residual vector is e = y − µ̂. The i th component ei = yi − µ̂i is the residual
associated with the i th individual or case in the experiment. The residual repre-
sents the deviation between the response and the fitted value and hence estimates
the random component ε in the model. Any misspecification or departure from
the underlying assumptions in the model will show up as patterns in the residu-
als. Hence, the analysis of the residuals is an effective way of discovering model
inadequacies. Let us examine some important properties of the residuals.

i. The vector of residuals e is orthogonal to L(X), and hence e′1 = 0 if β0 is in
the model. This means that

∑n
i=1 ei = 0 and ē = 0.

ii. e is orthogonal to µ̂.

These two properties are direct consequences of the least squares fitting procedure.
They always hold, whether or not the model is adequate.

Next, let us summarize the properties of e that only hold if the model is
correct. We assume that the funtional form is correct; that is, E( y) is in L(X).
In addition, we suppose that the errors ε are multivariate normal with covariance
matrix σ 2 I .

i. E(e) = 0. If E( y) is not in the subspace L(X) and the assumed functional
form of the model is incorrect, then this property does not hold. We will
discuss this more fully in Chapter 6.

ii. e and µ̂ are independent.

iii. e ∼ N (0, σ 2(I − H)).
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If the errors ε do not have a normal distribution with constant variance σ 2,
then the residuals e will not satisfy properties (ii) and (iii).

We construct several graphical residual checks that investigate whether the
residuals exhibit the properties in (i)–(iii). These graphs can tell us whether the
fitted model is an adequate representation. If the model is adequate, we do not ex-
pect systematic patterns in the residuals, and hence a plot of the residuals ei versus
the order i should exhibit the noninformative pattern depicted in Figure 4.4(a);
that is, the ei ’s should fall within an approximate horizontal band around ē = 0.
A similar plot should result if ei is plotted against the values of the j th pre-
dictor xi j , ( j = 1, 2, . . . , p). Also, a plot of the residuals ei against the fitted
values µ̂i should show no systematic patterns and should look like Figure 4.4(b).
Departures from these patterns indicate model inadequacies, and we will discuss
those more fully in Chapter 6.

0 10 20

(a)

30 40

0

Index

R
es

id
ua

ls

FIGURE 4.4
Adequate Residual
Plots

1009080706050

0

Regressor x or fitted values

(b)

R
es

id
ua

ls



Abraham Abraham˙C04 November 8, 2004 1:29

4.2 Estimation of the Model 101

UFFI Example Continued
Consider Example 1.2.5 in Chapter 1 and the data in Table 1.2, where we relate
the formaldehyde concentrations yi to the presence or absence of UFFI (xi1 = 1
or xi1 = 0) and the airtightness (TIGHT, xi2) of the home. The model in Eq. (4.2)
specifies yi = β0 + β1xi1 + β2xi2 + εi , with the usual assumptions on εi . The y
vector and the X matrix are given in Eq. (4.3). One can compute the LSE β̂ and
s2, the unbiased estimator of V (εi ) = σ 2, from Eqs. (4.11) and (4.21).

β̂ = (X ′ X)−1 X ′y

and

s2 = 1

n − p − 1
( y − X β̂)′( y − X β̂)

These computations are usually performed by a statistical software package (such
as S-Plus, R, Minitab, SAS, SPSS, or even EXCEL). Computational details (com-
mands and outputs from the well-known software S-Plus) are shown in Table 4.1.

TABLE 4.1 S-PLUS INPUT AND OUTPUT

> ch2o<-matrix(scan(‘uffi.dat’,multi.line = T),byrow = T,ncol = 3,nrow = 24)
> uffi<-ch2o[,1]
> tight<-ch2o[,2]
> form<-ch2o[,3]
> ch2fit<-lm(form ∼ uffi+tight)
> summary(ch2fit)
Call: lm(formula = form ∼ uffi + tight)
Residuals:
Min 1Q Median 3Q Max
−9.546 −3.131 −0.1389 3.578 8.362
Coefficients:

Value Std. Error t value Pr(> |t |)
(Intercept) 31.3734 2.4607 12.7500 0.0000

uffi 9.3120 2.1325 4.3666 0.0003
tight 2.8545 0.3764 7.5843 0.0000

Residual standard error: 5.223 on 21 degrees of freedom
Multiple R-Squared: 0.7827
F-statistic: 37.82 on 2 and 21 degrees of freedom, the p-value is 1.095e-07
Correlation of Coefficients:

(Intercept) uffi
uffi −0.4449
tight −0.7903 0.0147
> X11()
> par(mfrow = c(2,2))
> obsno< − 1:24
> plot(obsno,ch2fit$res,xlab = ‘Observation Number’,
+ylab = ‘Residuals’,main = ‘Residuals vs Obs. No.’)
> plot(ch2fit$ fit,ch2fit $ res,xlab = ‘Fitted Values’,
+ylab = ‘Residuals’,main = ‘Residuals vs Fitted Values’)
>plot(tight,ch2fit $ res, xlab = ‘Airtightness’,ylab = ‘Residuals’,
+ main = ‘Residuals Vs Airtightness’)
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You may want to consider other packages and convince yourself that the
output from other programs will be similar. For the time being, we ignore much of
the output and concentrate on the vector of LSEs β̂

′ = (31.37, 9.31, 2.85), the sum
of squared errors S(β̂) = 572.72, and the estimate of σ 2, s2 = 572.72/21 = 27.27.
The square root of s2 is listed in the output. S-Plus calls it the residual standard
error.

In addition, the software can calculate and store the vector of fitted values
and the vector of residuals. This is useful for generating residual plots that help us
check the model assumptions. Figure 4.5(a) shows plots of the residuals ei against
the order i , Figure 4.5(b) residuals ei against fitted values µ̂i , and Figure 4.5(c)
residuals ei against the explanatory variable airtightness. These plots do not show
any systematic patterns in the residuals. Hence, we conclude, at least for now,
that the model assumptions are reasonable. We will revisit this topic in a later
chapter.

The estimate β̂1 = 9.31 implies that, on average, there is a difference of 9.31
parts per billion (ppb) in the ambient formaldehyde concentration in two homes
having identical airtightness but different insulations—one with UFFI present
and the other without it.

4.3 STATISTICAL INFERENCE
For the following discussion we assume that the errors in Eq. (4.6) are normally
distributed. We discuss how to construct confidence intervals and how to test
hypotheses.

4.3.1 CONFIDENCE INTERVALS AND TESTS OF HYPOTHESES
FOR A SINGLE PARAMETER

Usually, one is interested in making inferences about a single regression parameter
βi or about a single linear combination of the coefficients θ = a′β. We have studied
the distribution of β̂ previously and have found that

β̂ ∼ N (β, σ 2(X ′ X)−1)

Suppose we are interested in making inferences about one of these coefficients,
βi. The estimate of βi is given by β̂ i , and its variance is given by σ 2vii , where
vii is the corresponding diagonal element in the matrix (X ′ X)−1. The sampling
distribution of β̂ i is

β̂ i ∼ N (βi , σ
2vii ) (4.22)

The variance of the errors, σ 2, is unknown and must be estimated. As estimate
we use the unbiased estimator of σ 2,

s2 = 1

n − p − 1
S(β̂) (4.23)



Abraham Abraham˙C04 November 8, 2004 1:29

4.3 Statistical Inference 103

2015

(a)

105

10

5

0

−5

−10

Observation numbers

R
es

id
ua

ls

30 40 50

(b)

60 70

−10

−5

0

5

10

Fitted values

R
es

id
ua

ls

FIGURE 4.5
Residual Plots: UFFI
Data

0 2 4 6

(c)

8 10

−10

−5

0

5

10

Airtightness

R
es

id
ua

ls



Abraham Abraham˙C04 November 8, 2004 1:29

104 Multiple Linear Regression Model

We know that

i. (β̂i − βi )/σ
√

vii ∼ N (0, 1). This follows from Eq. (4.22).

ii.
(n − p − 1)s2

σ 2
∼ χ2

n−p−1.

iii. s2 and β̂ are independent .

The results in (ii) and (iii) were shown in Section 4.2.2 and are also shown
in the appendix. It follows from properties of the t distribution (see appendix to
Chapter 2) that

T = β̂ i − βi

s
√

vii
= (β̂i − βi )/σ

√
vii√

(n − p − 1)s2

σ 2

/
n − p − 1

∼ t (n − p − 1) (4.24)

This quantity is used to construct confidence intervals and to test hypotheses about
βi . The ratio T is easy to remember:

T = estimate − parameter

s.e.(estimate)

relates the difference between the estimate and the true value to the standard
error of the estimate, s.e.(β̂i ) = s

√
vii . The standard error estimates the overall

variability of the estimate in repeated random samples.

UFFI Example Continued
In this example, β̂

′ = (31.37, 9.31, 2.85), s2 = 27.2, and

(X ′ X)−1 =


 0.2219 −0.0856 −0.0268

−0.0856 0.1667 0.0004

−0.0268 0.0004 0.0052




Let us study β1, the effect of formaldehyde insulation on the ambient formalde-
hyde concentration. Is there a difference in the average concentration between
homes of equal airtightness but different UFFI insulation? If insulation does
not matter, then β1 = 0. To answer this question, we test the hypothesis β1 =
0. We know that β̂1 = 9.31, V (β̂1) = 0.1667σ 2, and s.e.(β̂1) = s

√
0.1667 =

5.22
√

0.1667 = 2.13. The t statistic for the coefficient β̂1 is

t0(β̂1) = (β̂1 − 0)/s.e.(β̂1) = 9.31/2.13 = 4.37

The subscript zero indicates that we test the hypothesis β1 = 0; the argument
β̂1 in parentheses indicates that the statistic refers to the estimate β̂1. If there
is no danger of confusion, we just write t (β̂1). Since there are 24 observations
and three parameters in the model, the residual sum of squares has 21 degrees
of freedom. The probability value of this test statistic for a two-sided alternative
(β1 �= 0) is given by

P(|T | > 4.37) = 2P(T > 4.37) ≈ 0.0003
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Here, we use the t distribution with 21 degrees of freedom. The probability is
very small—smaller than any reasonable significance level. Thus, there is very
strong evidence that β1 differs from 0. There is very strong evidence that homes
with UFFI insulation have higher formaldehyde concentration levels.

A 95% confidence interval for β1 is given by

β̂1 ± t (0.975; 21)s.e.(β̂1),

9.31 ± (2.08)(2.13), 9.31 ± 4.43, or (4.88, 13.74)

Note that t (0.975; 21) = 2.08 and t (0.025; 21) = −2.08 are the 97.5th and the
2.5th percentiles of the t distribution with 21 degrees of freedom, respectively.
We are 95% confident that the interval (4.88, 13.74) covers the true, but unknown,
difference in the average ambient formaldehyde concentration of homes with and
without UFFI insulation.

One can repeat these calculations for the other parameter β2, which represents
the effect of airtightness on the average ambient formaldehyde concentration. The
relevant diagonal element of (X ′ X)−1 is 0.0052, and the standard error is

s.e.(β̂2) = s
√

0.0052 = (5.22)
√

0.0052 = 0.37

The t ratio, t (β̂2) = (2.85 − 0)/0.37 = 7.58 is very large, and the probability of
obtaining such an extreme value from a t distribution with 21 degrees of freedom
is negligible; the probability value for a two-sided alternative, 2P(T > 7.58), is
essentially zero. Hence, there is little doubt that airtightness of a home increases
the formaldehyde concentration in the home. A 99% confidence interval for β2

is given by

2.85 ± t (0.995; 21)(0.37)

2.85 ± (2.83)(0.37), or from 1.80 to 3.90

We could repeat the calculations for the intercept β0, which mathematically
is the average concentration for homes without UFFI and with airtightness zero.
Here (and also in many other applications) the intercept does not have much
physical meaning, and we skip the calculation.

Note that estimates, standard errors, t ratios, and probability values for the
coefficients are standard output of all statistical software packages.

Linear Combination of Coefficients
Suppose that we are interested in a linear combination of the regression coeffi-
cients. For instance, suppose we are interested in estimating the average formalde-
hyde concentration in homes with UFFI and with airtightness 5. That is,we are
interested in

θ = β0 + β1 + 5β2 = a′β
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where a′ = (1, 1, 5) is a vector of known coefficients. The estimate of θ is given
by

θ̂ = a′β̂ = (1, 1, 5)


31.37

9.31

2.85


 = 54.96

Before we can construct a confidence interval for θ , we need to study the
sampling distribution of θ̂ . From properties of linear combinations of normal
random variables, we know that

θ̂ = a′β̂ ∼ N (θ, σ 2a′(X ′ X)−1a)

Replacing σ 2 by the estimate s2, and after going through similar steps as those in
Eq. (4.24), we find that

T = θ̂ − θ

s
√

a′(X ′ X)−1a
∼ t (21) (4.25)

Hence, a 95% confidence interval is given by

θ̂ ± t (0.975; 21)s
√

a′(X ′ X)−1a (4.26)

With s = 5.22 and

a′(X ′ X)−1a = (1, 1, 5)(X ′ X)−1


1

1

5


 = 0.0833

the 95% confidence interval for θ is

54.96 ± 2.08(5.22
√

0.0833),

54.96 ± (2.08)(1.51), 54.96 ± 3.13, or (51.83, 58.09)

We are 95% confident that the interval (51.83, 58.09) will cover the true average
concentration of homes with UFFI and airtightness 5. Most statistics software
packages allow you to ask for this information.

Gas Consumption Example
In this example, we are interested in predicting the gas consumption of an auto-
mobile from its size and engine characteristics. The data are given in Table 1.4.
There are n = 38 cars and measurements on fuel efficiency in miles per gallon
(y), weight (x1), engine displacement (x2), number of cylinders (x3), horsepower
(x4), acceleration (x5), and engine type (x6). Part of the data and variables x1,
x2, and x3 were discussed in Chapter 1 and also at the beginning of this chapter.
Now let us consider all six regressor variables. Initial exploration with the data
indicates that it is preferable to consider z = 100/y, the gas consumption per 100
traveled miles, as the response. A thorough discussion of this point will be given
in Section 6.5 when we discuss transformations. In the following, we consider

z = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6 + ε (4.27)
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TABLE 4.2 SAS OUTPUT OF THE FUEL CONSUMPTION EXAMPLE

The SAS System
Model: MODEL1
Dependent Variable: Z
Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob > F
Model 6 46.41156 7.73526 79.015 0.0001
Error 31 3.03477 0.09790
C Total 37 49.44632

Root MSE 0.31288 R-square 0.9386
Dep Mean 4.33061 Adj R-sq 0.9267
C.V. 7.22491

Parameter Estimates
Parameter Standard T for H0:

Variable DF Estimate Error Parameter = 0 Prob > |T |
INTERCEP 1 −2.599749 0.66312133 −3.920 0.0005
X1 1 0.787706 0.45173293 1.744 0.0911
X2 1 −0.004892 0.00269495 −1.815 0.0792
X3 1 0.444251 0.12263114 3.623 0.0010
X4 1 0.023605 0.00673885 3.503 0.0014
X5 1 0.068804 0.04419393 1.557 0.1297
X6 1 −0.959720 0.26667148 −3.599 0.0011

Least squares estimates of the parameters, their standard errors, t ratios, and
probability values are given in Table 4.2, the output from SAS, another popular
software package. Different software packages will use slightly different formats,
but all of them will supply most of the information in Table 4.2.

Furthermore, in this example, s2 = 0.0979, and the inverse of the matrix X ′ X ,
is given by

(X ′ X)−1

=




4.4918 0.6045 0.0019 −0.1734 −0.0210 −0.2361 0.1872

2.0845 −0.0092 −0.2052 −0.0239 −0.1081 0.7099

0.0001 −0.0005 0.0001 0.0005 −0.0030

0.1536 0.0009 −0.0011 −0.2001

Symmetric 0.0005 0.0017 −0.0073

0.0200 −0.0051

0.7264




Consider the parameter β5, which measures the effect of x5 (acceleration) on
the average fuel consumption. The estimate is β̂5 = 0.0688. From the relevant
diagonal element in (X ′ X)−1, we find that V (β̂5) = σ 2(0.0200), and s.e.(β̂5) =√

0.0979
√

0.0200 = 0.0442.
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For a test of the hypothesis β5 = 0, we consider the t statistic

t (β̂5) = β̂5/s.e.(β̂5) = 0.0688/0.0442 = 1.56

and its corresponding p value

P(|T | > 1.56) = 2P(T > 1.56) = 0.1297 (4.28)

Note that the appropriate degrees of freedom are n − 7 = 38 − 7 = 31.
The probability value indicates that at the 5% significance level one cannot

reject the hypothesis that β5 = 0, given that the other variables x1, x2, x3, x4, x6

have been included in the model. The t ratio t (β̂5) assesses the potential effect
of x5, having adjusted the analysis for all other variables in the model. The
result implies that on top of x1, x2, x3, x4, x6 in the model, x5 is not an important
predictor of gas consumption. On the other hand, the probability value for β̂6

indicates that there is evidence for rejecting the hypothesis that β6 = 0. It implies
that x6 is important in predicting gas consumption, even if x1, x2, x3, x4, x5 are
already in the model.

We need to remember that any inference procedure depends on the validity of
the assumptions that we make about the errors ε. We must always check the resid-
uals for any violations of the assumptions. The residual plots in Figure 4.6 [(a)
residuals against observation number, (b) residuals against fitted values, (c) resid-
uals against weight, and (d) residuals against displacement] indicate no systematic
unusual patterns, and we conclude that the model assumptions are justified.

4.3.2 PREDICTION OF A NEW OBSERVATION

Suppose that we are interested in predicting the response of a new case, for
example, the formaldehyde concentration in a new home with UFFI insulation
and airtightness 5. Let yp represent this unknown concentration,

yp = β0 + β11 + β25 + εp = µp + εp

In other words, yp ∼ N (µp, σ
2). The mean µp = (1, 1, 5)β = a′β depends on

the specified (fixed) levels of the regressor variables and the parameter β. If the
parameter β were known exactly, then we could use µp as our prediction. Any
other choice would have a larger expected squared error. You can see this by using
any other prediction f and considering the expected squared future error,

E(yp − f )2 = E[(yp − µp) + (µp − f )]2

= E(yp − µp)
2 + (µp − f )2 + (µp − f )E(yp − µp)

= σ 2 + (µp − f )2 ≥ σ 2

However, since the parameter β and µp are unknown, we need to replace them
with their LSEs. Our point prediction for the response at the new case is given by
µ̂p = (1, 1, 5)β̂ = 54.96. We had calculated this earlier, and had denoted it by θ̂ .
To assess the precision of this prediction, we need to take account of two sources
of variability. First, we have only an estimate µ̂p of µp, and there is uncertainty
from the estimation. Second, there is variability of a single observation yp around
its mean µp. Consider the prediction error,

yp − µ̂p = µp − µ̂p + εp
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FIGURE 4.6
(Continued)

Since we consider a new case, and since the error for a new observation is
independent of the errors in the observations that we used for estimating β, the
two errors, (µp − µ̂p) and εp, are independent. Hence, the variance is given by

V (yp − µ̂p) = V (µ̂p) + V (εp) = σ 2a′(X ′ X)−1a + σ 2

= (1 + a′(X ′ X)−1a)σ 2

where in our special case a′ = (1, 1, 5). Hence,

yp − µ̂p ∼ N (0, σ 2(1 + a′(X ′ X)−1a))

and

T = yp − µ̂p

s
√

1 + a′(X ′ X)−1a
∼ t (n − p − 1)

The denominator in this ratio is the standard error of the prediction error

s.e.(yp − µ̂p) = s
√

1 + a′(X ′ X)−1a

Here we have used the same argument as in the derivation of the t ratios for
individual coefficients; see Eq. (4.24).

This result implies that

P

(
− t

(
1 − α

2
; n − p − 1

)
≤ yp − µ̂p

s.e.(yp − µ̂p)
≤ t

(
1 − α

2
; n − p − 1

))
= 1 − α

P

(
µ̂p − t

(
1 − α

2
; n − p − 1

)
s.e.(yp − µ̂p)

< yp < µ̂p + t

(
1 − α

2
; n − p − 1

)
s.e.(yp − µ̂p)

)
= 1 − α
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Hence, a 100(1 − α)% prediction interval for yp is given as

µ̂p ± t

(
1 − α

2
; n − p − 1

)
s
√

1 + a′(X ′ X)−1a (4.29)

For our example with n − p − 1 = 24 − 3 = 21, a′ = (1, 1, 5), and the estimates
in Table 4.1, we obtain the 95% prediction interval

54.96 ± (2.08)(5.22)
√

1 + 0.0833

54.96 ± (2.08)(5.43), 54.96 ± 11.30, or (43.66, 66.26)

Our best prediction is 54.96; our uncertainty for the new value ranges from 43.7 to
66.3. Note that the prediction interval is much wider than the confidence interval
for the mean response µp(= θ). This is because a prediction interval is concerned
with a single new observation and not the average for a fixed setting on the
regressor variables.

A Caution on Predictions One should be cautious when predicting values of y
for sets of x’s that are very different from those that are used to fit the model.
Extrapolation beyond the experimental region may lead to unreasonable results
because the model is descriptive of the relationship between y and x1, . . . , x p

only in the region of the observed x’s. We are always unsure about the form
of the model in a region of the x’s for which we have no data. For illustration,
consider Figure 4.7, which displays the relationship between a dependent variable
y and a single regressor variable x . For values of x in the range from 50 to 120,
we entertain a quadratic model and the fitted curve is shown in the figure. Now
suppose that we had x only over the range from 50 to 80. Then a straight line
model will fit the data quite well. However, Figure 4.7 shows that the prediction
from the linear model of y for x = 120 would be very misleading.

Good predictions require a valid regression model—that is, a model in which
the predictor variables are significant. A model in which the influence of regressor
varibles is established poorly will not do much for prediction.
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4.4 THE ADDITIONAL SUM OF SQUARES PRINCIPLE
4.4.1 INTRODUCTION

In this section, we describe a procedure for testing simultaneous statements about
several parameters. For illustration, consider the model

y = β0 + β1x1 + β2x2 + β3x3 + ε (4.30)

Suppose that previous studies suggest

β1 = 2β2 and β3 = 0

How can we simulteneously test these two restrictions? The restrictions specify
values for two linear combinations of the parameters. Our restrictions can be
restated in vector form as

[
0 1 −2 0

0 0 0 1

]



β0

β1

β2

β3


 =

[
0

0

]

or as Aβ = 0, where the 2 × 4 matrix A =
[

0 1 −2 0

0 0 0 1

]
, β′ = (β0, β1, β2, β3),

and 0 =
[

0

0

]
.

Note that the two linear restrictions are not linearly dependent, and hence the
matrix A has rank 2. A situation in which this would not be the case is β1 = 2β2 and
4β1 = 8β2. In this case, the second condition is superfluous and can be ignored.
The rank of the implied A matrix would be one.

Under the null hypothesis H0 : Aβ = 0, the full model in Eq. (4.30) simplifies
to

y = β0 + β2(2x1 + x2) + ε (4.31)

We call this the restricted model because its form is constrained by H0. For a test
of Aβ = 0 we compare two models: the full model in Eq. (4.30) and the restricted
model in Eq. (4.31). We illustrate the general approach with the following two
examples.

Gas Consumption Example Continued
Previously, we considered the model

z = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6 + ε (4.32)

The estimates, t ratios, and probability values of the estimates were listed in
Table 4.2.

Consider a test of the hypothesis that the last three regressor variables can be
omitted from the model. The hypothesis

β4 = β5 = β6 = 0
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can be written in matrix form

H0 : Aβ = 0

where the 3 × 7 matrix

A =


0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


 ; β =




β0

β1
...

β6


 ; and 0 =


0

0

0




Under H0, the model reduces to the restricted model

z = β0 + β1x1 + β2x2 + β3x3 + ε (4.33)

Note that we have reduced the number of model parameters from seven to four. The
matrix A has rank 3, and our hypothesis involves three independent restrictions.
Failing to reject the null hypothesis implies that the associated variables x4, x5, x6

are not important, given that the rest of the variables are already in the model.
On the other hand, a rejection of the null hypothesis indicates that at least one of
the variables x4, x5, x6 is important, in addition to the regressor variables x1, x2,
and x3.

OC Example
Our model in Chapter 1 relates the HDL (cholesterol) at the end of the study (y)
to the initial HDL (z) and indicators for five different drug regimes,

y = αz + β1x1 + · · · + β5x5 + ε (4.34)

Here x1, . . . , x5 are indicator variables denoting the five oral contraceptive groups.
The most interesting question is whether there are differences among the five
groups. In terms of our parameters, we ask whether there is any evidence that
β1, . . . , β5 differ. To examine this question, we consider the hypothesis

H0 : β1 = β2 = β3 = β4 = β5

The model (4.34), written in vector notation, is

y = αz + β1x1 + · · · + β5x5 + ε (4.35)

Under the null hypothesis that the five β’s are equal,

β1 = β2 = β3 = β4 = β5 = γ (4.36)

the model becomes

y = αz + γ x1 + γ x2 + γ x3 + γ x4 + γ x5 + ε

= γ 1 + αz + ε (4.37)

since the indicator structure of xi implies that x1 + x2 + · · · + x5 = 1, a (n × 1)

vector of ones. The full model contains six coefficients and the restricted model
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only two. Hence, we reduced the dimension of the model from six parameters
(α, β1, . . . , β5) in Eq. (4.35) to just two parameters (α, γ ) in Eq. (4.37).

Geometrically, one can visualize the restriction as follows. In the original
model, E( y) is an element of L(z, x1, . . . , x5), a six-dimensional subspace of
R50. Under the null hypothesis, E( y) is an element of L(z, 1), a two-dimensional
subspace of the subspace L(z, x1, . . . , x5).

The restrictions in Eq. (4.36) are equivalent to

β1 − β2 = 0

β1 − β3 = 0
(4.38)

β1 − β4 = 0

β1 − β5 = 0

and can also be written as

Aβ = 0 (4.39)

where

A =




0 1 −1 0 0 0

0 1 0 −1 0 0

0 1 0 0 −1 0

0 1 0 0 0 −1


 ; β′ = [α, β1, β2, β3, β4, β5]

The rank of the matrix A is 4; we are testing four linearly independent restric-
tions among the six parameters. Note that there are many other ways of parame-
terizing the restrictions. One could write β1 = β2, β2 = β3, β3 = β4, β4 = β5, and
select

A =




0 1 −1 0 0 0

0 0 1 −1 0 0

0 0 0 1 −1 0

0 0 0 0 1 −1




which is another matrix of rank 4. It turns out that the particular parameterization
does not matter. Testing the hypothesis in Eq. (4.39) is usually referred to as
testing a general linear hypothesis since the test involves linear functions of the
parameters.

4.4.2 TEST OF A SET OF LINEAR HYPOTHESES

Suppose we have the model

y = β01 + β1x1 + · · · + βpx p + ε (4.40)

and want to test the hypothesis that a certain set of linear combinations of
β0, β1, . . . , βp are zero. That is,

Aβ = 0 (4.41)

where A is an l × (p + 1) matrix of rank l.



Abraham Abraham˙C04 November 8, 2004 1:29

4.4 The Additional Sum of Squares Principle 115

L(X)

y

LA (X)

m̂

m̂A

FIGURE 4.8
Geometric
Representation of
L (X ) and L A(X )

Our test procedure relies on the additional sum of squares principle. First,
we look at the problem geometrically. As usual, we write the model (4.40) in
vector notation,

y =µ+ ε= Xβ + ε

The model component µ= Xβ is in the p + 1 dimensional subspace L(X) that
is spanned by the regressor vectors in X = [1, x1, . . . , x p].
Let

L A(X) = {β01 + β1x1 + · · · + βpx p | Aβ = 0}

be the subspace spanned by all linear combinations of the regressor vectors
1, x1, . . . , x p with coefficients satisfying the restriction Aβ = 0. L A(X) is a sub-
space of L(X), with dimension p + 1 − l. This is easy to see because every linear
combination in L A(X) is also an element in L(X) (see Figure 4.8). If E( y) is an
element of L A(X), then the hypothesis Aβ = 0 is true exactly.

Let µ̂ be the orthogonal projection of y onto L(X), and let µ̂A be the orthog-
onal projection of y onto the subspace L A(X). If the null hypothesis is true, then
µ̂ should be close to L A(X), and the difference µ̂− µ̂A and its squared length
(µ̂− µ̂A)′(µ̂− µ̂A) =‖µ̂− µ̂A‖2 should be small. We would be surprised if this
quantity was exactly 0 because there is random variation in the model. The for-
mal procedure takes this variability into account. In the results that follow, we
calculate the distribution of the random variable ‖µ̂− µ̂A‖2 under the hypothesis
Aβ = 0.

Once again, we use a technique similar to the one we used in showing that β̂
and the residual sum of squares S(β̂) are independent.

Theorem Suppose that y = Xβ + ε, ε∼ N (0, σ 2 I ). Let µ̂ be the orthogonal projection
of y onto L(X) and µ̂A the orthogonal projection of y onto L A(X). Assume
that Aβ = 0. We can show that (i) ‖µ̂− µ̂A‖2 /σ 2 ∼ χ2

l , and (ii) ‖µ̂− µ̂A‖2 is
independent of S(β̂) = ( y − µ̂)′( y − µ̂).
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Proof: See the appendix. �

The Theorem implies the following

Corollary: Under the hypothesis Aβ = 0, the ratio

F = ‖µ̂− µ̂A‖2 / l

S(β̂)/(n − p − 1)
(4.42)

has an F distribution with l and n − p − 1 degrees of freedom.

Proof: The Theorem states that

‖µ̂− µ̂A‖2 /σ 2 ∼ χ2
l

and that it is independent of S(β̂). Earlier, we showed that

S(β̂)/σ 2 ∼ χ2
n−p−1

In the appendix to Chapter 2, we stated that the ratio of two independent normal-
ized chi-square distributions leads to an F distribution. Hence,

‖µ̂− µ̂A‖2 /σ 2l

S(β̂)/σ 2(n − p − 1)
= F ∼ F(l, n − p − 1)

The quantity F in Eq. (4.42) helps us test the hypothesis Aβ = 0. Large values
of F provide evidence against the hypothesis. �

Comments
It is easy to see why F in Eq. (4.42) is a sensible test statistic. The denominator in F
is the unbiased estimator of σ 2, that we have used previously. It gives an estimate
of σ 2, irrespective of whether or not H0 is true. If Aβ = 0, the numerator has
distribution σ 2χ2

l / l and expected value σ 2. The numerator of F also estimates σ 2,
but only if Aβ = 0. If the hypothesis is not true, we expect µ̂ to differ substantially
from µ̂A, and as a consequence E(‖µ̂− µ̂A‖2 / l) will exceed σ 2. Hence, the ratio
F in Eq. (4.42) will tend to be larger than 1 if the hypothesis is false.

The term ‖µ̂− µ̂A‖2 can be interpreted as the “additional sum of squares,”
hence the title of this section. We can see this from the geometry. Look at the
diagram in Figure 4.9, now slightly relabeled. Consider the right-angled trian-
gle with end points ABC . Denote the squared distances between the points by
AB2, AC2, and BC2. You notice that

BC2 = S(β̂), AB2 =‖µ̂− µ̂A‖2, AC2 = S(β̂A)

where S(β̂A) is the minimum value of S(β) when β is restricted so that Aβ = 0.
Pythagoras theorem tells us that

‖µ̂− µ̂A‖2= AC2 − BC2 = S(β̂A) − S(β̂) (4.43)

Hence, the numerator of our test statistic in Eq. (4.42) is the difference of two
error sum of squares: S(β̂) = ( y − X β̂)′( y − X β̂) is the error sum of squares in
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the full model and S(β̂A) = ( y − X β̂A)′( y − X β̂A) is the error sum of squares
in the restricted model—that is, the model under Aβ = 0. This cannot be smaller
than S(β̂) because we have restricted the minimization. The difference S(β̂A) −
S(β̂) =‖µ̂− µ̂A‖2 is the additional or extra sum of squares that our restricted
model has failed to pick up. We can also think of it as the extra sum of squares
that is picked up when omitting the constraints Aβ = 0.

Note
i. Here we have considered the hypothesis Aβ = 0. The vector 0 on the

right-hand side can be replaced by any known vector, for example, δ. The
results will remain the same.

Consider the following illustration. Take the full model y = β0 + β1x1+
β2x2 + ε and the restriction 2β1 + 3β2 = 5. We can write this restriction as
β2 = (5/3) − (2/3)β1 and obtain the restricted model as

y = β0 + β1x1 + [(5/3) − (2/3)β1]x2 + ε

= (5/3)x2 + β0 + β1[x1 − (2/3)x2] + ε

The restricted estimates βA can be obtained by regressing the transformed
response y − (5/3)x2 on the new regressor x1 − (2/3)x2. From the
estimates β̂0,A and β̂1,A we can obtain β̂2,A = (5/3) − (2/3)β̂1,A. From
these estimates we can obtain the residual vector
y − [β̂0,A + β̂1,Ax1 + β̂2,Ax2] and compute S(β̂A).

ii. The test for the hypothesis Aβ = δ can be implemented in a slightly
different way as well. Consider the statistic

F∗ = (Aβ̂ − δ)′[A′(X ′ X)−1 A]−1(Aβ̂ − δ)/ l

S(β̂)/(n − p − 1)

where l is the rank of the constraint matrix A as defined earlier. It can be
shown that F∗ has an F distribution with l and (n − p − 1) degrees of
freedom, and that the test based on F∗ is identical to our earlier approach in
Eq. (4.42). Some software packages provide the F∗ statistic and its
associated probability value automatically if you supply the A matrix and
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the δ vector. However, we prefer our approach in Eq. (4.42) because we
believe it to be more intuitive.

Gas Consumption Example Continued
Let us return to the restriction that we had specified,

H0 : β4 = β5 = β6 = 0

Not rejecting this hypothesis implies that the variables x4, x5, and x6 are not
important in predicting the fuel consumption z, given that the variables x1, x2, and
x3 are already in the model. On the other hand, rejecting the null hypothesis means
that one or more of the regressor variables x4, x5, or x6 contribute explanatory
power beyond that provided by the variables x1, x2, and x3.

The restricted model under the null hypothesis is

z = β0 + β1x1 + β2x2 + β3x3 + ε (4.44)

The LSEs can be obtained, and it turns out that the residual sum of squares from
this restricted model is S(β̂A) = 4.8036.

Previously, we obtained the residual sum of squares, S(β̂) = 3.0348, with n −
p − 1 = 38 − 7 = 31 degrees of freedom. Hence, the additional sum of squares
is S(β̂A) − S(β̂) = 4.8036 − 3.0348 = 1.7688. The full model reduces the error
sum of squares by 1.7688; in other words, the constraints in the parameters have
cost us an extra sum of squares of 1.7688. This sum of squares has l = 3 degrees of
freedom since we have constrained three parameters, or equivalently since there
are three independent rows in A.
Thus,

F = additional sum of squares/3

S(β̂)/31
= 1.7688/3

3.0348/31
= 6.02

The sampling distribution of the F ratio under the null hypothesis is F with
3 and 31 degrees of freedom. The probability value is given by

P(F(3, 31) > 6.02) � 0.01

The probability value expresses the likelihood of obtaining the observed F ratio
6.02 under the null hypothesis. It is small, which makes the null hypothesis
unlikely. Hence, one can rule out the null hypothesis and reject β4 = β5 = β6 = 0.

This implies that at least one of the variables x4, x5, and x6 is important, even if
variables x1, x2, and x3 are already in the model.

Note that the t tests on individual parameters that we discussed earlier can
also be carried out within the additional sums of squares framework. For example,
consider the test β5 = 0. This test can be formulated as testing the hypothesis

H0 : Aβ = 0

where A = (0, 0, 0, 0, 0, 1, 0) is a row vector, and β is the (7 × 1) vector of
parameters in the full model. Under this hypothesis, the restricted model becomes

z = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β6x6 + ε (4.45)
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It is the model without x5. Estimates in the restricted model, β̂A, can be ob-
tained. The residual sum of squares from this restricted model is S(β̂A) = 3.2720.
Comparing this with the residual sum of squares from the original (full) model,
S(β̂) = 3.0348, gives us the additional sum of squares S(β̂A) − S(β̂) = 3.2720 −
3.0348 = 0.2372. It has l = 1 degree of freedom. Hence,

F = additional sum of squares/1

S(β̂)/(n − p − 1)
= 0.2372

3.0348/(38 − 7)
= 2.42 (4.46)

with probability value

P(F(1, 31) > 2.42) = 0.13

Note that the computed F in Eq. (4.46) is the square of the t ratio for β̂5 in the full
model: 2.42 = (1.56)2. This equality can be shown in general. Furthermore, note
that the previous probability value is exactly the same as the one we found for the
t statistic for testing β5 = 0. Hence, the conclusions from both tests, the F test
for one extra parameter and the t test for an individual coefficient, are identical.
We know in general that the square of a t distributed random variable follows a
certain F distribution (t2

d f = F(1, d f ); see Chapter 2, Exercise 2.2). Such F tests
for one extra parameter are referred to as partial F tests, and the additional sum
of squares is referred to as the partial sum of squares due to this extra variable
(in our case, x5), given that all other variables are already in the model.

OC Example Continued
The full model is

y = αz + β1x1 + · · · + β5x5 + ε (4.47)

A test of the hypothesis that there are no differences among the five drugs restricts
the parameters as follows:

β1 = β2 = β3 = β4 = β5 = γ (say),

or

Aβ = 0

where A and β are given in Eq. (4.39). The restricted model

y = γ 1 + αz + ε (4.48)

can be estimated, and the residual sum of squares can be calculated. We find
S(β̂A) = 2, 932.0. The residual sum of squares of the full model in Eq. (4.47) is
given by S(β̂) = 2, 505.0. Hence, the additional sum of squares is

‖µ̂− µ̂A‖2= S(β̂A) − S(β̂) = 2, 932.0 − 2, 505.0 = 427.0

We have placed l = 4 linear restrictions on the six coefficients α, β1, . . . , β5, and
there are n − p − 1 = 50 − 6 = 44 degrees of freedom for the error sum of squares
in the full model. Hence,

F = 427/4

2, 505/44
= 1.87
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We use the F(4, 44) distribution to obtain the probability value,

p value = P(F(4, 44) > 1.87) � 0.13

Since this is quite large (certainly larger than the commonly used significance
level 0.05), we believe in our null hypothesis. Hence, we find no real evidence
that the drugs differ in their effect on the final HDLC.

Next, suppose we are also interested in knowing whether or not the drugs
have an effect at all. This hypothesis specifies that β1 = · · · = β5 = 0. Under this
hypothesis, the model (4.47) becomes

y = αz + ε (4.49)

The LSE of α can be found

(
it is α̂A =

∑
zi yi∑
z2

i

)
, leading to the residual sum

of squares S(β̂A) = ∑
(yi − α̂Azi )

2 = 3, 410.68. Hence, the additional sum of
squares is

‖µ̂− µ̂A‖2 = S(β̂A) − S(β̂) = 3, 410.68 − 2, 505.0 = 905.68

Since there are five restrictions, 5 degrees of freedom are associated with this
extra sum of squares. The test statistic for the previous hypothesis is

F = 905.68/5

2505/44
= 3.18

The probability value is given by

P(F(5, 44) > 3.18) � 0.02

The probability value is small—smaller than the usual significance level 0.05.
F = 3.18 is an extreme value under the null hypothesis. We can reject H0 and
conclude that there is evidence that the drugs affect the final HDLC.

4.4.3 JOINT CONFIDENCE REGIONS FOR SEVERAL PARAMETERS

In the UFFI example, we constructed confidence intervals for individual param-
eters. For instance, the 95% confidence interval for β1 has the form

P(L1 ≤ β1 ≤ U1) = 0.95

where L1 = β̂1 − t (0.975; n − p − 1)s.e.(β̂1), U1 = β̂1 + t (0.975; n − p − 1)

s.e.(β̂1), and t (0.975; n − p − 1) is the 97.5% percentile of a t distribution with
degrees of freedom n − p − 1 (see Section 4.3.1). A 95% confidence interval
for β2 has a similar form with lower and upper limits L2 and U2. For our data,
L1 = 4.88, U1 = 13.74 and L2 = 2.08, U2 = 3.62.

In some contexts, it may be necessary to make joint confidence statements
about β1 and β2. For example, we may want to construct a confidence region CR
such that P((β1, β2) is in CR) = 0.95. It is known that

P(L1 ≤ β1 ≤ U1, L2 ≤ β2 ≤ U2) ≤ P(L1 ≤ β1 ≤ U1)P(L2 ≤ β2 ≤ U2)

= 0.952 = 0.9025
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The confidence level associated with the rectangular region obtained by taking
the two marginal intervals as shown above is less than 0.95.

There is a procedure, however, to construct a joint confidence region for a set
of parameters that has the required coverage. In the linear model with parameter
vector β it can be shown that

(β̂ − β)′ X ′ X (β̂ − β)

(p + 1)s2
∼ F(p + 1, n − p − 1)

where F(p + 1, n − p − 1) denotes an F distribution with degrees of freedom
(p + 1) and (n − p − 1). This result can be shown as follows.

For the linear model, y = Xβ + ε with the standard assumptions, β̂ ∼ N
(β, σ 2(X ′ X)−1), and hence (β̂ − β) ∼ N (0, σ 2(X ′ X)−1). The results on the dis-
tribution of quadratic forms in Section 3.4 imply that

(β̂ − β)′[σ 2(X ′ X)−1]−1(β̂ − β) = (β̂ − β)′ X ′ X (β̂ − β)/σ 2 ∼ χ2
p+1

We also know from previous results in this chapter that (n − p − 1)s2/σ 2 ∼
χ2

n−p−1, and that β̂ and s2 are statistically independent. The ratio of two indepen-
dent chi-square random variables, standardized by their degrees of freedom, has
an F distribution; see the appendix in Chapter 2. Hence,

(β̂−β)′ X ′ X (β̂−β)/(p + 1)σ 2

(n − p − 1)s2/(n − p − 1)σ 2
= (β̂−β)′ X ′ X (β̂−β)

(p + 1)s2
∼ F(p + 1, n − p − 1)

This result implies that a 100(1 − α)% joint confidence region for all parameters
in β is given by

(β̂ − β)′ X ′ X (β̂ − β)

(p + 1)s2
≤ F(1 − α; p + 1, n − p − 1)

where F(1 − α; p + 1, n − p − 1) is the 100(1 − α) percentile of an F distri-
bution with degrees of freedom (p + 1) and (n − p − 1). Algebraically, and this
is somewhat cumbersome, one needs to find the values β such that the previous
equality is satisfied. Choosing submatrices of (X ′ X)−1 appropriately, confidence
regions for subsets of parameters in β can also be obtained. For example, a joint
confidence region for β1, β2 uses a submatrix of (X ′ X)−1 that corresponds to
these coefficients (see Exercise 4.24).

For a pair of parameters, the joint confidence region is an ellipse on a two-
dimensional plot. For more than two parameters it is an ellipsoid. Since joint
confidence regions are rarely used in practice, we will not pursue the topic further.

4.5 THE ANALYSIS OF VARIANCE AND THE COEFFICIENT
OF DETERMINATION, R2

Let us consider the general linear model

y = β0 + β1x1 + · · · + βpx p + ε (4.50)
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and the hypothesis

H0 : β1 = β2 = · · · = βp = 0

Under this hypothesis, the model reduces to

y = β0 + ε (4.51)

This model implies that the response y has a mean E(y) = β0 that is not affected by
any of the explanatory variables. The hypothesis expresses the fact that x1, . . . , x p

do not influence the response.
We can use the additional sum of squares principle to test this hypothesis.

The residual sum of squares of the full model in (Eq. 4.50) is given by S(β̂). In
the restricted model (Eq. 4.51), the estimate of β0 is given by ȳ and the “residual
sum of squares” by

n∑
i=1

(yi − ȳ)2 (4.52)

This is called the total sum of squares, corrected for the mean. It is a measure of
how the observations fluctuate around their mean. The additional sum of squares
from the p regressor variables is given by

∑
(yi − ȳ)2 − S(β̂). It has l = p de-

grees of freedom since our null hypothesis specifies p independent constraints.
This quantity is usually called the regression, or the model sum of squares. It
tells us how much variability is explained by the full model, over and above the
simple mean model. It can be shown that the regression sum of squares (SSR) is
given by

SSR =
∑

(yi − ȳ)2 − S(β̂) = y′y − n ȳ2 − ( y − X β̂)′( y − X β̂)

= β̂
′
X ′y − n ȳ2 = β̂

′
X ′ X β̂ − n ȳ2 (4.53)

The three sums of squares—the regression sum of squares, the residual sum of
squares, and the total sum of squares—are usually displayed in a table called the
analysis of variance (ANOVA) table (Table 4.3).

The degrees of freedom column in the table contains the relevant degrees
of freedom. The regression sum of squares, SSR, has p degrees of freedom,
because there are p regressor variables that make up the model. The error sum of
squares has n − p − 1 degrees of freedom; the number of observations n minus
the number of parameters in the model, p + 1. The total sum of squares has

TABLE 4.3 ANALYSIS OF VARIANCE (ANOVA) TABLE

Source df Sum of Squares Mean Squares F

Model (Regression) p SSR = β̂
′
X ′ y − n ȳ2 MSR = SSR/p

MSR

MSE

Residual (Error) n− p −1 SSE = S(β̂) = ( y− X β̂)′( y − X β̂) MSE = SSE

(n− p− 1)

Corrected total n − 1 SST = ∑
(yi − ȳ)2
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n − 1 degrees of freedom, because there are n deviations from the mean, but the
sum of these deviations is zero.

The fourth column contains the mean squares, the sums of squares divided
by their respective degrees of freedom. The mean square error, MSE = SSE/(n −
p − 1) = S(β̂)/(n − p − 1), was seen earlier. It is the unbiased estimator of σ 2.
The fifth column contains the F ratio for testing the hypothesis H0 : β1 = β2 =
· · · = βp = 0,

F = additional sum of squares/p

S(β̂)/(n − p − 1)
= SSR/p

SSE/(n − p − 1)
(4.54)

Observe that, by construction, the regression sum of squares and the error sum of
squares must add up to the total sum of squares. Hence, the ANOVA table parti-
tions the variability (the total sum of squares) into two interpretable components:
a sum of squares that is explained by the model and a sum of squares that has
been left unexplained.

Gas Consumption Example Continued
The basic model is

z = 100/y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6 + ε (4.55)

The hypothesis

H0 : β1 = β2 = β3 = β4 = β5 = β6 = 0

can be written as Aβ = 0, where A is the 6 × 7 matrix of rank 6,

A =




0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1




β is the (7 × 1) vector of parameters, and 0 a (6 × 1) vector of zeros. Failure to
reject this hypothesis implies that none of the variables are important in predicting
the gas consumption of the vehicle. Rejection of the hypothesis implies that at
least one of the variables is important in predicting gas consumption. Under the
null hypothesis, the model reduces to

y = β0 + ε (4.56)

Estimation of the full model in Eq. (4.55) gives SSE = S(β̂) = 3.0348. The
total sum of squares (corrected for the mean) is easy to calculate; SST = ∑

(yi −
ȳ)2 = ∑

y2
i − n ȳ2 = 49.4463. Hence, by subtraction, we find the regression sum

of squares, SSR = SST − SSE = 46.4115. These are the sum of squares entries
in Table 4.4.

The degrees of freedom are 6 (as there are six regressor variables), 31 (because
we estimate seven coefficients from n = 38 cases), and 37 (= n − 1). The F ratio,
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TABLE 4.4 ANOVA TABLE FOR GAS CONSUMPTION DATA

Source df Sum of Squares Mean Squares F Prob > F

Model (Regression) 6 46.4115 7.7352 79.015 0.0001
Residual (Error) 31 3.0348 0.0979
Corrected total 37 49.4463

Note that this table was part of the SAS output; see Section 4.3.1.

F = 79.015, is large; its probability value 0.0001 is tiny. It indicates that there
is strong evidence against the claim that none of the regressor variables have an
influence (β1 = β2 = β3 = β4 = β5 = β6 = 0). In other words, we cannot discard
x1, x2, x3, x4, x5, and x6 simultaneously; at least one of the variables is important
in predicting z.

The F test in the ANOVA table is also known as a test for the overall signif-
icance of the regression. If we reject H0, some regression relations exist. Which
ones, we do not know at this point.

4.5.1 COEFFICIENT OF DETERMINATION, R 2

The ANOVA table partitions the total response variation into two components:
SST = SSR + SSE, the variation that is explained by the regression model (SSR),
and the variation that is left unexplained (SSE). The coefficient of determination
R2 is defined as the proportion of the total response variation that is explained by
the model,

R2 = SSR

SST
= SST − SSE

SST
= 1 − SSE

SST
(4.57)

For the gas consumption example and model (4.55), the total sum of squares is
SST = 49.4463, the residual sum of squares (the unexplained response variation)
is SSE = 3.0348, and the response variation that is explained by the model (re-
gression sum of squares) is SSR = 49.4463 − 3.0348 = 46.4115. Hence, R2 =
46.4115/49.4463 = 0.9386. This means that 94% of the variation in the response
is explained by the linear model with the regressor variables x1, x2, x3, x4, x5, x6.

R2 is a useful summary measure. It provides an overall measure of how well
the model fits. It can also give feedback on the importance of adding a variable to
(or deleting a variable from) a model. For instance, if we delete x5, x6 from
the model in Eq. (4.55), the regression sum of squares reduces to 44.9505 and
R2 = 0.9091. This is slightly smaller, but it appears that a model without x5 and
x6 is not much worse than the full model. This casts doubt on the inclusion of
these two variables in the model. Note that adding a variable to a model increases
the regression sum of squares, and hence the R2. (In the worst case, it can stay
the same.) R2 can be made 1 by adding increasingly more explanatory variables.
If we fit a model with (n − 1) explanatory variables to n cases, the fit is perfect;
the residual sum of squares will be zero, and R2 = 1. One certainly does not want
to do this because one would “overfit” the data, trying to find an explanation
for every random perturbation. Hence, the use of large numbers of explanatory
variables, especially when n is small, is not a good idea.
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FIGURE 4.10
Different Data Plots
Yielding Identical
R 2

R2 is just one summary measure of the regression fit. It alone does not tell us
whether the fitted model is appropriate. Look at the data that are listed in Exercise
2.3 and plotted in Figure 4.10. It turns out (you should check this) that all four
data sets lead to the same least squares estimates, the same ANOVA table, and
identical R2. However, there is only one situation (case a) in which one would say
that a simple linear regression describes the data. One needs to be careful when
interpreting the R2.

4.6 GENERALIZED LEAST SQUARES
4.6.1 INTRODUCTION

The standard regression y = Xβ + ε assumes that the vector of errors ε has zero
mean and covariance matrix V (ε) = σ 2 I , which implies that all errors have the
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same precision and that they are uncorrelated. In some situations, these assump-
tions will not be reasonable.

In certain applications, some errors have more variability than others. Con-
sider the situation in which the response for the i th case is obtained as an average
of several measurements and the number of measurements that go into that aver-
age changes from case to case. In this situation, V (yi ) = V (εi ) = σ 2/ni , where
ni represents the number of measurements in the average yi . The assumption of
equal variance is clearly violated.

Consider the case in which responses are taken over time. For example, con-
sider modeling the relationship between the sales of your product, its price, as
well as the prices of major competitors, and the amount your company spends
on advertisement. Suppose that monthly observations (e.g., the past 5 years) are
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available to estimate the coefficients in the regression model. You expect that
a regression of sales on price and advertising will be useful, and that these re-
gressor variables will “explain” sales. However, even after controlling for prices
and advertising, deviations of the sales from their implied expected levels tend
to exhibit “runs.” If sales in a certain month are unusually high, then there is a
good chance that they will also be high in adjacent months. This is because the
economic “driving forces” (which are not in your model) are persistent, moving
only slowly over time; if the economy is poor today, then it tends to be poor also
in preceeding and following months. You could try to specify an additional vari-
able, “state of the economy,” and use this as an additional regressor variable. This
may help, but most likely there will be some other unknown and slowly changing
variables that affect your sales, and measurement errors from different periods
will tend to be correlated. We refer to this as autocorrelation or serial correla-
tion because the errors are correlated among themselves at different lags. Very
often, the amount of (auto)correlation diminishes with the lag. For example, ad-
jacent observations are the most strongly correlated, whereas errors several steps
apart are less correlated. Usually, one assumes a certain structure for the auto- (or
serial) correlation. Often, one assumes that Cov(εi , εi−1) = Cov(εi , εi+1) = σ 2φ,

Cov(εi , εi−2) = Cov(εi , εi+2) = σ 2φ2, . . . , Cov(εi , εi−k) = Cov(εi , εi+k) = σ 2φk,

for lags k = 1, 2, . . .. In this case, the n × n covariance matrix of the errors is
given by

V (ε) = σ 2




1 φ φ2 . . . φn−1

φ 1 φ . . . φn−2

φ2 φ 1 . . . φn−3

φ3 . . . . . . . . . . . .

. . . . . . . . . . . . . . .

φn−1 φn−2 . . . . . . 1




The model that corresponds to this covariance matrix is known as the first-order
autoregressive model. It is a particularly simple and useful parameterization
because it requires only one additional parameter, the autoregressive parameter
φ. However, many other models are available for representing autocorrelations
among observations. In Chapter 10 on regression time series models, we discuss
these models in detail.

A third example in which independence of the errors is violated arises when
spatial observations are involved. Consider measurements on a certain ground-
water pollutant that are taken at the same time but at different locations. In this
situation, it is likely that errors for measurements taken in close spatial proxim-
ity are correlated. Many different models have been developed to characterize
spatial correlation, and most express the spatial correlation as a function of the
(Euclidean) distance between the measurement locations. A common assumption
is that the correlation decreases with distance among measurement sites.
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Expand on this example, and consider the situation when spatial observations
are involved but when observations are also taken at several time periods. Here,
one faces the situation in which observations (or errors) exhibit a spatial as well as
a temporal correlation structure. A common approach is to model the covariance
matrix of the errors with several (hopefully few) additional parameters that char-
acterize the spatial and temporal correlations and then estimate the parameters in
the regression model y = Xβ + ε under this more general error model.

4.6.2 GENERALIZED LEAST SQUARES ESTIMATION

Assume that the vector of errors ε in the regression model y = Xβ + ε has
zero mean and general covariance matrix V (ε) = E(εε′) = σ 2V . Now V is no
longer the identity matrix. The proportionality coefficient, σ 2, is unknown, but
we assume—at least initially—that all elements in the matrix V are known.

We will try to find a linear transformation, Lε of ε, which satisfies the as-
sumptions of the standard model. The matrix V is symmetric and positive definite,
and we can apply our results in Chapter 3 on the spectral decomposition of a sym-
metric matrix. We can write the matrix as V = P�P ′ = P�1/2�1/2 P ′, where the
matrix � is diagonal. Its elements λ1 ≥ λ2 ≥ · · · ≥ λm > 0 are the eigenvalues
of the positive definite matrix V ; the column vectors of the matrix P are the
corresponding normalized eigenvectors. Note that V −1 = (P�1/2�1/2 P ′)−1 =
P�−1/2�−1/2 P ′ = L ′L .

Premultiplying the regression model by the matrix L = �−1/2 P ′ results in
the model

L y = L Xβ + Lε= L Xβ + ε̃

where the vector L y represents the transformed response, and the columns in the
matrix L X represent the transformed regressor variables. Then E(ε̃) = E(Lε) =
L E(ε) = 0 and

V (ε̃) = LV (ε)L ′ = LV L ′σ 2 = �−1/2 P ′ P�1/2�1/2 P ′ P�−1/2σ 2 = Iσ 2

The new disturbance vector ε̃ satisfies the standard regression assumptions.
According to the Gauss–Markov theorem, least squares—applied to the trans-
formed variables—will yield the best linear unbiased estimator of β. Replacing
y and X in the standard least squares estimator in Eq. (4.11) by L y and L X ,
respectively, leads to the generalized least squares (GLS) estimator

β̂
GLS = (X ′L ′L X)−1 X ′L ′L y = (X ′V −1 X)−1 X ′V −1 y (4.58)

and its covariance matrix

V (β̂
GLS

) = (X ′L ′L X)−1 X ′L ′V (L y)L X (X ′L ′L X)−1

= σ 2(X ′L ′L X)−1 X ′L ′L X (X ′L ′L X)−1

= σ 2(X ′L ′L X)−1 = σ 2(X ′V −1 X)−1 (4.59)
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The GLS estimator can be used to compute the error sum of squares in the
transformed model,

S(β̂
GLS

) = (L y − L X β̂
GLS

)′(L y − L X β̂
GLS

)

= ( y − X β̂
GLS

)′L ′L( y − X β̂
GLS

)

= ( y − X β̂
GLS

)′V −1( y − X β̂
GLS

) (4.60)

The model in the transformed variables satisfies the standard regression as-

sumptions. Hence, S(β̂
GLS

)/σ 2 follows a chi-square distribution with n − (p +
1) degrees of freedom, where n represents the number of cases and p + 1 the
number of regression coefficients. Hence,

s2
GLS = S(β̂

GLS
)/(n − p − 1) (4.61)

is an unbiased estimator of σ 2. This can be used in Eq. (4.59) to obtain an estimate

of V (β̂
GLS

).
What are the properties of the standard least squares estimator β̂ = (X ′ X)−1

X ′y that has been derived under the wrong assumption of independent and equally
precise errors? It also is unbiased, but it is no longer “best” among all linear
unbiased estimators. The Gauss–Markov result has already shown us that it is

the GLS estimator β̂
GLS

that has the smallest covariance matrix. The covariance
matrix of the standard least squares estimator

V (β̂) = V [(X ′ X)−1 X ′y] = (X ′ X)−1 X ′V ( y)X (X ′ X)−1

= σ 2(X ′ X)−1 X ′V X (X ′ X)−1

exceeds the covariance matrix in Eq. (4.59) by a positive semidefinite matrix.

Remark
So far, our analysis has assumed that all elements in the matrix V are speci-
fied. For this reason, we call the estimator in Eq. (4.58) the feasible generalized
least squares estimator. In the first example of our introduction, the precision
V (yi ) = V (εi ) = σ 2/ni depends on the known number of measurements that go
into the observation yi . Here, V is specified, and the generalized least squares
estimator can be calculated. In the second illustration, the matrix V contains the
autoregressive parameter φ. In practice, this parameter is unknown, and one must
estimate the regression coefficients β and φ jointly. This issue will be addressed
in Chapter 10, when we discuss regression models with time series errors.

4.6.3 WEIGHTED LEAST SQUARES

Weighted least squares is a special case of generalized least squares. The weighted
least squares estimator minimizes the weighted error sum of squares

S(β) =
n∑

i=1

wi (yi − x′
iβ)2
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where wi > 0 are known specified weights. This criterion is equivalent to the
one for generalized least squares, with V −1 a diagonal matrix having diagonal
elements wi .

Equations (4.58) and (4.59) imply that the weighted least squares (WLS)
estimator is given by

β̂
WLS =

[
n∑

i=1

wi xi x′
i

]−1 [
n∑

i=1

wi xi yi

]
(4.62)

with variance

V (β̂
WLS

) = σ 2

[
n∑

i=1

wi xi x′
i

]−1

(4.63)

APPENDIX: PROOFS OF RESULTS
1. MINIMIZATION OF S(β) IN EQ. (4.9)

We wish to minimize

S(β) =
n∑

i=1

(yi − µi )
2 =

n∑
i=1

ε2
i

subject to the restriction that µ= Xβ. The elements of the vector µ are given by

µi = β0 + β1xi1 + · · · + βpxip = β0 +
p∑

j=1

xi jβ j

for i = 1, 2, . . . , n. The partial derivatives of S(β) with respect to the parameters
β0, β1, . . . , βp are

∂S(β)

∂β0
= 2

n∑
i=1

εi
∂εi

∂β0
= −2

n∑
i=1

εi

and

∂S(β)

∂β j
= 2

n∑
i=1

εi
∂εi

∂β j
= −2

n∑
i=1

xi jεi , j = 1, 2, . . . , p

At the minimum of S(β) these derivatives are zero. Hence,
n∑

i=1
εi = ∑

(yi − µi ) = 0

n∑
i=1

xi j (yi − µi ) = 0, j = 1, 2, . . . , p

In vector form,

1′( y −µ) = 0

x′
j ( y −µ) = 0, j = 1, 2, . . . , p
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where the n ×1 vector 1, a vector of ones, and x j , the vector with elements
x1 j , x2 j , . . . , xnj , are columns of the matrix X = [1, x1, . . . , x p]. Combining these
p + 1 equations, we obtain

X ′( y − Xβ) = 0

or

X ′ Xβ = X ′y
Let β̂ denote a solution of this equation. Solving the normal equations

(X ′ X)β̂ = X ′y leads to β̂ = (X ′ X)−1 X ′y; the inverse (X ′ X)−1 exists since we
assume that X has full column rank. In order to prove that β̂ actually minimizes
S(β) we show that any other estimate will lead to a larger value of S(β):

S(β) = ( y − Xβ)′( y − Xβ)

= ( y − X β̂ + X β̂ − Xβ)′( y − X β̂ + X β̂ − Xβ)

= ( y − X β̂)′( y − X β̂) + (β̂ − β)′ X ′ X (β̂ − β)

since the normal equations imply that the cross-product term (β̂ − β)′ X ′( y −
X β̂) = (β̂ − β)′(X ′y − X ′ X β̂) = 0. Thus,

S(β) = S(β̂) + c′c

where c = X (β̂ − β). Since c′c =
n∑

i=1
c2

i ≥ 0, S(β) ≥ S(β̂); the equality is true if

and only if β = β̂.

2. ANOTHER PROOF OF THE UNBIASEDNESS OF s2 AS AN ESTIMATE OF σ2:
E (

∑n
i=1 e 2

i )= (n − p − 1)σ 2

Consider

E

(
n∑

i=1

e2
i

)
= E(e′e) = E[ y′(I − H)(I − H)y] since e = (I − H)y

= E[ y′(I − H)y] since (I − H) is idempotent

= E[tr( y′(I − H)y)] since y′(I − H)y is a scalar

= E[tr(I − H)yy′] since tr AB = tr B A

= tr[(I − H)E( yy′)]
Now

E( yy′) = E[(Xβ + ε)(Xβ + ε)′]

= Xββ′ X ′ + E(εε′) = Xββ′ X ′ + σ 2 I

Here we have used the fact that E(ε) = 0 and V (ε) = E(εε′) = σ 2 I . Hence,

E

(
n∑

i=1

e2
i

)
= tr[(I − H)(σ 2 I + Xββ′ X ′)]

= tr[I − H ]σ 2, since tr(A+ B) = tr(A)+ tr(B), and (I − H)X = O

= σ 2[n − trX (X ′ X)−1 X ′]

= σ 2[n − (p + 1)] = (n − p − 1)σ 2
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since tr[X (X ′ X)−1 X ′] = tr[(X ′ X)−1 X ′ X ] = tr(Ip+1), where Ip+1 is the (p + 1) ×
(p + 1) identity matrix.

3. DIRECT PROOF THAT β̂ AND S(β̂) ARE STATISTICALLY INDEPENDENT AND THAT
S(β̂)/σ2 FOLLOWS A χ

2
n−p−1 DISTRIBUTION

The set of all linear functions of L(X) = L(1, x1, . . . , x p) forms a (p+1)-dimen-
sional subspace of Rn . We can always find p + 1 orthonormal vectors c1, . . . , cp+1

(i.e., c′
i ci = 1, c′

i c j = 0, i �= j) that form a basis of L(X). These orthonormal vec-
tors are linearly related to the regressor columns. The Gram–Schmidt orthogo-
nalization procedure (see Chapter 3) shows us how to obtain these vectors.

L(X) is a subset of Rn . Hence, we need to add (n − p − 1) additional or-
thonormal vectors cp+2, . . . , cn such that (c1, . . . , cn) forms an orthonormal basis
of the larger space Rn . You can visualize the construction as follows:

c1, . . . , cp+1︸ ︷︷ ︸
L(X)

, cp+2, . . . , cn

︸ ︷︷ ︸
Rn

The vectors in the matrix

P = (c1, . . . , cn) = (P1, P2)

where P1 = (c1, . . . , cp+1) and P2 = (cp+2, . . . , cn) are n × (p + 1) and n × (n −
p − 1) matrices, provide an orthonormal basis. By construction, P is an orthog-
onal matrix. That is, P ′ P = P P ′ = I .

Our model specifies y ∼ N (µ, σ 2 I ), where µ= Xβ is in L(X). Consider the
orthogonal transformation

z = P ′y =
(

P ′
1

P ′
2

)
y

Then z ∼ N (P ′µ, σ 2 I ) since P ′ P = I . This says that the zi ’s are independent
and have the same variance σ 2. Furthermore,

P ′µ=
(

P ′
1µ

P ′
2µ

)
=

(
P ′

1µ

0

)

since P ′
2µ= 0. This is because µ is in L(X) and the columns of P2 are perpen-

dicular to L(X).
Turning the transformation around results in

y = (P ′)−1z = Pz =
n∑

i=1

ci zi

=
p+1∑
i=1

ci zi +
n∑

i=p+2

ci zi

= µ̂+ ( y − µ̂)
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Here we have used the fact that P is orthogonal, and P−1 = P ′. Now,

S(β̂) = ( y − X β̂)′( y − X β̂) = ‖y − µ̂‖2=
(

n∑
i=p+2

ci zi

)′ ( n∑
i=p+2

ci zi

)

=
n∑

i=p+2

n∑
j=p+2

zi z j c′
i c j

=
n∑

i=p+2

z2
i since c′

i ci = 1 and c′
i c j = 0, i �= j

Since z p+2, . . . , zn are i.i.d. N (0, σ 2), it follows that

S(β̂)

σ 2
=

n∑
i=p+2

z2
i

/
σ 2

is the sum of (n − p − 1) independent χ2
1 random variables. It has a χ2

n−p−1
distribution. Furthermore, this is independent of z1, . . . , z p+1. Now

β̂ = (X ′ X)−1 X ′y = (X ′ X)−1 X ′ Pz

= (X ′ X)−1 X ′(P1, P2)z

However, X ′(P1, P2) = (X ′ P1, O) since the columns of P2 are perpendicular
to L(X) while rows of X ′ are in L(X). Hence, β̂ = (X ′ X)−1 X ′ P1z(1), where
z(1) = (z1, . . . , z p+1)

′. The least squares estimator β̂ depends on z1, . . . , z p+1,
whereas S(β̂) depends on z p+2, . . . , zn . Thus, β̂ is independent of S(β̂).

4. PROOF OF THEOREM

Proof: L A(X) is a subset of L(X), and L(X) is a subset of Rn . L(X) is
of dimension p + 1. L A(X) imposes l independent restrictions on the subset
L(X). Hence, the dimension of L A(X) is p + 1 − l. Choose an orthonormal ba-
sis (c1, . . . , cp+1−l) for L A(X) and extend it successively to form orthonormal
bases for L(X) and Rn . Visualize the process as follows:

c1, . . . , cp+1−l︸ ︷︷ ︸
L A(X)

, cp+2−l, . . . , cp+1,

︸ ︷︷ ︸
L(X)

cp+2, . . . , cn

︸ ︷︷ ︸
Rn

The vectors are collected in the n × n matrix P ,

P = (c1, . . . , cn) = (P1, P2, P3)

where P1 = (c1, . . . , cp+1−�), P2 = (cp+2−�, . . . , cp+1), and P3 = (cp+2, . . . , cn)

are n × (p + 1 − l), n × l, and n × (n − p − 1) matrices. The matrix P is or-
thogonal: P P ′ = P ′ P = I .
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Consider the orthogonal transformation z = P ′y and its inverse

y = Pz =
n∑

i=1

ci zi

=
p+1−l∑

i=1

ci zi +
p+1∑

i=p+2−l

ci zi +
n∑

i=p+2

ci zi

= µ̂A + (µ̂− µ̂A) + ( y − µ̂)

where µ̂A is the projection of y on L A(X), and µ̂ is the projection of y on L(X);
µ̂− µ̂A is in L(X) and perpendicular to L A(X); ‖y − µ̂‖2 = ∑n

i=p+2 z2
i = S(β̂)

and ‖µ̂− µ̂A‖2 = ∑p+1
i=p+2−l z2

i .
Since y ∼ N (µ, σ 2 I ), it follows that z = P ′y ∼ N (P ′µ, σ 2 I ). Under the null

hypothesis Aβ = 0, the mean vector

P ′µ=




P ′
1µ

P ′
2µ

P ′
3µ


 =




P ′
1µ

0

0




This is because under the null hypothesis µ̂= µ̂A is in L A(X) and the columns
of P2 are perpendicular to L A(X). In addition, P ′

3µ= 0 since the columns of P3

are perpendicular to L(X). Hence,

i. z1, z2, . . . , zn are independent normal random variables with variance σ 2.

ii. z p+2−l, . . . , z p+1 have zero means under the null hypothesis Aβ = 0.

iii. z p+2, . . . , zn have zero means under the original model, even if the null
hypothesis is false.

Thus,

i. ‖µ̂− µ̂A‖2 /σ 2 = ∑p+1
p+2−l z2

i is the sum of l independent χ2
1 random

variables. It has a χ2
l distribution.

ii. S(β̂) is a function of z p+2, . . . , zn , whereas ‖µ̂− µ̂A‖2 is a function of
z p+2−l, . . . , z p+1. Furthermore, z1, z2, . . . , zn are independent. This shows
that S(β̂) and ‖µ̂− µ̂A‖2 are independent.

�

EXERCISES
4.1. Consider the regression on time,

yt = β0 + β1t + εt , with t = 1, 2, . . . , n.
Here, the regressor vector is x′ = (1, 2, . . . ,

n). Take n = 10. Write down the matrices
X ′ X, (X ′ X)−1, V (β̂), and the variances of β̂0

and β̂1.

4.2. For the regression model yt = β0 + εt with
n = 2 and y′ = (2, 4), draw the data in
two-dimensional space. Identify the
orthogonal projection of y onto L(X) = L(1).
Explain geometrically β̂0, µ̂, and e.
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4.3. Consider the regression model
yi = β0 + β1xi + εi , i = 1, 2, 3. With

x =


 1

3

2


 y =


 2.2

3.9

3.1




draw the data in three-dimensional space and
identify the orthogonal projection of y onto
L(X) = L(1, x). Explain geometrically β̂, µ̂,
and e.

4.4. Consider the regression model
yi = β0 + β1xi + εi , i = 1, 2, 3. With

x =


 1

3

2


 y =


 2

4

6




draw the data in three-dimensional space and
identify the orthogonal projection of y onto
L(X) = L(1, x). Explain geometrically β̂, µ̂,
and e.

4.5. After fitting the regression model,

y = β0 + β1x1 + β2x2 + β3x3 + ε

on 15 cases, it is found that the mean square
error s2 = 3 and

(X ′ X)−1 =




0.5 0.3 0.2 0.6

0.3 6.0 0.5 0.4

0.2 0.5 0.2 0.7

0.6 0.4 0.7 3.0




Find

a. The estimate of V (β̂1).

b. The estimate of Cov(β̂1, β̂3).

c. The estimate of Corr(β̂1, β̂3).

d. The estimate of V (β̂1 − β̂3).

4.6. When fitting the model

E(y) = β0 + β1x1 + β2x2

to a set of n = 15 cases, we obtained the least
squares estimates β̂0 = 10, β̂1 = 12, β̂2 = 15,
and s2 = 2. It is also known that

(X ′ X)−1 =


 1 0.25 0.25

0.25 0.5 −0.25

0.25 −0.25 2




a. Estimate V (β̂2).

b. Test the hypothesis that β2 = 0.

c. Estimate the covariance between β̂1 and
β̂2.

d. Test the hypothesis that β1 = β2, using
both the t ratio and the 95% confidence
interval.

e. The corrected total sum of squares,
SST = 120. Construct the ANOVA table
and test the hypothesis that β1 = β2 = 0.
Obtain the percentage of variation in y that
is explained by the model.

4.7. Consider a multiple regression model of the
price of houses (y) on three explanatory
variables: taxes paid (x1), number of
bathrooms (x2), and square feet (x3). The
incomplete (Minitab) output from a
regression on n = 28 houses is given as
follows:

The regression equation is price =−10.7 +
0.190 taxes + 81.9 baths + 0.101 sqft

Predictor Coef SE Coef t p

Constant −10.65 24.02
taxes 0.18966 0.05623
baths 81.87 47.82
sqft 0.10063 0.03125

Analysis of variance

Source DF SS MS F p

Regression 3 504541
Residual Error
Total 27 541119

a. Calculate the coefficient of determination
R2.

b. Test the null hypothesis that all three
regression coefficients are zero (H0: β1 =
β2 = β3 = 0). Use significance level 0.05.

c. Obtain a 95% confidence interval of the
regression coefficient for “taxes.” Can you
simplify the model by dropping “taxes”?
Obtain a 95% confidence interval of the
regression coefficient for “baths.” Can you
simplify the model by dropping “baths”?

4.8. Continuation of Exercise 4.7. The incomplete
(Minitab) output from a multiple regression
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of the price of houses on the two explanatory
variables, taxes paid and square feet, is given
as follows:

The regression equation is price = 4.9 + 0.242
taxes + 0.134 sqft

Predictor Coef SE Coef t p

Constant 4.89 23.08
taxes 0.24237 0.04884
sqft 0.13397 0.02537

Analysis of variance

Source DF SS MS F p

Regression 2 500074 250037
Residual Error
Total 541119

a. Calculate the coefficient of determination
R2.

b. Test the null hypothesis that both
regression coefficients are zero (H0:
β1 = β2 = 0). Use significance level 0.05.

c. Test whether you can omit the variable
“taxes” from the regression model. Use
significance level 0.05.

d. Comment on the fact that the regression
coefficients for taxes and square feet are
different than those shown in Exercise 4.7.

4.9. Fitting the regression
yi = β0 + β1xi1 + β2xi2 + εi on n = 30 cases
leads to the following results:

X ′ X =


 30 2,108 5,414

2,108 152,422 376,562

5,414 376,562 1,015,780




X ′y =


 5,263

346,867

921,939


 and y′y = 1,148,317

a. Use computer software to find (X ′ X)−1.
Obtain the least squares estimates and
their standard errors.

b. Compute the t statistics to test the simple
hypotheses that each regression coefficient
is zero.

c. Determine the coefficient of variation R2.
(The complete data are given in the file
abrasion.)

4.10. The following matrices were computed for a
certain regression problem:

X ′ X =


 15 3,626 44,428

3,626 1,067,614 11,419,181

44,428 11,419,181 139,063,428


,

X ′ y =


 2,259

647,107

7,096,619




(X ′ X)−1 =
1.2463484 2.1296642 × 10−4 −4.1567125 × 10−4

7.7329030 × 10−6 −7.0302518 × 10−7

1.9771851 × 10−7


,

β̂ =


 3.452613

0.496005

0.009191




y′ y = 394,107

a. Write down the estimated regression
equation. Obtain the standard errors of the
regression coefficients.

b. Compute the t statistics to test the simple
hypotheses that each regression coefficient
is equal to zero. Carry out these tests. State
your conclusions.

4.11. A study was conducted to investigate the
determinants of survival size of nonprofit
U.S. hospitals. Survival size, y, was defined
to be the largest U.S. hospital (in terms of the
number of beds) exhibiting growth in market
share. For the investigation, 10 states were
selected at random, and the survival size for
nonprofit hospitals in each of the selected
states was determined for two time periods t :
1981–1982 and 1984–1985.

Furthermore, the following characteristics
were collected on each selected state for each
of the two time periods:

x1 = Percentage of beds that are in for-profit

hospitals.

x2 = Number of people enrolled in health

maintenance organizations as a fraction



Abraham Abraham˙C04 November 8, 2004 1:29

Exercises 137

of the number of people covered by

hospital insurance.

x3 = State population in thousands.

x4 = Percentage of state that is urban.

The data are given in the file hospital.

a. Fit the model

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε

b. The influence of the percentage of beds in
for-profit hospitals was of particular
interest to the investigators. What does the
analysis tell us?

c. What further investigation might you do
with this data set. Give reasons?

d. Rather than selecting 10 states at random,
how else might you collect the data on
survival size? Would your approach be an
improvement over the random selection?

4.12. The amount of water used by the production
facilities of a plant varies. Observations on
water usage and other, possibily related,
variables were collected for 17 months.
The data are given in the file water. The
explanatory variables are

TEMP = average monthly temperature(◦F)

PROD = amount of production

DAYS = number of operating days in the month

PAYR = number of people on the monthly
plant payroll

HOUR = number of hours shut down for
maintenance

The response variable is USAGE = monthly
water usage (gallons/100).

a. Fit the model containing all five
independent variables,

y = β0 + β1 TEMP + β2 PROD + β3 DAYS

+ β4 PAYR + β5 HOUR + ε

Plot residuals against fitted values and
residuals against the case index, and
comment about model adequacy.

b. Test the hypothesis that β1 = β3 = β5 = 0.

c. Which model or set of models would you
suggest for predictive purposes? Briefly
justify.

d. Which independent variable seems to be
the most important one in determining the
amount of water used?

e. Write a nontechnical paragraph that
summarizes your conclusions about plant
water usage that is supported by the data.

4.13. Data on last year’s sales (y, in 100,000s of
dollars) in 15 sales districts are given in the
file sales. This file also contains promotional
expenditures (x1, in thousands of dollars), the
number of active accounts (x2), the number of
competing brands (x3), and the district
potential (x4, coded) for each of the districts.

a. A model with all four regressors is
proposed:

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε,

ε ∼ N (0, σ 2)

Interpret the parameters β0, β1, and β4.

b. Fit the proposed model in (a) and calculate
estimates of βi , i = 0, 1, . . . , 4, and σ 2.

c. Test the following hypotheses:

(i) β4 = 0; (ii) β3 = β4 = 0;
(iii) β2 = β3; (iv) β1 = β2 = β3 = β4 = 0

d. Consider the reduced (restricted) model
with β4 = 0. Estimate its coefficients and
give an expression for the expected sales.

e. Using the model in (d), obtain a prediction
for the sales in a district where
x1 = 3.0, x2 = 45, and x3 = 10. Obtain the
corresponding 95% prediction interval.

4.14. The survival rate (in percentage) of bull
semen after storage is measured at various
combinations of concentrations of three
materials (additives) that are thought to
increase the chance of survival. The data
listed below are given in the file bsemen.

% Survival % Weight 1 % Weight 2 % Weight 3
(y) (x1) (x2) (x3)

25.5 1.74 5.30 10.80
31.2 6.32 5.42 9.40
25.9 6.22 8.41 7.20
38.4 10.52 4.63 8.50
18.4 1.19 11.60 9.40
26.7 1.22 5.85 9.90



Abraham Abraham˙C04 November 8, 2004 1:29

138 Multiple Linear Regression Model

% Survival % Weight 1 % Weight 2 % Weight 3
(y) (x1) (x2) (x3)

26.4 4.10 6.62 8.00
25.9 6.32 8.72 9.10
32.0 4.08 4.42 8.70
25.2 4.15 7.60 9.20
39.7 10.15 4.83 9.40
35.9 1.72 3.12 7.60
26.5 1.70 5.30 8.20

Assume the model y = β0 + β1x1 + β2x2 +
β3x3 + ε.

a. Compute X ′ X, (X ′ X)−1, and X ′y.

b. Plot the response y versus each predictor
variable. Comment on these plots.

c. Obtain the least squares estimates of β and
give the fitted equation.

d. Construct a 90% confidence interval for

i. the predicted mean value of y when
x1 = 3, x2 = 8, and x3 = 9;

ii. the predicted individual value of y when
x1 = 3, x2 = 8, and x3 = 9.

e. Construct the ANOVA table and test for a
significant linear relationship between y
and the three predictor variables.

4.15. An experiment was conducted to study the
toxic action of a certain chemical on
silkworm larvae. The relationship of log10

(survival time) to log10(dose) and
log10(larvae weight) was investigated. The
data, obtained by feeding each larvae a
precisely measured dose of the chemical in an
aqueous solution and recording the survival
time until death, are given in the following
table. The data are stored in the file silkw.

log10 log10 log10

Survival Time (y) Dose (x1) Weight (x2)

2.836 0.150 0.425
2.966 0.214 0.439
2.687 0.487 0.301
2.679 0.509 0.325
2.827 0.570 0.371
2.442 0.590 0.093
2.421 0.640 0.140

log10 log10 log10

Survival Time (y) Dose (x1) Weight (x2)

2.602 0.781 0.406
2.556 0.739 0.364
2.441 0.832 0.156
2.420 0.865 0.247
2.439 0.904 0.278
2.385 0.942 0.141
2.452 1.090 0.289
2.351 1.194 0.193

Assume the model y = β0 +β1x1 +β2x2 + ε.

a. Plot the response y versus each predictor
variable. Comment on these plots.

b. Obtain the least squares estimates for β
and give the fitted equation.

c. Construct the ANOVA table and test for a
significant linear relationship between y
and the two predictor variables.

d. Which independent variable do you
consider to be the better predictor of
log(survival time)? What are your reasons?

e. Of the models involving one or both of the
independent variables, which do you
prefer, and why?

4.16. You are given the following matrices
computed for a regression analysis:

X ′ X =




9 136 269 260

136 2,114 4,176 3,583

269 4,176 8,257 7,104

260 3,583 7,104 12,276




X ′y =




45

648

1,283

1,821




(X ′ X)−1 =




9.610 0.008 −0.279 −0.044

0.008 0.509 −0.258 0.001

−0.279 −0.258 0.139 0.001

−0.044 0.001 0.001 0.0003



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β̂ = (X ′ X)−1(X ′y) =




−1.163461

0.135270

0.019950

0.121954




y′y = 285

a. Use these results to construct the analysis
of variance table.

b. Give the computed regression equation
and the standard errors of the regression
coefficients.

c. Compare each estimated regression
coefficient to its standard error and use the
t test to test the simple hypotheses that
each individual regression coefficient is
equal to zero. State your conclusions about
β1, β2, and β3.

4.17. Consider the following two models:

Model A : yi = β0 + β1xi + εi

Model B : yi = β1xi + εi

Suppose that model A is fitted to 22 data
points (xi , yi ) with the following results:

β̂
′ = (β̂0, β̂1) = (4.0, −4.5), V (β̂0) = 4.0,

V (β̂1) = 9.0, and Cov(β̂0, β̂1) = 0.0

a. Construct individual 95% confidence
intervals for β0 and for β1. What
conclusions can you draw?

b. Construct a joint 95% confidence region
for (β0, β1). Draw this confidence region
on the plane of possible values for
(β0, β1). On the basis of this region, what
conclusions can you draw about the
relative merits of models A and B?

c. Do the results of (a) and (b) conflict?
Carefully explain your reasoning.

4.18. Consider the model

y = Xβ + ε, ε∼ N (0, σ 2 I )

Let β̂ = (X ′ X)−1 X ′y, µ̂= H y, and
e = (I − H)y, where H = X (X ′ X)−1 X ′.
Show that µ̂ and e are statistically
independent.

4.19. Consider a regression through the origin,

yi = βxi + εi , with E(εi ) = 0,

V (εi ) = σ 2x2
i , i = 1, 2, . . . , 12

a. Derive the generalized least squares
estmate of β in Eq. (4.58) and obtain its
variance. Note that the covariance matrix
V and its inverse V −1 are diagonal
matrices. The generalized least squares
estimate minimizes a weighted sum of
squares with weights given by the diagonal
elements in V −1. Hence, one refers to it as
the weighted least squares estimate.

b. Suppose that zi = yi/xi and
∑12

i=1 zi = 30.
Find the numerical value for the weighted
least squares estimate in (a) and express its
variance as a function of σ 2.

4.20. Consider a regression through the origin,

yi = βxi + εi , with E(εi ) = 0,

V (εi ) = σ 2xi , xi > 0, i = 1, 2, . . . , 10

a. Derive the generalized (weighted) least
squares estmator of β and obtain its
variance.

b. Assume that the experimenter recorded
only the sample means x̄ = 15 and ȳ = 30.
If possible, obtain a numerical value for
the weighted least squares estimate in (a)
and express its variance as a function
of σ 2.

4.21. The data are taken from Davies, O. L., and
Goldsmith, P. L. (Eds.). Statistical Methods
in Research and Production (4th ed.).
Edinburgh, UK: Oliver & Boyd, 1972. The
data are given in the file abrasion.

The hardness and the tensile strength of
rubber affect its resistance to abrasion. Thirty
samples of rubber are tested for hardness (in
degrees Shore; the larger the number, the
harder the rubber) and tensile strength (in
kilograms per square centimeter). Each
sample was subjected to steady abrasion for a
certain fixed period of time, and the loss of
rubber (in grams per hour of testing) was
measured.

Develop a model that relates the abrasion
loss to hardness and tensile strength.
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Construct scatter plots of abrasion loss
against hardness and tensile strength. Fit
appropriate regression models, obtain and
interpret the estimates of the coefficients,
calculate the ANOVA table, and discuss the
adequacy of the model fit. Use your model(s)
to obtain a 95% confidence interval for the
mean abrasion loss for rubber with hardness
70 and tensile strength 200.

y = Abrasion x1 = Hardness x2 = Tensile
Loss (g/hr) (degree Shore) Strength (kg/cm2)

372 45 162
206 55 233
175 61 232
154 66 231
136 71 231
112 71 237
55 81 224
45 86 219

221 53 203
166 60 189
164 64 210
113 68 210
82 79 196
32 81 180

228 56 200
196 68 173
128 75 188
97 83 161
64 88 119

249 59 161
219 71 151
186 80 165
155 82 151
114 89 128
341 51 161
340 59 146
283 65 148
267 74 144
215 81 134
148 86 127

4.22. The data are taken from Joglekar, G.,
Schuenemeyer, J. H., and LaRiccia, V.
Lack-of-fit testing when replicates are not
available. American Statistician, 43,

135–143, 1989. The data are given in the file
woodstrength.

The tensile strength of Kraft paper (in
pounds per square inch) is measured against
the percentage of hardwood in the batch of
pulp from which the paper was produced.
Data for 19 observations are given here.

Develop a model that relates tensile
strength to the percentage of hardwood in the
paper. Construct scatter plots of tensile
strength against the percentage of hardwood.

a. Fit a linear model and comment on your
findings.

b. Consider a model that also includes the
square of the percentage of hardwood. Fit
the quadratic model, obtain and interpret
the estimates of the coefficients, calculate
the ANOVA table, and discuss the
adequacy of the model fit. Add the fitted
line to your scatter plot. Discuss whether
the quadratic component is needed. Use
your model to obtain a 95% confidence
interval for the mean tensile strength of
paper with 6% hardwood content. How is
this interval different from a corresponding
prediction interval? Discuss whether it is
reasonable to obtain a confidence interval
for the mean tensile strength of paper with
20% hardwood content.

x = Hardwood y = Tensile
Concentration Strength

1.0 6.3
1.5 11.1
2.0 20.0
3.0 24.0
4.0 26.1
4.5 30.0
5.0 33.8
5.5 34.0
6.0 38.1
6.5 39.9
7.0 42.0
8.0 46.1
9.0 53.1

10.0 52.0
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x = Hardwood y = Tensile
Concentration Strength

11.0 52.5
12.0 48.0
13.0 42.8
14.0 27.8
15.0 21.9

4.23. The data are taken from Humphreys, R. M.
Studies of luminous stars in nearby galaxies.
I. Supergiants and O stars in the Milky Way.
Astrophysics Journal, Supplementary Series,
38, 309–350, 1978. The data are given in the
file lightintensity.

Light intensity and surface temperature
were determined for 47 stars taken from the
Hertzsprung–Russel diagram of Star Cluster
CYG OB1. The objective is to find a
relationship between light intensity and
surface temperature.

Construct a scatter plot of light intensity
against surface temperature. Fit a quadratic
regression model, obtain and interpret the
estimates of the coefficients, calculate the
ANOVA table, and discuss the adequacy of
the model fit. Add the fitted line to your
scatter plot.

What other interpretations of the scatter
plot are possible? For example, could it be
that four stars are different in the sense that
they do not follow the linear pattern
established by the other stars? What
questions would you ask the astrophysicist?

x = Log y = Log
Index Surface Temp Light Intensity

1 4.37 5.23
2 4.56 5.74
3 4.26 4.93
4 4.56 5.74
5 4.30 5.19
6 4.46 5.46
7 3.84 4.65
8 4.57 5.27
9 4.26 5.57

10 4.37 5.12
11 3.49 5.73

x = Log y = Log
Index Surface Temp Light Intensity

12 4.43 5.45
13 4.48 5.42
14 4.01 4.05
15 4.29 4.26
16 4.42 4.58
17 4.23 3.94
18 4.42 4.18
19 4.23 4.18
20 3.49 5.89
21 4.29 4.38
22 4.29 4.22
23 4.42 4.42
24 4.49 4.85
25 4.38 5.02
26 4.42 4.66
27 4.29 4.66
28 4.38 4.90
29 4.22 4.39
30 3.48 6.05
31 4.38 4.42
32 4.56 5.10
33 4.45 5.22
34 3.49 6.29
35 4.23 4.34
36 4.62 5.62
37 4.53 5.10
38 4.45 5.22
39 4.53 5.18
40 4.43 5.57
41 4.38 4.62
42 4.45 5.06
43 4.50 5.34
44 4.45 5.34
45 4.55 5.54
46 4.45 4.98
47 4.42 4.50

4.24. Consider the UFFI data set in Table 1.2
(n = 24 observations). Estimate the model
with three regression coefficients, y = β0 +
β1x1(UFFI) + β2x2(TIGHT) + ε.

a. Use the statistical software of your choice
and confirm the regression results in
Table 4.1.
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b. Determine the 3 × 3 matrix X ′ X and its
inverse (X ′ X)−1. Determine the standard
errors of the three estimates and the
pairwise correlations among the estimates
(there are three correlations).

c. Determine a 95% confidence region
(ellipse) for the two slopes β = (β1, β2)

′.
We know that the marginal distribution of
β̂ = (β̂1, β̂2)

′ is a bivariate normal
distribution with covariance matrix
σ 2 A−1, where A−1 is the appropriate 2 ×
2 submatrix of (X ′ X)−1 found in (b).
Hence, the contours of the confidence
ellipse can be traced out by solving
(β̂ − β)′ A(β̂ − β) =
2s2 F(0.95; 2, n − 3). Here,
F(0.95; 2, n − 3 = 21) is the 95th
percentile of the F distribution, and s2 is
the mean square error.

4.25. Confidence intervals for regression
coefficients and the mean response and
prediction intervals for future observations in
Section 4.3 make use of the t distribution.
The t distribution as the resulting sampling
distribution of the coefficient estimates in Eq.
(4.24) depends critically on the model
assumptions, in particular the assumption that
the independent errors are normally
distributed. The distribution in Eq. (4.24) is
not a t distribution and it is no longer known
if the distribution of the errors is nonnormal.

Bootstrapping (or resampling) methods
are commonly used to overcome problems of
unknown sampling distributions. The
bootstrap, originally proposed by Efron
(1979), approximates the unknown theoretical
sampling distribution of the coefficient
estimates by an empirical distribution that is
obtained through a resampling process.

Several versions of the bootstrap are
proposed for the regression situation, and the
references listed at the end of this exercise
will give you more details. Here, we discuss
the “bootstrap in pairs” method, which
resamples directly from the original data
(yi , xi ), i = 1, 2, . . . , n. This method repeats
the following steps B times. Sample with

replacement n pairs from the original n
observations (yi , xi ). From these n sampled
pairs, calculate the least squares estimates and
denote the j th coefficient estimate by β̂

∗(b)
j .

The superscript asterisk denotes the fact that
the estimate is obtained from data generated
by the bootstrap procedure, the superscript b
denotes the bth replication, and the subscript
j refers to a particular scalar coefficient. The
B independent replications supply the
empirical bootstrap distribution function.

Percentile bootstrap intervals are proposed
as confidence intervals for the regression
coefficients. One approach determines the
100(α/2) and 100(1 − (α/2)) percentiles of
the empirical bootstrap distribution function,
β̂∗

j (α/2) and β̂∗
j (1 − (α/2)), and computes a

100(1 − α)% bootstrap confidence interval
for the parameter β j as

β̂∗
j (α/2), β̂∗

j (1 − (α/2))

Here, we have given the very simplest
bootstrap method for the regression situation.
Modifications that improve on this simple
procedure have been proposed and are
discussed in the references. The modifications
involve sampling residuals (compared to the
resampling of cases discussed here) and
refinements for improving the coverage
properties of percentile bootstrap intervals
[one modification calculates the lower and
upper limits as β̂ j − [β̂∗

j (1 − (α/2)) − β̂ j ]
and β̂ j − [β̂∗

j (α/2) − β̂ j ], where β̂ j is the
estimate from the original sample].

a. Select one or more of the listed references
and write a brief summary that explains
the bootstrap methods in regression and
discusses their importance.

b. Consider the simple linear regression
model. Use the fuel efficiency data in
Table 1.3 and regress fuel efficiency
(gallons per 100 traveled miles) on the
weight of the car. Obtain a 95% bootstrap
confidence interval for the slope. Use B =
1,000 and 2,000 replications. Relate the
results to the standard confidence interval
based on the t distribution.
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Literature on the Bootstrap
and Its Applications to Regression
Davison, A. C., and Hinkley, D. V. Bootstrap

Methods and Their Applications. New
York: Cambridge University Press, 1997.

Efron, B. Bootstrap methods: Another look at the
jackknife. Annals of Statistics, 7, 1–26, 1979.

Efron, B., and Tibshirani, R. J. An Introduction to
the Bootstrap. New York: Chapman & Hall,
1993.

Horowitz, J. L. The Bootstrap. In Handbook of
Econometrics (Vol. 6). Amsterdam: North
Holland, 1999.
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5 Specification Issues
in Regression Models

In Chapter 4, we considered the general linear model

y = Xβ + ε (5.1)

where y′ = (y1, . . . ,yn), ε′ = (ε1, . . . ,εn),

X =




1 x11 x12 · · · x1p

1 x21 x22 · · · x2p
...

...
...

...

1 xn1 xn2 · · · xnp


, β =




β0

β1
...

βp


,

and ε∼ N (0, σ 2 I ). The model can also be writen as y ∼ N (µ, σ 2 I ), with mean
vector

µ= E( y) = Xβ (5.2)

It is the mean vector µ= Xβ that is at the center of our interest. By properly
defining the X matrix and the β vector, we can adapt the mean vector to represent
various models of interest. Consider the following special cases.

5.1 ELEMENTARY SPECIAL CASES
5.1.1 ONE-SAMPLE PROBLEM

Suppose that y1, . . . , yn are observations taken under uniform conditions from a
stable process with mean level β0. We can write the data-generating model as

yi = β0 + εi with mean E(yi ) = β0, i = 1, 2, . . . ,n (5.3)

In this case

E( y) = Xβ

144
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where

y =




y1

y2
...

yn


 ; X =




1
1
...

1


 ; and β = β0

5.1.2 TWO-SAMPLE PROBLEM

Suppose that the first m observations y1, . . . , ym are taken under one set of con-
ditions (e.g., the standard process), whereas the remaining n − m observations
ym+1, ym+2, . . . , yn are taken under a different set of conditions (the new process).
Let β1 denote the mean of the standard process and β2 that of the new process.
Then

yi =
{

β1 + εi i = 1, 2, . . . , m

β2 + εi i = m + 1, . . . , n

This can also be written as
yi = β1xi1 + β2xi2 + εi (5.4)

or E(yi ) = β1xi1 + β2xi2

where xi1 and xi2 are indicator variables such that xi1 = 1 if i = 1, 2, . . . , m
and zero for i = m + 1, . . . , n, and xi2 = 0 if i = 1, 2, . . . , m and one for i =
m + 1, . . . , n.

The n equations can be combined as

E




y1
...

ym−−
ym+1

...
yn




=




1
...

1
−−

0
...

0




β1 +




0
...

0
−−

1
...

1




β2 (5.5)

In matrix form

E( y) = Xβ

where

X =




1 0
...

...

1 0
−− −−

0 1
...

...

0 1




and β =
[
β1

β2

]
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Our interest is in examining whether the two processes have the same mean. We
wish to test the hypothesis β1 = β2.

An Equivalent Formulation
Let us write

β2 = β1 + δ

where δ = β2 − β1 represents the difference of the process means. Corresponding
to Eq. (5.4), the mean in our model becomes

E(yi ) = β1 + δxi2 (5.6)

where xi2 is the indicator defined earlier,

xi2 =
{

0 if i = 1, 2, . . . , m
1 if i = m + 1, . . . , n

Hence,

E




y1
...

ym
−−
ym+1

...

yn




=




1
...

1
−−

1
...

1




β1 +




0
...

0
−−

1
...

1




δ (5.7)

or

E( y) = Xβ

where

X =




1 0
...

...

1 0
−− −−

1 1
...

...

1 1




; β =
[
β1

δ

]

Our hypothesis of interest β1 = β2 is now expressed as δ = β2 − β1 = 0.

5.1.3 POLYNOMIAL MODELS

Let yi , i = 1, 2, . . . ,n represent the yields of a chemical process at operating
temperatures t1, t2, . . . , tn . Suppose that the expected yield changes linearly with
temperature, suggesting a model of the form

yi = β0 + β1ti + εi , i = 1, 2, . . . , n
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In this case,

µi = E(yi ) = β0 + β1ti , i = 1, 2, . . . , n (5.8)

and µ= E( y) can be written as

E( y) = Xβ

where

X =




1 t1
1 t2
...

...

1 tn


 ; and β =

[
β0

β1

]

Next, let us assume that the expected yield is quadratic in time. That is,

µi = β0 + β1ti + β2t2
i , i = 1, 2, . . . , n (5.9)

Then

E( y) = Xβ

where

X =




1 t1 t2
1

1 t2 t2
2

...
...

...

1 tn t2
n


 ; and β =


β0

β1

β2




This model is quadratic in time but still linear in the parameters β.

5.2 SYSTEMS OF STRAIGHT LINES
Suppose y1, . . . , ym represent the yields of a chemical process at temperatures
t1, . . . , tm in the absence of a catalyst (xi = 0), and ym+1, . . . , y2m represent yields
at the very same temperatures in the presence of the catalyst (xi = 1). Suppose
that the expected yield changes linearly with temperature. Several possibilities
exist.

Case a The catalyst has an effect, and this effect is the same at all temperatures:

µi =
{

β0 + β1ti i = 1, 2, . . . , m

β0 + β2 + β1ti−m i = m + 1, . . . , 2m

The parameter β2 expresses the effect of the catalyst. Using an indicator variable
for the presence of the catalyst, we can write the model as

E(yi ) = β0 + β1ti + β2xi , i = 1, 2, . . . , 2m (5.10)
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x = 1 (with catalyst): mi = (b0 + b2) + b1ti

b2

x = 0 (without catalyst): mi = b0 + b1ti

Temperature (ti)

M
ea

n 
re

sp
on

se
 m

i

FIGURE 5.1 Same
Catalyst Effect for
All Temperatures

where xi = 0 if i = 1, 2, . . . , m and 1 if i = m + 1, . . . , 2m, and ti+m = ti , i =
1, 2, . . . , m.

In matrix form,

E( y) = Xβ

where

y =




y1

y2
...

ym
−−
ym+1

...
y2m




, X =




1 t1 0
1 t2 0
...

...
...

1 tm 0
−− −− −−

1 t1 1
...

...
...

1 tm 1




; and β =


β0

β1

β2




Figure 5.1 illustrates this model graphically. This model represents two parallel
straight lines (identical slopes); β2 represents the change due to the catalyst. The
effect of the catalyst is the same for all temperatures t1, . . . , tm . The hypothesis
β2 = 0 implies that the catalyst has no effect.

Case b The catalyst has an effect, but its effect changes with temperature. This
situation can be expressed with the model

µi = E(yi ) = β0 + β1ti + β2xi + β3ti xi , i = 1, 2, . . . , 2m (5.11)

where xi is the indicator defined earlier.
If the catalyst is absent (xi = 0),

µi = β0 + β1ti , i = 1, 2, . . . , m

If the catalyst is present (xi = 1),

µi = β0 + β1ti−m + β2 + β3ti−m, i = m + 1, . . . , 2m

= (β0 + β2) + (β1 + β3)ti−m
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x = 1 (with catalyst): mi = (b0 + b2) + (b1 + b3)ti

x = 0 (without catalyst): mi = b0 + b1ti

Temperature (ti)

M
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n 
re

sp
on

se
 m

i

FIGURE 5.2
Catalyst Effect
Depends on
Temperature

In matrix form we can write this model as

µ= E( y) = Xβ

where

y =




y1

y2
...

ym
−−
ym+1

...

y2m




, X =




1 t1 0 0
1 t2 0 0
...

...
...

...

1 tm 0 0
−− −− −− −−

1 t1 1 t1
...

...
...

...

1 tm 1 tm




; and β =




β0

β1

β2

β3




Graphically, this model represents a pair of straight lines with different intercepts
and different slopes; see Figure 5.2.

To test whether there is any catalyst effect, we test the hypothesis β2 = β3 =
0. If this hypothesis cannot be rejected, then the catalyst has no effect. A test
of just β3 = 0 in the model (5.11) tests whether the catalyst effect depends on
temperature.

UFFI Example Revisited
For these data (see Figure 1.2 and Table 1.2), we consider the model

µi = E(yi ) = β0 + β1xi1 + β2xi2 (5.12)

where yi is the ambient formaldehyde concentration for house i ,

xi1 =
{

1 if house i has UFFI
0 otherwise

xi2 = Airtightness of house i
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TABLE 5.1 UFFI DATA: ESTIMATES, STANDARD ERRORS, t RATIOS, AND
p VALUES FOR MODEL (5.13)

Estimate Standard Error t Ratio p Value

Intercept 29.9976 3.0107 9.9635 0.0000
x1 = UFFI 12.4781 4.4746 2.7887 0.0113
x2 = TIGHT 3.1208 0.5030 6.2049 0.0000
x1x2 = UFFI ∗ TIGHT −0.6185 0.7665 −0.8069 0.4292

This model represents a pair of parallel lines when graphing µ against x2. In
Chapter 4, we found that β̂1 was significant, which indicates that houses with
UFFI have increased levels of formaldehyde concentration. The model assumes
that this increase is the same for all levels of airtightness.

Next, consider the following more general model that allows the possibility
that the effect of UFFI depends on the level of airtightness:

E(yi ) = β0 + β1xi1 + β2xi2 + β3xi1xi2, i = 1, 2, . . . , 24 (5.13)

where xi1 and xi2 are as defined before. For houses without UFFI (xi1 = 0),

E(yi ) = β0 + β2xi2 (5.14)

whereas for houses with UFFI (xi1 = 1),

E(yi ) = (β0 + β1) + (β2 + β3)xi2 (5.15)

This model represents two lines with different slopes and intercepts. A test
of β3 = 0 examines whether the effect of UFFI depends on airtightness. A test of
β1 = β3 = 0 indicates whether or not UFFI has any effect at all. The estimation
results for model (5.13) are given in Table 5.1.

The estimate β̂3 = −0.6185 and its standard error s.e.(β̂3) = 0.7665 can be
used to test β3 = 0. The t ratio is t(β̂3) = −0.6185/0.7665 = −0.81, and its prob-

ability value for a two-sided alternative is given by 2P(T ≥ 0.81) = 0.4292. Note
that the degrees of freedom are n − p − 1 = 24 − 4 = 20. The probability value is
quite large (certainly larger than commonly used significance levels), indicating
that such a t ratio could have easily resulted if the null hypothesis β3 = 0 actually
were true. This probability value indicates that β3 = 0 is a plausible hypothesis.
The effect of UFFI does not depend on the airtightness of the house.

Next, we test whether UFFI has an effect at all. This means testing β1 = β3 =
0. This test cannot be performed by looking at the t ratios in Table 5.1. We must
use the additional sum of squares principle to perform this test. Estimates of the
full model (5.13) are given in Table 5.1. The residual sum of squares is given by
S(β̂) = 554.834, with 20 degrees of freedom. The null hypothesis β1 = β3 = 0
constrains the model to

E(yi ) = β0 + β2xi2 (5.16)
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Fitting this model results in new estimates for β0 and β2, and the residual sum of
squares S(β̂A) = 1,093.067 with 24 − 2 = 22 degrees of freedom. The additional
sum of squares is given by

S(β̂A) − S(β̂) = 1,093.067 − 554.834 = 538.233

with 2 degrees of freedom.
The relevant test statistic for testing β1 = β3 = 0 is given by

F = 538.233/2

554.834/20
= 9.70

and the probability value using the F distribution with 2 and 20 degrees of freedom
is P(F ≥ 9.7) ≈ 0.001. The probability value is very small, providing strong
evidence against the hypothesis β1 = β3 = 0. This states that UFFI has an effect
on the ambient formaldehyde.

5.3 COMPARISON OF SEVERAL “TREATMENTS”
This is also known as one-way classification, or the k-sample problem. We gen-
eralize the previously considered two-sample problem in Section 5.1.2 to k > 2
groups. This situation arises, for example, if we compare (i) the output from sev-
eral machines, (ii) the reliability of several suppliers, or (iii) the effectiveness of
several catalysts.

Suppose we are concerned with the effects of k catalysts on the yield of
a chemical process. Assume that we take ni observations with the i th catalyst,
resulting in a total of n = n1 + n2 + · · · + nk observations. The data can be orga-
nized as in the following table:

Catalyst Observations

1 y11 y12 . . . y1n1

2 y21 y22 . . . y2n2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

k yk1 yk2 . . . yknk

As an example, consider k = 4 groups and an equal number of observations in
each group, n1 = n2 = n3 = n4 = 5. The observations for a special example are
listed here, as are the averages for the four catalysts:

Catalyst Observations ȳi

1 91.5 92.1 93.9 91.0 94.5 92.60
2 94.1 91.7 93.5 89.9 92.0 92.24
3 84.4 85.7 86.5 88.5 87.4 86.50
4 86.0 87.3 85.5 84.8 83.2 85.36
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Our model assumes different means for the k (catalyst) groups. Let yi j be the
j th observation from the i th catalyst group. We assume that E(yi j ) = βi for all
j = 1, 2, . . . , ni . As in all our previous regression models, we assume that the
observations are independent and normally distributed with constant variance σ 2.

In matrix notation, the mean vector of our response becomes

E(y) = Xβ = β1x1 + β2x2 + · · · + βk xk (5.17)

The regressor vectors xi are strings of zeros and ones, indicating the group mem-
bership of the observations. That is, x ji = 1 if yi j is from group i , and 0 otherwise.

For k = 4 groups,

y =




y11
...

y1n1−−
y21
...

y2n2−−
y31
...

y3n3−−
y41
...

y4n4




; X = [x1, x2, x3, x4] =




1 0 0 0
...

...
...

...

1 0 0 0
−− −− −− −−

0 1 0 0
...

...
...

...

0 1 0 0
−− −− −− −−

0 0 1 0
...

...
...

...

0 0 1 0
−− −− −− −−

0 0 0 1
...

...
...

...

0 0 0 1




; and β =




β1

β2

β3

β4




The least squares estimator of β = (β1, β2, . . . , βk)
′, β̂ = (X ′ X)−1 X ′y, is easy

to obtain. Its elements are the respective group means, β̂1 = ȳ1, β̂2 = ȳ2, . . . ,

β̂k = ȳk .
The hypothesis of interest is the equality of the k means, β1 = β2 = . . . =

βk . An equivalent, but for the following discussion somewhat more convenient,
representation relates the group means to the mean of a reference group; in our
case, the mean of the first group, β1.

Let βi = β1 + δi , i = 2, 3, . . . , k. Then we can write the model as

E(yi j ) =
{

β1 for catalyst i = 1

β1 + δi for catalyst i, i = 2, . . . , k
(5.18)

The mean vector of the response is

E( y) = Xβ = [1, x2, x3, . . . , xk]β (5.19)
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For k = 4 groups, the matrix X and the vector of parameters β are given as

X =




1 0 0 0
...

...
...

...

1 0 0 0
−− −− −− −−

1 1 0 0
...

...
...

...

1 1 0 0
−− −− −− −−

1 0 1 0
...

...
...

...

1 0 1 0
−− −− −− −−

1 0 0 1
...

...
...

...

1 0 0 1




; and β =




β1

δ2

δ3

δ4




The null hypothesis is now expressed as δ2 = δ3 = δ4 = 0. If this hypothesis cannot
be rejected, then the process means can be considered the same. If the hypothesis
is rejected, then at least one of the means differs from the others.

Let ȳi = ( ∑ni
j=1 yi j

)
/ni denote the average of the i th group, and let ȳ =( ∑k

i=1

∑ni
j=1 yi j

)
/
( ∑k

i=1 ni
)

be the overall average. The least squares estimator
of β in model (5.19) is given by

β̂ = (X ′ X)−1 X ′y =




ȳ1

ȳ2 − ȳ1
...

ȳk − ȳ1


 (5.20)

The regression sum of squares is given by

β̂′ X ′y − n ȳ2 =
k∑

i=1

ni (ȳi − ȳ)2 (5.21)

Since there are k − 1 “regressor” variables (in addition to the intercept), the
degrees of freedom for the regression sum of squares are k − 1. You can convince
yourself of the sum of squares result by first working out the inverse of (X ′ X);
this is somewhat cumbersome because (X ′ X) is not diagonal. Even simpler, you
can work from the estimates β̂1 = ȳ1, and δ̂i = ȳi − ȳ1, for i = 2, . . . , k.

As an illustration consider the data set given earlier. The corresponding anal-
ysis of variance (ANOVA) table is given in Table 5.2.

The residual sum of squares is given by

S(β̂) = y′y − β̂′ X ′y =
k∑

i=1

ni∑
j=1

(yi j − ȳi )
2 (5.22)



Abraham Abraham˙C05 November 8, 2004 1:32

154 Specification Issues in Regression Models

TABLE 5.2 ANOVA TABLE FOR THE CATALYST DATA

Source df Sum of Squares MS F p Value

Regression k − 1 = 3
∑k

i=1 ni (ȳi − ȳ)2 = 214.17 71.39 29.12 < 0.0001
(Treatment)

Residual
∑k

i=1(ni − 1) = 16
∑k

i=1

∑ni
j=1(yi j − ȳi )

2 = 39.22 2.45
(Error)

Total
∑k

i=1 ni − 1 = 19
∑k

i=1

∑ni
j=1(yi j − ȳ)2 = 253.40

The associated degrees of freedom are n − k, where n = ∑k
i=1 ni . Note that in

this example k = 4, n1 = n2 = n3 = n4 = 5, n = 20, and n − k = 16.
We are interested in testing the null hypothesis β1 = β2 = β3 = β4, or equiv-

alently, δ2 = δ3 = δ4 = 0. The F statistic

F = regression SS/(k − 1)

residual SS/(n − k)
(5.23)

in the fifth column of the ANOVA table can be used. We find that F is very large,
and its probability value P(F(3, 16) ≥ 29.12) is very small. Hence, there is ample
evidence to reject the hypothesis δ2 = δ3 = δ4 = 0. This implies that at least one
of the means is different from the others.

When testing the equality of group means, we often attach different labels
to the sums of squares in the ANOVA table. We refer to the regression sum of
squares as the treatment sum of squares or the between group sum of squares.
This is because this sum of squares picks up the variablity between the groups.
The residual sum of squares is sometimes called the within group sum of squares.

5.4 X MATRICES WITH NEARLY LINEAR-DEPENDENT COLUMNS
In the general linear model we assumed that the columns (1, x1, . . . , x p) of the
X matrix are not linearly dependent. In some contexts, especially when working
with observational data, these columns are close to being linearly dependent.
What are the consequences of such a situation? The following illustration will
show us what can happen.

EXAMPLE: PIZZA SALES DATA
A manager of a pizza outlet has collected monthly sales data over a 16-month
period. During this time span, the outlet has been running a series of different
advertisements. The manager has kept track of the cost of these advertisements (in
hundreds of dollars) as well as the number of advertisements that have appeared.
The data are shown in Table 5.3, where

y = Sales (in thousands of dollars)

x1 = Number of advertisements

x2 = Cost of advertisements (in hundreds of dollars)
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TABLE 5.3 PIZZA SALES DATA

Month Number of Ads Cost of Ads (Hundred $) Sales (Thousand $)

Jan 11 14.0 49.4
Feb 8 11.8 47.5
Mar 11 15.7 52.6
Apr 14 15.5 49.3
May 17 19.5 61.1
Jun 15 16.8 53.2
Jul 12 12.8 47.4
Aug 10 13.6 49.4
Sep 17 18.2 62.0
Oct 11 16.0 47.9
Nov 8 13.0 47.3
Dec 18 20.0 61.5
Jan 12 15.1 54.2
Feb 10 14.2 44.7
Mar 13 17.3 53.6
Apr 12 15.9 55.4

Figure 5.3 shows the scatter plots of sales against the number of advertise-
ments and sales against the cost of advertisements. The graphs show that sales
increase as the number of advertisements increases and also as the amount spent
on advertising increases. The manager fits the model

yi = β0 + β1xi1 + β2xi2 + εi (5.24)

The results are given in Table 5.4.
The R2 from this regression, R2 = 348.1428/446.9644 = 0.78, indicates that

the regressors x1 and x2 explain a large part of the variability in sales. The F ratio
in the ANOVA in Table 5.5 (F = 22.90, with probability value 0.0001) indicates
that there is strong evidence to reject the hypothesis β1 = β2 = 0. This means that
at least one of the coefficients β1 and β2 is nonzero. In other words, at least one
of the x variables is important in explaining the variation in y.

However, an examination of the individual p values (0.24 and 0.10 for β1

and β2) in Table 5.4 indicates that we cannot reject the hypothesis β1 = 0 if x2

is already included in the model. Similarly, we cannot reject β2 = 0 if x1 is in
the model. In other words, if one of the variables is in the model, then the extra
contribution of the other variable toward the regression is not important. Keep in
mind the correct interpretation of the individual probability values. The individual
t test results in Table 5.4 state that you do not need one variable if you already
have included the other. This is certainly not an indication that you can omit from
the model both x1 and x2 at the same time.

What would happen if you consider a model with just one of the two x
variables? The results of fitting the regressions of sales on each variable separately,
and the results of fitting sales on both x1 and x2, are shown in Table 5.6.
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FIGURE 5.3 Plots for Pizza Sales

TABLE 5.4 LEAST SQUARES ESTIMATES FOR THE PIZZA SALES DATA

Estimate Standard Error t Value p Value

Intercept 24.8231 5.6611 4.3848 0.0007
Number of ads, x1 0.6626 0.5386 1.2303 0.2404
Cost of ads, x2 1.2329 0.6962 1.7709 0.1000

TABLE 5.5 ANOVA TABLE FOR THE PIZZA SALES DATA

Source df SS MS F p Value

Regression 2 348.1428 174.0714 22.8990 0.0001
Residual 13 98.8216 7.6017
Total 15 446.9644
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TABLE 5.6 SUMMARY OF THE REGRESSION RESULTS FOR PIZZA SALES
DATAa

Coefficients

Variables in the Model β̂0 β̂1 β̂2 Regression SS R2

x1 only 33.3473 1.5223 324.3042 0.7256
(0.0000) (0.0000)

x2 only 21.0278 2.0050 336.6371 0.7532
(0.0007) (0.0000)

x1, x2 24.8231 0.6626 1.2329 348.1428 0.7789
(0.0007) (0.2404) (0.1000)

a Numbers in parentheses are the probability values

We find:

i. A regression on x1 alone explains 72.56% of the variability in sales. A
regression on x2 alone explains 75.32%. Both together (x1 and x2 in the
model) explain 77.89%.

ii. In the single-variable model y on x1, the regression coefficient β̂1 = 1.5223
is highly significant. In the two-variable model, β̂1 = 0.6626 is not signifi-
cant, given that x2 is in the model. Also notice that the estimate of β1 changes
considerably. The same comments apply to β2. In the single-variable model,
β̂2 = 2.0050 is highly significant. In the two variable model, the estimate of
β2 is not significant, and the estimate of β2 changes considerably.

iii. If x2 is in the model, then it is not important to include x1 (and vice versa).
In the presence of one variable, the other is not important enough to have it
included. This is because variables x1 and x2 are highly correlated. The two
variables express the same information, so there is no point to include both.
A graph of x1 against x2 in Figure 5.3 shows that x1 is strongly linearly
related to x2. This phenomenon is known as multicollinearity.

In the general linear model we assumed that the columns (1, x1, . . . , x p) of
the X matrix are not linearly dependent. When the regressor columns are close to
being linearly dependent, then we can approximate one of the columns in the X
matrix as a linear combination of the others. This states that one of the regressor
variables is strongly influenced by some or all of the other explanatory variables.
Hence, the fitting results of one variable are strongly affected by the presence or
absence of other variables in the model. This is a consequence of multicollinearity,
and this is exactly what we see in the pizza sales data. When x2 is in the model,
x1 has little to contribute because it is highly “correlated” with x2. A model with
x2 alone is sufficient. Note that the increase in R2 from 0.75 in the model with
just x2 to R2 = 0.78 with both x1 and x2 included is rather small. Also, the plot
of the residuals vs fitted values from the simple model with just x2 in Figure 5.3
indicates no systematic patterns.
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What happens if the multicollinearity is perfect? What happens if the corre-
lation between x1 and x2 is +1 or −1, exactly? Algebraically, the n × 3 matrix X
has rank 2, and not 3 = p + 1 as usually assumed. As a consequence, the 3 × 3
matrix X ′ X has rank 2, and it is not possible to obtain the inverse (X ′ X)−1. The
computer program would crash, or at least complain about the multicollinearity.

5.4.1 DETECTION OF MULTICOLLINEARITY

Correlations Among Regressor Variables
Suppose we have p regressors and we calculate the sample correlations, ri j ,
between pairs of regressors xi and x j ,

ri j =

n∑
�=1

(xi� − x̄i )(x j� − x̄ j )√
n∑

�=1
(xi� − x̄i )2

n∑
�=1

(x j� − x̄ j )2

, i, j = 1, 2, . . . , p (5.25)

where x̄i denotes the average of the measurements on the variable xi . The sample
correlation ri j measures the linear association between xi and x j . A matrix of the
correlations

C =




1 r12 . . . r1p

r12 1 . . . r2p
...

...
...

r1p r2p . . . 1


 (5.26)

provides an indication of the pairwise associations among the explanatory vari-
ables. If the off-diagonal elements of C are large in absolute value (close to
±1), then there is strong pairwise linear association among the corresponding
variables. For instance, if r12 is large, then x1 and x2 are linearly associated and
multicollinearity exists. For the pizza sales data in Table 5.3,

C =
[

1 r12

r12 1

]
=

[
1 0.8518

0.8518 1

]
Hence, the correlation between x1 and x2 is high and the two regressors are
strongly linearly related. There is no need to have both variables together in the
model. It should be noted that if the ri j ’s in the correlation matrix C are zero, then
the regressor variables are orthogonal to each other. We discuss this situation
later.

Variance Inflation Factors
Consider the regression model in Eq. (5.1) with an intercept and p regressors.
Suppose we standardize the y and x variables,

y∗
i = yi − ȳ

sy
and zi j = xi j − x̄ j

s j
, j = 1, 2, . . . , p

Ledolter
Sticky Note
Correlation is 0.9015
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where ȳ and x̄ j are the corresponding sample means, and sy and s j are the
appropriate sample standard deviations. Hence, the linear model can be expressed
as

y∗ = α1z1 + α2z2 + · · · + αpz p + ε∗ (5.27)

Note that there are only p regression coefficients and that there is no intercept in
this model. The covariance matrix of the least squares estimates of the parameters
in the linear model Eq. (5.1) is given by V (β̂) = (X ′ X)−1σ 2. In the standardized
model (Eq. 5.27), the matrix that corresponds to X ′ X reduces to the correlation
matrix C . Hence, V (α̂) = C−1σ 2, where α= (α1, . . . , αp)

′. The diagonal ele-
ments of C−1 are the scaled variances of the least squares estimates, V (α̂i )/σ

2.
For illustration, consider the special case, p = 2. Then the model is

y∗ = α1z1 + α2z2 + ε∗ (5.28)

and

C =
[

1 r12

r12 1

]
, with C−1 = (

1 − r2
12

)−1

[
1 −r12

−r12 1

]

If r12 were zero, then C−1 has ones in its diagonal, and
V (α̂1)

σ 2
= V (α̂2)

σ 2
= 1.

If r12 is large, then the diagonal elements of C−1 are larger than one, and
V (α̂1)

σ 2
= V (α̂2)

σ 2
> 1. The values

V (α̂i )

σ 2
, i = 1, 2 are called variance inflation

factors (VIF) because they measure how the correlation among the regressor
variables inflates the variance of the estimates. If these factors are much larger
than one then there is multicollinearity. For the pizza sales data,

C =
[

1 r12

r12 1

]
=

[
1 0.8518

0.8518 1

]
, C−1 =

[
3.6439 −3.1038

−3.1038 3.6439

]

Thus, VIF1 =VIF2 = 3.6439. The variance is inflated 3.64-fold. This is consid-
erably larger than one; hence, there is evidence of multicollinearity.

In the general case of p regressors, it can be shown that the VIF of the
coefficient estimate corresponding to the j th regressor x j is

VIF j = 1
/(

1 − R2
j

)
(5.29)

where R2
j is the coefficient of determination (see Section 4.5.1) from the regression

of x j on all other regressors. If x j is linearly dependent on the other regressors,
then R2

j will be large (close to one), and VIF j will be large as well. Values of VIF
larger than 10 are taken as solid evidence of multicollinearity.

5.4.2 GUARDING AGAINST MULTICOLLINEARITY

How can you guard against multicollinearity and its associated problems? A
careful model specification is the key. You should avoid adding regressor variables

Ledolter
Sticky Note
r12 = 0.9015

Ledolter
Sticky Note
          Z1        Z2
Z1 1.0000000 0.9015029
Z2 0.9015029 1.0000000
> solve(Q)
          Z1        Z2
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Z2 -4.813343  5.339243
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more than once. For example, in a model for a car’s fuel efficiency, you would not
want to include both weight in kilograms and weight in pounds. This example is
trivial because no reasonable person would make the mistake of including both.
In many observational studies, however, the decision is not as clear-cut. Consider
describing the state of the economy with such variables as interest rates, gross
national product, employment, unemployment, etc. Although these variables are
not perfectly related, some fairly strong relations are certain to exist.

5.5 X MATRICES WITH ORTHOGONAL COLUMNS
In many experimental situations, experimenters can set the values of the explana-
tory variables in such a way that the columns of the X matrix (also called the
design matrix) are orthogonal. Orthogonality is an attractive property and there
are advantages to choosing the regressor vectors as orthogonal. We illustrate this
by considering an example.

Example: Excess Shrinkage Data
In an investigation to find the causes of excess shrinkage of parts produced by
an injection molding operation, the team considered the following design factors
(regressor variables): x1 = mold temperature (T ), x2 = holding pressure (P), and
x3 = screw speed (S). It was decided to study these variables at two levels each,
with coding −1 (low) and +1 (high). A total of eight runs were taken. The values
of the design variables and the corresponding results, shrinkage (y in percent),
are given in Table 5.7. The first run describes the experiment in which all three
variables are at their low values. The second run has P and S at the low levels,
whereas T is set at its high level. Table 5.7 lists the eight runs in standard order
in which “−” and “+” signs alternate in groups of one, two, and four. This order
makes it easy to write down the settings for the eight runs. However, note that the
order in which the runs are carried out should be randomized.

Consider a linear model of the form

y = β0 + β1x1 + β2x2 + β3x3 + ε (5.30)

TABLE 5.7 SHRINKAGE DATA

Run T P S Shrinkage

1 −1 −1 −1 19.7
2 +1 −1 −1 19.1
3 −1 +1 −1 20.0
4 +1 +1 −1 19.5
5 −1 −1 +1 15.9
6 +1 −1 +1 15.3
7 −1 +1 +1 25.5
8 +1 +1 +1 24.9
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In matrix form this model can be written as

y = Xβ + ε (5.31)

where

y =




19.7
19.1
20.0
19.5
15.9
15.3
25.5
24.9



; X = [1, x1, x2, x3] =




1 −1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 1 1 −1
1 −1 −1 1
1 1 −1 1
1 −1 1 1
1 1 1 1



;β =




β0

β1

β2

β3


; and ε=



ε1
ε2
...

ε8




Convince yourself that the columns in the matrix X are orthogonal. It is easy to
see that 1′x1 = 1′x2 = 1′x3 = 0. Furthermore, check that x′

1x2 = x′
1x3 = x′

2x3 = 0.
The matrix X ′ X is diagonal with diagonal element 8.

Fitting the model in Eq. (5.30) with least squares leads to the estimates

β̂ = (X ′ X)−1 X ′y =




8 0 0 0
0 8 0 0
0 0 8 0
0 0 0 8




−1



∑
yi∑

xi1 yi∑
xi2 yi∑
xi3 yi


 =




19.9875
−0.2875

2.4875
0.4125


 (5.32)

Changing x1 (temperature) by one unit reduces shrinkage by 0.2875%. A change
in temperature from the low to the high level reduces shrinkage by (2)(0.2875) =
0.575%. A similar interpretation applies to the other coefficients. The regression
sum of squares due to x1, x2, x3 is given by SSR(x1, x2, x3) = β̂′ X ′y − n ȳ2 =
51.5238, with 3 degrees of freedom. The residual sum of squares is SSE =
42.7850, with n − 4 = 8 − 4 = 4 degrees of freedom. The Fstatistic for the overall
significance and t ratios for each coefficient can be readily obtained.

Suppose that we consider the regression of y on x1 alone, y = β0 + β1x1 + ε.
The least squares estimates are

β̂0 = 19.9875 and β̂1 = −0.2875

and the regression sum of squares due to x1 is SSR(x1) = 0.6613. We note that the
estimate of β1, β̂1 = −0.2875, is the same whether x1 is the only variable in the
model or all three (x1, x2, x3) are included. Table 5.8 shows the results of fitting
all possible models with the three variables. There are three models with just
one x variable, three models with two x variables, and one model with all three
variables. The results show that β̂1 is the same in all models. It does not matter
whether the estimate comes from a one-variable model (x1 alone), a two-variable
model [(x1, x2) or (x1, x3)], or the three-variable model (x1, x2, x3). This is true
for the other parameter estimates as well.
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TABLE 5.8 REGRESSION RESULTS FOR SHRINKAGE DATA

Coefficients

Variables in the Model β̂0 β̂1 β̂2 β̂3 Regression SS (SSR)

x1 19.9875 −0.2875 0.6613
x2 19.9875 2.4875 49.5012

x1, x2 19.9875 −0.2875 2.4875 50.1625
x3 19.9875 0.4125 1.36125

x1, x3 19.9875 −0.2875 0.4125 2.0225
x2, x3 19.9875 2.4875 0.4125 50.8625

x1, x2, x3 19.9875 −0.2875 2.4875 0.4125 51.5238

Another point to note from Table 5.8 concerns the regression sums of squares.
One notices that they are additive:

SSR(x1, x2) = SSR(x1) + SSR(x2), or 50.1625 = 0.6613 + 49.5012

SSR(x1, x2, x3) = SSR(x1) + SSR(x2) + SSR(x3) or

51.5238 = 0.6613 + 49.5012 + 1.3613

etc.
The nonchanging estimates and the additivity of the regression sums of

squares are special consequences of orthogonality. The special orthogonal struc-
ture of the design matrix X implies a diagonal X ′ X matrix, with diagonal elements
x′

i xi . Consequently, the inverse (X ′ X)−1 is also diagonal with diagonal elements
(x′

i xi )
−1. In our case,

X ′ X =




8 0 0 0
0 8 0 0
0 0 8 0
0 0 0 8


 , and (X ′ X)−1 =




1
8 0 0 0

0 1
8 0 0

0 0 1
8 0

0 0 0 1
8


 (5.33)

With orthogonality, the least squares estimates β̂ = (X ′ X)−1 X ′y in the general
regression model y = β0x0 + β1x1 + · · · + βpx p + ε (where, x0 = 1) are given
by β̂i = (x′

i y)/(x′
i xi ). The estimate of βi in the model with just xi , y = βi xi + ε,

is given by β̂i = (x′
i y)/(x′

i xi ), and we can see that the two estimates are the same.
The regression sum of squares of the full model is SSR = β̂′ X ′y = ∑p

i=0
β̂i (x′

i y). Note that here we are not correcting this sum of squares for the con-
stant. Correcting for the constant would require the subtraction of β̂0(x′

0 y) =
[(1′y)/1′1](1′y) = n ȳ2. The regression sum of squares of the model y = βi xi + ε
is given by SSR(xi ) = β̂i (x′

i y). This shows that the regression sums of squares
are additive.

We also note that V (β̂) = (X ′ X)−1σ 2. With orthogonality, this is a diagonal
matrix and the covariances between the elements of β̂′ = (β̂0, β̂1, β̂2, β̂3) are
zero. The additional assumption of normal errors implies that the least squares
estimators are statistically independent.
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EXERCISES
5.1. Consider the following regression model:

Salary (in $1,000) = 20 + 2x + 5z + 0.7xz

where x is the number of years of experience,
and z is an indicator variable that is 1 if you
have obtained an MBA degree and 0
otherwise; xz is the product between years of
experience and the indicator variable z.

Graph salary (y) against years of
experience (x). Do this for both groups
(without MBA and with MBA) on the same
graph, and comment on the degree of
interaction.

5.2. You are interested in the starting salaries of
accounting, management information
systems, and economics majors. You
consider a model that factors in the GPA of
students, obtaining the following regression
model:

Salary (in $1,000) = −15 + (18)GPA

+ (3)INDacc + (2.1)INDmis

INDacc is an indicator variable that is 1 if the
student is in accounting and 0 otherwise.
INDmis is an indicator variable that is 1 if the
student is an MIS student and 0 otherwise.

a. Calculate the expected salary difference
between an accounting and an economics
student with the same GPA.

b. Calculate the expected salary difference
between an accounting and an MIS student
with the same GPA.

5.3. The data are taken from Mazess, R. B.,
Peppler, W. W., and Gibbons, M. Total body
composition by dualphoton (153Gd)
absorptiometry. American Journal of Clinical
Nutrition, 40, 834–839, 1983. The data are
given in the file bodyfat.

A new method of measuring the body fat
percentage is investigated. The body fat, age
(between 23 and 61 years), and gender (4
males and 14 females) of 18 normal adults
are listed below.

Graph body fat against age and gender
(you may want to overlay these two on the
same graph). Consider a regression model

with age and gender as the explanatory
variables. Interpret the results, and discuss
the effects of age and gender. Is it useful to
include an interaction term for age and
gender?

y = % Fat x1 = Age x2 = Gender

9.5 23 1
27.9 23 0

7.8 27 1
17.8 27 1
31.4 39 0
25.9 41 0
27.4 45 1
25.2 49 0
31.1 50 0
34.7 53 0
42.0 53 0
29.1 54 0
32.5 56 0
30.3 57 0
33.0 58 0
33.8 58 0
41.1 60 0
34.5 61 0

5.4. You are regressing fuel efficiency (y) on
three predictor variables, x1, x2, and x3, and
you obtain the following fitted regression
model:

µ̂ = β̂0 + β̂1x1 + β̂2x2 + β̂3x3

The coefficient of determination for this
regression model is R2 =90%.

A regression of x1 on x2, x3 gives you an R2

of 60%;

A regression of x2 on x1, x3 gives you an R2

of 80%; and

A regression of x3 on x1, x2 gives you an R2

of 90%.

Calculate and interpret the variance inflation
factors for the regression coefficients β̂1, β̂2,
and β̂3.



Abraham Abraham˙C05 November 8, 2004 1:32

164 Specification Issues in Regression Models

5.5. Which one of the following statements
suggests the presence of a multicollinearity
problem:

a. High R2 and high t ratios

b. High correlation between explanatory
variables and dependent variable

c. Low pairwise correlation among
independent variables

d. Low R2 and low t ratios

e. High R2and mostly insignificant t ratios

5.6. The data are taken from Latter, H. O. The
cuckoo’s egg. Biometrika, 1, 164–176, 1901.
The data are given in the file cuckoo.

The female cuckoo lays her eggs into the
nest of foster parents. The foster parents are
usually deceived, probably because of the
similarity in the sizes of the eggs. Latter
investigated this possible explanation and
measured the lengths of cuckoo eggs (in
millimeters) that were found in the nests of
the following three species:

Hedge Sparrow:
22.0 23.9 20.9 23.8 25.0 24.0
21.7 23.8 22.8 23.1 23.1 23.5
23.0 23.0

Robin:
21.8 23.0 23.3 22.4 23.0 23.0
23.0 22.4 23.9 22.3 22.0 22.6
22.0 22.1 21.1 23.0

Wren:
19.8 22.1 21.5 20.9 22.0 21.0
22.3 21.0 20.3 20.9 22.0 20.0
20.8 21.2 21.0

Obtain the analysis of variance table and test
whether or not the mean lengths of the eggs
found in the nests of the three species are
different. Display the data graphically, and
interpret the results.

5.7. Percentage yields from a chemical reaction
for changing temperature (factor 1), reaction
time (factor 2), and concentration of a certain
ingredient (factor 3) are as follows:

Average ȳi

Factor 1: Factor 2: Factor 3: from 5
x1 x2 x3 Experiments

−1 −1 −1 79.7
1 −1 −1 74.3

−1 1 −1 76.7
1 1 −1 70.0

−1 −1 1 84.0
1 −1 1 81.3

−1 1 1 87.3
1 1 1 73.7

Each listed yield is actually the average of
five individual independent experiments. The
variance of individual measurements can be
estimated from the five replications in each
cell. It is found that

s2 =

8∑
i=1

5∑
j=1

(yi j − ȳi )
2

8(5 − 1)
= 40.0

a. Estimate the effects of factors 1–3. That is,
estimate the coefficients in the regression
model

y = β0 + β1x1 + β2x2 + β3x3 + ε

Calculate the standard errors of the
coefficients and interpret the results.
Comment on the nature of the design
matrix.

b. Is it possible to learn something about
interactions? Consider the interaction
effect between factors 1 and 2. Write out
the Xmatrix of the regression model y =
β0 + β1x1 + β2x2 + β3x3 + β4x1x2 + ε.

Estimate the model and comment on this
issue.

5.8. In a study on the effect of coffee consumption
on blood pressure, 30 patients are selected at
random from among the patients of a medical
practice. A questionnaire is administered to
each patient to get the following information:

x1 : Average number of cups of coffee
consumed/day
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x2 : A measure of daily exercise

x3 : Age

x4 : Sex(x4 = 0 for males, x4 = 1
for females)

y : Systolic blood pressure during the
last visit to the practice

A linear model of the form

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε,

ε ∼ N (0, σ 2)

is considered.

a. Explain carefully the meaning of the
parameter β4.

b. Why is the error term ε present in the
model?

c. If β1 is very large, can we conclude from
this study that increased coffee
consumption causes increased blood
pressure? Discuss.

d. Another model

y = β0 + β1x1 + β2x2 + β3x3 + β4x4

+ β5x1x4 + ε

is fit to the data. Explain the meaning of
the hypothesis β5 = 0.

5.9. a. Suppose that y is the average price (in
thousands of dollars) of a typical
three-bedroom home in a large Canadian
city. Fourteen consecutive observations
y1, y2, . . . , y14 are taken at consecutive
6-month intervals over 7 years. At the
beginning of the eighth interval the
government implemented steps to slow
down the rate of the price increases. A
possible model for these data specifies that
prices increase linearly with time until the
time point 8, at which time the rate of
increase (slope) changes. Such a model
consists of a pair of straight lines
intersecting at time point 8. Formulate this
as a linear model y = Xβ + ε. Explicitly
define the parameters you are using and
write out the X matrix.

b. An alternative model specifies that the
government’s actions had no effect on

prices, and that prices continued to
increase at the same constant rate. Set up
the appropriate linear model y = Xβ + ε.

c. Suppose you found that the residual sum
of squares in (a) is 6.12 and that in (b) is
37.25. What evidence does this provide
with regard to whether model (a) is better
than model (b)?

5.10. Accident rate data y1, . . . , y12 were collected
over 12 consecutive years t = 1, 2, . . . , 12. At
the end of the sixth year, a change in safety
regulations occurred. For each of the
following situations, set up a linear model of
the form y = Xβ + ε. Define X and β
appropriately.

a. The accident rate y is a linear function of t
with the new safety regulations having no
effect.

b. The accident rate y is a quadratic function
of t with the new regulations having no
effect.

c. The accident rate y is a linear function of
t . The slope for t ≥ 7 is the same as for
t < 7. However, there is a discrete jump in
the function at t = 7.

d. The accident rate y is a linear function of
t . After t = 7, the slope changes, with the
two lines intersecting at t = 7.

5.11. A consumer group conducted an experiment
to compare the effectiveness of three
commercially available weight-reducing
diets, A, B, and C. The group wanted to
answer the following questions.

i. Are the three diets achieving similar
weight reductions?

ii. Does the weight loss depend on the
initial weight, and if so, is this effect the
same for the three diets?

Thirty volunteers were randomly
assigned to the three diets (10 to each diet).
Their weights (in pounds) were recorded at
the beginning and after 1 month on the
respective diets. The resulting data are
given in the file weightloss and are shown
here:
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Diet A Diet B Diet C

X Weight Y Weight X Weight Y Weight X Weight Y Weight
Before Loss Before Loss Before Loss

227 14 255 19 206 7
286 16 193 8 222 9
180 −2 186 4 168 2
176 8 145 15 132 0
204 15 219 16 173 −3
155 5 273 19 210 8
303 17 289 25 269 10
146 7 168 6 275 51
215 15 194 12 241 8
187 6 248 21 219 5

a. What regression models would you use to
investigate the previous questions? Write
out the models in matrix form.

b. In nontechnical language, briefly describe
the relationship between diets and weight
loss that the models selected in (a)
describe.

c. If you wanted to use these results as a basis
for recommending one of these diets to
other potential dieters, what assumptions
would you have to make? What reservations
might you have about these assumptions?

d. Use the models to analyze the data. What
are your conclusions?

5.12. An exploratory study on the influence of
formaldehyde concentration (x1), catalyst
ratio (x2), curing temperature (x3), and
curing time (x4) on the wrinkle resistance of
cotton cellulose (y) was carried out. Small
values of y indicate low wrinkle resistance.
The method of data collection consisted of
taking 30 samples of cotton cellulose from
the last 60 production days, measuring the
wrinkle resistance of the sampled items, and
looking up the corresponding values of x1, x2,
x3, and x4 for the sample from production
records. The data are given in the file
cellulose.

a. By means of pairwise scatter plots of y
versus each explanatory variable, make an
assessment of the model to be fitted.
Specify your model.

b. Fit the model

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε

Assess the adequacy of this model. Check
for any unusual points.
Assess the following hypotheses:

(i) β1 = 0;
(ii) β3 = β4 = 0;
(iii) β1 = β2 = β3 = β4 = 0

c. The investigator believes that there could
be interactions between catalyst ratio and
curing time and between catalyst ratio and
curing temperature. Write down an
appropriate model and assess if these
hypotheses are supported by the data.

d. Give a model that you believe describes
the data set. What manufacturing strategy
would you pursue if

i. low wrinkle resistance is preferred?

ii. high wrinkle resistance is preferred?

e. The data obtained are observational
(because the investigator took what the
process provided in terms of values for x1,
x2, x3, and x4). What restriction does this
place on the conclusions that we draw
from the model? Can you suggest a way
that could get us around this restriction?

5.13. A team of anthropologists and nutrition
experts investigated the influence of protein
content in the diet on the relationship
between age and height of children in an
underdeveloped country. Data on height (cm)
and age for children fed on a protein-rich diet
and for children on a protein-poor diet were
obtained. The data are given in the file diet.

Protein-rich diet
Age (x) 0.2 0.5 0.8 1.0 1.0 1.4 1.8
Height (y) 54 54.3 63 66 69 73 82

Age (x) 2.0 2.0 2.5 2.5 3.0 2.7
Height (y) 83 80.3 91 93.2 94 94

Protein-poor diet
Age (x) 0.4 0.7 1.0 1.0 1.5 2.0 2.0
Height (y) 52 55 61 63.5 66 68.5 67.9

Age (x) 2.4 2.8 3.0 1.3 1.8 0.2 3.0
Height (y) 72 76 74 65 69 51 77
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a. Plot height versus age on a single graph
using different symbols for the two diets.

b. Carry out a test of significance to
determine if the linear relationship
between height and age is the same for
both diets.

5.14. a. Assume that the columns of the matrix X
in the model y = Xβ + ε, ε∼ N (0, σ 2 I )
are orthogonal. Show that β̂i and β̂ j are
independent.

b. Suppose an extra term is added to the
model,

y = Xβ + zγ + ε

Assume that z is orthogonal to the
columns of X . Show that the estimate
of β in the expanded model is the same
as the estimate in the original model
and prove that it has the same
distribution. (Note that X need not have
orthogonal columns for this result to
hold.)

c. Consider the linear model y = Xβ + ε in
which the first column of X is a column
of 1’s and the remaining columns are
centered about their means. Show that
β̂0 = ȳ. Furthermore, show that if the
errors are independent N (0, σ 2), the
estimator β̂0 is distributed independently
of (β̂1, . . . , β̂ p).

5.15. In a study to examine the fuel efficiency of an
automobile as a function of its engine
characteristics, 20 automobiles are
considered. The following information is
collected for each car: y = fuel efficiency,
x1 = weight (in 1,000 lbs), and x2 = engine
type (A or B). Assume that the first 10 cars
have type A engine, and the rest have type B
engine. Set up a linear model, carefully
defining the X matrix and the β vector for
each of the following situations:

a. It is believed that expected fuel efficiency
depends on the weight of the car and types
of the engine.

b. It is suspected that the effect of weight on
expected fuel efficiency depends on the
different types of engines.

5.16. In an experiment to study the effect of
temperature (x) on the yield of a chemical
reaction (y), 30 experimental runs were
conducted. The level of temperature was
carefully controlled at each of five levels,
coded as x = −2, −1, 0, 1, 2. Two catalysts
were used. For each catalyst three runs were
taken at each level of temperature, and the
yield was measured. The model

y = β0 + β1x + β2x2 + β3z + ε,

ε ∼ N (0, σ 2)

was considered, where z = 0 for catalyst 1
and z = 1 for catalyst 2.

a. Carefully interpret the parameter β3 in this
model.

b. The model was fit to the data and the
output is summarized below. The residual
sum of squares is 25.05, and

Parameter Estimate Standard Error

β0 29.83 0.33
β1 0.95 0.13
β2 0.41 0.11
β3 −0.32 0.36

Is there any evidence of a difference in the
two catalysts? Find a 95% confidence
interval for β2.

c. We also know that

(X ′ X)−1 =




0.114 0 −0.023 −0.067

0 0.017 0 0

−0.023 0 0.012 0

−0.067 0 0 0.133




i. Explain why β̂1 and β̂3 are independent
random variables.

ii. Find a 95% confidence interval for the
expected yield when the standard
temperature (x = 0) and catalyst 2 are
used.

iii. Find a 95% prediction interval for the
yield of a new experiment run under
standard temperature (x = 0) and with
catalyst 2.
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d. It was thought that the effects of temperature
differ for the two catalysts. Accordingly, the
model

y = β0 + β1x + β2x2 + β3z + β4zx

+ β5zx2 + ε

was fit to the data, leading to a residual sum
of squares of 19.70. Is there any evidence that
the effects of temperature differ for the two
catalysts?

5.17. Consider the data in Table 2.2. In Eq. (2.37)
of Section 2.8 we considered the linear
regression of test scores on poverty.

a. Investigate whether the model can be
improved by including the square of
poverty as an additional regressor variable.

b. Check whether it is necessary to introduce
an indicator for students in a college
community such as Iowa City.
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6 Model Checking

6.1 INTRODUCTION
In previous chapters, we considered the linear regression model and discussed in
detail the assumptions that complete its specification. Chapters 2 and 4 described
the inference within a specified model, assuming that all assumptions are met.
We also illustrated how such models can be used for prediction as well as other
purposes.

Computer packages (such as S-Plus, SAS, and Minitab) can fit any model
one supplies, but usually they do so without questioning whether or not the model
is adequate. The fact that estimation today is so easy has led to an abundance of
models being fit to data sets. However, many of these models will be inappropriate,
and model checking becomes very important. One needs to make sure that the
adopted models are adequate and satisfy all model assumptions.

As shown in Chapter 1, the essence of model building can be represented
by the diagram in Figure 6.1. Initially, a model is specified from available data
and/or theory. In some circumstances, good theory and prior studies are available.
In other cases, no such information is available, and the model needs to be specified
from the data at hand; well-chosen plots of the information can greatly help with
the model specification. The specified model is then estimated and submitted to
extensive diagnostic checking. If the model is found adequate, it can be used for
the purposes for which it was designed. However, if the model is found inadequate,
the specification must be modified and the model-building cycle continued until
a satisfactory structure is obtained.

A number of assumptions are made when specifying a model, and these as-
sumptions need to be checked. A fitted model can be inadequate for several
reasons:

i. The functional form of the model may not be adequate. The model may be
missing needed variables and nonlinear components, such as squares of
covariates and interactions among covariates.

169
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Data

Specifications Estimation
Model checking:

No

Yes Use the
model

Theory

Is the model adequate?

FIGURE 6.1 Model
Building Framework

ii. The error specification may be incorrect. In particular, the error variances
V (εi ) may not be constant, the errors may not be normally distributed, and
the errors may not be independent.

iii. Unusual observations in the data may have an undue influence on the model
fit. There may be outlying data points that have a major impact on the
estimates and the conclusions.

In Section 6.2, we examine the residuals as a whole. Residual plots can tell us
whether the functional form is misspecified and whether the usual assumptions
on the error terms are violated. Residual plots can also draw attention to particular
cases that seem “odd” when judged in comparison to the rest of the data; in Section
6.3, we study specific case diagnostics that assess the influence of individual
cases on the model results. In Section 6.4, we discuss goodness-of-fit tests that
tell us whether our model provides an adequate representation of the functional
relationship between the response and the explanatory variables.

6.2 RESIDUAL ANALYSIS
6.2.1 RESIDUALS AND RESIDUAL PLOTS

The residual vector is given by e = y − µ̂, the difference between the observed
response and the fitted value; the i th component ei = yi − µ̂i corresponds to the
ith case in the data set. The residual estimates the random component ε in the
model. Misspecification and departures from the underlying assumptions in the
model are reflected in the pattern of the residuals. Hence, a thorough residual
analysis and a graphical display of the residuals provide an effective method of
discovering model inadequacies.

The discussion in Chapter 4 has shown that the vector of residuals e is or-
thogonal to the vector space L(X) = L(1, x1, x2, . . . , x p) that is spanned by the
regressor vectors. We assume that the unit vector, and hence an intercept term,
is included in the model. The residuals are orthogonal to the regressor vectors
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1, x1, x2, . . . , x p and also orthogonal to µ̂= X β̂ because the vector of fitted
values is in the space L(X). Orthogonality implies that

n∑
i=1

ei =
n∑

i=1

ei xi1 = · · · =
n∑

i=1

ei xip =
n∑

i=1

ei µ̂i = 0

These residual properties are consequences of the adopted least squares fitting
procedure. They hold, irrespective of whether or not the model is adequate.

What happens to the residuals if some model assumptions are violated? For
example, what happens to the expected value of the residuals? The expected value
of the residual vector can be written as

E(e) = E( y − µ̂) = E[(I − H)y] = (I − H)E( y) (6.1)

The residuals have mean vector zero if the “true” expected value E( y) is a vec-
tor in the space L(X) = L(1, x1, x2, . . . , x p). Any element in the linear vec-
tor space can be written as E( y) = Xα, for some α, and hence (I − H)Xα=
(I − X (X ′ X)−1 X ′)Xα= 0. For a correctly specified functional relationship, the
residuals will have expectation zero. On the other hand, for a misspecified model
where E( y) is not in the space L(X), E(e) �= 0 (see the appendix, No. 1, for
details). Assume, for example, that the true model is given by E( y) = Xβ +
uγ , where u is an additional regressor vector that is not part of L(X), and γ

a parameter. Fitting the model without u leads to the residuals e = (I − H)y
and

E(e) = (I − H)E( y) = (I − H)(Xβ + uγ ) = γ (I − H)u �= 0 (6.2)

The vector (I − H)u is not zero because u is not in L(X). Equation (6.2) shows
that the residuals obtained from the model without u are related to u. Hence, a
graph of the residuals obtained from the model without u against the variable
u reveals a pattern. Graphs of the residuals against variables that are not part
of the specified model but are thought to have an effect on the response should
be considered as diagnostic tools. Patterns in such plots indicate that needed
terms have been omitted. Also, one is always concerned about whether a linear
specification in the regressor variables is sufficient or whether quadratic terms are
needed. Since quadratic terms are not part of L(X), scatter plots of the residuals
from the linear model against the explanatory variables already part of the model
should also be considered. Nonlinear patterns would arise in these graphs if a
model that is linear in the covariates is not adequate.

Under the model assumptions, the vector of residuals e = (I − H)y and the
vector of fitted values µ̂ are uncorrelated. This was shown in Eq. (4.19). This states
that the fitted values should not carry any information on the residuals. Hence,
for a correctly specified model, a graph of the residuals against the fitted values
should show no patterns. On the other hand, violations of the model assumptions
introduce correlations among e and µ̂, and a graph of the residuals against fitted
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values would reflect an association. Hence, a graph of the residuals against the
fitted values should be part of the standard diagnostic-checking repertoire.

If all standard assumptions are met, the residuals e = y − µ̂ have mean zero
and covariance matrix σ 2(I − H), where H = X (X ′ X)−1 X ′ is the usual “hat”
matrix. The residuals follow a multivariate normal distribution if the errors are
normal. This result implies that

V (ei ) = σ 2(1 − hii) and Cov(ei , e j ) = −σ 2hi j for i �= j (6.3)

where hi j is the (i, j)th element of H . Since hii’s are not necessarily the same for
all i , the variances of the residuals, V (ei ), are not identical, although V (εi ) = σ 2

is constant. Similarly, although Cov(εi , ε j ) = 0, Cov(ei , e j ) = −σ 2hi j will not
equal zero because hi j is not necessarily zero. The nonconstancy of the variance
of the residuals and the slight dependence among the residuals are consequences
of the model fitting.

Residuals are often standardized so that they have mean zero and variance
one. Since residuals are estimates of the errors, and since the unobserved errors
have variance σ 2, one computes

es
i = ei

s
(6.4)

where s2 = e′e/(n − p − 1) is the usual estimate of σ 2. The residuals in Eq. (6.4)
are called the standardized residuals. Their variance is approximately one, but
only approximately because their definition does not take account of the correct
variance of the residuals given in Eq. (6.3). The studentized residuals are given by

di = ei/s
√

1 − hii (6.5)

This standardization uses the correct variance of the residual, V (ei ) = σ 2(1 − hii).
The exact distribution of the studentized residuals (as well as that of the standard-
ized residuals) is complicated because s and ei are not statistically independent.
However, with normal errors, the distribution of the studentized residuals is ap-
proximately normal with mean zero and variance one. A histogram or a dot plot
of the studentized residuals helps us assess whether one or more of the residuals
are unusually large. A studentized residual di larger than 2 or 3 in absolute value
would make us question whether the model is adequate for that case i . It may be
that the response yi for this particular case is an “outlier” due to a poor design
or a recording mistake. However, it could also be that our model is missing an
important component.

The properties of the residuals that we have discussed here help us devise
useful residual plots for model checking. For adequate models, we do not expect
any systematic patterns in the residuals. Hence, plots of the residuals against (i) the
case order if cases have been ordered by time, (ii) the explanatory variables in the
model, (iii) other variables not in the model but considered important, and (iv)
the fitted values should all show random scatter. Since the mean of the residuals
is zero (ē = 0, as long as a constant is included in the model), the residuals should
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lie within a horizontal band around zero and should not exhibit any interpretable
patterns. Usually, one works with standardized or studentized residuals, and then
the horizontal bands at ±2 have special meaning. Approximately 95% of these
residuals should be within ±2, and almost all of them should be within ±3.
Patterns in the residuals indicate that the functional form of the model is not
correct, that important variables have been omitted, and that perhaps the error
variance is not constant.

Figure 6.2 shows various residual plots for illustration. If a model is adequate,
then a plot of the residuals ei against i should exhibit the random pattern depicted
in Figure 6.2(a).

A similar plot [Figure 6.2(b)] should result if the residuals ei are plotted
against the fitted values, against any of the p explanatory variables, or against
any other regressor variable that is not in the model. Figures 6.2(c)–6.2(g) show
departures from random scatter. The plot in Figure 6.2(c) indicates that the ad-
dition of a linear term in another regressor variable can improve the model. Fig-
ure 6.2(d) shows that the model lacks a quadratic term of the included regressor
x ; the inclusion of such a term will improve the model. Figures 6.2(e) and 6.2(f)
show that the variance of the residuals increases with the regressor variable x and
the level. Later, we discuss how to modify the model in such situations. If the
pattern in the residual plot is similar to that in Figure 6.2(f), a transformation of
the response y is necessary. This will be discussed in Section 6.5.

6.2.2 ADDED VARIABLE PLOTS

An added variable plot is useful when deciding whether a new regressor variable
(that currently is not in the model) should be included. It turns out to be a more
powerful graph than the plot of the residuals against the new regressor variable.

Let e be the residual vector from a fit of y on X . Let u be the vector of
observations on a new regressor variable that is not part of X , and suppose that
eu is the residual vector of the regression of u on X . Then a plot of e against eu

is called an added variable plot. If this plot indicates random scatter without an
apparent relationship, then there is no need to include u in the model. Systematic
patterns in the plot indicate that the variable u should be included.

How can one justify this plot? Assume that u is part of the model y = Xβ +
uγ + ε; γ is the regression parameter that corresponds to u. A regression of y
on X alone (without the regressor u) leads to the residuals e = (I − H)y, where
H = X (X ′ X)−1 X ′ is the usual hat matrix. The residuals of the regression of u on
X are given by eu = (I − H)u. Note that the mean of either residual sequence is
zero. Hence, the slope in the regression of e on eu is given by

γ̃ = e′
ue/e′

ueu = u′(I − H)y
u′(I − H)u

(6.6)

Now consider the complete model y = Xβ + uγ + ε, and the regression of
y on both X and u. The least squares estimate of the parameter vector (β, γ ) is
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given by[
β̂∗
γ̂

]
=

[
X ′ X X ′u
u′ X u′u

]−1 [
X ′y
u′y

]
=

[
A11 A12

A21 A22

]−1 [
X ′y
u′y

]
(6.7)

We have used β̂∗ to denote the least squares estimate of β to distinguish it from
the least squares estimate β̂ in the regression of y on X alone. Using the result on
the inverse of a partitioned matrix given in the appendix, we find that the estimate
of γ (the coefficient that corresponds to u) is

γ̂ = −B−1
22 B21 X ′y + B−1

22 u′y = B−1
22 [−B21 X ′y + u′y] (6.8)

where B22 = u′u − u′ X (X ′ X)−1 X ′u = u′(I − H)u and B21 = u′ X (X ′ X)−1.
Hence, we find that

γ̂ = 1

u′(I − H)u
[−u′ H y + u′y] = u′(I − H)y

u′(I − H)u
= γ̃ (6.9)

the slope in the scatter plot of e against eu in Eq. (6.6). Hence, a linear relationship
and a nonzero slope γ̃ in the added variable plot of e against eu indicates that the
variable u should be included in the model.

One can also show that the strength of the association in the added variable
plot gives evidence on whether the effect of the added variable u is statistically
significant. Consider the square of the correlation coefficient between e and eu

as a measure of the strength of the linear association in the added variable plot.
That is, (

re,eu

)2 = [u′(I − H)y]2

[y′(I − H)y][u′(I − H)u]
(6.10)

Consider the square of the t ratio (or the partial F statistic) of the estimate γ̂ in
the regression model on both X and u,

(tγ̂ )2 = (γ̂ )2

s2 B−1
22

= [u′(I − H)y]2

s2[u′(I − H)u]
(6.11)

where s2 = y′(I − H∗)y/(n − p − 2) is the estimate of σ 2 in the model y =
Xβ + uγ + ε and H∗ is the hat matrix calculated with the matrix [X, u]. Here,
we have used the result in Eq. (6.9) and the expression for B22. With this, we can
write Eq. (6.10) as

(
re,eu

)2 = (tγ̂ )2 s2

y′(I − H)y
= (tγ̂ )2 y′(I − H∗)y

y′(I − H)y

/
(n − p − 2)

≈ (tγ̂ )2/(n − p − 2) (6.12)

The stronger the association is in the added variable plot, the stronger the evidence
that the variable u should be included in the model.
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6.2.3 CHECKING THE NORMALITY ASSUMPTION

We look at the residuals e1, e2, . . . , en to check the assumption that the unob-
served errors (the εi ’s) in the model are normally distributed. Even better, we
look at the studentized residuals d1, . . . , dn because they standardize the residu-
als for the differing variances. The simplest approach to check for normality is
to plot a histogram and check whether it resembles that of a N (0, 1) distribution.
Most of the residuals (approximately 95%) should fall between −2 and +2, and
the histogram should be bell shaped and symmetric about 0.

Another, preferable, approach is to prepare a normal probability plot. The
basic idea of this plot is simple. First, we order the studentized residuals d1, . . . , dn

from the smallest to the largest. Let the result be denoted by d(1), . . . , d(n). Note
that d(1) will be negative and d(n) positive. Let Z be a N (0, 1) random variable
with cumulative distribution function �(z) = P(Z ≤ z). If the residuals are from
a standard normal distribution, then the expected value of the ith smallest residual
d(i) should be the normal percentile (quantile) of order pi = (i − 1/2)/n. That is,

E
(
d(i)

) � �−1(pi )

Hence, a plot of the residuals d(i) versus the implied normal percentiles (normal
scores) �−1(pi ), for i = 1, 2, . . . , n, should show points that are scattered around
a straight line. Deviations from a straight line pattern, which are easy to detect by
the eye, indicate a lack of normality.

Figure 6.3 shows probability distributions and corresponding normal proba-
bility plots for four data sets. Figure 6.3(a) is the ideal (straight line); it confirms
a normal distribution. Figure 6.3(b) gives the probability plot (S shaped) of a
light-tailed (uniform) distribution. The plot (inverted S shape) in Figure 6.3(c) is
that of a heavy-tailed distribution. The plot in Figure 6.3(d) comes from a skewed
distribution. The plots in Figures 6.3(b)–6.3(d) indicate lack of normality.

It should be noted that some computer programs (such as Minitab) reverse the
axes and plot the normal percentiles (i.e., the normal scores) against the residuals.
This does not matter because one only checks for linearity. We prefer to plot the
residuals against the normal scores to be consistent with the other residual plots
that graph the residuals against the case index, the fitted values, etc.

If the normal probability plots are prepared by hand, then it is easier to use
a special graph paper called the normal probability paper. On this paper one
plots d(i) against pi and the scale on the x axis of the paper is drawn to perform
the �−1 transformation. However, since most software packages supply normal
probability plots automatically, we will not discuss its construction further.

6.2.4 SERIAL CORRELATION AMONG THE ERRORS

Standard regression inference assumes that the ε’s, or equivalently the observa-
tions y’s, are independent. If a regression model is fit to time series data (i.e.,
data observed sequentially in time such as monthly, quarterly, or yearly data)
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(a) Normal distribution and the ideal normal probability plot

(b) Light-tailed (uniform) distribution

(c) Heavy-tailed distribution 
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(d) Skewed distribution
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it is likely that the errors are serially correlated. Serial correlation or auto-
correlation indicates that errors at adjacent time periods are correlated. Many
business and economic data are positively autocorrelated; that is, a positive error
last month implies a similar positive error for this month. A detailed discussion
of autocorrelations and models for autocorrelation is given in Chapter 10. There,
we also show that standard inference procedures derived under the independence
assumption (and that ignore serial correlation) can have a major effect on the
standard errors of the regression coefficients and that the associated significance
tests may be misleading. Hence, a check for serial correlation among the errors
is of special importance if regression models are fit to time series data. Since the
case index i reflects time, we replace it by t.

A straightforward approach to check for the serial correlation among the
errors of a regression model is to focus on the residuals and calculate the lag k
sample autocorrelation of the residuals,

rk =

n∑
t=k+1

et et−k

n∑
t=1

e2
t

, k = 1, 2, . . . (6.13)

We always assume that an intercept is in the model, forcing the mean of the resid-
uals to be zero, ē = 0. The autocorrelation in Eq. (6.13) is the sample correlation
between et and its kth lag, et−k . Think about et as yt and et−k as xt , and write
down the usual correlation coefficient between xt and yt . Ignoring “end” effects,
the correlation coefficient simplifies to the expression in Eq. (6.13). The lag k
autocorrelation is always between −1 and +1; it measures the association within
the same series (residuals) k steps apart. Hence, its name, autocorrelation. If the
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errors in the regression model are uncorrelated, then it can be shown that

E(rk) ∼= 0 and V (rk) ∼= 1

n
for k > 0

In addition, for reasonably large sample size n, the distribution of rk is approxi-

mately normal. A simple check for serial correlation compares rk with its standard

error
1√
n

.

We can graph the autocorrelations rk as a function of the lag k. We refer
to such a graph as the autocorrelation function of the residuals. Note that by
definition r0 = 1. Two horizontal bands at twice the standard error, ±2/

√
n, are

usually added to the graph. Sample autocorrelations that are outside the limits
are indications of autocorrelation. On the other hand, if all (or most) of the auto-
correlations are within these limits, the assumption of independent errors can be
adopted. A word of caution must be added here. This approach involves multiple
significance tests at the 5% level and not just a single test for which the signif-
icance level would be appropriate. Hence, the results should not be taken too
literally. Autocorrelations that are barely outside the limits at higher lags and are
difficult to explain should not be taken as conclusive evidence of autocorrelation.

The Durbin–Watson test statistic examines the lag 1 autocorrelation r1 in
more detail. It is given by

D =

n∑
t=2

(et − et−1)
2

n∑
t=1

e2
t

=

n∑
t=2

e2
t +

n∑
t=2

e2
t−1 − 2

n∑
t=2

et et−1

n∑
t=1

e2
t

≈ 2(1 − r1) (6.14)

In the last step of Eq. (6.14), we have ignored end effects of the sum in the nu-
merator. The distribution of this statistic under independent errors can be derived.
It is complicated, and special tables of critical values are needed to carry out the
test. For independent errors, the Durbin–Watson test statistic is approximately 2;
for correlated errors the test statistic is either smaller or larger than 2. The special
tables of critical values tell us how far from 2 the statistic must be before one
can conclude that independence is violated. Note that the Durbin–Watson statistic
examines just the lag 1 autocorrelation. Autocorrelations at lags higher than 1 are
ignored. Hence, one should always supplement this test with a graph of the sam-
ple autocorrelation function of the residuals and also examine autocorrelations at
higher lags.

Another simple graphical procedure is to plot et versus et−k and assess vi-
sually whether there is any apparent relationship between these variables. If the
plot indicates a random scatter, then there is no correlation among errors k steps
apart. On the other hand, if the plot shows an association, then there is evidence
of serial correlation. Such scatter plots for lag k = 1 are shown in Figure 6.4. No
serial correlation at lag 1 is indicated in Figure 6.4(a), whereas Figures 6.4(b)
and 6.4(c) indicate positive and negative lag 1 serial correlations, respectively.
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We have not shown scatter plots of et versus et−k for k > 1. The sample autocor-
relation functions in the right panels of Figures 6.4(b) and 6.4(c) indicate serial
correlations at higher lags (k > 1).

The calculations of the Durbin–Watson statistic and the autocorrelation func-
tion of the residuals are called for if the ordering of the cases is meaningful—that
is, if the case index i stands for time or run order. These statistics are not ap-
propriate in the cross-sectional situation because the arrangement of the cases is
arbitrary. For example, in a regression that involves data from the 50 U.S. states,
it is arbitrary whether the states are ordered alphabetically, by the length of their
names, or by the number of vowels. The Durbin–Watson test and the autocor-
relation function of the residuals have no place in such analysis. For example,
these statistics are not meaningful in the context of the urea formaldehyde foam
insulation (UFFI) data.

6.2.5 EXAMPLE: RESIDUAL PLOTS FOR THE UFFI DATA

Residual plots for this data set are given in Figure 6.5. The plots do not show
any systematic patterns in the residuals. The normal probability plot indicates an
approximate straight line pattern. Thus, it seems that all model assumptions are
satisfied.

6.3 THE EFFECT OF INDIVIDUAL CASES
So far, we have considered methods that assess the global adequacy of our fitted
model with respect to the form of the model and its error structure. The next step
of model criticism examines the question whether all observations arise from the
same model. At the same time, we will check whether some of the observations
have an unduly large influence on the fit of the model.

6.3.1 OUTLIERS

An outlying case is defined as a particular observation (yi , xi1, . . . , xip) that differs
from the majority of the cases in the data set. Since several variables are involved
in each case, one must distinguish among outliers in the y (response) dimension
and outliers in the x (covariate) dimension.

Outliers in the x dimension are cases that have unusual values on one or
more of the covariates. Since we do not attempt to model the x variables, it is
just their detection that matters. If there is only one dimension, a simple dot
diagram or histogram of the values of the single covariate will reveal outliers.
If there are two covariates, a scatter plot of one variable against the other can
identify unusual cases. Note that a case may not be aberrant when looking at
each dimension individually but may be quite unusual if both dimensions are
considered simultaneously. Of course, the detection becomes tricky if more than
two dimensions are involved.



Abraham Abraham˙C06 November 8, 2004 14:19

6.3 The Effect of Individual Cases 183

2015

(a)

105

10

5

0

−5

−10

Observation numbers

R
es

id
ua

ls

30 40

(b)

60 70

−10

−5

0

5

10

Fitted values

R
es

id
ua

ls

50

FIGURE 6.5
Residual Plots for
the UFFI Data

Outliers in the y dimension are linked to the regression model as one tries to
explain the response as a function of the covariates. Outliers in the y dimension
may be due to many different reasons:

i. The random component in the regression model may be unusually large.

ii. The response y or the covariates x may have been recorded incorrectly. The
x variables may be measured correctly, but the y value may be incorrect.
Also, the x variables may be recorded incorrectly, in which case the value of
y, which would be reasonable for the correct values of x, becomes
unreasonable.

iii. It could be that both y and x variables are correct, but that there is another
covariate that is missing from the model and that can explain the “strange”
observation.
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With the correct tools it is not too difficult to spot outliers. The tools that
are discussed in this section will help us do this. However, finding the causes
of outliers and deciding what to do with them is a more difficult issue. Careful
detective work and consultation with individuals who are involved with the col-
lection of the data are essential. The treatment of outliers that are due to obvious
misrecordings is straightforward; we omit such points from the analysis if they
cannot be corrected. However, the strategy is more difficult if causes and reasons
cannot be found. A conservative approach is to fit the model twice: once with all
cases and once with the outlying case removed. If the conclusions are unaffected,
then the case in question does not cause difficulties because it does not matter
whether the suspect case is kept as part of the data. If the conclusions are changed
greatly, any statements originating from the data set must be very tentative. If
possible, further data should be collected. Outliers should not automatically be
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FIGURE 6.6 Scatterplots Showing Three Types of Outliers

thought of as nuisances. Often, unusual outlying cases are very interesting and
informative. A study of the causes of unusual values can reveal a great deal about
the situation under study.

Let us illustrate the issue of outliers graphically within the context of the
simplest situation with one response y and one covariate x. Consider the scatter
plots in Figure 6.6. We can spot three unusual observations.

Case A is not unusual with regard to its covariate (x); its x value is in the
center of the observed covariate region. It is the response corresponding to this
setting of x that is highly unusual. Case A represents an outlier in the y dimension.

Consider the other two cases, B and C. These two cases are unusual with
regard to the covariate. Their x values are very different from all others; they are
much larger. Cases B and C are outliers with respect to the x dimension. What
about the y dimensions for these two cases? Assume that the model—derived from
the majority of the cases—is appropriate. Then the response for case B is right on
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the “model trajectory.” Hence, there is no evidence that this point is outlying in
the y dimension. Case B is outlying in only the x dimension. Case C is different
because its response y is far from the trajectory determined by the majority of the
observations. Hence, case C is outlying in the x as well as the y dimension.

Many complicated procedures for detecting outliers have been devised. A
simple first step involves the studentized residuals in Eq. (6.5),

di = ei/s
√

1 − hii

which follow an approximate N (0,1) distribution as long as the model assumptions
are satisfied. Large values of di , for example, |di | > 2.5, are unexpected and are
indicative of aberrant behavior in the response (y) dimension. A histogram or a
dot plot of the studentized residuals will show such cases. These cases are also
indicated in the normal probability plot as points with unusually low and high
values on the y axis that fail to fall within the expected straight line pattern.
However, this simple diagnostic tool—graphs of the studentized residuals—is
not without problems. As the following discussion shows, a case may be quite
peculiar and nevertheless have a small studentized residual.

Case A in Figure 6.6 would certainly be flagged on such a residual graph.
Case B, on the other hand, would show a rather unremarkable residual.

6.3.2 LEVERAGE AND INFLUENCE MEASURES

We say that an individual case has a major influence on a given statistical procedure
if the conclusions of the analysis are significantly altered when the case is omitted
from the analysis. Influence depends on the statistical procedure that one has in
mind. The focus could be the fitted line, a particular parameter estimate, or all
parameter estimates considered as a group. Consider case C in Figure 6.6. It is an
influential case because the fitted line is radically different if this case is omitted
from the analysis. However, case B is not influential since the fitted line does
not change when it is omitted from the analysis. As another example, consider
the graph in Figure 6.7, in which we can see one outlying case with a very
different value for the covariate. When fitting a straight line model without the
case (Figure 6.7b) the fitted regression line has a negative slope. With the case
(Figure 6.7a) the fitted least squares line is “attracted” by the response of the
outlying case, the line gets “pulled” up, and the slope becomes positive.

Leverage
Before we can define influence measures, we need to discuss the concept of
leverage, the “pull” that individual cases exert. Recall that the vector of fitted
values can be written as a linear transformation of the response vector,

µ̂= X (X ′ X)−1 X ′y = H y

with the hat matrix providing the coefficients. The ith fitted value can be written as

µ̂i = hii yi +
∑
j �=i

hi j y j (6.15)
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The weight hii indicates how heavily yi contributes to the fitted valueµ̂i . If hii is
large (compared to other hi j ’s), then hii yi dominatesµ̂i . Recall that the residual
ei has variance V (ei ) = σ 2(1 − hii), and hence hii ≤ 1. If hii is close to one, then
V (ei ) ∼= 0 and µ̂i

∼= yi . This implies that the fitted model will pass very close to
the data point (yi , xi1, . . . , xip). We say that case i exerts high leverage on the
fitted line, in the sense that the fitted value µ̂i is attracted to the response of the i th
case. We refer to hii, the i th diagonal element of the hat matrix, as the leverage
of case i. Large values of hii indicate large leverage.

Let us establish a few useful properties of leverage:

i. The leverage hii is a function of the covariates but does not include the
response vector y.

ii.
1

n
≤ hii ≤ 1. The result hii ≤ 1 was shown earlier. The fact that hii ≥ 1/n is

shown in Exercise 6.4.

iii. The leverage hii is small for cases with xi1, . . . , xip near the centroid
(x̄1, . . . , x̄ p) that is determined from all cases. The leverage hii is large
when (xi1, . . . , xip) is far from the centroid. Take the case of a single
explanatory variate, p = 1. In this case,

hii = 1

n
+ (xi − x̄)2∑n

j=1(x j − x̄)2

The leverage is smallest if xi − x̄ = 0, and it is large if xi is far from x̄ .
iv.

n∑
i=1

hii = tr[H ] = tr[X (X ′ X)−1 X ′] = tr[X ′ X (X ′ X)−1] = tr[Ip+1] = p + 1

where tr[A] is the trace of a matrix A.

The average leverage in a model with (p + 1) regression parameters (column
dimension of the X matrix) is

h̄ =

n∑
i=1

hii

n
= p + 1

n
A comparison of the leverage of a particular case with its average provides a sim-
ple rule for spotting cases with unusual leverage. A case for which the leverage

exceeds twice the average, that is hii > 2h̄ = 2(p + 1)

n
, is usually considered a

high-leverage case. Cases with high leverage need to be identified and examined
carefully. High leverage may have many reasons; the case may include mis-
recorded covariates, or the case may reflect a design point that has been selected
very differently from the rest. Low-leverage cases will not influence the fit much
because they do not have much pull on the fitted model. High leverage is a pre-
requisite for making a case a high influence point, but as the following section
shows, not every high-leverage case is influential.
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TABLE 6.1 LEVERAGE FOR A SMALL DATA SET WITH ONE COVARIATE

x 1.1 1.3 1.2 1.4 1.4 1.5 1.5 1.6 1.7 8.0
y 2.3 2.2 2.2 1.9 2.0 1.9 1.8 1.6 1.7 5.3
Leverage 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.10 0.99

Let us consider the n = 10 cases in Table 6.1. These data are used in the plots
of Figure 6.7. The case with x = 8 has the highest leverage,

hii = 1

10
+ (8 − 2.07)2∑10

j=1(x j − 2.07)2
= 0.99

The value 8 is far from the average x̄ = 2.07. The average leverage is 2/10 = 0.20,
and twice the average leverage is 0.40. The leverage of the case with x = 8 is 0.99
and is much larger than 0.40; hence, this case is flagged as having large leverage.

Cook’s Influence Measure
One way to express influence is to study how the deletion of a case affects the
parameter estimates. Suppose we delete the i th case and fit the regression model
y = Xβ + ε to the remaining n − 1 cases. Let β̂(i) denote the estimate of β
without the i th case and β̂ the estimate with all cases. Then the change in β̂ that
is due to deleting the i th case, β̂ − β̂(i), is a good measure of the influence of the
i th case on the vector of parameter estimates. We can calculate this change for
all i = 1, 2, . . . , n. At first, it appears as if one would need to calculate the least
squares estimates for n + 1 data sets: the data set with all cases and the n data
sets that are missing exactly one of the cases. However, this is not true because
one can show (see the appendix) that

β̂(i) = β̂ −
(

ei

1 − hii

)
(X ′ X)−1xi (6.16)

where x′
i is the i th row of X that corresponds to the deleted case. Hence, the

difference in the estimates is given by

β̂ − β̂(i) = ei

1 − hii
(X ′ X)−1xi (6.17)

All n differences can be obtained as a by-product of a single regression. All one
needs to store is the residuals e = y − X β̂ and the leverages hii. Note that the
expression in Eq. (6.17) represents a vector of p + 1 components. Large changes
in any component make the ith case influential. It is often useful to condense
the vector of changes into a single number. The magnitude of the change in the
estimates needs to be assessed by comparing the change to the inherent variability
of the estimates. If the inherent variability is large, one should not get overly
concerned. We know that an estimate of the covariance matrix of the estimates
is given by V (β̂) = s2(X ′ X)−1. Using the inverse of the covariance matrix as
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weights and standardizing the result by the number of parameters leads to the
summary measure

Di = (
β̂(i) − β̂

)′
(X ′ X)

(
β̂(i) − β̂

)/
(p + 1)s2 (6.18)

Substituting from Eq. (6.17) into this expression yields

Di = e2
i x′

i (X ′ X)−1xi

(1 − hii)2(p + 1)s2
= hiid2

i

(1 − hii)(p + 1)
(6.19)

where di is the studentized residual. The expression in Eq. (6.18) is known as
Cook’s D statistic, and it is standard output of most regression programs.

What does it take to get a sizeable influence measure Di ? One needs both a
large leverage hii, or ratio hii/(1 − hii), and a large studentized residual di . Large
leverage alone does not do it. If the residual is small (and the response at the
high-leverage case is on the overall model trajectory), then the influence will be
small also. A large residual alone does not do it either. If the case has no leverage,
the influence will be small. Thus, a large leverage and a large studentized residual
are needed to make a case influential. Of course, the influence is zero if β̂(i) = β̂.

Cook’s D statistic can alternatively be written as

Di =
(
X β̂ − X β̂(i)

)′(
X β̂ − X β̂(i)

)
(p + 1)s2

=
(
µ̂− µ̂(i)

)′(
µ̂− µ̂(i)

)
(p + 1)s2

(6.20)

where µ̂= X β̂ is the vector of fitted values that is determined from all cases, and
µ̂(i) = X β̂(i) is the vector of fitted values with the i th case deleted; the i th element
of µ̂(i) is the “out-of-sample” prediction of yi .

PRESS Residuals
A related quantity of interest is the prediction error

e(i) = yi − ŷ(i), i = 1, 2, . . . , n (6.21)

where ŷ(i) = x′
i β̂(i) is the prediction of yi that is obtained from fitting the model

without the i th case. The e(i)’s are called the PRESS residuals since the sum of
squares of these residuals

∑n
i=1 e2

(i) is referred to as the prediction error sum of
squares (PRESS). Using Eqs. (6.21) and (6.16), we can write

e(i) = yi − x′
i β̂(i) = yi − x′

i

[
β̂ − ei (X ′ X)−1xi

(1 − hii)

]

= ei + ei hii

(1 − hii)
= ei

(1 − hii)
(6.22)

The computation of the PRESS residuals is easy; only the residuals ei and the
leverages hii(i = 1, 2, . . . , n) from the regression on the complete data set are
required.
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The DEFITS Statistics
Another measure that expresses the effect of deleting the i th case compares the
i th fitted value µ̂i to the prediction ŷ(i) of yi that is obtained from fitting the model
to the data set without the i th case. This can be written as

µ̂i − ŷ(i) = (
yi − ŷ(i)

) − (yi − µ̂i) = e(i) − ei = ei

(1 − hii)
− ei = ei hii

(1 − hii)
(6.23)

The change is small if either ei is small or hii is near 0. Note that the difference
in Eq. (6.23) compares the fitted value µ̂i to the prediction ŷ(i), whereas the
PRESS residual in Eq. (6.21) compares the observation yi to ŷ(i). We define the
standardized difference (also referred to as delta fits) as

DEFITSi =
(
µ̂i − ŷ(i)

)
[
s2
(i)hii

]1/2 = ei hii

(1 − hii)
(
s2
(i)hii

)1/2

= [
Di (p + 1)s2/s2

(i)

]1/2
(6.24)

where

s2
(i) =

∑
j �=i

(
y j − x′

j β̂(i)
)2

(n − p − 2)

is the unbiased estimator of σ 2 without the i th case. We show in the appendix
that it can be written as

s2
(i) =

[
(n − p − 1)s2 − e2

i

/
(1 − hii)

]
(n − p − 2)

(6.25)

The DEFITSi in Eq. (6.24) is a slight variant of Di . The ratio s2/s2
(i) will usually

be small, and DEFITSi approximates the square root of (p + 1)Di .

Summary
The leverage hii is used to assess whether a case is unusual with regard to its
covariates (the x dimension). One compares the leverage to twice the average
leverage, 2(p + 1)/n, and flags values that exceed this bound. High-leverage
cases may have a large influence on the model fit. The influence of a case is
evaluated by calculating how certain aspects of the model fit change when the
case is omitted from the analysis. Usually, one looks at changes in individual
components of the vector of estimates, at the Cook’s distance as an overall measure
involving all components of the parameter vector, and at differences between
predicted values that are obtained without the use of the case and observed and
fitted values. Cook’s distance is by far the most popular measure. The question
about a bound for Cook’s D arises. How large must Cook’s D be before one should
start to get concerned? The issue of tests of significance is not straightforward.
Furthermore, we believe that influence measures are best suited for comparative
purposes, assessing whether the influence of one case is much larger than that of
others. Nevertheless, cutoffs have been recommended in the literature. Values of
D that are larger than 1 are certainly of great concern. Even values larger than
0.50 should be scrutinized.
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Plots of the residuals (ordinary, studentized, and PRESS residuals) are quite
useful because they draw attention to outliers in the y dimension. The difference
between the ordinary and the PRESS residuals is that PRESS residuals omit the ith
case when determining the implied (fitted) value. Studentizing the residuals helps
because the residuals can be compared with the bounds ±2. Studentized residuals,
leverages, and Cook’s distances are standard output of most computer packages.

6.3.3 EXAMPLE: FORESTRY DATA

The information in Table 6.2 (also given in the file forestry) represents a subset
of a larger data set on the results of a forestry experiment. Several unimportant

TABLE 6.2 FORESTRY DATA

NA HT CAL HTCAL

101.51 36.5 1.10 40.150
79.54 33.0 1.00 33.000
20.62 22.0 0.30 6.600
53.07 26.0 0.50 13.000
43.02 24.0 0.50 12.000
31.88 24.0 0.40 9.600
26.78 21.0 0.40 8.400
29.93 26.0 0.40 10.400
18.90 16.5 0.36 5.940
54.30 34.5 0.89 30.705
51.30 23.0 0.47 10.810
35.50 20.0 0.47 9.400
13.30 17.0 0.37 6.290
25.10 19.0 0.51 9.690
18.70 17.5 0.42 7.350
21.50 16.5 0.33 5.445
14.80 16.5 0.31 5.115
21.20 19.0 0.48 9.120
21.60 16.0 0.39 6.240
20.70 17.0 0.40 6.800
30.90 17.0 0.46 7.820
32.50 19.0 0.44 8.360
11.18 17.0 0.37 6.290

186.00 51.0 0.70 35.700
163.00 41.0 0.73 29.930
130.50 37.0 0.65 24.050
139.00 44.0 0.69 30.360
132.00 43.0 0.66 28.380
171.00 36.0 0.70 25.200
155.00 40.0 0.62 24.800

93.00 41.5 0.59 24.485
161.00 45.5 0.80 36.400

87.00 36.5 0.53 19.345
127.00 41.0 0.64 26.240
140.00 39.0 0.64 24.960
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TABLE 6.3 S-PLUS STATEMENTS AND OUTPUT: MODEL (6.26) RESIDUAL
ANALYSIS FOR FORESTRY DATA (READ ACROSS)

# Reading in the data as a matrix ‘forest’ from the file ‘forestry.dat’
> forest<−matrix(scan(‘forestry.dat’,multi.line = T),byrow = T,ncol = 4,nrow = 35)
> na<−forest[,1]
# Deleting column 1 from the matrix ‘forest’
> xv<−forest[,−1]
> forestfit<−lsfit(xv,na)
# Residual Analysis: Leverages, Cook’s distancs etc (some part is deleted)
> fordiag<−ls.diag(forestfit)
> fordiag
$hat
[1] 0.4484∗ 0.3087∗ 0.1005 0.0782 0.0761 0.0547 0.0470 0.0704 0.1013 0.1578
[11] 0.0610 0.0633 0.0848 0.1016 0.0585 0.1406 0.1748 0.0736 0.0824 0.0666
[21] 0.0714 0.0534 0.0848 0.2843 0.0738 0.0659 0.1032 0.0923 0.0610 0.0881
[31] 0.1236 0.2565 0.1358 0.0829 0.0726

$stud.res
[1] −0.630 −0.581 −1.061 −0.141 −0.158 −0.806 −0.369 −1.397 0.192 −2.492∗

[11] 0.453 0.382 −0.181 0.172 0.059 0.272 −0.110 −0.069 0.494 0.237
[21] 0.854 0.421 −0.286 0.044 1.544 0.990 −0.444 −0.495 3.915∗ 1.505
[31]−2.162 0.120 −1.041 −0.206 0.955

$cooks
[1] 0.0823 0.0385 0.0313 0.0004 0.0005 0.0095 0.0017 0.0358 0.0011 0.2491∗

[11] 0.0034 0.0025 0.0008 0.0009 0.0001 0.0031 0.0007 0.0001 0.0056 0.0010
[21] 0.0141 0.0026 0.0019 0.0002 0.0455 0.0173 0.0058 0.0064 0.1703∗ 0.0525
[31] 0.1473 0.0013 0.0424 0.0010 0.0179

explanatory variables have been deleted. The objective of the experiment was
to build a model to predict total needle area (NA) of a seedling from its caliper
(CAL; a measure of trunk size), height (HT), and a derived measure HTCAL
(product of HT and CAL) that is related to the volume of the trunk.

The first step is to fit a linear model

NA = β0 + β1CAL + β2HT + β3HTCAL + ε (6.26)

The fit produces fitted values, residuals, and various other quantities, such as
leverages and Cook’s D. Some of these are listed in Table 6.3, where “hat” refers
to leverages (hii ), “stud.res” to studentized residuals, and “cooks” to Cook’s D
statistics. The following observations can be made:

i. The leverages h11 and h22 are quite large (0.4484 and 0.3087, respectively;
entries with an asterisk). Note that the average of the leverages
h̄ = (p + 1)/n = 4/35 = 0.1143 and 2h̄ = 0.2286. Thus, h11 and h22 are
larger than 2h̄. Looking at the raw data, this seems to be due to the large
values for CAL. Upon further checking, it was found that these two values
had been measured incorrectly. The first two observations were deleted in
subsequent runs.

ii. The studentized residuals for cases 10 (−2.492) and 29 (3.915) are
unusually large, as are their Cook’s distances (entries with an asterisk).
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Upon checking, it was found that the CAL measurement on case 10 was
incorrect, and hence this case was also deleted. The measurements on case
29 were checked, found to be correct, and hence left unchanged.

The residuals ei are plotted in Figure 6.8 against the fitted values and the three
independent variables. A normal probability plot of the studentized residuals is
also shown. Because this data set is cross-sectional and since the ordering of the
cases is arbitrary, there is no reason to investigate a potential lack of independence
and calculate the autocorrelation function of the residuals.

The following observations can be made:

i. From the plot of the residuals against the fitted values µ̂i , it appears that the
variance is larger for seedlings with larger needle area. This suggests fitting
a model in terms of the logarithm of NA. We will explain this in more detail
in Section 6.5.

ii. Plots of the residuals against the explanatory variables reveal no obvious
patterns.

iii. The normal probability plot of the residuals has a single large value that
fails to fall within the straight line pattern; the aberrant point corresponds to
case 29.

Based on these diagnostics, we changed the model and considered

ln(NA) = α0 + α1CAL + α2HT + α3HTCAL + ε (6.27)

Note that the regression coefficients α0, α1, α2, and α3 in this model are different
from the β’s in the model (6.26) since ln(NA) is considered in Eq. (6.27). Cases
1, 2, and 10 were deleted from the data set. Fitting the model (6.27) leads to the
results in Table 6.4 (on p. 199). Only part of the output is shown here.

We also generated the usual residual plots (see Figure 6.9 on p. 197). The
results in Table 6.4 and the plots in Figure 6.9 indicate the following:

i. All leverages are relatively small. Case 29 (case 32 in the earlier run) has
the highest leverage of 0.4249. However, no problem with the
measurements could be found. The studentized residual corresponding
to this observation is small. A further run without this observation
produced little change. Also, Cook’s influence measure (0.1154) is
unremarkable.

ii. The plot of the residuals against the fitted values shows that the log
transformation has reduced the dependency of the variance on the level.

iii. Plots of the residuals against the three explanatory variables show no
apparent patterns. The model form seems acceptable. The normal
probability plot of the studentized residuals reveals no serious departures
from normality.
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TABLE 6.4 PARTS OF S-PLUS OUTPUT: MODEL (6.27)
ADJUSTED FORESTRY DATA

$hat
[1] 0.2258 0.0830 0.0852 0.0881 0.0532 0.1341 0.1033 0.0644 0.0798 0.0859
[11] 0.1655 0.0662 0.1509 0.1960 0.1066 0.0882 0.0703 0.1096 0.0608 0.0859
[21] 0.2958 0.1447 0.0814 0.1090 0.0926 0.1454 0.0923 0.1598 0.4249 0.1922
[31] 0.0839 0.0753

$stud.res
[1] 0.350 0.383 −0.121 0.079 0.128 −0.823 0.602 1.470 0.474 −1.448
[11] −1.805 −0.925 1.982 0.471 −2.020 0.778 0.081 0.799 0.869 −2.433
[21] −0.208 0.360 0.553 −0.533 −0.434 1.598 1.134 −1.437 −0.785 −0.104
[31] −0.149 0.640

$cooks
[1] 0.0092 0.0034 0.0004 0.0002 0.0002 0.0265 0.0107 0.0357 0.0050 0.0474
[11] 0.1495 0.0152 0.1580 0.0139 0.1096 0.0148 0.0001 0.0199 0.0123 0.1183
[21] 0.0047 0.0057 0.0069 0.0089 0.0050 0.1028 0.0324 0.0946 0.1154 0.0007
[31] 0.0005 0.0085
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Coefficients:

Value Std. Error t value Pr(> |t|)
(Intercept) −0.4465 0.6044 −0.7388 0.4662

ht 0.1051 0.0240 4.3823 0.0001
cal 6.0217 1.3007 4.6296 0.0001

htcal −0.1082 0.0398 −2.7204 0.0111

Residual standard error: 0.2204 on 28 degrees of freedom
Multiple R-Squared: 0.9471
F-statistic: 167.1 on 3 and 28 degrees of freedom, the p-value is 0

iv. The t ratios in Table 6.4 indicate that on the log scale, all three explanatory
variables are important.

v. The plot of exp {µ̂} against observed y (NA) in the last panel of Figure 6.9
shows that the model fits the data reasonably well and suggests that the
model should produce reasonable predictions.

vi. One area for further exploration is suggested by the fact that the cases
separate into two groups. In the original numbering, cases 24–35 are made
on much larger trees. One should check whether the same model is
appropriate for both groups of trees.

6.4 ASSESSING THE ADEQUACY OF THE FUNCTIONAL FORM:
TESTING FOR LACK OF FIT

A formal test of model adequacy can be performed if one has repeated observations
at some of the constellations of the explanatory variables. For simplicity, we
consider the case of a single regressor variable first. Suppose that our data set
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includes replicated observations at some of the considered x values:

x1 : y11, y12, . . . , y1n1

x2 : y21, y22, . . . , y2n2
...

...
xk : yk1, yk2, . . . , yknk

(6.28)

This means that at setting xi , ni response observations yi1, yi2, . . . , yini(i = 1,

2, . . . , k) are available. We assume that these are genuine replications and not
just additional measurements on the same experiment.

We are interested in modeling the relationship between y and x . In regression,
one typically uses residuals from a parametric model fit to obtain an estimate of
σ 2. If the model is incorrect, then this estimate is not appropriate. With repeated
observations at some of the covariate constellations, one has the oppportunity to
calculate an estimate of σ 2 that does not depend on the assumed model. We can
use the resulting information to construct a test of model adequacy.

The data in (6.28) resemble observations from k groups and can be charac-
terized as

yi j = µi + εi j , i = 1, 2, . . . , k, j = 1, 2, . . . , ni (6.29)

with E(εi j ) = 0 and V (εi j ) = σ 2. This can be written in the linear model form

y = Xβ + ε

where y is the n × 1 vector of responses (n = ∑k
i=1 ni ), β = (µ1, µ2, . . . , µk)

′
is the vector of unknown means, X is the n × k design matrix with ones and
zeros representing the k groups, and ε is the vector of errors satisfying the usual
assumptions. This formulation is identical to the one in the k sample problem in
Chapter 5 (Section 5.3).

The least squares estimate of the group means µi is given by

β̂ = (µ̂1, . . . , µ̂k)
′ = (ȳ1, ȳ2, . . . , ȳk)

′

where ȳi = ∑ni
j=1 yi j/ni , i = 1, 2, . . . , k are the sample group means. The residual

sum of squares is given by

S(β̂) =
k∑

i=1

ni∑
j=1

(yi j − ȳi )
2 (6.30)

It has n − k degrees of freedom because we are estimating k parameters. This sum
of squares is referred to as the pure error sum of squares (PESS). It is called
pure error because it does not depend on any functional representation of the µi .
Note that this is the same as the within sum of squares discussed in Section 5.3.

Now suppose that we entertain the parametric model µi = β0 + β1xi and
fit the parameters in yi j = β0 + β1xi + εi j by least squares. Minimizing S(β) =∑k

i=1

∑ni
j=1(yi j − β0 − β1xi )

2 with respect to β0 and β1, we obtain estimates
β̂0 and β̂1 and can calculate the residual sum of squares S(β̂A). It is larger than
S(β̂) = PESS since the minimization is restricted. It involves only two parameters,
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β0 and β1, compared to the k parameters (means) that led to S(β̂). S(β̂A) has
(n − 2) degrees of freedom. The additional sum of squares is given by

S(β̂A) − S(β̂) =
k∑

i=1

ni∑
j=1

(yi j − β̂0 − β̂1xi )
2 −

k∑
i=1

ni∑
j=1

(yi j − ȳi )
2 (6.31)

It is useful to write S(β̂A) in a slightly different form,

S(β̂A) =
k∑

i=1

ni∑
j=1

(yi j − ȳi + ȳi − β̂0 − β̂1xi )
2

=
k∑

i=1

ni∑
j=1

(yi j − ȳi )
2 +

k∑
i=1

ni (ȳi − β̂0 − β̂1xi )
2

= S(β̂) +
k∑

i=1

ni (ȳi − β̂0 − β̂1xi )
2 (6.32)

The sum of the cross-products is zero. The additional sum of squares,

S(β̂A) − S(β̂) =
k∑

i=1

ni (ȳi − β̂0 − β̂1xi )
2 (6.33)

involves the squared distances between the group means and the linear fit. The
weights ni correspond to the number of observations at xi . The additional sum
of squares measures the lack of fit of the linear model. Hence, it is referred to as
the lack-of-fit sum of squares (LFSS). It has (n − 2) − (n − k) = k − 2 degrees
of freedom. The full model involves the k means, whereas the restricted model
parameterizes the k means with two parameters as µi = β0 + β1xi . The test of
the restriction µi = β0 + β1xi is given by the F statistic

F = additional sum of squares/(k − 2)

residual sum of squares from the unrestricted model/(n − k)

= [S(β̂A) − S(β̂)]/(k − 2)

S(β̂)/(n − k)
= LFSS/(k − 2)

PESS/(n − k)
(6.34)

If this statistic is small, then we cannot reject the parametric model. If it is large, we
reject the model µi = β0 + β1xi . The test in Eq. (6.34) assesses the adequacy of the
model. Hence, it is also called a goodness-of-fit test. Under the hypothesis that the
restriction is true (i.e., the true model is linear) this ratio is distributed as F(k − 2,

n − k). Large values of F provide evidence against the hypothesis of linearity.

Example: Chemical Yield
An experiment was conducted to study the relationship between the yield from
a chemical reaction (y) and the reaction temperature (x). All other factors were
held constant. Table 6.5 lists data obtained from 12 runs.

A previous study with temperatures ranging from 60 to 90 ◦C suggested that
the response (yield) is approximately linear in temperature,

y = β0 + β1x + ε (6.35)
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TABLE 6.5 CHEMICAL YIELD DATA

Reaction
Temperature (◦C), x Yield (gs), y ȳi

60 51 51.0
70 82,78 80.0
80 91,96 93.5
90 98,89,99 95.3

100 82,83 82.5
110 54,52 53.0

TABLE 6.6 ANOVA TABLE FOR CHEMICAL YIELD (µ̂= 93.29 − 0.16x)

Source df SS MS F

Model 1 69.31 69.31 0.20
Residual 10 3,393.60 339.36

Lack-of-Fit 4 3,309.93 827.48 59.34
Pure Error 6 83.67 13.95

The fitted regression line is given by

µ̂ = 93.29 − 0.16x

and the analysis of variance (ANOVA) table is shown in Table 6.6.
The top part of Table 6.6 (with F = 0.20) gives the wrong impression that

the variation in y cannot be explained by x . However, this F test assumes that
the linear model in Eq. (6.35) is correct. The adequacy of this model can be
checked with a lack-of-fit test, as we have replicated observations at some of the
temperatures. The replications in the design give us the opportunity to test the
model adequacy.

The PESS is given by

S(β̂) = PESS = (82 − 80)2 + (78 − 80)2 + (91 − 93.5)2 + (96 − 93.5)2

+ (98 − 95.3)2 + (89 − 95.3)2 + (99 − 95.3)2

+ (82 − 82.5)2 + (83 − 82.5)2 + (54 − 53)2 + (52 − 53)2

= 83.67

and its degrees of freedom are 1 + 1 + 2 + 1 + 1 = 6. Alternatively, one can get
these degrees of freedom from the number of observations (n = 12) minus the
number of groups (k = 6).

We already estimated the linear model and found that S(β̂A) = 3,393.60.
Hence, the sum of squares due to lack of fit is

LFSS = S(β̂A) − S(β̂) = SSE − PESS = 3,393.60 − 83.67 = 3,309.93

The degrees of freedom for lack of fit are 4 because there are six separate covariate
constellations and two parameters in the linear model. These quantities are shown
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FIGURE 6.10
Chemical Yield Data

in the bottom half of Table 6.6. The F ratio

F = 3,309.93/4

83.67/6
= 59.34

is huge, much larger than any reasonable percentile of the F(4, 6) distribution.
The probability value

P(F(4, 6) ≥ 59.34) ≤ 0.001

is tiny. Hence, we reject the linear model. We have found serious lack-of-fit, which
makes the earlier F test, F = 0.20, meaningless. One needs to develop a better
model before one can test for a relationship with x .

One could have seen this from the graph of y against x . The graph in
Figure 6.10 shows convincingly that a model linear in x is not appropriate. The
numerical (lack-of-fit test) analysis alone does not show the nature of inadequacy.
A scatter plot of the data reveals that the inadequacy comes from the curvlinear na-
ture of the data in the range considered. We are trying to fit a straight line through
a set of points that clearly indicate a quadratic pattern. Although it may have been
appropriate to fit a linear model (in x) over the temperature range 60–90◦C, such
a model is certainly not appropriate over the wider range of 60–110◦C.

Figure 6.10 leads us to modify the initial linear model in x and consider a
quadratic one,

y = β0 + β1x + β2x2 + ε (6.36)

The fitted model is µ̂ = −422.98 + 12.17x − 0.07x2, and the ANOVA table is
given in Table 6.7.

As before, a lack-of-fit test for the model Eq. (6.36) can be performed.
The residual sum of squares from the quadratic model is S(β̂A) = 89.01; it has
12 − 3 = 9 degrees of freedom. The pure error sum of squares is still S(β̂) = 83.67
because we have the same constellations with replications on x and x2. The sum
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TABLE 6.7 ANOVA TABLE FOR CHEMICAL YIELD
(µ̂=−422.98 + 12.17x − 0.07x 2)

Source df SS MS F

Model 2 3,373.90 1,686.95 170.57
Residual 9 89.01 8.89

Lack-of-Fit 3 5.34 1.78 0.13
Pure Error 6 83.67 13.95

of squares due to lack of fit is SSLF = S(β̂A) − S(β̂) = 89.01 − 83.67 = 5.34,
with 9 − 6 = 3 degrees of freedom. The lower part of Table 6.7 shows this de-
composition. The lack-of-fit test statistic

F = 5.34/3

83.67/6
= 0.13

is very small and not significant. Hence, there is no evidence to contradict the
quadratic model.

Over the range 60–90◦C, the linear model in x provides a reasonable approx-
imation. However, if that model is used to predict the yield beyond the range from
60 to 90◦C, for example at 110◦C, the predictions will fall apart. Extrapolations to
situations outside the range considered by the experiment can be very dangerous.

6.4.1 LACK-OF-FIT TEST WITH MORE THAN ONE INDEPENDENT VARIABLE

When there are two or more regressor variables, replicate measurements need to be
in agreement on all regressors. We require replications at covariate constellations.
The data should look like the following:

Constellation at x11, x12, . . . , x1p: n1 replications y11, y12, . . . , y1n1

Constellation at x21, x22, . . . , x2p: n2 replications y21, y22, . . . , y2n2
...

...

Constellation at xk1, xk2, . . . , xkp: nk replications yk1, yk2, . . . , yknk

Corresponding to the i th constellation (xi1, xi2, . . . , xip) we assume that we have
ni observations yi1, . . . , yini available.

The calculation of the pure error sum of squares S(β̂) = S(µ̂1, µ̂2, . . . , µ̂k) is
unchanged. The restricted model is now the model with (p + 1) < k coefficients,
yi j = β0 + β1xi1 + · · · + βpxip + εi j . Least squares estimates can be calculated

and the residual sum of squares S(β̂A) can be obtained. S(β̂A) has (n − p − 1)

degrees of freedom. The lack-of-fit sum of squares, S(β̂A) − S(β̂), has (k − p −
1) degrees of freedom. The lack-of-fit statistic (also called the goodness-of-fit
test),

F = [S(β̂A) − S(β̂)]/(k − p − 1)

S(β̂)/(n − k)
(6.37)

follows an F(k − p − 1, n − k) distribution under the hypothesis that the para-
metric model is appropriate. Large values of F lead us to reject this model.
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6.5 VARIANCE-STABILIZING TRANSFORMATIONS
The plot of the residuals (ei ) against the fitted values (µ̂i ) in Figure 6.8 for the
forestry data set (Table 6.2) shows a “funnel” shape indicating that the constant
variance assumption is violated. In the subsequent analysis of the data, we con-
sidered a logarithmic transformation of the response y. Figure 6.9 shows that this
transformation is successful in making the variance constant. In situations such as
these, we need a certain transformation to stabilize the variance. In this section,
we illustrate how one can select the correct transformation of the response. We
consider the general regression model

yi = f (xi ;β) + εi = ηi + εi (6.38)

where ηi = E(yi ) = f (xi ;β) is the mean of the response. In addition, we assume
that the variance of εi is related to the mean ηi such that

V (yi ) = V (εi ) = [h(ηi )]
2σ 2 (6.39)

where h is a known function.
We like to find a transformation g(yi ) of the response yi such that the variance

of g(yi ) is constant. For this we approximate the function g(yi ) by a first-order
Taylor series around ηi :

g(yi ) ≈ g(ηi ) + (yi − ηi )g
′(ηi ) (6.40)

where g′(ηi ) is the first derivative of g(yi ) evaluated at ηi . Then the variance of
the transformed variable g(yi ) can be approximated as

V [g(yi )] ≈ V [g(ηi ) + (yi − ηi )g
′(ηi )] = [g′(ηi )]

2V (yi ) = [g′(ηi )]
2[h(ηi )]

2σ 2

(6.41)

To stabilize the variance, we need to choose the transformation g(.) such that

g′(ηi ) = 1/h(ηi ) (6.42)

Often, we find that these transformations, in addition to stabilizing the variance,
lead to simplifications in the functional form of the regression model.

We now consider two special cases that arise quite often in practical
applications.

Example 1 h(ηi ) = ηi ; the standard deviation of the response is proportional to
the mean level. Then the transformation g(ηi ) has to satisfy g′(ηi ) = 1/ηi . This
means that g(ηi ) = ln(ηi ), where ln is the natural logarithm. Hence, in cases in
which the standard deviation of y is proportional to its mean, one should consider
the logarithmic transformation of y and regress ln(yi )on the explanatory variables.
This is what we did in the forestry example of Section 6.3.

Example 2 h(ηi ) = η
1/2
i ; the variance is proportional to the mean level. In this

case, g′(ηi ) = η
−1/2
i and g(ηi ) = 2η

1/2
i . The square root transformation y1/2 sta-

bilizes the variance.
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6.5.1 BOX–COX TRANSFORMATIONS

We now outline a special class of transformations called the Box–Cox transfor-
mations or the power transformations (Box and Cox, 1964),

g(yi ) = (
yλ

i − 1
)/

λ (6.43)

If λ = 1, no transformation is needed and we analyze the original data. If λ = −1,
we analyze the reciprocal 1/yi . If λ = 1/2, we analyze y1/2

i (Example 2). It can be
shown that limitλ→0[(yλ

i − 1)/λ] = ln(yi ); we analyze ln(yi ) if λ = 0 (Example
1). The two examples that we considered previously are special cases of this class.

Box and Cox (1964) show that the maximum likelihood estimate of λ min-
imizes SSE(λ), where SSE(λ) is the residual sum of squares from fitting the
regression model with transformed response

y(λ)
i = (

yλ
i − 1

)/
λȳλ−1

g

ȳg = [ ∏n
i=1 yi

]1/n
is the geometric mean of the y′

i s. If λ = 0, we take

y(λ=0)
i = limitλ→0 y(λ)

i = ȳg ln(yi )

To illustrate the use of Box–Cox transformations, we consider the gas consump-
tion data in Chapter 1 (Table 1.4). This data set is also analyzed in Chapter 4. The
dependent varable is y = fuel efficiency (in miles per gallon). Although there are
six regressor variables, for simplicity we consider only one of them, x = weight
of the automobile. We estimate the regression parameters and obtain the residual
sum of squares [SSE(λ)] for several values of λ in the model

yλ
i − 1

λȳλ−1
g

= β0 + β1xi + εi (6.44)

The results are shown in Table 6.8. The minimum of SSE(λ) is at λ = −0.75.
Abraham and Ledolter (1983) showed, with a finer grid on λ, that the actual

optimum is λ̂ = −0.65. One can also calculate confidence intervals for λ (Box

TABLE 6.8 RESIDUAL SUM OF SQUARES
SSE(λ): GAS CONSUMPTION DATA

λ SSE(λ)

1.00 292.58
0.50 257.74
0.25 245.47
0.00 (ln yi ) 236.34

−0.25 230.23
−0.50 227.07
−0.75 226.07
−1.00 229.67
−1.25 235.63
−1.50 244.98
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and Cox, 1964). In fact, the value λ = −1.0 is in the 95% confidence interval. This
value leads to a reciprocal transformation z = 1/y (fuel consumption in gallons
per traveled mile or per 100 miles if multiplied by 100) considered in Chapter 4
(see Section 4.3.1).

6.5.2 SEVERAL USEFUL RESULTS FOR LOGARITHMIC TRANSFORMATIONS

Logarithm and Elasticity
Expanding ln(x + �x) in a Taylor series around x gives for small �x ,

ln(x + �x) ∼= ln(x) + �x

x

Elasticity is defined as the percentage change in the response y that results from
a percentage change in the input variable x . That is,

Elasticity = �y/y

�x/x

For example, an elasticity of +3 implies that a 1% change in the input x results
in a 3% change in the response y.

Estimation of Elasticities in Log–Log Regressions: Consider a regression of
the logarithm of y on the logarithm of x . That is,

E[ln(y)] = β0 + β1 ln(x)

The slope β1 in this model represents the elasticity. Consider a change in the input
of magnitude �x . Then the resulting change in y is given by

E[ln(y + �y) − ln(y)] = β0 + β1 ln(x + �x) − [β0 + β1 ln(x)]

= β1[ln(x + �x) − ln(x)]

Applying the fact given above leads to

E[ln(y) + �y

y
− ln(y)] ∼= β1[ln(x) + �x

x
− ln(x)]

or β1
∼= E[�y/y]

�x/x
. The slope in the log–log regression measures the elasticity.

Logarithm and Proportional Increase in a Time Series
Suppose yt(t = 1, 2, . . . , ) are time series observations that increase proportion-
ally. That is, yt = yt−1(1 + rt ), where 100rt represents the percentage increase of
the series. Then ln(yt) = ln(yt−1) + ln(1 + rt). Expanding ln(1 + rt ) in a Taylor
series around 1, we obtain ln(1 + rt ) ∼= ln(1) + rt = rt . Thus, ln(yt ) ∼= ln(yt−1) +
rt . Hence, the proportional changes in a time series can be expressed as successive
differences of the logarithms of the series. That is, rt

∼= ln(yt) − ln(yt−1).
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Appendix
1. EFFECTS OF MISSPECIFICATION

Assume that the true linear model is y = Xβ + Uγ + ε, where X and U are n ×
(p + 1) and n × q matrices. Suppose that β̂ = (X ′ X)−1 X ′y is the least squares
estimate from the incorrect model y = Xβ + ε, and e = (I − H)y is the corre-
sponding residual, where H = I − X (X ′ X)−1 X ′. Then

E(β̂) = (X ′ X)−1 X ′E( y) = (X ′ X)−1 X ′(Xβ + Uγ) =β + (X ′ X)−1 X ′Uγ

The least squares estimate obtained under the incorrect model is biased, and the
bias amounts to (X ′ X)−1 X ′Uγ. The bias disappears if X ′U = O , a matrix of
zeros. Furthermore,

E(e) = (I − H)E( y) = (I − H)[Xβ + Uγ] = (I − H)Uγ �= 0

The first term in the previous equation is zero since (I − H)X = (I −
X (X ′ X)−1 X ′)X = 0, an n × (p + 1) matrix of zeros. The second term is a non-
zero vector because U is not in L(X). Hence, the expected value of the residual
vector from the incorrect model is not 0.

2. SOME USEFUL MATRIX RESULTS

Suppose that α is a scalar, u and v are n × 1 vectors, and A is an n × n invertible
matrix.

i. Consider the partitioned matrix A =
[

A11 A12

A21 A22

]
, where A11 and A22 are

square matrices whose inverses exist. Define B22 = A22 − A21 A−1
11 A12,

B12 = A−1
11 A12, and B21 = A21 A−1

11 . Then the inverse of A is given by

A−1 =
[

A−1
11 + B12 B−1

22 B21 −B12 B−1
22

−B−1
22 B21 B−1

22

]

ii. (
I − αuv ′)−1 = I + αuv ′

(1 − αv ′u)
(6.45)

iii.

(
A − uv ′)−1 = A−1 + A−1uv ′ A−1(

1 − v ′ A−1u
) (6.46)

Note that I is the identity matrix of order n, and (1 − αv ′u) and
(1 − v ′ A−1u) are scalars. The results in (i)–(iii) can be shown by
confirming that AA−1 = A−1 A = I .
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3. A USEFUL RESULT FOR β̂(i )

Consider the linear model y = Xβ + ε and the parameter estimate β̂ = (X ′ X)−1

X ′y seen in Chapters 4–6. Let X(i) denote the X matrix with the i th row x′
i

deleted, and let y(i) and ε(i) denote respectively the vectors y and ε without the
i th element. Then we can write without loss of generality

X =
(

X(i)

x′
i

)
and y =

(
y(i)

yi

)
(6.47)

Without the i th observation the model and the estimate of β become

y(i) = X(i)β + ε(i), and β̂(i) = (
X ′

(i) X(i)
)−1

X ′
(i)y(i) (6.48)

From Eq. (6.47) we can write

X ′ X = X ′
(i) X(i) + xi x′

i and X ′y = X ′
(i)y(i) + xi yi (6.49)

Then we have

β̂(i) = (X ′ X − xi x′
i )

−1(X ′y − xi yi )

=
[(

X ′ X
)−1 + (X ′ X)−1xi x′

i (X ′ X)−1

1 − x′
i (X ′ X)−1xi

]
[X ′y − xi yi ]

= β̂ − (X ′ X)−1xi yi +
[

(X ′ X)−1xi x′
i β̂ − (X ′ X)−1xi hii yi

1 − hii

]

= β̂ − (X ′ X)−1xi

(1 − hii)
[yi (1 − hii) − x′

i β̂ + hii yi ]

= β̂ − (X ′ X)−1xi

(1 − hii)

(
yi − x′

i β̂
)

= β̂ − (X ′ X)−1xi ei

(1 − hii)
(6.50)

4. A USEFUL EXPRESSION FOR s 2
(i )

We can write

∑
j �=i

(
y j − x′

j β̂(i)
)2 = (

y(i) − X(i)β̂(i)
)′(

y(i) − X(i)β̂(i)
)

(6.51)
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where y(i) and X(i) are defined previously. In addition, let x′
i be the i th row of X .

Hence, the right-hand side of Eq. (6.51) is equal to(
y − X β̂(i)

)′(
y − X β̂(i)

) − (
yi − x′

i β̂(i)
)2

= [
y − X β̂ + X

(
β̂ − β̂(i)

)]′[
y − X β̂ + X

(
β̂ − β̂(i)

)] − (
yi − x′

i β̂(i)
)2

= [
e + X

(
β̂ − β̂(i)

)]′[
e + X

(
β̂ − β̂(i)

)] − e2
(i)

= e′e + (
β̂ − β̂(i)

)′ X ′ X
(
β̂ − β̂(i)

)− e2
(i) (the other terms are zero sinceX ′e = 0)

= e′e + (p + 1)Di s2 − e2
(i) (Di is Cook’s distance)

= e′e + hiie2
i

(1 − hii)2
− e2

i

(1 − hii)2
(using Eq. 6.19 and Eq. 6.22)

= e′e − e2
i

(1 − hii)
= (n − p − 1)s2 − e2

i

/
(1 − hii)

Hence,

s2
(i) =

[
(n − p − 1)s2 − e2

i

/
(1 − hii)

]
(n − p − 2)

EXERCISES
6.1. A research team studies the influence of body

weight (g) and heart weight (mg) on the
kidney weight (mg) of rats. Ten rats were
selected over a range of body weights, and
the following results were recorded. The data
are given in the file kidney.

Kidney Body Heart
weight (mg) weight (g) weight (mg)

y x1 x2

810 34 210
480 43 223
680 35 205
920 33 225
650 34 188
650 26 149
650 30 172
620 31 164
740 27 188
600 28 163

a. Consider the following models:

y = β0 + β1x1 + ε

y = β0 + β2x2 + ε

y = β0 + β1x1 + β2x2 + ε

Which of these models are appropriate?
Discuss.

b. Determine if there are any unusual data
points. If there are, does their removal
have an effect on the fitting results for the
models in (a)? If there are cases with large
effects, how would you present the results
to the research team?

6.2. The cloud point of a liquid is a measure of the
degree of crystallization in a stock that can be
measured by the refractive index. It has been
suggested that the percentage of I-8 in the
base stock is a good predictor of cloud point.
Data were collected on stocks with different
(and well-known) percentage of I-8. These
are given in the file cloud.

a. Fit the model y = β0 + β1x + ε to the
data. Test the model for lack of fit.

b. Fit the model y = β0 + β1x + β2x2 + ε.
Test the model for lack of fit. Comment on
the results and compare them to the ones
in (a).

6.3. Suppose we have a single explanatory
variable x . Fit the linear model
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y = 1β0 + xβ1 + ε, and obtain the vector of
residuals e. Suppose that the true model is the
quadratic model

y = 1β0 + xβ1 + x2β2 + ε

where x′
2 = (x2

1 , x2
2 , . . . , x2

n ).

Show that E(e) = β2(I − H)x2, where H
is the hat matrix from the fitted linear model.

6.4. Consider the linear model y = Xβ + ε, with
X an n × (p + 1) matrix with rank (p + 1),
and ε a vector of uncorrelated errors with
mean 0 and covariance matrix σ 2 I . Let
µ̂= X β̂, where β̂ is the vector of least
squares estimates.

a. Find the mean vector and the covariance
matrix of µ̂.

b. Show that
1

n

∑n
i=1 V (µ̂i ) = (p + 1)

n
σ 2.

Hint: Find the trace of V (µ̂); use the fact
that trace of AB = trace of B A if the
products are defined.

c. Let H = (
hi j

)
be any n × n symmetric

idempotent matrix: H ′ = H and H H = H .
Show that the diagonal elements hii must
lie between zero and one.
Hint: Consider a′

i H, where ai is a n × 1
vector with all components 0 except for
the i th element, which is 1.

d. Assume that the linear model includes a
constant term. Then the diagonal elements
hii of the hat matrix H = X (X ′ X)−1 X ′

satisfy hii ≥ 1

n
.

Hint: Parameterize the model by
centering the regressor variables
(xi j − x̄ j ), for j = 1, 2, . . . , p.

e. Consider the linear model y = Xβ + ε,
where the X matrix has rank less than
p + 1. Then X ′ Xβ = X ′y has infinitely
many solutions for β. Suppose that β̂ and
β̃ are two solutions and let µ̂= X β̂ and
µ̃ = X β̃ be the corresponding fitted
values. Show that µ̂= µ̃. This shows that
both solutions of the normal equations will
produce the same fitted values and
residuals.

6.5. a. Suppose I is the r × r identity matrix, w
and v are r × 1 column vectors, and α is a
constant. Show by direct multiplication
that

(I + αvw ′)−1 = I −
(

α

1 + αv ′w

)
vw ′

b. Use the result in (a) to obtain an expression
for (A + ww ′)−1 in terms of A−1 and w .

c. Suppose we use least squares to fit the
model

y = Xβ + ε

to data from n subjects. Data (yn+1, xn+1,1,
. . . , xn+1,p) become available on one more
case so that the model becomes

 y
. . . .
yn+1


 =


 X

. . . .

w ′


β +


 ε

. . . .
εn+1




where w ′ = (1, xn+1,1, . . . , xn+1,p), or

y1 = X1β + ε1

i. Find an expression for (X ′
1 X1)

−1 in terms
of (X ′ X)−1 and w .

ii. Find an expression for
β̂1 = (X ′

1 X1)
−1 X ′

1 y1 in terms of β̂ =
(X ′ X)−1 X ′y.

This provides a simple way of updating the
least squares estimate as more data become
available. It is used in deletion diagnostics.

6.6. Consider the multiple regression model
y = Xβ + ε, where X consists of the k
columns x1, . . . , xk . Prove that β̂k can be
obtained by the following three steps:

Step 1. Regress y on x1, . . . , xk−1 and denote
the vector of residuals by r .

Step 2. Regress xk on x1, . . . , xk−1 and denote
the vector of residuals by u.

Step 3. Fit the model r = βku + ε. The
resulting estimate β̂k is identical to the
estimate β̂k in y = Xβ + ε.

Hint: Use X̃ to denote the first k − 1 columns
of X . Then β̂ satisfies X ′ X β̂ = X ′y, where

X ′ X =
(

X̃ ′ X̃ X̃ ′xk

x′
k X̃ x′

k xk

)
and X ′y =

(
X̃ ′y
x′

k y

)
.

6.7. Explain why the following statements are
true or false:



Abraham Abraham˙C06 November 8, 2004 14:19

212 Model Checking

a. A residual plot of ei against µ̂i is more
informative than that of ei against yi .

b. An outlier should always be rejected.

c. Consider the model

yi = βxi + εi , i = 1, 2, . . . , 10

with
∑10

i=1 x2
i = 1 . The leverage of the

first case is x2
1 .

6.8. In a certain regression model relating y to
variables x1 and x2, the X matrix is given by

X =




1 −1 −1

1 −1 −1

1 +1 −1

1 +1 −1

1 −1 +1

1 −1 +1

1 +1 +1

1 +1 +1




For the model y = Xβ + ε, determine the
degrees of freedom for

a. residual sum of squares.

b. regression sum of squares.

c. pure error sum of squares.

d. lack-of-fit sum of squares.

6.9. Discuss the following statements and explain
why they are true or false.

a. Increasing the number of predictor
variables will never decrease the R2.

b. Multicollinearity affects the interpretation
of the regression coefficients.

c. The variance inflation factor of β̂ j depends
on the R2 of the regression of the response
variable y on the regressor variable x j .

d. A high leverage point is always highly
influential.

e. Standardized residuals are always smaller
than the ordinary residuals.

6.10. Consider the (production) function

y = β0(x1)
β1(x2)

β2

You are interested in the coefficients
(elasticities) β1 and β2. Indicate which of the

following statements is true.
One can obtain estimates of β1 and β2 by

a. Regressing y on x1 and x2.

b. Regressing log(y) on x1 and x2.

c. Regressing y on log(x1) and log(x2).

d. Regressing log(y) on log(x1) and log(x2).

e. None of the above.

6.11. Indicate which of the following statements
about the Durbin–Watson statistic is true.

a. A Durbin–Watson statistic of zero
indicates that all regressors are
insignificant in predicting the response
variable.

b. A Durbin–Watson statistic of 2 indicates
the residuals are serially correlated.

c. The Durbin–Watson statistic measures
how influential an observation is in
determining the regression line.

d. The Durbin–Watson statistic can be used
to test the normality of the residuals.

e. A Durbin–Watson statistic cannot be
negative.

6.12. Consider the Florida county (n = 67)

votes for Gore and Buchanan in the
2000 presidential election. A scatter
plot of Buchanan votes (y) on Gore
votes (x) is given below. A simple linear
regression model leads to the following
diagnostics. Consider the four points labeled
A through D. Assign them the correct case
numbers.

A

B

C
D

3000

2000

1000

0

0 100000 200000 300000 400000

Gore

B
uc

ha
na

n
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Case County GORE BUCH Res StanRes Leverage CookDist

1 BAY 18850 248 90.832 0.279 0.017 0.001
2 BRADFORD 3072 65 −26.911 −0.083 0.019 0.000
3 BROWARD −888.823 −3.317 0.334 2.754
4 DADE −877.700 −3.058 0.235 1.438
5 PALM BEACH 2215.452 7.333 0.153 4.843
6 PASCO 69550 570 203.139 0.624 0.017 0.003
7 . . ..

6.13. Consider consecutive weekly stock closings
of your choice and use the most recent 52
weeks as your sample.

a. Graph the observations against time.

b. Estimate the coefficients in the linear
regression on time, yt = β0 + β1xt + εt ,
where xt = t . Investigate the shortcomings
of the fitted model. In particular, assess
whether the errors are independent by
calculating the autocorrelations of the
residuals and the Durbin–Watson test
statistic.

c. Regress the observation at time t on the
previous observation at time t − 1,
yt = β0 + β1 yt−1 + εt . Repeat the residual
diagnostics in (b).

d. Which of the two models is more
appropriate? Which model would you use
if you wanted to predict the next
observation?

6.14. The data are taken from Williams, E. J.
Regression Analysis. New York: Wiley,
1959. The data are given in the file
tearpaper.

Five different pressures were applied
during the sheet pressing stage in the
manufacture of paper. Pressure is thought
to affect the tear factor of the paper (which
is the percentage of a standard force
necessary to tear the paper). Batches of
paper were manufactured under different
pressures. From these batches, four sheets
were selected at random and the tear strength
of each sheet was evaluated. Note that
pressure is equally spaced on the logarithmic
scale.

Specify an appropriate model for this data
set. Estimate the model and perform needed
diagnostic checks. Use the replications to test
for lack of fit.

x = Pressure y = Tear Factor

35.0 112
35.0 119
35.0 117
35.0 113
49.5 108
49.5 99
49.5 112
49.5 118
70.0 120
70.0 106
70.0 102
70.0 109
99.0 110
99.0 101
99.0 99
99.0 104

140.0 100
140.0 102
140.0 96
140.0 101

6.15. The data are taken from Bennett, G. W.
Determination of anaerobic threshold.
Canadian Journal of Statistics, 16, 307–310,
1988. The data are given in the file
ventilation.

The data are from an experiment in
kinesiology. A subject performed a standard
exercise at gradually increasing levels, and
oxygen uptake and expired ventilation (which
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is related to the rate of exchange of gases in
the lungs) were measured. The expired
ventilation (y) and the oxygen uptake (x) are
related nonlinearly.

Graph expired ventilation against oxygen
uptake. Repeat the graph for various
appropriate transformations, and develop a
model that relates the transformed variables.
Consider the Box–Cox family of
transformations. Estimate the appropriate
transformation.

y = Expired
x = Oxygen Uptake Ventilation

574 21.9
592 18.6
664 18.6
667 19.1
718 19.2
770 16.9
927 18.3
947 17.2

1,020 19.0
1,096 19.0
1,277 18.6
1,323 22.8
1,330 24.6
1,599 24.9
1,639 29.2
1,787 32.0
1,790 27.9
1,794 31.0
1,874 30.7
2,049 35.4
2,132 36.1
2,160 39.1
2,292 42.6
2,312 39.9
2,475 46.2
2,489 50.9
2,490 46.5
2,577 46.3
2,766 55.8
2,812 54.5
2,893 63.5
2,957 60.3

y = Expired
x = Oxygen Uptake Ventilation

3,052 64.8
3,151 69.2
3,161 74.7
3,266 72.9
3,386 80.4
3,452 83.0
3,521 86.0
3,543 88.9
3,676 96.8
3,741 89.1
3,844 100.9
3,878 103.0
4,002 113.4
4,114 111.4
4,152 119.9
4,252 127.2
4,290 126.4
4,331 135.5
4,332 138.9
4,390 143.7
4,393 144.8

6.16. The data are taken from Robertson, J. D.,
and Armitage, P. Comparison of two
hypertensive agents. Anaesthesia, 14, 53–64,
1959. The data are given in the file
recovery.

Hypertensive drugs are used routinely
to lower a patient’s blood pressure, and
such drugs are administered continuously
during surgery. Since surgery times vary,
the total amount of the drug that is
administered varies from case to case.
Also, patients react differently to such
drugs, and hence blood pressure during
surgery varies across patients. The sooner
blood pressure rises to normal levels, the
better. The recovery time (i.e., the time it
takes for a patient’s systolic blood pressure
to return to normal) is an important
variable.

The following table lists, for a sample of
53 patients, the recovery time, the logarithm
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of the administered dose, and the average
systolic blood pressure while the drug is
being administered.

Discuss how recovery time is related to
the dose and the blood pressure that is
achieved during surgery. Fit appropriate
regression models, check for model
violations, and interpret the results. Explore
the usefulness of transformations on the
response.

x1 = Log x2 = Blood y = Recovery
Dose Pressure Time

2.26 66 7
1.81 52 10
1.78 72 18
1.54 67 4
2.06 69 10
1.74 71 13
2.56 88 21
2.29 68 12
1.80 59 9
2.32 73 65
2.04 68 20
1.88 58 31
1.18 61 23
2.08 68 22
1.70 69 13
1.74 55 9
1.90 67 50
1.79 67 12
2.11 68 11
1.72 59 8
1.74 68 26
1.60 63 16
2.15 65 23
2.26 72 7
1.65 58 11
1.63 69 8
2.40 70 14
2.70 73 39
1.90 56 28
2.78 83 12
2.27 67 60
1.74 84 10

x1 = Log x2 = Blood y = Recovery
Dose Pressure Time

2.62 68 60
1.80 64 22
1.81 60 21
1.58 62 14
2.41 76 4
1.65 60 27
2.24 60 26
1.70 59 28
2.45 84 15
1.72 66 8
2.37 68 46
2.23 65 24
1.92 69 12
1.99 72 25
1.99 63 45
2.35 56 72
1.80 70 25
2.36 69 28
1.59 60 10
2.10 51 25
1.80 61 44

6.17. The data are taken from Brown, B. M. and
Maritz, J. S. Distribution-free methods in
regression. Australian Journal of Statistics,
24, 318–331, 1982. The data are given in the
file rigidity.

Measurements on 50 varieties of timber
are made on their rigidity, elasticity, and
air-dried density. The objective is to predict
rigidity as a function of elasticity and
air-dried density. Pay careful attention to the
case diagnostics.

y = Rigidity x1 = Elasticity x2 = Density

1,000 99.0 25.3
1,112 173.0 28.2
1,033 188.0 28.6
1,087 133.0 29.1
1,069 146.0 30.7

925 91.0 31.4
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y = Rigidity x1 = Elasticity x2 = Density

1,306 188.0 32.5
1,306 194.0 36.8
1,323 195.0 37.1
1,379 177.0 38.3
1,332 182.0 39.0
1,254 110.0 39.6
1,587 203.0 40.1
1,145 193.0 40.3
1,438 167.0 40.3
1,281 188.0 40.6
1,595 238.0 42.3
1,129 130.0 42.4
1,492 189.0 42.5
1,605 213.0 43.0
1,647 165.0 43.0
1,539 210.0 46.7
1,706 224.0 49.0
1,728 228.0 50.2
1,703 209.0 50.3
1,897 240.0 50.3
1,822 248.0 51.3
2,129 261.0 51.7
2,053 245.0 52.8
1,676 186.0 53.8
1,621 188.0 53.9
1,990 252.0 54.9
1,764 222.0 55.1
1,909 244.0 55.2
2,086 274.0 55.3
1,916 276.0 56.9
1,889 254.0 57.3
1,870 238.0 58.3
2,036 264.0 58.6
2,570 189.0 58.7
1,474 223.0 59.5
2,116 245.0 60.8
2,054 272.0 61.3
1,994 264.0 61.5
1,746 196.0 63.2
2,604 268.0 63.3
1,767 205.0 68.1
2,649 346.0 68.9
2,159 246.0 68.9
2,078 237.5 70.8

6.18. The data are taken from Cook, R. D., and
Weisberg, S. Residuals and Influence in
Regression. London: Chapman & Hall,
1982. The data are given in the file
liver.

In an experiment to investigate the
amount of drug retained in the liver of a rat,
19 rats were weighed and dosed. The dose
was approximately 40 mg/1 kg of body
weight; it can be expected that the weight
of the liver is strongly correlated with body
weight. After a fixed length of time the
rat was sacrificed, the liver weighed, and
the percentage of dose in the liver
determined.

a. Check whether liver weight and body
weight are strongly correlated.

b. Explain the percentage of dose in the
liver as a function of body weight,
liver weight, and administered dose.
Pay careful attention to model
diagnostics.

Body Liver y = Dose
Weight Weight Dose in Liver

176 6.5 0.88 0.42
176 9.5 0.88 0.25
190 9.0 1.00 0.56
176 8.9 0.88 0.23
200 7.2 1.00 0.23
167 8.9 0.83 0.32
188 8.0 0.94 0.37
195 10.0 0.98 0.41
176 8.0 0.88 0.33
165 7.9 0.84 0.38
158 6.9 0.80 0.27
148 7.3 0.74 0.36
149 5.2 0.75 0.21
163 8.4 0.81 0.28
170 7.2 0.85 0.34
186 6.8 0.94 0.28
146 7.3 0.73 0.30
181 9.0 0.90 0.37
149 6.4 0.75 0.46
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6.19. The data are taken from Snapinn, S. M.
and Small, R. D. Tests of significance
using regression models for ordered
categorical data. Biometrics, 42, 583–592,
1966. The data are given in the file
phosphorus.

Chemical determinations of inorganic
phosphorus (x1) and a component of organic
phosphorus (x2) in the soil are used to
explain the plant-available phosphorus (y)

of corn grown in the soil. The units are
parts per million. Data for 18 soils are
shown.

Develop appropriate regression models.
Pay careful attention to case diagnostics.

x1 = Inorganic x2 = Organic y = Plant
Phosphorus Phosphorus Phosphorus

0.4 53 64
0.4 23 60
3.1 19 71
0.6 34 61
4.7 24 54
1.7 65 77
9.4 44 81

10.1 31 93
11.6 29 93
12.6 58 51
10.9 37 76
23.1 46 96
23.1 50 77
21.6 44 93
23.1 56 95

1.9 36 54
26.8 58 168
29.9 51 99

6.20. The data are taken from Weiner, B.
Discovering Psychology. Chicago: Science
Research Association, 1977. The table lists
the average vocabulary size of children at
various ages. The data are given in the file
vocabulary.

a. Obtain a scatter plot of the information.

b. The objective is to predict vocabulary
as a function of age. Check for outliers
and pay careful attention to the case
diagnostics.

x = Age y = Vocabulary

1.0 3
1.5 22
2.0 272
2.5 446
3.0 896
3.5 1,222
4.0 1,540
4.5 1,870
5.0 2,072
6.0 2,562

6.21. The data are taken from Jerison, H. J.
Evolution of the Brain and Intelligence. New
York: Academic Press, 1973. The data are
given in the file brainweight.

Data on body weight and brain weight of
animals are given. Construct a regression
model that relates the two variables.
Transformations may be needed before a
regression model can be fit. Identify
animals that differ from the common pattern
that is established by the majority of the
animals.

x = Body y = Brain
Species Weight Weight

Mountain beaver 1.35 8.1
Cow 465.00 423.0
Grey wolf 36.33 119.5
Goat 27.66 115.0
Guinea pig 1.04 5.5
Diplodocus 11,700.00 50.0
Asian elephant 2,547.00 4,603.0
Donkey 187.10 419.0
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x = Body y = Brain
Species Weight Weight

Horse 521.00 655.0
Potar monkey 10.00 115.0
Cat 3.30 25.6
Giraffe 529.00 680.0
Gorilla 207.00 406.0
Human 62.00 1,320.0
African elephant 6,654.00 5,712.0
Triceratops 9,400.00 70.0
Rhesus monkey 6.80 179.0
Kangaroo 35.00 56.0
Hamster 0.12 1.0
Mouse 0.023 0.4
Rabbit 2.50 12.1
Sheep 55.50 175.0
Jaguar 100.00 157.0
Chimpanzee 52.16 440.0
Brachiosaurus 87,000.00 154.5
Rat 0.28 1.9
Mole 0.122 3.0
Pig 192.00 180.0

6.22. The data are taken from Hill, W. J. and
Wiles, R. A. Plant experimentation (PLEX).
Journal of Quality Technology, 7, 115–122,
1975. The data are given in the file
chemyield.

The data are from an experiment on a
large continuous chemical operation
consisting of several separate reaction steps.
The variable of interest is percentage yield
(y). Factors believed to affect yield are the
concentration of reactant A in the solvent S,
the ratio of reactant B to reactant A, and the
temperature in the reactor. Only coded
variables are given because the paper does
not reveal the units of measurements. The
15 runs in this experiment were carried
out in random order over a period of
10 days, with 8 hours at each operating
condition. Note that replicates at some
of the operating conditions allow for a test
of lack of fit.

Analyze the information, construct an
appropriate regression model, and interpret
the results. Check the adequacy of the model
by constructing residual diagnostics and the
appropriate lack of fit test.

Concentration Ratio of
of A B to A Temperature % Yield

−1 −1 −1 75.4
1 −1 −1 73.9

−1 1 −1 76.8
1 1 −1 72.8

−1 −1 1 75.3 75.3
1 −1 1 71.4

−1 1 1 76.5 77.2
1 1 1 72.3
0 0 0 74.4 74.5

−2 0 0 79.0 78.4
2 0 0 69.2

6.23. The data are taken from Snee, R. D. An
alternative approach to fitting models when
re-expression of the response is useful.
Journal of Quality Technology, 18, 211–225,
1986. The data are given in the file
stopping.

The table shows the stopping distances
(feet) for cars traveling at the indicated
speeds (miles per hour).

Find a model that explains the stopping
distance in terms of the traveled speed.
Consider variance-stabilizing
transformations and carry out lack-of-fit
tests (this is made possible by the
replications).

x = Speed y = Stopping Distance

4 4
5 2
5 8
5 8
5 4
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x = Speed y = Stopping Distance

7 6
7 7
8 9
8 8
8 13
8 11
9 5
9 5
9 13

10 8
10 17
10 14
12 11
12 21
12 19
13 18
13 27
13 15
14 14
14 16
15 16
16 19
16 14
16 34
17 29
17 22
18 47
18 29
18 34
19 30
20 48
21 55
21 39
21 42
22 35
24 56
25 33
25 59
25 48
25 56
26 39
26 41
27 78
27 57

x = Speed y = Stopping Distance

28 64
28 84
29 68
29 54
30 60
30 101
30 67
31 77
35 85
35 107
36 79
39 138
40 110
40 134

6.24. The data are taken from Ryan, T. A.,
Joiner, B. L., and Ryan, B. F. The Minitab
Student Handbook. Boston: Duxbury,
1985. The data are given in the file
volumetrees.

Measurements on the volume (cubic feet),
height (feet), and diameter at breast height
(inches, measured at 54 inches above the
ground) of 31 black cherry trees in the
Allegheny National Forest in Pennsylvania
are listed.

Develop a model that relates the volume
of a tree to its diameter and height. A study
of the volume of a (tapered) cylinder will
suggest an appropriate model specification.
Construct scatter plots of volume against
diameter and height. Consider appropriate
transformations. Fit appropriate regression
models, obtain and interpret the estimates
of the coefficients, calculate the ANOVA
table, and discuss the adequacy of the
model fit. Consider appropriate residual
diagnostics for checking model adequacy.
Use your model(s) to obtain a 95%
confidence interval for the mean volume of a
tree with diameter 11 inches and height 70
feet. Discuss whether it is also reasonable to
obtain a confidence interval for the mean
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volume of a tree with diameter 11 inches and
height 95 feet.

x1 = Diameter x2 = Height y = Volume

8.3 70 10.3
8.6 65 10.3
8.8 63 10.2

10.5 72 16.4
10.7 81 18.8
10.8 83 19.7
11.0 66 15.6
11.0 75 18.2
11.1 80 22.6
11.2 75 19.9
11.3 79 24.2
11.4 76 21.0
11.4 76 21.4
11.7 69 21.3
12.0 75 19.1
12.9 74 22.2
12.9 85 33.8
13.3 86 27.4
13.7 71 25.7
13.8 64 24.9
14.0 78 34.5
14.2 80 31.7
14.5 74 36.3
16.0 72 38.3
16.3 77 42.6
17.3 81 55.4
17.5 82 55.7
17.9 80 58.3
18.0 80 51.5
18.0 80 51.0
20.6 87 77.0

6.25. The data are taken from Dempster, A. P.
Elements of Continuous Multivariate
Analysis. Reading, MA: Addison-Wesley,
1969. The data are given in the file
volumeeggs.

The table shows the volume, the length of
the longest diameter, and the largest circular
cross section of 12 eggs. Find a model that
explains the volume. Think about appropriate
transformations.

Longest Largest Cross
Diameter Section y = Volume

2.151 1.889 5.755
2.086 1.859 5.479
2.099 1.874 5.551
2.138 1.874 5.686
2.195 1.866 5.755
2.125 1.851 5.339
2.170 1.851 5.618
2.164 1.866 5.551
2.201 1.843 5.551
2.151 1.835 5.551
2.157 1.851 5.551
2.112 1.866 5.618

6.26. The data are taken from Joglekar, G.,
Schuenemeyer, J. H., and LaRiccia, V.
Lack-of-fit testing when replicates are not
available. American Statistician, 43,
135–143, 1989. The data are given in the file
windmill.

Direct current output from a windmill
generator is measured against wind velocity
(miles per hour). Data for 25 observations are
given.

Model DC output as a function of wind
velocity. Construct scatter plots of DC output
against wind velocity. Pay particular attention
to any possible transformations. Consider
transformations such as the reciprocal, the
square, the square root, and the logarithmic
transformations.

Carefully check the adequacy of your
model(s). Use your model to obtain a 90%
confidence interval for the mean DC output
when the wind velocity is 7 miles per hour.
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x = Wind Velocity y = DC Output

2.45 0.123
2.70 0.500
2.90 0.653
3.05 0.558
3.40 1.057
3.60 1.137
3.95 1.144
4.10 1.194
4.60 1.562
5.00 1.582
5.45 1.501
5.80 1.737
6.00 1.822

x = Wind Velocity y = DC Output

6.20 1.866
6.35 1.930
7.00 1.800
7.40 2.088
7.85 2.179
8.15 2.166
8.80 2.112
9.10 2.303
9.55 2.294
9.70 2.386

10.00 2.236
10.20 2.310
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7.1 INTRODUCTION
In many empirical model-building contexts we are faced with observational data
for which we cannot preselect (or control) the levels of the regressor variables.
In such observational studies, a large number of potential explanatory variables
are measured along with the response. The goal of the study may be to build a
model for prediction or, even simpler, to decide which of the potential explanatory
variables influence the response. Often, these models are not motivated by any
theory but are completely descriptive.

With observational data the analyst lacks the ability to select the levels of
the covariates (the explanatory or regressor variables), and this fact makes model
building difficult. The situation is different in experimental studies in which the
analyst can control the levels of the covariates. By selecting the levels of the
covariates in an “optimal” way, the model building can be simplified considerably.
In this chapter, we focus on model building with observational data. The covariates
have to be taken as they come, irrespective of whether their underlying design is
good or bad.

We wish to develop a systematic procedure for selecting the “best” models.
This requires a definition of what we mean by best. The definition needs to incor-
porate the concepts of model fit and model simplicity (parsimony). We also need
to develop a strategy for finding the best models. Our goal is to find procedures
that lead to acceptable models and that even regression novices can follow. Even
better, “automatic” procedures may be possible that do not require much user
input.

In previous chapters, we developed the inference for given regression models
of the form

y = Xβ + ε, with ε∼ N (0, σ 2 I )

Given the response y and the set of explanatory variables describing the ma-
trix X , it is fairly straightforward to obtain estimates and to carry out various
tests of hypotheses. So where is the source of difficulty with model building?

222
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Several difficulties are listed below:

i. In observational studies, the constellations of the covariates may reflect
poor combinations.

ii. The real (observational) world and the idealized (model) world are not the
same. There may be no true model after all because all models are at best
approximations.

iii. The presence of high-leverage cases, outliers, and influential cases may
have an impact on the model selection.

iv. Variables may be given in a certain metric that makes model building very
difficult.

v. The purpose of the model may be unclear. A model that is good for
prediction may not be best in terms of providing the most accurate historic
fit (i.e., the most accurate description of the given data). The fit to historic
data can always be improved by adding more regressors to the model.
However, each additional regressor variable requires the estimation of a
parameter. If the covariate is not needed, then the unnecessary estimation
error adds variability to the prediction.

A more formal explanation of this follows. We learned in Chapter 6 that
the covariance matrix of the vector of fitted values from a linear regression
on p covariates is V (µ̂) = Hσ 2, where H = X (X ′ X)−1 X ′. Thus, the
average variance of the fitted values is

∑n
i=1 V (µ̂i )/n = σ 2tr(H)/n =

σ 2(p + 1)/n. The prediction of the response ynew for a new case with
covariates xnew is given by ŷnew = x′

newβ̂. The prediction error

ynew − ŷnew = εnew + (µnew − ŷnew)

combines the variability of the new observation and the error in the fitted
value. It has average variance σ 2(1 + (p + 1)/n). Each unnecessary
parameter increases the variance of the prediction error by a factor of 1/n.

Example: Power Plant Data
Various aspects of model building are illustrated with an example from the book
Applied Statistics by D. R. Cox and E. J. Snell. Table 7.1 lists the construction
costs of 32 light water reactor (LWR) power plants, together with characteristics
of the plants and details on their construction. The objective of the modeling is to
learn which of the covariates influence capital cost so that we can predict the cost
of constucting a new plant with certain specified characteristics. The response y
and the 10 regressor variables are as follows:

C Cost in dollars ×10−6, adjusted to 1976 base

D Date construction permit issued

T1 Time between application for permit and issue of permit

T2 Time between issue of operating license and construction permit
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TABLE 7.1 POWER PLANT DATA [DATA FILE: powerplant]

C D T1 T2 S PR NE CT BW N PT

460.05 68.58 14 46 687 0 1 0 0 14 0
452.99 67.33 10 73 1,065 0 0 1 0 1 0
443.22 67.33 10 85 1,065 1 0 1 0 1 0
652.32 68.00 11 67 1,065 0 1 1 0 12 0
642.23 68.00 11 78 1,065 1 1 1 0 12 0
345.39 67.92 13 51 514 0 1 1 0 3 0
272.37 68.17 12 50 822 0 0 0 0 5 0
317.21 68.42 14 59 457 0 0 0 0 1 0
457.12 68.42 15 55 822 1 0 0 0 5 0
690.19 68.33 12 71 792 0 1 1 1 2 0
350.63 68.58 12 64 560 0 0 0 0 3 0
402.59 68.75 13 47 790 0 1 0 0 6 0
412.18 68.42 15 62 530 0 0 1 0 2 0
495.58 68.92 17 52 1,050 0 0 0 0 7 0
394.36 68.92 13 65 850 0 0 0 1 16 0
423.32 68.42 11 67 778 0 0 0 0 3 0
712.27 69.50 18 60 845 0 1 0 0 17 0
289.66 68.42 15 76 530 1 0 1 0 2 0
881.24 69.17 15 67 1,090 0 0 0 0 1 0
490.88 68.92 16 59 1,050 1 0 0 0 8 0
567.79 68.75 11 70 913 0 0 1 1 15 0
665.99 70.92 22 57 828 1 1 0 0 20 0
621.45 69.67 16 59 786 0 0 1 0 18 0
608.80 70.08 19 58 821 1 0 0 0 3 0
473.64 70.42 19 44 538 0 0 1 0 19 0
697.14 71.08 20 57 1,130 0 0 1 0 21 0
207.51 67.25 13 63 745 0 0 0 0 8 1
288.48 67.17 9 48 821 0 0 1 0 7 1
284.88 67.83 12 63 886 0 0 0 1 11 1
280.36 67.83 12 71 886 1 0 0 1 11 1
217.38 67.25 13 72 745 1 0 0 0 8 1
270.71 67.83 7 80 886 1 0 0 1 11 1

S Power plant net capacity (MWe)

PR Prior existence of an LWR on same site (= 1)

NE Plant constructed in northeast region of the United States (= 1)

CT Use of cooling tower (= 1)

BW Nuclear steam supply system manufactured by Babcock–Wilcox (= 1)

N Cumulative number of power plants constructed by each
architect–engineer

PT Partial turnkey plant (= 1); a special feature in the contract that may
affect capital cost

One difficulty here is a relatively small sample size (n = 32), coupled with a large
number of covariates (p = 10). Another difficulty is the fact that the covariates
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do not vary independently. In an observational study such as this, the analyst has
no control over the measurements; they have to be taken as they come.

The difficulty arises from the special nature of the space L(X) that is spanned
by the regressor columns 1, x1, . . . , xp. When estimating the model y = Xβ + ε,
we always assume that X is of full column rank p + 1 or, in other words, that the
columns of X are not linearly dependent. A major problem occurs when these
vectors are getting “close” to being linearly dependent. Linear dependence means
that we can express a regressor vector, for example, xj , as a linear combination
of the other regressor vectors. “Almost” linearly dependent means that although
the linear combination does not explain xj perfectly, only a very small part is
left unexplained. In observational studies, such almost linear dependence is often
the case. One refers to this phenomenon as multicollinearity. We discussed its
consequences and detection in Chapter 5, Section 5.4.

The plot of T1 (time between application for permit and issue of permit)
against D (date of construction) is shown in Figure 7.1. It indicates that with each
calendar year the approval process is taking longer. The covariates T1 and D are
closely related which implies that a model that regresses cost on D and one that
regresses cost on T1 will fit the data equally well. There is little information in
the data to distinguish between these two models.

One needs to check for associations among the explanatory variables. One
procedure often suggested is an examination of scatter plots and sample correla-
tions, ri j , among all pairs (see Chapter 5, Section 5.4),

ri j =

n∑

=1

(xi
 − x̄i )(x j
 − x̄ j )√
n∑


=1
(xi
 − x̄i )2

n∑

=1

(x j
 − x̄ j )2

where x̄i denotes the average of the measurements on the variable xi . A matrix of
the correlations provides all pairwise linear associations among the explanatory
variables.
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of T1 against D :
Power Plant Data
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TABLE 7.2 CORRELATIONS AMONG REGRESSOR
VARIABLES: POWER PLANT DATA

D T1 T2 S N

D 1.00 0.86 −0.40 0.02 0.55
T1 1.00 −0.47 −0.09 0.40
T2 1.00 0.31 −0.23
S 1.00 0.19
N 1.00

For the power plant example, the matrix of pairwise correlations among the
five covariates D, T1, T2, S, and N is given in Table 7.2. The correlation between
D and T1 is 0.86; it summarizes the linear association between T1 and D that we
see in Figure 7.1. Note that correlations with and among the other five variables
PR, NE, CT, BW, and PT are not shown.

The effect of near collinearity (or multicollinearity) among the explanatory
variables is that different methods of analysis (or different analysts) may end up
with final models that look very different, but describe the data equally well. If
the problem is one of prediction, this difference may be unimportant. However,
if the model is to be used to assess which of the explanatory variables are im-
portant in their effect on the response, different models can lead to very different
conclusions.

Examining pairwise correlations is a step in the right direction. However,
such a strategy ignores the joint effect of two or more covariates on another
covariate x j . A better way to check for multicollinearity is to regress x j on all
other covariates and investigate whether the coefficient of multiple determination
R2 from such a regression is large. An R2 larger than 0.90 is often taken as an
indication of multicollinearity; see the discussion of variance inflation factors in
Chapter 5, Section 5.4.

A major advantage of designed experiments is that the experimenter can
select the values of the covariates x1, . . . , x p. Most sound experimental plans
make sure that the covariate vectors are far from near collinearity. In fact, many
experimental plans select the experiments such that these vectors are orthogonal;
see the example in Chapter 5, Section 5.5.

Model Selection Procedures
In this chapter, we consider different strategies for model selection that should
be seen in the following context. We are given observations on a response y and
q potential explanatory variables, v1, . . . , vq . The objective of the strategy is to
select a model of the form, y = β0 + β1x1 + · · · + βpx p + ε, where

i. x1, . . . , x p is a subset of the original q regressors, v1, . . . , vq ;

ii. no important variable is left out of the model; and

iii. no unimportant variable is included in the model.
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One straightforward approach is to consider all possible regressions. This
is discussed in Section 7.2. Other approaches use certain model selection algo-
rithms that can be operationalized and carried out by computers. Such “automatic”
procedures are considered in Section 7.3.

7.2 ALL POSSIBLE REGRESSIONS
Given a set of potential explanatory variables v1, . . . , vq , it is certainly feasible
to fit all possible regression models to the data. For instance, if there are three
regressor variables v1, v2, v3, then there are eight possible models: one model with
no variables and just the constant, three models with exactly one variable each;
three models with two variables each, and one model with all three variables.
Fitting all possible regressions requires us to fit 2q models if q variables are
involved. However, there are very clever and fast algorithms for performing this
task even if q is large. The detailed output from such an approach can become
very unwieldy, and hence only certain key summary statistics such as the residual
sum of squares or simple functions of this quantity such as R2 are usually shown.
In the following section, we discuss these summary statistics and explain how
they can be used to narrow the list of models.

7.2.1 R 2, R 2
adj, s2, AND AKAIKE’S INFORMATION CRITERION

Let R2
p denote the R2 from a model containing p variables and (p + 1) regression

coefficients. The intercept is usually part of the model. Recall that

R2
p = 1 − SSEp

SST
(7.1)

where SSEp is the residual sum of squares for the p variable model, and SST =∑n
i=1 (yi − ȳ)2 is the total sum of squares, which is the same for all models

and does not change with p. Everything else equal, one prefers models with
larger R2

p. Note that there will be several models with p variables, and each one
will have a different R2. It makes sense to select the best, or best few, with the
largest R2 from the group of models with p variables. R2

p increases with p. If
you allow more flexibility by adding another variable to the model, then you will
automatically decrease (or at least not increase) the error sum of squares, SSEp.
The consequence is that one can get a model with R2

p close to one by adding
increasingly more variables. In the limit, if you have n observations and if the
model contains n parameters, SSE = 0 and R2 = 1.

For these reasons, we consider the adjusted R2, which incorporates a penalty
for each estimated coefficient,

R2
adj.p = 1 − SSEp/(n − p − 1)

SST/(n − 1)
(7.2)
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Here the sums of squares are adjusted by their degrees of freedom: SSEp by
n − p − 1, and SST by n − 1. Simple algebra shows that

R2
adj.p = 1 − (n − 1)

(n − p − 1)

(
1 − R2

p

) = 1 − s2
p

SST/(n − 1)
= 1 − s2

p

s2
y

(7.3)

where s2
p = SSEp/(n − p − 1) is the mean square of the residuals, and s2

y is the
sample variance of the response, without any adjustments by regressor variables.
Equation (7.3) shows that R2

adj.p does not necessarily increase with p any more. If

there is no improvement in R2 by the addition of a variable, the term (n − 1)/(n −
p − 1) actually lowers the adjusted R2. For this reason, the adjusted R2 is a better
measure for model selection. Models with the largest (or largest few) R2

adj.p are
preferable. Two comments should be made at this point.

i. The adjusted R2 represents the (proportionate) reduction in the residual
variance achieved by the regression model. It compares the variance in the
data before any regressors are put in the model (s2

y ) with the variance that
remains after the regressors have been incorporated (s2

p). It examines the
reduction in mean squares compared to the reduction in sums of squares
considered by R2.

ii. An equivalent model selection tool examines the mean square error of the
residuals s2

p and finds models that lead to the smallest (or the smallest few)
values.

We previously mentioned that there will be more than one model for each
fixed p. Instead of examining all these models, we usually restrict our attention
to the best few—for example, the best three or four models—with largest values
for R2 and R2

adj and smallest values for s2.

Example: Power Plant Data
Preliminary analysis and data plots indicate that it is better to use y = ln(C) as
the response variable. Let us ignore for the moment any issue of outliers. An
analysis of the full model with all 10 covariates does not reveal any gross outliers
or highly influential points; the only possible problem is case 26 with somewhat
elevated Cook’s D and studentized residual. Table 7.3 shows the results of fitting
all possible regressions; only the best four models of each size (in terms of R2)
are shown. Note that for many sizes p, two or more models give almost the same
R2. For example, in the 4 variable category, the set D, T2, S, PT (R2 = 0.764)
and the set T1, S, NE, PT (R2 = 0.763) give almost identical R2. The model
with D, S, NE, PT is the leader in the category p = 4 (R2 = 0.810, R2

adj = 0.781,

s2 = 0.0312). In the 5 variable category, D, S, NE, CT, PT is the best (R2 = 0.831,
R2

adj = 0.798, s2 = 0.0288). In the 6 variable group, D, S,NE, CT, N , PT is the best

(R2 = 0.844, R2
adj = 0.807, s2 = 0.0276), but the increase in R2 (or the decrease in

s2) is small. We note that as the number of variables increases from five upwards,
the increase in R2 (decrease in s2) is very small. Thus, one may wish to settle on
a model with five covariates, such as D, S, NE, CT, PT.
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TABLE 7.3 POWER PLANT DATA: ALL POSSIBLE REGRESSIONS

p R2 R2
adj C p AIC s2 Variables

1 0.4545 0.4363 55.91 −78.68 0.0805 PT
1 0.3957 0.3756 64.95 −75.41 0.0891 D
1 0.2064 0.1799 94.09 −66.68 0.1171 T1

1 0.1963 0.1695 95.64 −66.28 0.1186 S

2 0.6551 0.6314 27.04 −91.36 0.0526 S PT
2 0.5813 0.5525 38.40 −85.15 0.0639 D S
2 0.5656 0.5356 40.82 −83.97 0.0663 D PT
2 0.5529 0.5221 42.77 −83.05 0.0682 N PT

3 0.7584 0.7325 13.16 −100.8 0.0382 D S PT
3 0.7167 0.6863 19.58 −95.64 0.0448 T1 S PT
3 0.7088 0.6776 20.79 −94.76 0.0460 S N PT
3 0.6989 0.6666 22.32 −93.70 0.0476 S NE PT

4 0.8095 0.7813 7.29 −106.4 0.0312 D S NE PT
4 0.7821 0.7498 11.52 −102.0 0.0357 D S CT PT
4 0.7640 0.7290 14.30 −99.49 0.0387 D T2 S PT
4 0.7633 0.7282 14.41 −99.40 0.0388 T1 S NE PT

5 0.8306 0.7980 6.06 −108.1 0.0288 D S NE CT PT
5 0.8216 0.7873 7.44 −106.4 0.0303 D T2 S NE PT
5 0.8177 0.7826 8.04 −105.8 0.0310 D S NE CT N
5 0.8149 0.7793 8.46 −105.3 0.0315 D S NE N PT

6 0.8441 0.8067 5.97 −108.8 0.0276 D S NE CT N PT
6 0.8376 0.7986 6.98 −107.5 0.0287 D T2 S NE CT PT
6 0.8367 0.7976 7.11 −107.3 0.0289 D T2 S PR NE PT
6 0.8335 0.7935 7.61 −106.7 0.0294 D S NE CT BW PT

7 0.8502 0.8065 7.04 −108.0 0.0276 D S NE CT BW N PT
7 0.8497 0.8058 7.12 −107.9 0.0277 D T2 S NE CT N PT
7 0.8482 0.8039 7.34 −107.6 0.0280 D S PR NE CT N PT
7 0.8472 0.8026 7.50 −107.4 0.0281 D T2 S PR NE CT PT

8 0.8626 0.8148 7.13 −108.8 0.0264 D T2 S PR NE CT N PT
8 0.8538 0.8029 8.49 −106.8 0.0281 D S PR NE CT BW N PT
8 0.8525 0.8012 8.68 −106.5 0.0283 D T2 S NE CT BW N PT
8 0.8506 0.7986 8.98 −106.1 0.0287 D T1 T2 S NE CT N PT

9 0.8631 0.8071 9.05 −106.9 0.0275 D T2 S PR NE CT BW N PT
9 0.8627 0.8065 9.12 −106.8 0.0276 D T1 T2 S PR NE CT N PT
9 0.8538 0.7940 10.48 −104.8 0.0294 D T1 S PR NE CT BW N PT
9 0.8526 0.7923 10.67 −104.6 0.0296 D T1 T2 S NE CT BW N PT

10 0.8635 0.7985 11.00 −105.0 0.0287 D T1 T2 S PR NE CT BW N PT

Another summary statistic that is often considered for model selection is
Akaike’s information criterion (AIC). It is defined as

AICp = n ln(SSEp/n) + 2(p + 1) (7.4)

Models with smaller values of AIC are preferred. The first term in Eq. (7.4) in-
volves the logarithm of the (biased) maximum likelihood estimate of σ 2, SSEp/n.
We want this component to be small. The second term, 2(p + 1), represents a
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TABLE 7.4 PARTIAL OUTPUT OF MODEL SELECTION: POWER PLANT DATA

Variables With All Observations With Case 26 Deleted

p = 5: D, S, NE, CT, PT
R2 0.8306 0.8505
R2

adj 0.7980 0.8206

s2 0.0288 0.0251
AIC −108.1 −105.5

p = 6: D, S, NE, CT, N , PT
R2 0.8441 0.8654
R2

adj 0.8067 0.8318

s2 0.0276 0.0235
AIC −108.8 −110.2

p = 6: D, S, NE, CT, PT, PR
R2 0.8326 0.8678
R2

adj 0.7924 0.8348

s2 0.0296 0.0231
AIC −106.5 −110.8

p = 6: D, S, NE, CT, PT, T2

R2 0.8376 0.8540
R2

adj 0.7986 0.8175

s2 0.0288 0.0255
AIC −101.7 −103.7

penalty function that increases with the number of estimated parameters. For
the p = 5 variable model, D, S, NE, CT PT, the Akaike information criterion is
AIC = −108.1 (s2 = 0.0288), whereas the p = 6 variable model, D, S, NE, CT,
N , PT, has AIC = −108.8 (s2 = 0.0276). These two models are not too different
from each other.

Let us further illustrate the use of R2, R2
adj, and AIC in the context of our

example. Since the 26th observation has a fairly large Cook’s D (and large stu-
dentized residual), we repeat the analysis after deleting the 26th observation. A
summary of our results is shown in Table 7.4. We note:

i. The model results for the complete data and the reduced data (without case
26) are quite similar. The performance of each model improves somewhat if
the 26th observation is deleted.

ii. The model with D, S, NE, CT, PT, and N is the best in the 6 variable
category when all data are used. Best means largest adjusted R2, smallest
s2, and smallest AIC. Since these measures are related through monotone
functions, a model that is best on one is also best on the others. However,
the model with D, S, NE, CT, PT, and PR is best in this category
(R2 = 0.868, R2

adj = 0.835, s2 = 0.0231) if the 26th observation is deleted.

iii. The model with D, S, NE, CT, PT, and T2 seems to be a good competitor as
well.
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The results in Table 7.4 suggest that the gain (in terms of R2
adj or s2) is

very small for models with p = 6 over the model with p = 5 (D, S, NE, CT,
PT). Thus, we select, at least tentatively, this five-variable model. Residual plots
for this model do not indicate any systematic patterns. As indicated previously,
Cook’s D is somewhat large for case 26, which corresponds to the power plant
with the largest capacity (S).

7.2.2 Cp STATISTIC

Mallows’ C p statistic (see Mallows, 1973) is another useful summary statistic that
helps us choose among candidate models. The largest model that we can fit has
q regressors and (q + 1) parameters. Let us denote the mean square error from
this model by s2. We assume that the largest model gives an adequate description,
and hence E(s2) = σ 2.

Consider a candidate model with p regressors (p ≤ q) and (p + 1) parameters
written as y = X1β1 + ε where X1 contains 1 (the column of ones) and the p
regressor vectors. If this smaller model is already adequate, then

SSEp

σ 2
∼ χ2

n−p−1

Hence,

E(SSEp) = (n − p − 1)σ 2 and E

(
SSEp

n − p − 1

)
= σ 2

The mean square error from this model, SSEp/(n − p − 1), is an unbiased esti-
mator of σ 2 only if the model is adequate. If it is not, the mean square error is
inflated. That is, E(SSEp) > (n − p − 1)σ 2 and E(SSEp/n − p − 1) > σ 2.

The C p statistic for a model with p regressor variables and (p + 1) parameters
is defined as

C p = SSEp

s2
− [n − 2(p + 1)] (7.5)

What happens to this measure if the candidate model is adequate? In this case,
SSEp is an estimate of (n − p − 1)σ 2, s2 is also an estimate of σ 2, and C p is an

estimate of
(n − p − 1)σ 2

σ 2
− [n − 2(p + 1)] = p + 1. Hence,

E(C p) ∼= p + 1 (7.6)

The approximation (instead of strict equality) arises because the expected value
of a ratio is not exactly equal to the ratio of the expectations.

On the other hand, for a candidate model that is not yet large enough to be ad-
equate, E(SSEp) > (n − p − 1)σ 2, and the C p statistic will be larger than p + 1.

This result suggests the following strategy: Calculate the C p statistic for each
candidate model. This gives us q values for C1; q(q − 1)/2 values for C2; . . . ; 1
value for Cq . Within each group of p variables we prefer low values of C p because
this indicates low bias. We graph C p against p + 1, the number of parameters, and
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add a line through the points (0,0) and (q + 1, q + 1). Note that for the largest
model with q regressors, Cq = q + 1. We search for the simplest model (with
smallest p) that gives us an acceptable model; that is, we search for a C p value
close to p + 1 (close to the line). Good candidate models are those with few
variables and C p

∼= p + 1. Once we have found such a model, there is no need to
employ a more complicated model that involves more than p variables.

Example: Power Plant Data
The C p statistics for all possible models in the power plant example [with y =
ln(C) as the response] are shown in Table 7.3 . Only the four models with lowest
C p values are shown in each category. A C p plot is given in Figure 7.2. The
following models seem to be good candidates for a final model, and their C p

values are shown as follows:

p + 1 C p Variables

6 6.06 D S NE CT PT
7 5.97 D S NE CT PT N
7 6.98 D S NE CT PT T2

The two six-variable models (with seven parameters) are essentially the same,
except that one contains N and the other T2. Both models contain the regressors
D, S, NE, CT, PT of the best five-variable model. The model with p = 5 gives
a very acceptable C p statistic; the value 6.06 is very close to p + 1 = 6. Smaller
models with p ≤ 4 are not acceptable; the best model with four regressors gives
C4 = 7.29, which is quite a bit larger than 4 + 1 = 5. Hence, it appears worthwhile
to consider a model with five regressors. However, should we use a model with six
regressors? The C p analysis indicates that this is not necessary. Alternatively, one

2 3 4 5 6 7 8 9 10 11

0

5
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15

Number of parameters p + 1

C
p

Model with
D,S,NE,PT

Model with
D,S,NE,CT,PT

FIGURE 7.2
Cp Plot for Power
Plant Data
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TABLE 7.5 SUMMARY OF FINAL MODEL WITH AND
WITHOUT CASES 19 AND 26

All Data 26 out 19 out 19, 26 out

s2 0.029 0.025 0.022 0.019
Intercept −5.40 −8.74 −5.17 −7.91
D 0.156 0.203 0.154 0.192
S 0.00087 0.00098 0.00075 0.00085
NE 0.197 0.174 0.223 0.202
CT 0.115 0.164 0.146 0.184
PT −0.348 −0.297 −0.314 −0.276

TABLE 7.6 C p RESULTS OF FOUR MODELS WITH AND WITHOUT CASES 19
AND 26

Variables in p + 1 All Data 26 out 19 out 19, 26 out

D S NE CT PT 6 6.06a 8.64 3.60a 4.03a

D S NE CT PT N 7 5.97a 7.88 5.41 5.55
D S NE CT PT T2 7 6.98 10.00 4.71a 5.31a

D S NE CT PR N 7 7.75 7.44a >11.00 5.77

a best of its size.

can check whether the coefficients for the added regressor N (or regressor T2)
are significant. In this case, we find that they are not.

Here, everything has gone well. Too well you might say. All procedures have
led to essentially the same five-variable model. As a final check, we examine
a complete analysis of the five-variable model. The results are summarized in
Table 7.5.

Cases 26 and 19 have elevated studentized residuals and Cook’s D. Plant 26
has an unusually high cost (y) and also the largest capacity (S); plant 19 has the
largest cost. Case 26 also has the largest leverage, 0.425. To examine the effects
of deleting one or both of these cases, we refit the model three more times. The
results are shown in Table 7.5.

No unduly large residuals or high leverage points can be found after omitting
cases 19 and 26. Repeating the regressions for the four previous models, on each
of the four data sets, leads to the C p values shown in Table 7.6.

Note that if we decide to delete observation 26 alone, we might derive a
different final model with PR and N included but PT omitted. In fitting this
model, we find that there is strong evidence that all of the β’s differ from 0 except
for PR (probability value = 0.09).

7.2.3 PRESS STATISTIC

In chapter 6, we defined PRESS residuals as

e(i) = yi − ŷ(i), i = 1, 2, . . . , n (7.7)
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where ŷ(i) = x′
i β̂(i) is the prediction of yi that is calculated with the least squares

estimate resulting from the data set that does not include the i th case. The sum of
these squared residuals is taken as the PRESS model selection criterion,

PRESSp =
n∑

i=1

e2
(i) =

n∑
i=1

(
ei

1 − hii

)2

(7.8)

using the result in Eq. (6.22) of Chapter 6, e(i) = ei

1 − hii
. We can express the

measure as a function of the ordinary residuals, ei , and the leverages, hii, of the
original regression. Models with smaller PRESS statistics are preferred.

Example: Power Plant Data Continued
We show the PRESS statistics for four models considered previously:

Variables PRESS Statistic

All 10 Variables 1.5175
D, S, NE, CT, PT 1.1631
D, S, NE, CT, PT, N 1.2168
D, S, NE, CT, PT, T2 1.2664

Again, the model with the five variables D, S, NE, CT, PT surfaces as our best
choice. Models with more than five variables inflate the prediction errors.

7.3 AUTOMATIC METHODS
Ideally, one would like to devise an automatic model selection procedure that
determines the best model from a list of q potential covariates. Three procedures
are described in this section.

7.3.1 FORWARD SELECTION

The algorithm starts with the simplest model and adds variables as necessary. The
algorithm proceeds as follows:

1. Fit the q models with a single covariate, y = β0 + β1vk + ε, k = 1, . . . , q.
Set x1 = vk , where vk is the variable that has the most significant regression
coefficient. We look at the t ratio for testing β1 = 0 or, equivalently, at the
Fstatistic. If the most significant regressor is not significant enough (i.e.,
its probability value is larger than a preset significance level α), the
algorithm stops. There is no need to include any of the variables, and the
model that includes just the constant is appropriate. If the smallest
probability value is smaller than the preset α, we include this variable in the
model and go to Step 2.
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2. Lock in the covariate you have found in step 1, and repeat the procedure in
step 1 with models that include two regressors,

y = β0 + β1x1 + β2vk + ε, k = 1, . . . , q, vk �= x1

Set x2 = vk , where vk is the variable that is most significant. We establish
significance by looking at the partial t test of β2 = 0 (or, equivalently, the
partial F test that compares the full model with the restricted one found in
step 1). If the probability value associated with the partial test is larger than
the preset α, the procedure stops. If it is smaller than α, the variable vk is
added to the model.

3. Continue this algorithm until no remaining vk generates a probability value
that is smaller than the preset significance level α.

With this algorithm, once a variable enters the model it remains in the model.
One has to specify the significance level α. Values such as 0.05 and 0.10 are
typically used. One refers to it as “alpha to enter.”

Example: Power Plant Data
The following output summarizes the results of forward selection on the nuclear
power plant data. Here, we use the full data set in Table 7.1 (n = 32) and consider
y = ln(C) as the response.

Case 1: Preset Significance Level α= 0.5 Note that such α = 0.5 is quite large,
certainly larger than the commonly used values 0.05 or 0.10. It will make it very
easy for variables to enter, and once variables enter, they never leave. The variables
enter in the order PT, S, D, NE, CT, N , BW, PR, and T2. The final model with
nine regressors gives the results shown in Table 7.7.

TABLE 7.7 FINAL MODEL: FORWARD SELECTION, α= 0.5

Source df Sum of Squares Mean Square F

Model 9 3.822 0.425 15.42
Error 22 0.606 0.028

Estimated Probability Value
Variable Coefficient for Testing βi = 0

PT −0.216 0.0982
S 0.0008 0.0001
D 0.243 0.0002
NE 0.261 0.0028
CT 0.114 0.1097
N −0.012 0.1240
BW 0.026 0.7834
PR −0.103 0.2059
T2 0.0054 0.2335
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TABLE 7.8 FINAL MODEL: FORWARD SELECTION, α= 0.15

Source df Sum of Squares Mean Square F

Model 5 3.678 0.736 25.50
Error 26 0.750 0.029

Estimated Probability Value
Variable Coefficient for Testing βi = 0

PT −0.347 0.0013
S 0.0008 0.0001
D 0.156 0.0002
NE 0.197 0.0113
CT 0.115 0.0839

Note that many partial t tests in the final model are not significant. This model
includes too many covariates; this is a consequence of the very large α.

Case 2: Preset Significance Level α= 0.15 Setting α = 0.15 leads to a simpler
model with fewer covariates. They are included in order PT, S, D, NE, and CT.
The final model is shown in Table 7.8.

i. From these two cases, we learn that the preset significance level α matters a
great deal. A large preset significance level α leads to large models with
many regressor variables. Consequently, one does not want an α that is too
large because this would lead to many unnecessary variables. The
probability values in the output of Table 7.7 show that several variables
could be omitted. On the other hand, α should not be too small because this
would make it too difficult for a regressor to enter the model. Values such as
α = 0.10 and α = 0.05 are good compromises.

ii. The estimated coefficients and the probability values for the hypothesis
βi = 0 in the two models are different. For example, the probability value
for PT in case 1 is 0.0982, whereas it is 0.0013 in case 2. This is because
these tests are partial tests and the two sets of regressor variables in the
models are not the same.

iii. In Table 7.7 (preset value = 0.5), the probability value for N at the final
stage is 0.12. However, at the sixth iteration when N was considered for
entry, the probability value was not 0.12; in fact, it was some value larger
than 0.15 but less than 0.5. Thus, it entered the model in case 1. Note that N
did not enter the model in case 2 since the probability value at that stage
was larger than the preset value 0.15.

7.3.2 BACKWARD ELIMINATION

1. Start by fitting the very largest model

y = β0 + β1v1 + · · · + βqvq + ε
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Consider dropping the variable vk , which has the least significant
regression coefficient. Calculate the partial t tests (or partial F tests), and
determine the coefficient with the smallest t ratio and largest probability
value. If this probability value is smaller than some preset significance
level, then you cannot simplify the model further and you stop the
algorithm. If it is larger than the preset α, you omit this regressor from the
model and go to step 2.

2. Repeat the procedure in step 1 with the simplified model. That is, fit the
model that does not include the dropped vk ,

y = β0 + β1v1 + · · · + βk−1vk−1 + βk+1vk+1 + · · · + βqvq + ε

Find the least significant regression coefficient. If the probability value of
this coefficient is smaller than a preset α, then you stop because you cannot
simplify the model further. If the probability value is larger, you remove this
variable from the model and continue until the maximum probability value
for any variable left in the model is less than the preset value.

With this method, once a variable is omitted from the model it does not
reenter. The preset significance level is called the “alpha to drop.”

Example: Power Plant Data Continued
We use the preset significance level α = 0.10. Here, the variables leave in the
order T1, BW, PR, T2, and N, to produce a model that includes PT, S, D, NE, and
CT. Using this model, we get the same final model results as in Table 7.8.

In general, the forward selection and backward elimination procedures need
not lead to the same model. The outcomes from these procedures depend on the
preset significance values. In the power plant example, forward selection with a
preset significance level, α to enter = 0.15, and the backward elimination with
an α to drop of 0.10 (or 0.15) lead to the same set of variables.

7.3.3 STEPWISE REGRESSION

This method combines forward selection and backward elimination.

1. Start as in forward selection using the specified significance level α to enter.

2. At each stage, once a variable has been included in the model, check all
other variables in this model for their partial significance. Remove the least
significant regressor variable for which the probability value for testing the
hypothesis βk = 0 is greater than the preset significance level α to drop.

3. Continue until no variables can be added and none removed, according to
the specified criteria.

In this procedure, a variable may enter and leave the model several times
during the execution of the algorithm. The procedure depends on the two alphas.
The most commonly used values for the preset significance levels are between
0.15 and 0.05.
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Example: Power Plant Data Continued
We use preset significance levels α to enter = 0.15 and α to drop = 0.15. The
procedure terminates with PT, S, D, NE, and CT. In fact, no variables were
removed along the way. The model summary is identical to the one in Table 7.8.

This example shows these procedures at their best. All three algorithms lead
to the same conclusion: a model that involves the five explanatory variables PT,
S, D, NE, and CT. However, we have previously seen that several other quite
reasonable models describe the data equally well but involve other variables.

All “automatic” algorithms should be used with caution. In situations in
which there is an appreciable degree of multicollinearity among the explanatory
variables, the three methods may lead to quite different final models. In such
situations, it is preferable to examine all possible regressions because such an
analysis can show that several different models perform quite similarly (in terms
of R2, s2, C p).

Most observational studies will have some degree of multicollinearity. Hence,
one should be cautious with automatic model selection procedures.

EXERCISES
7.1. In an experiment involving one dependent

variable (y) and four explanatory variables
x1, x2, x3, and x4, all possible regressions are
fit to a data set consisting of n = 13 cases. A
constant term is routinely included in all
models. The results are summarized as
follows:

Regressors Residual Sum
in Model of Squares

None 4,073.6
x1 1,898.5
x2 1,359.5
x3 2,909.1
x4 1,325.8
x1, x2 86.9
x1, x3 1,840.6
x1, x4 112.1
x2, x3 623.1
x2, x4 1,303.3
x3, x4 263.6
x1, x2, x3 72.2
x1, x2, x4 72.0
x1, x3, x4 76.2
x2, x3, x4 110.7
x1, x2, x3, x4 71.8

a. What model will result from automatic
backward elimination with significance
level (α to drop) 0.05?

b. What model will result from automatic
forward selection with a significance level
(α to enter) 0.1?

c. What model will result from automatic
stepwise regression with significance
levels α to enter = α to drop = 0.1?

d. Compare the value of the C p statistic for
the model you found in (a) with that of the
model that includes all four x’s.

e. In the one-variable models, x2 and x4 seem
to be important. However, the model with
x1 and x2 and the model with x1 and x4 are
the best in the two-variable group, and not
the model with x2 and x4. Explain.

f. Consider the regression model with the
variables x1, x2, x3, and x4. Test the
hypothesis β1 = β3 = 0.

7.2. Consider the data given in the file hald. It
contains the variables y, x1, x2, x3, x4.

a. For each of the following criteria, indicate
which set of independent variables is best
for predicting y.
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i. R2

ii. C p

b. Using (i) backward elimination,
(ii) forward selection, and (iii) stepwise
regression, find the best sets of
independent variables.

7.3. A company studies its marketing and
production processes in order to better predict
production overhead costs (y1), direct
production costs (y2), and marketing costs
(y3). It selects as predictor variables direct
labor input (x1), production quantity (x2),
sales quantity (x3), and the change in
production from the last period (x4). Data on
these variables for the past 15 months are in
the file market.

a. For each of the three response variables,
select the best model(s) for prediction. Do
these models change with the selected
response variable?

b. Assess which of the input factors are most
important for influencing (i) overhead
costs and (ii) direct production costs.

7.4. Explain why the following statements are
true or false.

a. All criteria for the selection of the best
regression equation lead to the same set of
regressor variables.

b. Addition of a variable to a regression
equation does not decrease R2.

c. Addition of a variable to a regression
model always decreases the residual mean
square.

7.5. The data are taken from Woodley, W. L.,
Biondini, R., and Berkeley, J. Rainfall results
1970–75: Florida Area Cumulus Experiment.
Science, 195, 735–742; 1977. The data are
given in the file rainseeding.

These particular data come from an
experiment during the summer of 1975 that
investigated the usefulness of silver iodide to
increase rainfall. Experiments were carried
out on 24 days that were judged suitable for
seeding. Suitability was judged on the basis
of a suitability criterion (SC) that had to be at

least 1.5 (with larger values indicating better
suitability). On each day, the decision to seed
or not to seed was made at random (A = 1 if
seeding occurred; A = 0 if no seeding). The
response is the amount of rain (in cubic
meters ×107) that fell on the target area during
a 6-hr period during that day. In addition, the
data set includes the following covariates:

� Time: Number of days after the first day of
the experiment (June 1, 1975)

� Echo coverage: The percentage cloud
cover in the experimental area, determined
from radar measurements

� Echo motion: An indicator whether the
radar echo was moving (1) or stationary (2)

� Prewetness: The total rainfall in the target
area 1 hr before seeding (in cubic meters ×
107)

Investigate appropriate models that relate
the amount of rainfall to the explanatory
variables. Use model selection procedures

Seeding Suitability Echo Echo Pre- y =
Action Time Criterion Coverage Motion wetness Rainfall

0 0 1.75 13.4 2 0.274 12.85
1 1 2.70 37.9 1 1.267 5.52
1 3 4.10 3.9 2 0.198 6.29
0 4 2.35 5.3 1 0.526 6.11
1 6 4.25 7.1 1 0.250 2.45
0 9 1.60 6.9 2 0.018 3.61
0 18 1.30 4.6 1 0.307 0.47
0 25 3.35 4.9 1 0.194 4.56
0 27 2.85 12.1 1 0.751 6.35
1 28 2.20 5.2 1 0.084 5.06
1 29 4.40 4.1 1 0.236 2.76
1 32 3.10 2.8 1 0.214 4.05
0 33 3.95 6.8 1 0.796 5.74
1 35 2.90 3.0 1 0.124 4.84
1 38 2.05 7.0 1 0.144 11.86
0 39 4.00 11.3 1 0.398 4.45
0 53 3.35 4.2 2 0.237 3.66
1 55 3.70 3.3 1 0.960 4.22
0 56 3.80 2.2 1 0.230 1.16
1 59 3.40 6.5 2 0.142 5.45
1 65 3.15 3.1 1 0.073 2.02
0 68 3.15 2.6 1 0.136 0.82
1 82 4.01 8.3 1 0.123 1.09
0 83 4.65 7.4 1 0.168 0.28
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(all possible regressions, backward
elimination and stepwise regression). Assess
the effectiveness of cloud seeding, after
having adjusted your analysis for important
covariates. Check for unusual cases, and
determine the sensitivity of your results to
these cases.

7.6. The data are taken from Vandaele, W.
Participation in illegitimate activities: Erlich
revisited. In: Deterrence and Incapacitation
(Blumstein, A., Cohen, J., and Nagin, D.,
Eds.,). Washington, DC: National Academy
of Sciences, pp. 270–335, 1978. The data are
given in the file crimerate.

Data on crime-related statistics for 47 U.S.
states in 1960 are given. The data set includes

� Crime rate: Number of offenses known to
police per 1,000,000 population

� Age: Age distribution—Number of males
aged 14–24 per 1,000 of total state
population

� S: Binary variable distinguishing
southern states (1) from the rest of the
states

� Ed: Mean number of years of schooling x
10 of the population, 25 years or older

� PE: Police expenditures—Per capita
expenditure on police protection by state
and local government in 1960

� PE-1: Police expenditures—Per capita
expenditure on police protection by state
and local government in 1959

� LF: Labor force participation rate per
1,000 civilian urban males in the age
group 14–24

� M : The number of males per 1,000
females

� Pop: The state population size in 100,000
� NW: The number of nonwhites per 1,000
� UE1: Unemployment rate of urban males

per 1,000 in the age group 14–24
� UE2: Unemployment rate of urban males

per 1,000 in the age group 35–39

� Wealth: Median value of transferable
goods and assets or family income (units
10 dollars)

� IncIneq: Income inequality—Number of
families per 1,000 earning below one-half
of the median income

Crime Inc
Rate Age S Ed PE PE-1 LF M Pop NW UE1 UE2 Wealth Ineq

79.1 151 1 91 58 56 510 950 33 301 108 41 394 261
163.5 143 0 113 103 95 583 1,012 13 102 96 36 557 194
57.8 142 1 89 45 44 533 969 18 219 94 33 318 250

196.9 136 0 121 149 141 577 994 157 80 102 39 673 167
123.4 141 0 121 109 101 591 985 18 30 91 20 578 174
68.2 121 0 110 118 115 547 964 25 44 84 29 689 126
96.3 127 1 111 82 79 519 982 4 139 97 38 620 168

155.5 131 1 109 115 109 542 969 50 179 79 35 472 206
85.6 157 1 90 65 62 553 955 39 286 81 28 421 239
70.5 140 0 118 71 68 632 1,029 7 15 100 24 526 174

167.4 124 0 105 121 116 580 966 101 106 77 35 657 170
84.9 134 0 108 75 71 595 972 47 59 83 31 580 172
51.1 128 0 113 67 60 624 972 28 10 77 25 507 206
66.4 135 0 117 62 61 595 986 22 46 77 27 529 190
79.8 152 1 87 57 53 530 986 30 72 92 43 405 264
94.6 142 1 88 81 77 497 956 33 321 116 47 427 247
53.9 143 0 110 66 63 537 977 10 6 114 35 487 166
92.9 135 1 104 123 115 537 978 31 170 89 34 631 165
75.0 130 0 116 128 128 536 934 51 24 78 34 627 135

122.5 125 0 108 113 105 567 985 78 94 130 58 626 166
74.2 126 0 108 74 67 602 984 34 12 102 33 557 195
43.9 157 1 89 47 44 512 962 22 423 97 34 288 276

121.6 132 0 96 87 83 564 953 43 92 83 32 513 227
96.8 131 0 116 78 73 574 1,038 7 36 142 42 540 176
52.3 130 0 116 63 57 641 984 14 26 70 21 486 196

199.3 131 0 121 160 143 631 1,071 3 77 102 41 674 152
34.2 135 0 109 69 71 540 965 6 4 80 22 564 139

121.6 152 0 112 82 76 571 1,018 10 79 103 28 537 215
104.3 119 0 107 166 157 521 938 168 89 92 36 637 154
69.6 166 1 89 58 54 521 973 46 254 72 26 396 237
37.3 140 0 93 55 54 535 1,045 6 20 135 40 453 200
75.4 125 0 109 90 81 586 964 97 82 105 43 617 163

107.2 147 1 104 63 64 560 972 23 95 76 24 462 233
92.3 126 0 118 97 97 542 990 18 21 102 35 589 166
65.3 123 0 102 97 87 526 948 113 76 124 50 572 158

127.2 150 0 100 109 98 531 964 9 24 87 38 559 153
83.1 177 1 87 58 56 638 974 24 349 76 28 382 254
56.6 133 0 104 51 47 599 1,024 7 40 99 27 425 225
82.6 149 1 88 61 54 515 953 36 165 86 35 395 251

115.1 145 1 104 82 74 560 981 96 126 88 31 488 228
88.0 148 0 122 72 66 601 998 9 19 84 20 590 144
54.2 141 0 109 56 54 523 968 4 2 107 37 489 170
82.3 162 1 99 75 70 522 996 40 208 73 27 496 224

103.0 136 0 121 95 96 574 1,012 29 36 111 37 622 162
45.5 139 1 88 46 41 480 968 19 49 135 53 457 249
50.8 126 0 104 106 97 599 989 40 24 78 25 593 171
84.9 130 0 121 90 91 623 1,049 3 22 113 40 588 160
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Use model selection procedures (all
possible regressions and stepwise regression)
to find adequate models that relate the crime
rate to the explanatory variables. Check your
models (outliers and influential cases,
multicollinearity), and interpret the estimated
coefficients.

7.7. The data are taken from Brownlee, K. A.
Statistical Theory and Methodology in
Science and Engineering, 2nd ed. London:
Wiley, 1965. The data are given in the file
stackloss.

These data arise in the production of nitric
acid in the process of oxidizing ammonia.
The response variable, stack loss, is the
percentage of the ingoing ammonia that
escapes unabsorbed. Key process variables
are the airflow, the cooling water inlet
temperature (in degrees C), and the acid
concentration (in percent).

Construct a regression model that relates
the three predictor variables to the response,
stack loss. Check the adequacy of the fitted
model.

Air Cooling Acid y = Stack
Flow Temp Percent Loss

80 27 58.9 4.2
80 27 58.8 3.7
75 25 59.0 3.7
62 24 58.7 2.8
62 22 58.7 1.8
62 23 58.7 1.8
62 24 59.3 1.9
62 24 59.3 2.0
58 23 58.7 1.5
58 18 58.0 1.4
58 18 58.9 1.4
58 17 58.8 1.3
58 18 58.2 1.1
58 19 59.3 1.2
50 18 58.9 0.8
50 18 58.6 0.7
50 19 57.2 0.8
50 19 57.9 0.8
50 20 58.0 0.9
56 20 58.2 1.5
70 20 59.1 1.5

7.8. The data are taken from a study by Gorman,
J. W., and Toman, R. J. Selection of variables
for fitting equations to data. Technometrics, 8,
27–51, 1966. The article also gives a detailed
description of the experiment. The data are
given in the file asphalt.

Data on pavement durability are given
here. We list measurements on the change in
rut depth (y) of 31 experimental asphalt
pavements that were prepared under different
conditions, as specified by the levels of the
following five design variables: viscosity of
the asphalt, percentage of asphalt in the

% % % %
y = Change Asphalt Asphalt Fines Voids Run
in Rut Depth Viscosity Surface Base Surface Surface Indicator

6.75 2.80 4.68 4.87 8.4 4.916 −1
13.00 1.40 5.19 4.50 6.5 4.563 −1
14.75 1.40 4.82 4.73 7.9 5.321 −1
12.60 3.30 4.85 4.76 8.3 4.865 −1
8.25 1.70 4.86 4.95 8.4 3.776 −1

10.67 2.90 5.16 4.45 7.4 4.397 −1
7.28 3.70 4.82 5.05 6.8 4.867 −1

12.67 1.70 4.86 4.70 8.6 4.828 −1
12.58 0.92 4.76 4.84 6.7 4.865 −1
20.60 0.68 5.16 4.76 7.7 4.034 −1
3.58 6.00 4.57 4.82 7.4 5.450 −1
7.00 4.30 4.61 4.65 6.7 4.853 −1

26.20 0.60 5.07 5.10 7.5 4.257 −1
11.67 1.80 4.66 5.09 8.2 5.144 −1
7.67 6.00 5.42 4.41 5.8 3.718 −1

12.25 4.40 5.01 4.74 7.1 4.715 −1
0.76 88.00 4.97 4.66 6.5 4.625 1
1.35 62.00 5.01 4.72 8.0 4.977 1
1.44 50.00 4.96 4.90 6.8 4.322 1
1.60 58.00 5.20 4.70 8.2 5.087 1
1.10 90.00 4.80 4.60 6.6 5.971 1
0.85 66.00 4.98 4.69 6.4 4.647 1
1.20 140.00 5.35 4.76 7.3 5.115 1
0.56 240.00 5.04 4.80 7.8 5.939 1
0.72 420.00 4.80 4.80 7.4 5.916 1
0.47 500.00 4.83 4.60 6.7 5.471 1
0.33 180.00 4.66 4.72 7.2 4.602 1
0.26 270.00 4.67 4.50 6.3 5.043 1
0.76 170.00 4.72 4.70 6.8 5.075 1
0.80 98.00 5.00 5.07 7.2 4.334 1
2.00 35.00 4.70 4.80 7.7 5.705 1

surface course, percentage of asphalt in the
base course, percentage of fines in the surface
course, and percentage of voids in the surface
course. The last variable is an indicator
variable that separates the results of 16
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pavements tested in one set of runs from 15
tested in the second run. Note that asphalt
viscosity is considerably higher in the second
set of runs.

An objective of the experiment was to
determine the important factors that affect the
change in rut depth. Develop a regression
model that explains the change in rut depth as
a function of the explanatory variables.
Check the adequacy of the model and
interpret the model results.

7.9. The data, taken from H. Strasser (Vienna
University of Economics and Business
Administration, 2003), include information
on 109 Austrian school children.
Measurements on the following variables
were taken: gender (0, male; 1, female), age
(in months), IQ, Math1 (assessing
mathematics computation), Math2 (assessing
mathematics problem solving), Read1
(assessing reading speed), Read2 (assessing
reading comprehension). Data for the first
five children are given below; the complete
data set is given in the file achievement.

Gender Age IQ Math1 Math2 Read1 Read2

1 121 99 12 11 27 17
0 124 83 13 4 12 15
1 103 117 5 8 30 26
1 127 83 8 6 30 12
0 115 109 7 4 26 27
. . . . . .

Analyze the information. Explore
relationships among the various scores.
Discuss whether age, gender, and IQ are
important predictors of mathematics and
reading abilities.

7.10. The data are taken from Kieschnick, R., and
McCullough, B. D. Regression analysis of
variates observed on (0,1): Percentages,
proportions, and fractions. Statistical
Modelling: An International Journal, 3,
193–213, 2003. The data are given in the file
election 2000.

The dependent variable is the fraction of a
state’s total counted vote that was for
President George Bush in the 2000
presidential election. Independent variables
include the unemployment rate, the total
population, the proportion of males, the
proportion of males older than 18 years, the
proportion of the population older than 65
years, the proportion of the rural (nonmetro)
population, the proportion of the population
below the poverty rate, the total number of
households, and the proportion of households
earning more than $50,000, $75,000, or
$100,000.

Develop appropriate regression models
(using all possible regressions and stepwise
regression) and check their adequacy. Pay
particular attention to checking the model
assumptions.
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8 Case Studies
in Linear Regression

In this chapter, we apply what we have learned about regression to the analysis
of several data sets. We have selected one project on the educational achievement
of Iowa students. One project deals with the price of Bordeaux wine, whereas
another tries to predict the auction price of livestock. A fourth project addresses
the prediction of U.S. presidential elections. The scope of these projects is broad
enough so that we can illustrate various aspects of regression modeling, including
model selection, model estimation, and diagnostic checking. Although we do not
cover all details, we give the reader suggestions of what other analyses one could
try. We conclude the chapter by presenting guidelines and examples of reader-
driven projects in which students of this text select the projects and collect their
own data for analysis.

8.1 EDUCATIONAL ACHIEVEMENT OF IOWA STUDENTS
Data on average test scores for 325 school districts in the State of Iowa are given
in the file iowastudent. The data set from the 2000–2001 school year includes
average scores on the mathematics, reading, and science portions of the Iowa Test
of Basic Skills for grades 4, 8, and 11. These tests are administered each year to
monitor the progress of Iowa students. The data set also includes information on
the size of the school district (number of students in the district), average teacher
salary (in $), and average teacher experience (in years).

Here, we address two types of issues:

1. Achievement issues: How are test scores related across fields (math,
reading, and science), how are achievements related across grades (4th, 8th,
and 11th grade), and how are test scores related to the size of the district?

2. Salary issues: Do teacher salaries depend on the size of the district and
teacher experience?
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TABLE 8.1 PAIRWISE CORRELATION COEFFICIENTS: IOWA EDUCATIONAL ACHIEVEMENT

Correlations among math, reading, and science scores at various grades

4th math 8th math 11th math 4th read 8th read 11th read 8th sci
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
8th math 0.415

11th math 0.256 0.290
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4th read 0.663 0.378 0.232
8th read 0.369 0.691 0.260 0.386
11th read 0.238 0.340 0.616 0.241 0.327
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
8th sci 0.188 0.521 0.186 0.240 0.530 0.274

11th sci 0.199 0.230 0.462 0.219 0.269 0.646 0.312

Correlations among discipline averages (averaged over years)

Math avg Read avg
Read avg 0.773
Sci avg 0.494 0.617

Correlations among grade averages (averaged over disciplines)

4th avg 8th avg
8th avg 0.385

11th avg 0.318 0.385

8.1.1 ANALYSIS OF ACHIEVEMENT SCORES

Pairwise correlations among math, reading, and science scores for 4th, 8th, and
11th graders are listed in Table 8.1. Scatter plots are not shown here, but you can
check that the relationships in most graphs are well described by linear models.
Correlations that exceed 0.60 are set in bold type. Reading and math scores at all
three grade levels and grade 11 reading and science scores are correlated most
strongly. School districts that score high in reading tend to score high on math
also, indicating that “good” school districts tend to be good in both areas.

Correlations of test scores across grades are also shown in Table 8.1. Although
it is true that test scores are correlated across grades, the correlation across grades
is considerably weaker than the correlation across disciplines.

Are test scores related to the size of the district? In the following analysis,
we divide school districts into three size groups: large districts (more than 2,000
students), medium-sized districts (between 1,000 and 2,000 students), and small
districts (less than 1,000 students).

We use the one-way classification analysis of variance (ANOVA) model in
Section 5.3 with average district test score as response and three parameters to
represent the mean scores of the three groups. That is,

yi = µ1xi1 + µ2xi2 + µ3xi3 + εi = β0 + β1xi2 + β2xi3 + εi (8.1)
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where xi1, xi2, xi3 are indicator variables that are one if an observation comes
from a small, medium, or large district; see the discussion in Chapter 5. The
model can be parameterized without an intercept and three parameters µ1, µ2,
and µ3, which are the means of the three groups, or it can be written as a regression
model with an intercept and two parameters that relate the size effects to group 1;
that is, β0 = µ1, β1 = µ2 − µ1, and β2 = µ3 − µ1.

The results are given in Table 8.2. For 4th and 8th grades there is little support
for size differences among the test scores. However, there is strong evidence that
test scores for 11th graders increase with the size of the district. Large school

TABLE 8.2 ANOVA FOR EDUCATIONAL ACHIEVEMENT SCORES AND SIZE
OF THE SCHOOL DISTRICT. MINITAB OUTPUT

ANOVA: 4thgrade averages

Analysis of Variance for 4th average
Source DF SS MS F P
Size 2 151.2 75.6 0.76 0.467
Error 319 31597.9 99.1
Total 321 31749.2

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev -+---------+---------+---------+-----
small 222 71.092 10.124 (----*-----)
medium 67 69.716 9.893 (---------*--------)
large 33 72.121 8.817 (------------*-------------)

-+---------+---------+---------+-----
Pooled StDev = 9.953 67.5 70.0 72.5 75.0

ANOVA: 8thgrade averages

Analysis of Variance for 8th average
Source DF SS MS F P
Size 2 53.7 26.8 0.40 0.671
Error 261 17525.2 67.1
Total 263 17578.9

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev ---+---------+---------+---------+---
small 178 73.623 8.417 (-----*-----)
medium 55 73.576 7.329 (----------*----------)
large 31 75.011 8.339 (-------------*--------------)

---+---------+---------+---------+---
Pooled StDev = 8.194 72.0 74.0 76.0 78.0

ANOVA: 11thgrade averages

Analysis of Variance for 11th average
Source DF SS MS F P
Size 2 838.7 419.3 4.28 0.015
Error 250 24489.1 98.0
Total 252 25327.8

(Continued )
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TABLE 8.2 (Continued)

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev ----------+---------+---------+------
small 167 73.608 10.729 (----*----)
medium 54 75.642 8.792 (--------*--------)
large 32 79.000 6.432 (----------*-----------)

----------+---------+---------+------
Pooled StDev = 9.897 75.0 78.0 81.0

ANOVA: 11thgrade math averages

Analysis of Variance for 11th math average
Source DF SS MS F P
Size 2 362.5 181.3 1.84 0.160
Error 314 30871.2 98.3
Total 316 31233.8

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev -----+---------+---------+---------+-
small 215 78.316 10.551 (----*-----)
medium 68 78.632 9.431 (---------*--------)
large 34 81.824 5.744 (------------*-------------)

-----+---------+---------+---------+-
Pooled StDev = 9.915 77.5 80.0 82.5 85.0

ANOVA: 11thgrade reading averages

Analysis of Variance for 11th reading average
Source DF SS MS F P
Size 2 1042 521 3.63 0.028
Error 310 44516 144
Total 312 45558

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev --+---------+---------+---------+----
small 212 71.12 13.05 (---*----)
medium 68 73.71 10.13 (--------*-------)
large 33 76.61 7.33 (-----------*-----------)

--+---------+---------+---------+----
Pooled StDev = 11.98 70.0 73.5 77.0 80.5

ANOVA: 11thgrade science averages

Analysis of Variance for 11th science average
Source DF SS MS F P
Size 2 963 482 2.64 0.073
Error 253 46183 183
Total 255 47146

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev --------+---------+---------+--------
small 169 72.85 14.54 (-----*-----)
medium 54 76.30 11.18 (---------*---------)
large 33 77.76 11.25 (------------*------------)

--------+---------+---------+--------
Pooled StDev = 13.51 73.5 77.0 80.5
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districts score significantly higher than small and medium-sized districts. The
test of H0: µ1 = µ2 = µ3, or β1 = β2 = 0, leads to the F statistic = 4.28 with
probability value 0.015. Examining 11th grade math, reading, and science scores
separately, we find that the size of the district matters most for achievement on
the reading portion of the test (F ratio = 3.63, probability value = 0.028). The
reason why 11th graders score higher in large districts may have to do with the
additional educational opportunities large districts can provide.

Table 8.2 lists the output from the one-way ANOVA command of the Minitab
statistical software package. Minitab refers to the square root of the mean square
error of the regression model in Eq. (8.1) as the pooled standard deviation. That is,

Pooled StDev =
√

SSE/dfError

where SSE is the error sum of squares, and dfError are its degrees of freedom. It
is an estimate of σ = √

V (εi ). The 95% confidence interval for the group mean
µi in this output is calculated from

ȳi ± t (0.975; dfError)
Pooled StDev√

ni

where ȳi is the sample mean of the ni observations in group i . These confidence
intervals are shown in Table 8.2 as dashed lines.

8.1.2 ANALYSIS OF TEACHER SALARIES

Let us consider the average teacher salary in the school district as the response var-
iable y. Does size of the school district matter? The box plots in Figure 8.1 show
that average salaries increase with size of the district, but that the variability

LargeMediumSmall

45,000

35,000

25,000

Size of school district

Sa
la

ry

FIGURE 8.1 Box plots of teacher salaries and size of the district. MINITAB uses Q1 − 1.5
(Q3 − Q1) and Q3 + 1.5 (Q3 − Q1) for the endpoints of the lower and upper whiskers; Q1 and
Q3 are the first and third quartiles. Observations beyond the endpoints of the whiskers are
considered outliers and are denoted by asterisks. A test for the equality of the variances of the
three groups was also considered but was found insignificant at the 0.05 significance level
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TABLE 8.3 ANOVA FOR AVERAGE TEACHER SALARY AND SIZE OF THE SCHOOL DISTRICT.
MINITAB OUTPUT

ANOVA: Salary versus size

Analysis of Variance for salary
Source DF SS MS F P
Size 2 1.475E+09 737470964 103.30 0.000
Error 322 2.299E+09 7138790
Total 324 3.774E+09

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev ---+---------+---------+---------+---
small 223 31799 2820 (-*-)
medium 68 35326 2249 (---*--)
large 34 37834 2425 (---*----)

---+---------+---------+---------+---
Pooled StDev = 2672 32000 34000 36000 38000

5 10 15 20
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45,000

Experience
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ry

FIGURE 8.2
Scatter Plot of
Teacher Salaries
against Teacher
Experience

(i.e., the width of the boxes) is approximately constant across the three size
groups. This is important because the regression (ANOVA) model in Eq. (8.1)
with average teacher salary as the response assumes constant error variance.

The results of the one-way ANOVA model in Eq. (8.1) for teacher salaries
and the three district size groups are given in Table 8.3. The results show quite
convincingly that teacher compensation increases with the size of the district. This
effect may have to do with the cost of living. Large school districts are mostly
located in urban settings, and it is more expensive to live in urban areas than in
small rural towns.

Does experience have an effect on salaries? One would expect that teach-
ers with more experience get paid more, and districts with larger average ex-
perience have higher average salaries. The scatter plot in Figure 8.2 confirms
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TABLE 8.4 REGRESSION OF AVERAGE TEACHER SALARY ON SIZE OF THE SCHOOL DISTRICT
AND TEACHER EXPERIENCE

The regression equation is
salary = 24450 + 631 experience + 3053 med size + 5522 large size

Predictor Coef SE Coef T P
Constant 24450.1 581.4 42.06 0.000
Experience 630.98 48.34 13.05 0.000
Medium 3052.8 301.8 10.11 0.000
Large 5522.4 400.1 13.80 0.000

S = 2163 R-Sq = 60.2% R-Sq(adj) = 59.8%

Analysis of Variance

Source DF SS MS F P
Regression 3 2271932689 757310896 161.88 0.000
Residual Error 321 1501699566 4678192
Total 324 3773632255

Diagnostics: Cases with large standardized residuals

Case School District Exper Size Salary Fit Residual
79 (Davies County) 16.34 medium 30051 37813 −7762

113 (Sioux Center) 11.82 small 41656 31908 9748
115 (Hudson) 11.63 small 41805 31788 10017
230 (Kingsley-Pierson) 12.31 small 40151 32217 7934
325 (Lineville-Clio) 10.72 small 23912 31214 −7302

this hypothesis. However, we already learned that size of the district matters.
Adding the size of the district to the model leads to the regression

yi = β0 + β1Experience + β2xi2 + β3xi3 + εi (8.2)

The indicators for size were explained previously. The small district group
becomes the reference in our comparison. The parameter β2 measures, for fixed
experience, the difference in the average salaries of medium-size and small school
districts. The parameter β3 measures, for fixed experience, the difference in aver-
age salaries of large and small school districts. The difference β3 − β2 measures,
for fixed experience, the difference in average salaries of large and medium-size
school districts. The parameter β1 measures, for given size of the school district,
the benefit of an additional year of experience on average pay.

The regression summary in Table 8.4 shows that there is approximately a
$3,000 difference in the average salaries of small and medium-size districts and
a $2,500 difference in the average salaries of medium-size and large districts.
Each additional year of experience “costs” the district (and earns the teachers)
approximately $630.

Leverages of six cases are larger than three times the average leverage, 0.037;
the largest leverage is 0.047. However, the largest Cook’s statistic (0.07569) is
rather unremarkable. The histogram of the standardized residuals in Figure 8.3
shows that there are several large residuals. The five cases with standardized
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Histogram of
Standardized
Residuals from the
Regression Model
(8.2)
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FIGURE 8.4
Scatter Plot of the
Residuals against
the Fitted Values,
Regression Model
(8.2)

residuals outside ±3 are listed in Table 8.4. The scatter plot of residuals against
fitted values in Figure 8.4 fails to reveal major problems with model (8.2).

8.1.3 CONCLUDING COMMENTS

The average test scores of a school district depend on many factors, such as

� the intellectual ability of the incoming students;
� the support students get from their parents; and
� the instruction that is provided by the school and the teachers.

Of course, all three factors are difficult to measure. One could try to get a mea-
sure of student “ability” such as an average intelligence score on the student
cohort that enters each district. However, because of the sensitive nature of such
data, it may be almost impossible to obtain this information. One could try to
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assess—through surveys—the role families play in student education. The aver-
age number of hours children are tutored or the number of extracurricular activities
students are exposed to could be used as proxies. Quality of instruction is very
difficult to measure. One could try to obtain proxies such as the average amount
of money a school district spends on each child.

Economic factors, such as the average income or the poverty rate of the
school district’s county, are often used to “explain” educational achievement.
Regression results will find strong relationships among test scores and poverty;
we already saw this in the example in Section 2.8. However, the mechanisms of the
relationship are unclear because wealth (or poverty) of a school district affects all
three factors listed previously. Economic conditions will attract smarter students
to certain school districts (by families moving into desirable areas), affect the
amount of outside help parents provide to their children, and impact the resources
the district can provide. A claim that good test scores are due to excellence in
instruction may be premature. The ability and composition of the student body
and the family support children receive also play a major role.

8.2 PREDICTING THE PRICE OF BORDEAUX WINE
The following data are discussed in Ashenfelter, Ashmore, and Lalonde (1995).
For additional discussion, see Barron’s (December 30, 1996, pp. 17–19) and
Chapter 6 of Fair (2002).

Traditionally, the quality of a Bordeaux vintage is first evaluated by experts
in March of the following year. These first ratings, however, are rather unreliable
because a 4-month old wine is a rather foul mixture of fermenting grape juice
and little like the magnificent stuff it can become years later. Wouldn’t it be
wonderful to be able to rate the quality (and hence predict the price) of the most
recent Bordeaux vintage immediately, compared to having to wait several months
before a first, and usually inaccurate, assessment of its quality can be made?

Price data are obtained from the London market, a main market for fine
wines. Price information from 1990–1991 auctions representing six chateaus
(Latour, Lafite, Cheval Blanc, Pichon-Lalande, Cos d’Estournel, and Montrose)
are averaged for each vintage, and the average price is expressed as a fraction of
the price of the 1961 vintage (which was truly outstanding).

The theory is that the quality of the wine, and hence vintage price, depends on
weather variables—such as the average temperature during the growing season
(April–September, in degrees centigrade), the amount of rain during the harvest
season (August and September, in total millimeters), and the amount of rain in
the preceding October–March period—and the age of the vintage. It is thought
that conditions for the vintage are best when the growing season is warm, August
and September are dry, and the previous winter was wet. Furthermore, because
of storage expenses older wines should cost more than younger ones.

Data for the years 1952–1980 are listed in Table 8.5. The 1962 price of 0.331
in column 2, for example, implies that the price of the 1962 vintage amounted to
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TABLE 8.5 PRICE AND GROWING CONDITIONS OF BORDEAUX WINE,
1952–1980a

Average Temperature, Rainfall, Rainfall Previous,
Price April–September August–September October–March Age

Vintage (1961 = 1) (◦C) (ml) (ml) (1983 = 0)

1952 0.368 17.12 160 600 31
1953 0.635 16.73 80 690 30
1954 * * * * 29
1955 0.446 17.15 130 502 28
1956 * * * * 27
1957 0.221 16.13 110 420 26
1958 0.180 16.42 187 582 25
1959 0.658 17.48 187 485 24
1960 0.139 16.42 290 763 23
1961 1.000 17.33 38 830 22
1962 0.331 16.30 52 697 21
1963 0.168 15.72 155 608 20
1964 0.306 17.27 96 402 19
1965 0.106 15.37 267 602 18
1966 0.473 16.53 86 819 17
1967 0.191 16.23 118 714 16
1968 0.105 16.20 292 610 15
1969 0.117 16.55 244 575 14
1970 0.404 16.67 89 622 13
1971 0.272 16.77 112 551 12
1972 0.101 14.98 158 536 11
1973 0.156 17.07 123 376 10
1974 0.111 16.30 184 574 9
1975 0.301 16.95 171 572 8
1976 0.253 17.65 247 418 7
1977 0.107 15.58 87 821 6
1978 0.270 15.82 51 763 5
1979 0.214 16.17 122 717 4
1980 0.136 16.00 74 578 3

a The data are stored in the file wine.

33.1% of the price of the 1961 vintage. The prices for the 1954 and 1956 vintages
are missing. Prices for these two vintages could not be established because the
1954 and 1956 vintages were poor and very little wine was sold.

Scatter diagrams of price against each of the four predictor variables suggest
that the relationship between price and these predictor variables is not linear
and that a logarithmic transformation of the response may be beneficial (these
graphs are not shown here; we encourage you to check this conclusion). Scatter
diagrams of the logarithm of price against the four predictor variables are shown in
Figures 8.5a–8.5d. The results of fitting the linear model

Ln(Price) = β0 + β1 Temp + β2 Rain + β3 PRain + β4 Age + ε (8.3)



Abraham Abraham˙C08 October 27, 2004 16:18

8.2 Predicting the Price of Bordeaux Wine 255

1817

(a)

1615

0

−1

−2

Temperature

L
n(

pr
ic

e)

300200

(b)

1000

0

−1

−2

Rainfall

L
n(

pr
ic

e)

FIGURE 8.5
Logarithm of Price
against
(a) Temperature,
(b) Rainfall,
(c) Previous Rain,
and (d) Age and
(e) Plot of Residuals
against Fitted
Values, Model (8.3)

850750650

(c)

550450350

0

−1

−2

Previous rain

L
n(

pr
ic

e)



Abraham Abraham˙C08 October 27, 2004 16:18

256 Case Studies in Linear Regression

3020

(d)

100

0

−1

−2

L
n(

pr
ic

e)

Age

0

(e)

−1−2

0.5

0.0

−0.5

Fitted values

R
es

id
ua

ls

FIGURE 8.5
(Continued)

are shown in Table 8.6. The coefficients have the anticipated signs and are statis-
tically significant, indicating that it is not possible to simplify the model. Back-
transformation of Eq. (8.3) through exponentiation shows that the regression
coefficients are related to percentage changes in price when changing covariates
by one unit. The positive coefficient on age (0.0239) implies that the average
price increases by 100(e0.0239 − 1) = 2.4% annually (assuming, of course, that
all other covariates are unchanged). The model in Eq. (8.3) explains about 83%
of the variation in the response. The plot of the residuals against the fitted values
in Figure 8.5e is rather unremarkable; it shows no gross violations of the fitted
model. Also, none of the leverages and none of the Cook’s distances are unusually
large; the largest residual (case 6 for 1959) barely exceeds 2 standard deviations.

The fitting results and the model diagnostics show that Eq. (8.3) represents a
fairly respectable model. The model lends support to the theory that the price of a



Abraham Abraham˙C08 October 27, 2004 16:18

8.2 Predicting the Price of Bordeaux Wine 257

TABLE 8.6 MINITAB REGRESSION OUTPUT OF MODEL (8.3)

Regression Analysis: Ln(Price) versus Temp, Rain, PRain, Age

The regression equation is
Ln(Price) = − 12.2 + 0.617 Temp − 0.00387 Rain + 0.00117 PRain + 0.0239 Age

Predictor Coef SE Coef T P
Constant −12.159 1.686 −7.21 0.000
Temp 0.61699 0.09502 6.49 0.000
Rain −0.0038659 0.0008062 −4.80 0.000
PRain 0.0011710 0.0004814 2.43 0.024
Age 0.023901 0.007155 3.34 0.003

S = 0.2861 R-Sq = 82.8% R-Sq(adj) = 79.7%

Analysis of Variance

Source DF SS MS F P
Regression 4 8.6795 2.1699 26.51 0.000
Residual Error 22 1.8004 0.0818
Total 26 10.4799

Unusual Observations
Obs Temp Ln(Price) Fit SE Fit Residual St Resid
6 17.5 −0.4186 −0.9550 0.1124 0.5364 2.04R

R denotes an observation with a large standardized residual

Bordeaux wine (i.e., its quality) depends on the growing conditions. Temperature
and last year’s rainfall are beneficial, whereas excess rain during the growing
season is detrimental. The costs of storing the wine are reflected in the positive
coefficient of age.

However, the real test is the model performance when using the model to
predict the prices for vintages that are not part of the sample data that were used
to construct the model. How successful is the regression approach in obtaining
out-of-sample predictions? Can we use the model to predict the price of a new
vintage?

Ray C. Fair, in his 2002 book Predicting Presidential Elections and Other
Things (Chapter 6), lists the growing conditions for the years 1987–1991. They
are given in Table 8.7. The age variable is a counting variable that is set at 0 in
1983, and hence its values for 1987 and beyond are negative. Note that it does not
matter which year is taken as 0 (here, 1983); in a linear model such as Eq. (8.3),
all that matters is that the variable changes by the same constant amount.

We use model (8.3) to get out-of-sample price predictions for 1987–1991.
Using the new growing conditions, we calculate

Ln(Price) = −12.159 + 0.617Temp − 0.00387Rain

+ 0.00117PRain + 0.0239Age



Abraham Abraham˙C08 October 27, 2004 16:18

258 Case Studies in Linear Regression

TABLE 8.7 GROWING CONDITIONS FOR THE PREDICTION SET, 1987–1991a

Average Previous Age Prediction Prediction Actual
Vintage Temperature Rainfall Rainfall (1983 = 0) for Ln(Price) for Price Price

1987 16.98 115 452 −4 −1.69301 0.184 0.135
1988 17.10 59 808 −5 −1.00952 0.364 0.271
1989 18.60 82 443 −6 −0.62425 0.536 0.432
1990 18.70 80 468 −7 −0.54945 0.578 0.568
1991 17.70 183 570 −8 −1.46909 0.230 0.142

a Predictions and actual prices are shown in columns 7 and 8.

and

Price = exp(−12.159 + 0.617Temp − 0.00387Rain

+ 0.00117PRain + 0.0239Age)

The predictions of price are given in column 7 of Table 8.7.
Fair also lists price information that he obtained from an East Coast wine

distributor. His data imply the following average prices for the 1961 and the
1987–1991 vintages: $258.33 (1961), $35.00 (1987), $70.00 (1988), $111.67
(1989), $146.67 (1990), and $36.67 (1991). From these numbers, he calcu-
lates the price of the 1987–1991 vintages relative to 1961 as 35.00/258.33 =
0.135, 70.00/258.33 = 0.271, 111.67/258.33 = 0.432, 146.67/258.33 = 0.568,

and 36.67/258.33 = 0.142, respectively. These are the entries in the last col-
umn of Table 8.7. A comparison of the last two columns in this table addresses
the accuracy of the out-of-sample predictions. The model is correct in identifying
the worst vintage (1987) and the best vintage (1990). In fact, it ranks the prices
on all five vintages correctly. One can calculate percentage absolute errors, such
as 100(0.184 – 0.135)/0.135 = 36.3% for 1987. The mean absolute percentage
error for the five periods is approximately 32%.

8.3 FACTORS INFLUENCING THE AUCTION
PRICE OF IOWA COWS

Table 8.8 lists the results of livestock sales by Wapello Livestock Sales in Wapello,
Iowa. This data set is part of a 2001 student project by Jay Heindel at the University
of Iowa. It contains the selling price of a cow as well as various characteristics of
the animal that is sold. We have also listed an explanation of how these factors can
be expected to influence the price. A random sample of 115 sales over a period of
19 weeks (mid-September to the end of January 2000) is analyzed. Explanatory
factors include

� Age of the animal: Cows in the mid-range may be more valuable because
they have shown the ability to produce calves but are still young enough for
subsequent breeding.
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TABLE 8.8 AUCTION PRICE (y) AND FACTORS (x) THAT MAY HELP EXPLAIN
THE PRICEa

Price y Age Indicator Indicator Frame Weight Indicator for Indicator for
($) (years) for Bred for Angus (Large) (100 lb) Conditioned Registered

1,000 3 1 1 1 10.15 1 0
1,250 3 1 1 1 11.00 1 0

980 5 1 0 0 11.15 1 0
1,015 4 0 1 0 11.00 1 0

995 5 1 0 1 10.00 0 0
825 7 1 0 0 9.80 0 0
850 6 1 0 0 10.25 0 1

1,150 2 1 1 0 10.50 1 1
1,150 2 1 1 1 10.75 1 1
1,200 3 1 1 1 11.75 1 0
1,200 2 1 1 1 11.60 1 0
1,000 6 1 1 0 11.00 1 0
1,000 7 0 1 0 10.00 0 0
1,050 6 1 0 0 10.00 0 1
1,075 4 1 1 1 9.90 0 1
1,165 5 1 1 0 11.35 1 0

780 2 0 1 0 8.85 0 0
800 2 0 1 0 9.50 0 1

1,180 3 0 0 1 11.45 1 1
1,000 4 0 0 1 11.45 0 1
1,200 2 1 0 1 11.50 1 1
1,000 3 1 1 0 10.00 1 0
1,025 3 1 1 0 9.75 1 0
1,175 2 0 1 1 11.35 1 1

800 5 1 0 0 12.00 1 0
915 4 0 1 0 11.85 1 1

1,185 6 1 1 1 12.00 0 0
1,020 5 1 1 0 11.25 0 0

775 7 1 1 0 12.00 1 0
850 7 1 0 1 12.00 1 1

1,200 2 1 1 0 10.00 1 1
1,200 3 1 1 0 10.15 1 1

775 8 1 0 0 12.50 1 0
775 7 1 0 0 11.85 1 0

1,200 3 1 0 1 11.85 0 1
1,135 4 1 0 0 12.00 1 0
1,000 7 1 0 0 11.50 1 0
1,185 3 0 0 1 12.00 0 1
1,155 3 1 0 0 11.85 1 0
1,155 2 0 0 1 12.00 1 1
1,175 2 1 1 1 11.75 1 0
1,200 2 1 0 1 11.50 1 0
1,165 3 1 1 0 11.65 1 0
1,000 6 1 1 0 12.25 1 0
1,200 2 0 1 1 10.25 0 0
1,175 2 1 0 0 10.25 0 1

(Continued )
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TABLE 8.8 (Continued)

Price y Age Indicator Indicator Frame Weight Indicator for Indicator for
($) (years) for Bred for Angus (Large) (100 lb) Conditioned Registered

1,000 5 0 0 0 10.00 0 1
1,125 5 0 0 0 10.00 1 0
1,150 4 1 1 1 12.25 1 0
1,125 2 0 0 1 11.25 1 1

875 6 0 0 0 10.00 0 0
1,000 6 1 0 1 11.25 0 0
1,185 3 1 1 0 10.00 0 0
1,185 4 1 1 0 10.00 1 1
1,000 4 1 1 0 11.00 1 0

950 4 1 1 1 10.25 0 0
875 6 1 0 0 11.25 1 0
775 6 0 0 0 10.15 0 0

1,100 2 0 1 0 9.85 0 1
1,125 2 0 1 0 10.35 1 1
1,200 2 0 0 0 10.65 1 1
1,175 4 1 1 1 12.30 1 0
1,000 4 1 0 1 11.75 0 0
1,000 3 1 0 1 11.85 0 0
1,000 6 1 1 0 11.25 0 0
1,000 6 1 0 1 11.25 1 0

985 5 0 1 0 10.50 0 0
1,150 3 1 1 0 11.75 1 1
1,150 4 1 1 0 11.50 1 0
1,075 7 1 0 0 11.45 1 0
1,050 6 0 0 0 11.50 0 0

885 6 0 0 0 10.00 0 0
1,200 4 1 1 1 11.50 1 1
1,150 3 1 1 0 11.50 1 1
1,000 4 1 0 0 10.85 0 0
1,075 2 1 1 0 10.85 0 1

980 4 0 0 0 12.50 1 0
980 3 0 0 0 12.45 1 0

1,000 6 1 1 1 12.00 1 0
1,085 3 1 0 0 11.25 1 0
1,175 5 1 0 0 11.55 1 0
1,150 5 1 0 1 11.15 0 1
1,175 3 1 0 0 11.15 1 0
1,000 2 0 1 0 10.00 1 0

875 7 1 1 1 11.65 1 0
995 5 1 1 1 11.55 1 1

1,000 3 1 1 1 10.15 1 1
1,250 3 1 1 1 11.00 1 1
1,150 2 1 0 1 11.00 1 0
1,150 5 1 0 1 10.85 1 0
1,200 5 1 0 1 10.95 1 1

980 8 1 1 0 12.75 1 0
995 3 0 0 0 10.00 0 0
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TABLE 8.8 (Continued)

Price y Age Indicator Indicator Frame Weight Indicator for Indicator for
($) (years) for Bred for Angus (Large) (100 lb) Conditioned Registered

1,000 3 1 1 1 10.35 1 0
1,165 3 1 0 1 10.35 1 0
1,175 5 0 1 0 11.25 1 1
1,000 6 1 1 1 11.20 1 0

775 5 0 1 1 10.00 0 0
1,000 3 1 1 1 11.65 1 0
1,015 4 1 0 1 11.50 1 0
1,200 4 1 1 1 11.50 1 0
1,175 6 1 1 1 11.75 1 1
1,095 4 0 1 1 11.75 1 0
1,100 3 1 1 0 12.35 1 1

980 3 0 0 0 10.00 0 0
1,110 5 0 1 1 10.35 0 0
1,200 2 1 1 1 11.00 1 0
1,185 4 0 1 1 11.25 1 0
1,185 3 0 1 0 11.00 1 0
1,170 4 0 1 0 11.25 1 0
1,150 3 1 0 0 11.10 1 0
1,000 4 1 1 1 11.00 1 1

975 6 1 0 0 10.00 0 0
1,200 4 0 1 0 11.00 1 0
1,185 3 1 1 0 11.00 1 0

a The data are stored in the file cows.

� Weight of the animal: Cows are intended for the production of calves, and
they are not being sold for meat. Hence, the weight of the cow may not be
the most deciding factor because it does not tell about the cow’s ability to
produce healthy marketable calves.

� Whether the cow has been bred (i.e., currently carrying a calf), indicating
that a “free” calf comes with the sale.

� Frame size of the animal: A large size may avoid birthing problems in the
future.

� Whether the cow is registered (recorded through a breed organization as a
legitimate bloodline of a particular breed).

� Whether the cow is in good condition (i.e., well fed and “filled out”).
� Whether an Angus cow is involved: Angus cattle may be more valuable

because consumers are willing to pay more for their leaner meat.

Scatter plots of price against the explanatory variables age and weight are
shown in Figure 8.6. Box plots of weight against the categorical variables (whether
the cow has been bred, is conditioned, its frame size, whether it is an Angus cow,
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FIGURE 8.6
Scatter Plots of
Auction Price
against Age and
Weight of the Cow

and registered) were also drawn but are not shown here. The graphs in Figure 8.6
suggest that one should allow for quadratic effects of age and weight. It appears
that very young and old cows fetch less money than cows in the mid-range; the
same applies for weight.

We start by fitting all possible regressions using the seven original explana-
tory variables plus the two constructed ones (squares of age and weight). The
results are shown in Table 8.9. The results indicate that a model with three ex-
planatory variables appears to give an acceptable representation. The Mallows
Cp criteria of the two identified models (in boldface type) are quite acceptable;
for an acceptable model with three regressor variables we expect a Cp of approx-
imately 4. There appears to be no bias with the three-regressor models. Weight
and its square, and the age of the cow (or, alternatively, its square), seem to
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TABLE 8.9 BEST SUBSETS REGRESSION OF PRICE ON THE NINE
EXPLANATORY VARIABLES

W C
e o R
i n e

A W g d g
g e h A F i i
e i t B n r t s

A * g * r g a i t
g * h * e u m o e

Vars R-Sq R-Sq(adj) C-p S e 2 t 2 d s e n r

1 29.7 29.1 34.6 106.40 X
1 27.7 27.1 38.7 107.89 X

2 36.2 35.1 23.1 101.80 X X
2 35.6 34.4 24.5 102.32 X X

3 46.4 44.9 4.1 93.753 X X X
3 46.2 44.8 4.5 93.913 X X X (age, weight,

weight**2)
4 47.5 45.6 3.8 93.220 X X X X
4 47.3 45.4 4.1 93.337 X X X X

5 48.4 46.0 3.9 92.823 X X X X X
5 48.1 45.7 4.6 93.119 X X X X X

6 48.9 46.1 4.8 92.782 X X X X X X
6 48.8 45.9 5.1 92.904 X X X X X X

7 49.2 45.9 6.3 92.973 X X X X X X X
7 49.0 45.7 6.7 93.142 X X X X X X X

8 49.3 45.5 8.0 93.289 X X X X X X X X
8 49.2 45.4 8.3 93.401 X X X X X X X X

9 49.3 45.0 10.0 93.722 X X X X X X X X X

a Only the two best models for each group are shown. The placement of the “X” symbol indicates which
variables are included.

matter most. Since a linear term of age is easier to interpret than the square of
age without the linear component, we consider the model with weight, weight
square, and age in more detail. With this model, we explain approximately 46.2%
of the variability in price. The standard deviation of the errors is 93.9 (dollars).
This needs to be compared with the standard deviation of the selling price by
itself, without taking advantage of the cow’s characteristics; this turns out to be
126.4 (dollars). Although this is not a striking reduction, the data do not provide
us with a better model. The buyers bidding on cows must use other factors that
are not recorded.

Detailed estimation results for this model are shown at the top of Table 8.10.
Would the additional information that the cow in question is an Angus cow
make a difference? We add the indicator for Angus beef and run the extended
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TABLE 8.10 ESTIMATION RESULTS FOR TWO REGRESSION MODELS

Regression Analysis: Price versus Age, Weight, Weight∗∗2

The regression equation is
Price = − 6745 − 42.0 Age + 1423 Weight − 63.1 Weight∗∗2

Predictor Coef SE Coef T P
Constant −6745 1509 −4.47 0.000
Age −41.997 5.553 −7.56 0.000
Weight 1422.6 275.8 5.16 0.000
Weight**2 −63.07 12.58 −5.02 0.000

S = 93.91 R-Sq = 46.2% R-Sq(adj) = 44.8%

Analysis of Variance

Source DF SS MS F P
Regression 3 841123 280374 31.79 0.000
Residual Error 111 978981 8820
Total 114 1820104

Regression Analysis: Price versus Age, Weight, Weight∗∗2, Angus

The regression equation is
Price = − 6887 − 40.4 Age + 1444 Weight − 64.0 Weight∗∗2 + 27.6 Angus

Predictor Coef SE Coef T P
Constant −6887 1503 −4.58 0.000
Age −40.431 5.612 −7.20 0.000
Weight 1443.9 274.5 5.26 0.000
Weight**2 −64.02 12.51 −5.12 0.000
Angus 27.59 17.91 1.54 0.126

S = 93.34 R-Sq = 47.3% R-Sq(adj) = 45.4%

Analysis of Variance

Source DF SS MS F P
Regression 4 861812 215453 24.73 0.000
Residual Error 110 958292 8712
Total 114 1820104

regression model. The results in the bottom of Table 8.10 show that, as ex-
pected, the effect of Angus beef is positive, indicating that an Angus cow of
equal weight and age would bring $27.6 more on average. However, the partial
t ratio, 27.59/17.91 = 1.54, is not quite statistically significant. The probability
value of a one-sided test of the hypothesis that Angus cattle do bring in more
money is 0.126/2 = 0.063; note that the two-sided probability value in the table
needs to be cut in half. It is close to the commonly used 5% significance level.
Strictly speaking, with a significance level of 5% one cannot reject the null hy-
pothesis that Angus cattle are not priced higher. However, the p value is close to
0.05, and the results do suggest that Angus cattle may fetch a somewhat higher
price.
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What is the optimal weight for a cow? One can take the derivative of the model
equation with respect to weight and determine the optimum. The optimum is given
by 1, 444/[(2)(64)] = 11.28, and since the second derivative [the coefficient of
(weight)2 is −64] is negative, it is indeed a maximum. This means that the optimal
weight is 1,128 pounds.

What about the diagnostics of the model that includes age, weight, the square
of weight, and the indicator for Angus beef? Do we see serious problems? It
should be mentioned that we do not know about the time arrangement of the
115 cases in Table 8.8. All we know is that the data are a sample of 115 auction
sales within a 6-month period. Since we cannot assume that the arrangement is
sequential in time, the Durbin–Watson statistic is not meaningful in this context.
Are there high-leverage cases, and do some cases exert high influence on the re-
gression estimates? Leverages and Cook’s influence measures are calculated for
the 115 cases and they are graphed in Figure 8.7. The highest leverage is 0.353;
it originates from case 17, a cow with the smallest weight (885 pounds). The
leverage is quite unusual and certainly much larger than three times the average
leverage (the average leverage is 5/115 = 0.0435). However, this case does not
exert much influence on the regression coefficients. The largest Cook’s influence
measure is 0.184; it comes from case 92, a cow with the largest weight (1,275
pounds). However, it is not unusually large (our usual warning limit is 0.50 or
higher) to raise suspicion. None of the cases exert unusual influence on the fitted
regression. The histogram of the (standardized) residuals is shown in Figure 8.8.
None of the residuals are unusually large, and the shape of the histogram suggests
that the normal distribution assumption is adequate. The approximate linear ap-
pearance of the normal probability plot (not shown) also confirms that the usual
error assumptions are met.
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8.4 PREDICTING U.S. PRESIDENTIAL ELECTIONS
8.4.1 A PURELY ECONOMICS-BASED MODEL PROPOSED BY RAY FAIR

Ray Fair, an economics professor at Yale University, uses the state of the economy
prior to the election to predict the incumbent vote share in presidential elections.
By incumbent vote share we mean the vote share for the candidate of the party
occupying the White House during the election. There is a certain attraction to
such forecasting models because the explanatory economic variables measure the
state of the economy several months prior to the actual election. They are readily
available for making real-time predictions of the election outcome.

The data in Table 8.11 are taken from Fair’s book, Predicting Presidential
Elections and Other Things (2002). Chapters 1, 3, and 4 and references in the
chapter notes are relevant to our discussion. For detailed discussion and definition
of the variables, see Fair’s Chapter 3.

� Vote share, the response variable, represents the incumbent share of the
two-party vote. By taking the two-party vote share and not the incumbent
share of the total vote, one assumes that third-party candidates take about
the same amount from each party. This is a reasonable assumption for most
elections, except for the 1924 election. There is evidence that La Follette (of
the Progressive Party) took more voters from Davis (the Democrat) than
from Coolidge (the Republican). It is estimated that 76.5% of the votes for
La Follette would have gone to Davis, whereas only 23.5% of the La
Follette votes would have gone to Coolidge. This information is
incorporated into the listed 1924 incumbent share.

� Growth rate represents the per capita growth rate of real gross domestic
product (GDP) in the first three quarters (9 months) of the election year.

� Inflation rate is the average (absolute) inflation rate during the 15 quarters
prior to the election (i.e., all the quarters of the administration except the
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TABLE 8.11 INCUMBENT VOTE SHARE AND ITS DETERMINANTS: FAIR’S MODELa

Incumbent Growth Inflation Good
Party in Vote Share Rate Rate News Duration President Party

Year Power Election Outcome (%) (%) (%) Quarters Value War Running Variable

1916 D President Wilson 51.7 2.2 4.3 3 0.00 0 1 1
beats Hughes

1920 D Cox loses 36.1 −11.5 16.5 5 1.00 1 0 1
to Harding

1924 R Pres. Coolidge 58.2 −3.9 5.2 10 0.00 0 1 0
beats Davis
and LaFollette

1928 R Hoover beats 58.8 4.6 0.2 7 1.00 0 0 0
Smith

1932 R Pres. Hoover 40.8 −14.9 7.1 4 1.25 0 1 0
loses to
Roosevelt

1936 D Pres. Roosevelt 62.5 11.9 2.4 9 0.00 0 1 1
beats Landon

1940 D Pres. Roosevelt 55.0 3.7 0.0 8 1.00 0 1 1
beats Willkie

1944 D Pres. Roosevelt 53.8 4.1 5.7 14 1.25 1 1 1
beats Dewey

1948 D Pres. Truman 52.4 1.8 8.7 5 1.50 1 1 1
beats Dewey

1952 D Stevenson loses 44.6 0.6 2.3 6 1.75 0 0 1
to Eisenhower

1956 R Pres. Eisenhower 57.8 −1.5 1.9 5 0.00 0 1 0
beats Stevenson

1960 R Nixon loses 49.9 0.1 1.9 5 1.00 0 0 0
to Kennedy

1964 D Pres. Johnson 61.3 5.1 1.2 10 0.00 0 1 1
beats Goldwater

1968 D Humphrey loses 49.6 4.8 3.2 7 1.00 0 0 1
to Nixon

1972 R Pres. Nixon 61.8 6.3 4.8 4 0.00 0 1 0
beats McGovern

1976 R Ford loses 48.9 3.7 7.7 4 1.00 0 0 0
to Carter

1980 D Pres. Carter 44.7 −3.8 8.1 5 0.00 0 1 1
loses to Reagan

1984 R Pres. Reagan 59.2 5.4 5.4 7 0.00 0 1 0
beats Mondale

1988 R G. Bush beats 53.9 2.1 3.3 6 1.00 0 0 0
Dukakis

1992 R Pres. G. Bush 46.5 2.3 3.7 1 1.25 0 1 0
loses to Clinton

1996 D Pres. Clinton 54.7 2.9 2.3 3 0.00 0 1 1
beats Dole

a The data are stored in the file election(Fair).
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last one). Inflation and deflation (i.e., negative inflation) are treated
symmetrically. Deflation is assumed to be just as bad as inflation.

� Good news is the number of quarters out of the 15 quarters prior to the
election in which the per capita growth rate exceeds 3.2%.

� Duration takes the value 0 if the incumbent party has been in office for only
one consecutive term. It takes the value 1.00 for two consecutive terms,
1.25 for three consecutive terms, 1.50 for four consecutive terms, and 1.75
for five consecutive terms.

� President running variable takes the value 1 if the president is running for
reelection; otherwise, the value is 0. Vice presidents who become president
during the administration are also given the value 1 if they run for president.
The exception is Ford, who is given a 0 because he was not part of the 1972
ticket.

� Party takes the value 1 if the incumbent party is Democratic and 0 if the
incumbent party is Republican. It measures the “pure party” effect.

� War: Because of World Wars I and II, the 1920, 1944, and 1948 elections
are treated differently. Fair includes a war variable that takes the value 1 for
years 1920, 1944, and 1948, and 0 otherwise.

Scatter plots of the incumbent vote share against growth rate, inflation rate,
good news variable, and duration are shown in Figures 8.9a–8.9d. The incumbent
vote share increases with growth rate and the number of good news quarters,
and it decreases with inflation rate and duration. The patterns in these figures
are expected because candidates of the incumbent party tend to be elected if the
economy is strong. Figure 8.9e shows an interaction diagram of incumbent vote
share against incumbent party and whether the incumbent president is running.
The graph shows that for Democrats the incumbent effect is weak unless the
president is running for reelection.

The summary results from fitting all possible regressions with the listed pre-
dictors and the interaction (product) between the party and the president running
variables are given in Table 8.12. The model with the five predictors—growth
rate, inflation rate, duration, party, and the war variable—leads to an acceptable
C p statistic. The model explains 90.3% of the variation. Although this may seem
like a very good fit, the standard deviation of the unexplained component is 2.6%,
indicating that the 95% prediction error margins are approximately ±5.2%. Also
note that we are fitting a regression model with six parameters to just n = 21 cases.
The detailed fitting results for this model are shown in Table 8.13. Growth rate
(with positive coefficient) and inflation rate (with negative coefficient) have the
expected signs. The negative effect of duration indicates that incumbency wears
out if the incumbent party has occupied the White House for a long time. The
negative coefficient for party indicates that Democrats in power tend to do worse.
The war variable is significant and positive, indicating that in times of war voters
appear to rally around the incumbent party.
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(Continued)

An interaction term for incumbent party and incumbent president running was
quite visible in the interaction plot in Figure 8.9e. However, the final model does
not include such a term. This is not necessarily a contradiction. The interaction
graph gives a marginal view of the data and “collapses” the data over all other
variables except the two considered in the graph. It so happens that the five
predictors in the model explain this interaction and that conditional on these five
variables, the need for an interaction has disappeared.

The Durbin–Watson test is appropriate here because we estimate the regres-
sion on time series data. Its value, DW = 1.82, is quite close to 2 and does not
indicate problems with serial correlation at lag 1. The variance inflation factors
are unremarkable and smaller than commonly-used cutoff values; there is not an
undue amount of multicollinearity. A scatter plot of the standardized residuals
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TABLE 8.12 BEST SUBSETS REGRESSION OF INCUMBENT VOTE SHARE ON
ALL LISTED PREDICTOR VARIABLES

P
I G P r

G n o D r e
r f o u e s
o l d r s *
w a a i P p
t t N t d a a
h i e i W e r r

o w o a n t t
Vars R-Sq R-Sq(adj) C-p S R n s n r t y y

1 54.6 52.3 56.9 4.9290 X
1 38.5 35.3 83.1 5.7375 X
2 71.0 67.7 32.3 4.0526 X X
2 64.7 60.8 42.5 4.4665 X X

3 76.5 72.3 25.3 3.7521 X X X
3 76.2 72.0 25.8 3.7777 X X X

4 85.1 81.4 13.3 3.0804 X X X X
4 81.7 77.1 18.9 3.4161 X X X X

5 90.3 87.0 6.8 2.5687 X X X X X
5 87.5 83.3 11.4 2.9126 X X X X X

6 92.3 89.0 5.6 2.3703 X X X X X X
6 90.4 86.3 8.6 2.6403 X X X X X X

7 92.6 88.7 7.0 2.4025 X X X X X X X
7 92.4 88.2 7.4 2.4457 X X X X X X X

8 92.6 87.7 9.0 2.5001 X X X X X X X X

against the fitted values is shown in Figure 8.10a; the scatter plot shows no ap-
preciable patterns. The normal probability plot of the standardized residuals is
shown in Figure 8.10b; the linear pattern confirms the normality of the residuals.
Dot diagrams of leverages and Cook’s distances are given in Figure 8.10c; no
case exerts an undue influence on the regression results.

Now that we have obtained an acceptable regression model, let us use it to
predict the vote share of the incumbent party (represented by candidate Gore)
in the 2000 presidential election. In 2000, the growth rate was 2.2%, inflation
was at 1.7%, and the growth rates of 7 of the 15 quarters during the 1996–2000
term exceeded 3.2%. The duration variable has value 1 because the Democrats
(the incumbent party) have been in power for two consecutive terms. The war
indicator is zero and the party indicator is 1 for Democrat. The prediction from
the regression equation is

Incumbent vote share = 62.6 + 0.496 growth rate − 1.18 inflation

− 6.78 duration value − 4.64 party + 11.0 war
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TABLE 8.13 ESTIMATION RESULTS FOR THE REGRESSION MODEL

The regression equation is
Incumbent Vote Share (%) = 62.6 + 0.496 Growth Rate − 1.18 Inflation

− 6.78 Duration Value − 4.64 Party + 11.0 War

Predictor Coef SE Coef T P VIF
Constant 62.636 1.728 36.25 0.000
Growth R 0.4963 0.1308 3.80 0.002 1.8
Inflatio −1.1788 0.2673 −4.41 0.001 3.0
Duration −6.780 1.089 −6.22 0.000 1.4
Party −4.638 1.272 −3.65 0.002 1.3
War 10.979 2.672 4.11 0.001 2.8

S = 2.569 R-Sq = 90.3% R-Sq(adj) = 87.0%

Analysis of Variance

Source DF SS MS F P
Regression 5 918.73 183.75 27.85 0.000
Residual Error 15 98.97 6.60
Total 20 1017.71

Durbin-Watson statistic = 1.82

or

Incumb vote share = 62.6+0.496(2.2)−1.18(1.7)−6.78(1)−4.64(1)+11.0(0)

= 50.306

The actual vote share for Gore in the election was 50.3%. The prediction is right
on target. However, note that quite a bit of “luck” was involved. The standard
error of the prediction error, calculated from Eq. (4.29) in Section 4.3, amounts
to 2.79, and a 95% prediction interval for the incumbent vote share extends from
44.3 to 56.3. Here, we have used the 97.5 percentile of the t distribution with 15
degrees of freedom. A Gore result of, for example, 46 or 54% would not have
been out of the ordinary either. Of course, proponents of prediction models tend
to “tout their horns” if they get so close to the true value, and they credit this to
the quality of their model. On the other hand, if they are not very close to the
actual value, they point to the large prediction intervals to excuse their miss.

A Comment about the War Variable
Fair includes a war variable that takes the value 1 for years 1920, 1944, and 1948,
and 0 otherwise. Fair argues that inflation and “good news” are irrelevant in these
elections. He does not use the actual values of inflation and the good news variable
for these three elections but instead sets them equal to zero. He claims that this
implies that voters do not take into account past inflation and good news when
deciding to vote during the three war-dominated periods.
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(c)

0.20.10.0

Cook’s
influence

Leverage

However, this argument is not entirely correct. The decision to plug in zeros
for inflation and good news is arbitrary. A better approach uses the original values
of the regressor variables but allows for three separate indicator variables—one for
each war year (1920, 1944, and 1948). This specification implies that the war years
need separate adjustments, but it does not tie the adjustments to specific variables.
We have estimated the regression model with the four explanatory variables in
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Table 8.13 (growth rate, inflation, duration value, and party) and three separate
war indicators. The results show that the war effects for 1920, 1944 and 1948 are
about the same. We compare the fit of the full model with the three war indicators
to the fit of the restricted model that uses the same indicator for all three war years.

The F statistic for testing this restriction is F = (98.97 − 84.91)/2

84.91/(21 − 8)
= 1.08. Its

probability value P(F ≥ 1.08) = 0.362 indicates that the three war years can be
treated the same.

8.4.2 PREDICTION MODELS PROPOSED BY POLITICAL SCIENTISTS

Political scientists refer to Fair’s model as an “economy incumbency model”
because it uses economic variables to predict the incumbent vote share. They
criticize his model for failing to incorporate measures of public opinion that are
available prior to the election. There is a large literature in political science on the
prediction of presidential elections. The book by Campbell and Garand (2000)
gives a good summary of several competing models. This book also lists the
data for all elections from 1948 through 1996 that were used in the estimation
of these models as well as the model predictions for 2000. Data for five popular
models (the models by Campbell, Abramowitz, Lewis-Beck and Tien, Holbrook,
and Lockerbie) are included in Exercise 8.1. Here, we focus on the model by
Michael S. Lewis-Beck and Charles Tien. They use data on the economy and
survey responses to several questions on the Gallup poll of the last July prior to
the election. Their data are listed in Table 8.14. Note that their model does not
include the inflation rate, a significant factor in Fair’s model.

� Incumbent vote is the percentage of the two-party vote received by the
candidate of the president’s party.

TABLE 8.14 INCUMBENT VOTE SHARE AND ITS DETERMINANTSa

Incumbent July Peace and Future Leading GNP Second
Year Vote Popularity Prosperity Problems Indicators Change Term

1948 52.37 39 * 46.67 0.00 2.42 0
1952 44.60 32 82.41 * 3.88 0.07 0
1956 57.76 69 122.84 56.90 0.00 0.26 1
1960 49.91 49 101.80 49.30 −3.08 1.42 0
1964 61.34 74 140.37 60.32 3.96 3.11 1
1968 49.60 40 85.94 46.55 0.00 2.88 0
1972 61.79 56 106.68 57.35 5.06 4.18 1
1976 48.95 45 80.40 34.85 6.07 2.33 0
1980 44.70 21 113.43 47.37 −5.67 −1.38 1
1984 59.17 52 104.51 51.32 0.00 3.95 1
1988 53.90 51 106.12 53.52 3.23 1.91 0
1992 46.55 32 94.81 45.95 2.48 1.46 0
1996 54.66 57 109.30 52.56 1.69 1.85 1

a The data are stored in the file election(Beck&Tien).
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� July popularity refers to the presidential popularity as measured by the
Gallup poll in July before the election.

� Peace and prosperity is an index created by adding the percentage of
two-party respondents who favored the incumbent party on keeping the
United States out of war and on keeping the country prosperous (Gallup
question).

� Future problems is the percentage of two-party respondents who favored
the incumbent party on handling the country’s most important problems
(Gallup question).

� Leading indicators is the percentage change in the government’s index of
leading indicators during the first two quarters of the election year. It is set
at zero if the change in one direction was not sustained for at least 3 months.

� GNP change is the nonannualized percentage change in GNP (constant
dollars) from the fourth quarter of the year before the election to the second
quarter of the election year.

� Second term is an indicator variable for a party’s second consecutive term in
the White House. It is coded 1 if the party is heading into its second term
and 0 otherwise.

Scatter plots of incumbent vote against July popularity, response on questions
regarding peace and prosperity, response on questions regarding future problems,
leading indicators, and GNP change are shown in Figure 8.11. They show some
relationships, although the associations are relatively weak.

The summary of all possible regressions is shown in Table 8.15. The model
with July popularity, GNP change, and an indicator for a second term seems to
give an acceptable fit with little bias; Mallow’s C p statistic (value of 4.9) is close
to what one would expect for a good model (it should be approximately 4 for a
model with three regressors). Detailed fitting results for this model are shown in
Table 8.16. Since the four parameters in this model are estimated on only 13 cases,
any conclusion from the estimated model must be made with great caution. The
signs of the regression coefficients make sense; one can expect that popularity in
July and an increase in GNP help increase the vote share. Running for a second
term also increases the incumbent vote share. The Durbin–Watson statistic is
unremarkable, indicating that there is no problem with serial correlation. The
scatter plot of the standardized residuals in Figure 8.12, the normal probability
plot of the standardized residuals (not shown), and the leverages and influence
measures (not shown) do not reveal any serious problems with this model. The
highest leverage originates from the 1980 election, with a leverage of 0.80 (which
is approximately 2.5 times higher than the average leverage of 4/13 = 0.31).
However, Cook’s influence measure shows that the influence of this case on the
parameter estimates is not out of line. The standard deviation of the residuals
amounts to approximately 1.7 percentage points, resulting in an approximate
95% prediction interval with half width ±3.4%.
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FIGURE 8.11
(Continued)

How does this model perform in predicting Gore’s 2000 vote share? July’s
popularity for the incumbent party’s candidate was 59, the GNP change from the
fourth quarter of the year before the election to the second quarter of the election
year was 2.52, and the indicator for a straight second term is 0. The prediction is
given by

Incumbent vote = 38.3 + 0.202 July popularity + 1.58 GNP change

+ 4.07 second term

or

Incumbent vote = 38.3 + 0.202(59) + 1.58(2.52) + 4.07(0) = 54.2

with 95% prediction intervals extending from 49.8 to 58.6. Here, we have used the
standard deviation of the prediction error in Eq. (4.29) and the 97.5 percentile of



Abraham Abraham˙C08 October 27, 2004 16:18

278 Case Studies in Linear Regression

TABLE 8.15 BEST SUBSETS REGRESSION OF INCUMBENT VOTE SHARE
ON ALL LISTED PREDICTOR VARIABLES

Best Subsets Regression: Incumbent versus July Popular, Peace and Pr, . . .

Response is Incumbent Vote

11 cases used 2 cases contain missing values.

J P F G S
u e u L N e
l a t e P c
y c u a o

e r d C n
P e i h d
o a n a

Vars R-Sq R-Sq(adj) C-p S p n P g n T

1 74.5 71.6 29.4 3.1800 X
1 58.3 53.7 52.5 4.0647 X

2 84.3 80.4 17.4 2.6457 X X
2 83.5 79.4 18.5 2.7109 X X

3 94.5 92.1 4.9 1.6756 X X X
3 91.8 88.2 8.8 2.0475 X X X

4 96.7 94.6 3.6 1.3904 X X X X
4 95.0 91.7 6.1 1.7248 X X X X

5 97.0 93.9 5.3 1.4721 X X X X X
5 96.9 93.9 5.4 1.4779 X X X X X

6 97.2 93.0 7.0 1.5803 X X X X X X

the t distribution with 9 degrees of freedom. The prediction intervals are somewhat
narrower than the ones obtained by Fair (which extended from 44.3 to 56.3).
However, the point prediction misses the true value (50.3) by a larger amount
than the point prediction in Fair’s model.

8.4.3 CONCLUDING COMMENTS

How successful are these models in predicting the incumbent vote share in pres-
idential elections? We notice that the standard deviation of the forecast errors
amounts to approximately 2 to 3 percentage points. This implies that a 52 or
53% (point) prediction is not yet sufficient to justify concluding victory for the
incumbent party.

The models are based on very few years of data, and they provide only a
very rough glimpse of what can be expected at the next election. Although these
models provide a useful yardstick of what can be expected, one should not bet
one’s fortune on their predictions.
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TABLE 8.16 ESTIMATION RESULTS FOR THE MODEL WITH JULY
POPULARITY, GNP CHANGE, AND AN INDICATOR FOR A SECOND TERMa

The regression equation is
Incumbent vote = 38.3 + 0.202 July Popularity + 1.58 GNP

Change + 4.07 Second Term

Predictor Coef SE Coef T P VIF
Constant 38.296 1.700 22.53 0.000
July Popularity 0.20156 0.04363 4.62 0.001 1.7
GNP Change 1.5821 0.3667 4.31 0.002 1.3
Second Term 4.066 1.108 3.67 0.005 1.3

S = 1.717 R-Sq = 93.8% R-Sq(adj) = 91.8%

Analysis of Variance

Source DF SS MS F P
Regression 3 402.49 134.16 45.52 0.000
Residual Error 9 26.53 2.95
Total 12 429.02

Durbin-Watson statistic = 2.04

a Observe that the summary statistics [s, R-Sq, R-Sq(adj)] are not identical to the summary statistics
of the best subset regressions in Table 8.15. This has to do with the 2 years (cases) in which some
of the regressor variables had missing values (peace and prosperity in 1948 and future problems
in 1952). The best subset regression omits the entire case even if only one regressor variable has
a missing value for that case, and hence the analysis in Table 8.15 is based on only 11(= 13 − 2)

cases. The model in Table 8.16, on the other hand, uses all 13 cases because its regressor variables
do not include the variables peace/prosperity and future problems, which had missing values on
2 years.
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8.5 STUDENT PROJECTS LEADING TO
ADDITIONAL CASE STUDIES

Courses on applied statistics such as regression should incorporate projects in
which the student or the reader of this book selects the problems to study, gathers
the data, analyzes the information using suitable computer software, and commu-
nicates the results in a report. Most textbooks on applied statistics, such as this
book, include data. However, the included data sets are typically small to mod-
erately sized, and the data are usually given to the reader as “numbers waiting to
be analyzed.” You are asked to analyze the data, run specific regression models,
and find the best (appropriate) regression models that relate a specified response
to certain specified explanatory variables. Such exercises are important because
they teach the mechanical aspects of data analysis. However, they are incomplete
in that they do not expose you to problem formulation and the difficulties of ac-
quiring relevant data. The message communicated to you is that statistics starts
after the data have been collected.

Each course should also contain projects that are relatively unstructured by
the instructor. It is your own questions and data that provide the project structure.
For such projects, you must generate an interesting problem, figure out what data
to gather and where to get them, analyze the information, and put the analysis into
words by writing a report on your findings. The data analysis is just one step in
this process. The steps of formulating the problem, deciding what data to collect,
managing the data acquisition process, and checking its integrity are often the
more instructive and challenging parts of the project. This activity teaches you that
statistics is more than just analyzing numbers. It engages you in research as you
search for solutions to relevant and interesting questions. Active engagement is an
important aspect of learning. Much is learned by being involved in writing survey
questions and dealing first-hand with such issues as random and nonrandom
sampling, nonresponse, and poorly designed questions. Also, when performing
your own experiments you think about how to set up the experiment and you
struggle with such issues as randomization, blocking, replication, and how your
plans are impacted by practical issues. You learn to appreciate the difficulty of
obtaining relevant data.

Several acronyms have been used to describe the various steps of the problem-
solving cycle. For example, the five-step cycle “DMAIC” consists of defining the
problem (D), measure (M), analyze (A), improve (I), and control (C). Deming
talks about the Deming–Shewhart wheel PDSA, where P stands for plan, D for
do, S for study, and A for act.

It is also very worthwhile to carry out such projects in groups, and we rec-
ommend that you form study groups. Our experience shows that group projects
work well with committed students who are eager to learn. In such situations,
the sharing of information and expertise is very beneficial to learning. Of course,
group projects are likely to fail if motivation and group spirit are lacking.
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The project output should be a report. The report should start with a short,
concise executive summary that describes the problem and the main findings
of your study. The write-up should discuss the motivation behind the project,
describe the data and the way they were obtained, and discuss the statistical anal-
ysis. Furthermore, the report should discuss the appropriateness of the analysis
and should reflect on any possible shortcomings. The findings must be interpreted,
and the conclusions and implications of the study should be spelled out clearly.
Relevant statistical tables and computer output should be put in an appendix. A
listing of the raw data (only a subset of the data for large data sets) and a summary
of the data definitions and the data sources should be included.

Writing a good research paper is a challenging task. The topic may be inter-
esting and the statistical analysis may be competent, but the project may still fall
short due to poor writing. The writing must be well organized and grammatically
correct, and it must keep the reader’s interest. Fortunately, help on writing is avail-
able online because many universities have developed excellent online writing
resources. Here are a few particularly good links:

� Purdue University Online Writing Lab: http://owl.english.purdue.edu
� University of Florida—The Reading and Writing Center: http://web.cwoc.

ufl.edu/owl
� University of Wisconsin Writing Center: http://www.wisc.edu/writing
� University of Victoria (Canada) Writer’s Guide: http://web.uvic.ca/wguide
� Guide to Writing and Grammar: http://webster.commnet.edu/grammar/

index.htm

These resources discuss the general structure of research papers and they contain
many useful suggestions. They discuss how to cite the work of others and how to
avoid plagiarism. They give strategies for clarifying logic and avoiding “deadly”
sins, and they help with grammar and style.

An oral presentation, with a subsequent discussion that involves all students
in the class, is also very useful. It helps you practice your oral presentation skills,
and it teaches you how to respond to questions and criticism. Furthermore, a
session for oral presentations exposes you to a wide variety of other topics that
have been considered by the various groups.

Your instructor should give you examples of previous projects—good projects
as well as bad ones—and should provide suggestions for appropriate topics. Many
of the data sets in this book in fact originated from such projects. Successful
past projects in our courses have examined the following issues (see Ledolter,
1995):

� “Success” at the university: What are the relationships between college
GPA and high school GPA, number of hours studied, etc.? Does gender play
a role? Does it help (hurt) your GPA if one lives in a sorority/fraternity?
What about the effect of drinking or smoking?
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In projects such as these, you have to construct questionnaires and
survey your fellow students. You need to think about sampling issues and
how to draw representative samples.

� Relationships between preferences (such as listening or buying preferences)
and demographic characteristics (such as gender and occupation).

� Sports statistics (football, basketball, and baseball): Find the key variables
that explain individual or team performance. Projects that attempt to explain
the salaries of baseball players are always fun. Compare the salaries of
pitchers, infielders, etc.

� Relationships between CEO compensation and performance; relationship
between professor salaries and performance: Much of the needed
information can be obtained from Web sites. Salaries at most public
universities are readily available. Who wouldn’t be interested in finding out
the salary of one’s professor and learning whether he or she “deserves” it?

� Sales forecasts; marketing applications; applications of statistics to finance
and portfolio selection; tracking the performance of investment strategies;
predicting economic indicators.

� Effects of legislation on society: For example, investigate the impact of
changes in the maximum speed limit on the number and severity of traffic
accidents, or study the impact of the motorcycle helmet law on motor cycle
accidents that resulted in severe head injuries.

� Experiments with paper helicopters, catapults, rubber balls, and sticky pads.
For example, vary certain design characteristics on a simple paper
helicopter and study how the settings affect the flying time of the helicopter.
The paper by Hunter (1977) is a good reference if you want to conduct such
experiments.

Data for projects may be obtained from Internet sources, company data,
surveys, statistical reference books, or experiments that you carry out yourself.
The Statistical Data Abstract of the United States (U.S. Bureau of the Census, U.S.
Government Printing Office, Washington, DC, 1879–) is an annual compendium
of summary statistics on the political, social, industrial, and economic life of the
United States. Four major monthly governmental periodicals provide the majority
of the current statistics available on the economy and its operation. The Survey
of Current Business contains approximately 2500 statistical series on income,
expenditures, production, and prices of commodities. Historical figures for the
statistical data published in the Survey of Current Business are available in a
supplement titled Business Statistics, published in odd-numbered years. A second
source is the Federal Reserve Bulletin, which publishes data with emphasis on
financial statistics. The third major governmental publication is the Monthly Labor
Review, which publishes data on work and labor conditions, wage rates, consumer
price indices, and the like. The fourth is the Business Conditions Digest, which
contains several hundred economic time series in a form convenient for forecasters
and business analysts.
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EXERCISES
8.1. Incumbent Vote Share in Presidential

Elections
The model by Campbell includes two

predictors: the percentage of support for the
inparty candidate in the preference poll
conducted by Gallup in early September of
the election year and the second-quarter (of
the election year) rate of growth in GDP.

Abramowitz models the incumbent vote
share as a function of the president’s approval
rating in the Gallup poll of early July and the
annual growth rate of real GDP during the
first two quarters of the election year (which
are released in August of the election year).

The model developed by Holbrook uses
the following predictors: the president’s
approval rating, a measure of retrospective
personal finances indicating whether one is
better or worse off financially now than a year
ago, and an indicator measuring tenure in
office.

Lockerbie uses two measures of change in
disposable income, a measure of anticipated
financial well-being a year from now and the
number of years the incumbent party has
controlled the White House.

The data sets and a description of the
variables are given below. The data sets are
stored in the files campbell, abramowitz,
holbrook, and lockerbie.

a. Use the data to estimate the various
regression models. Assess the significance
of the estimated regression coefficients.
Investigate whether all listed regressor
variables are needed. Simplify the
regression models if possible.

b. Check the models for violations of the
regression assumptions. Identify
high-leverage values and influential
observations. Also, check for
autocorrelation among the residuals.

c. Discuss how these models can be used for
prediction. Discuss how these models can
be used for scenario forecasts. That is,
develop scenarios for the predictor

variables under which the incumbent party
candidate has a good chance of holding on
to the White House. Your analysis should
also incorporate the uncertainty.

d. Discuss in more detail the difference
between “fitting models” and
“forecasting.” One could drop a particular
year (case) from the regression, estimate
the model without the data from that year,
and predict the incumbent share for the
year that one has omitted. Why would this
be different (better or worse) than using all
observations and looking at the residuals?
Discuss.

e. Summarize the performance of these
models, and compare them to Fair’s model
discussed in Section 8.4.1. Are these
worthwhile models?

Data Used by Campbell

Incumbent September GDP
Party Trial Growth

Year Vote Heat Rate

1948 52.32 45.61 0.91
1952 44.59 42.11 0.27
1956 57.75 55.91 0.64
1960 49.92 50.54 −0.26
1964 61.34 69.15 0.81
1968 49.60 41.89 1.63
1972 61.79 62.89 1.73
1976 48.95 40.00 1.17
1980 44.70 48.72 −2.43
1984 59.17 60.22 1.79
1988 53.90 54.44 0.79
1992 46.55 41.94 0.35
1996 54.74 60.67 1.04

Incumbent vote: Percentage of the
two-party vote received by the candidate
of the president’s party.

September trial heat: Two-party
percentage of support for the in-party
candidate in the preference poll conducted
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by Gallup in early September of the
election year.

GDP growth rate: Second quarter rate of
growth (nonannualized) in the GDP.

Data Used by Abramowitz

GDP
Incumbent Presidential Growth

Year Vote Term Popularity Rate

1948 52.3 1 39 1.8
1952 44.6 1 32 −0.2
1956 57.8 0 69 0.5
1960 49.9 1 49 0.4
1964 61.3 0 74 1.1
1968 49.6 1 40 1.3
1972 61.8 0 56 2.2
1976 48.9 1 45 1.1
1980 44.7 0 21 −2.3
1984 59.2 0 52 1.8
1988 53.9 1 51 0.8
1992 46.6 1 31 0.4
1996 54.6 0 56 1.6

Incumbent vote: Percentage of the
two-party vote received by the candidate
of the president’s party.

Term: Binary variable coded 1 if the
president’s party has held the White House
for 8 years or longer and 0 otherwise.

Presidential popularity: President’s
approval rating in the Gallup poll in early
June.

GDP growth rate: Annual growth rate of
the real GDP during the first two quarters
of the election year.

Data Used by Holbrook

Incumbent Presidential Personal Tenure in
Year Vote Popularity Finances Office

1948 52.4 37.5 116 1
1952 44.6 30.0 94 1
1956 57.8 69.0 110 0
1960 49.9 62.6 108 1
1964 61.3 74.3 120 0

Incumbent Presidential Personal Tenure in
Year Vote Popularity Finances Office

1968 49.6 42.2 114 1
1972 61.8 59.0 129 0
1976 48.9 46.6 103 1
1980 44.7 36.8 79 0
1984 59.2 53.8 121 0
1988 53.9 49.4 111 1
1992 46.5 39.0 97 1
1996 54.6 54.0 114 0

Incumbent vote: Percentage of the
two-party vote received by the candidate
of the president’s party.

Presidential popularity: Average
percentage of the public (responding to
Gallup polls in the second quarter) who
said that they approved of the way the
president is handling his job.

Personal finances: Measure of
retrospective personal finances based on
responses to the Survey of Consumers’
question, “Would you say that you (and
your family living here) are better off or
worse off financially than you were a year
ago?”

Tenure in office: Binary variable coded 1
for presidential candidates whose party
has held the White House for two or more
terms and 0 for candidates whose party has
held the White House for one term.

Data Used by Lockerbie

Next
Incumbent Disposable Disposable Year

Year Vote Income 1 Income 2 Better Tenure

1956 57.80 1.60 3.70 36.00 4
1960 49.90 1.65 2.26 35.00 8
1964 61.30 4.74 1.78 37.00 4
1968 49.60 2.91 3.31 33.00 8
1972 61.79 1.61 2.39 38.00 4
1976 48.90 2.03 0.68 32.00 8
1980 44.70 −1.26 1.59 26.00 4
1984 59.20 2.67 1.67 37.33 4
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Next
Incumbent Disposable Disposable Year

Year Vote Income 1 Income 2 Better Tenure

1988 53.90 1.73 −0.05 36.33 8
1992 46.50 2.10 −1.03 36.33 12
1996 54.74 2.07 2.33 35.67 4

Incumbent vote: Percentage of the
two-party vote received by the candidate
of the president’s party.

Disposable Income 1: Change in per
capita real disposable income from the
second quarter of the year prior to the
election to the second quarter of the
election year.

Disposable Income 2: Change in per
capita real disposable income from 2 years
prior to the election to the year
immediately prior to the election.

Next year better: A component of the
Index of Consumer Sentiment. This
variable is based on the following
question: “Now looking ahead—Do you
think that a year from now you (and your
family living here) will be better off
financially, or worse off, or just about the
same as now?”

Tenure: Number of years a party has
controlled the White House.

8.2. Height and Weight of Boys and of their
Mothers and Fathers

This data set is taken from a larger study
examining the associations between
childhood treatment with methylphenidate
(MPH) and adult height and weight [Kramer,
J. R., Loney, J., Ponto, L. B., Roberts, M. A.,
and Grossman, S. Predictors of adult height
and weight in boys treated with
methylphenidate for childhood behavior
problems. Journal of the American Academy
of Child and Adolescent Psychiatry, 39,
517–524, 2000]. The 93 boys in this study
were 6 to 13 years of age, had behavior
problems, were referred to a child psychiatry
outpatient clinic, treated clinically with MPH

for an average of 36 months, and reevaluated
between ages 15 and 19. The information for
the first five boys and the data description are
listed here; the complete data set is contained
in the file height&weight.

Part 1 In part 1 of this exercise, we ask you
to examine the relationship between the
height (and weight) of the boys and their age.
Pediatricians have access to elaborate
nonlinear growth curves, that they obtain
from measurements on a very large number
of children. With a small data set such as this,
it may not be possible to fit elaborate models.
However, it may be feasible to obtain useful
linear approximations.

a. Consider the measurements taken at
referral. Model the relationship between
the height and the child’s age at referral.
Model the relationship between the weight
and the child’s age. Investigate whether or
not the weight at birth has some additional
explanatory power.

b. Consider the measurements taken at the
follow-up visit. Model the relationship
between the height and the child’s age
at the follow-up visit. Model the relation-
ship between the weight and the child’s
age.

c. Combine the data set, and use all
measurements on weight and height.
Ignore the fact that the two measurements
on weight (and height) are taken on the
same child. Model the relationship
between the height and the child’s age.
Model the relationship between the weight
and the child’s age.

d. Discuss your findings.

Part 2 The data set also lists the height and
weight for mothers and fathers.

a. Investigate, for mothers and fathers
separately, relationships among their
weight and height.

b. Investigate whether there are relationships
between mother’s and father’s heights and
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mother’s and father’s weights. Can you
claim that “thin” tends to be attracted by
“thin”?

Col Col Col Col Col Col Col Col Col Col Col
1 2 3 4 5 6 7 8 9 10 11

112 56.5 75.0 199 72 165 9.38 64 135 75 230
89 50.0 64.0 184 62 101 8.41 68 127 70 181

100 53.0 85.0 162 63 92 7.40 68 250 69 190
133 56.8 91.8 206 67 147 7.00 65 138 70 181
111 52.5 67.3 187 69 139 8.88 66 179 72 210

Col 1: Age at referral (months)

Col 2: Height at referral (in.)

Col 3: Weight at referral (lb)

Col 4: Age at follow-up (months)

Col 5: Height at follow-up (in.)

Col 6: Weight at follow-up (lb)

Col 7: Birth weight (lb)

Col 8: Height of mother (in.)

Col 9: Weight of mother (lb)

Col 10: Height of father (in.)

Col 11: Weight of father (lb)

8.3. Modeling Softdrink Sales:
The data in file softdrink represent

weekly sales and prices of two competing
products, brand P and brand C. The sales are
recorded in ounces, whereas prices are given
in dollars per ounce. Logarithms of the sales
of 12-packs for both brands (lnSalesP12 and
lnSalesC12) are given, as well as the
logarithms of prices for 6-, 12-, and 24-packs
(lnPriceP6, lnPriceP12, and lnPriceP24 for
brand P and lnPriceC6, lnPriceC12, and
lnPriceC24 for brand C).

a. Analysis for brand P
Price effects on sales are measured by
regressing the logarithm of sales on the
logarithm of prices. Consider the
regression model

M1: lnSalesP12t = β0 + β1 ln PriceP6t

+ β2 ln PriceP12t

+ β3 ln PriceP24t + εt

The slope coefficients in the log/log
model represent price elasticities (see the
discussion in Section 6.5). A 1% change in
the product’s own price translates into a
percentage change in sales of magnitude
β2. We expect this elasticity to be negative
because sales decrease when prices are
increased. On the other hand, the price
elasticities for 6- and 24 packs, β1 and β3,
should be positive. Because of product
substitution within the same brand family,
we expect increased sales of 12-packs
when prices of the other pack sizes are
increased.

Estimate the model M1 using
regression software of your choice.
Interpret the results. Check whether the
elasticities have the expected signs.
Discuss whether sales of 12-packs are
more responsive to price changes in
24-packs than to price changes in
6-packs.

Check the model assumptions, in
particular investigate the autocorrelations
of the residuals. You will find that there is
some autocorrelation in the residuals, and
you will revisit this data set in Exercise
10.8. Look for residual outliers, leverage,
and Cook’s distance (you will find several
large ones).

b. Analysis for brand C
Apply the analysis in (a) to the sales of
brand C and consider the model

M2: lnSalesC12t = α0 + α1 ln PriceC6t

+ α2 ln PriceC12t

+α3 ln PriceC24t +εt

Estimate the model. Interpret the
estimates. Check the model. Discuss
whether or not the results for 12-packs
of brand C in model M2 are similar to
the results for 12-packs of brand P in
model M1.

c. Analysis incorporating prices of both
brands
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Consider models that do not just include
the prices of the considered brand but also
the prices of the competing product.
Estimate the model

M3: lnSalesP12t = β0 + β1 ln PriceP6t

+ β2 ln PriceP12t

+ β3 ln PriceP24t

+ α1 ln PriceC6t

+ α2 ln PriceC12t

+ α3 ln PriceC24t + εt

Interpret the coefficients in this log/log
model. Discuss whether the results are
much of an improvement over the simpler
models M1 and M2. You will find that the
price elasticities of the competing brand
are essentially zero and not overly
significant. This means that sales of brand
P are mostly driven by the prices of brand
P and not by the prices of brand C.

Repeat the analysis by regressing the
log sales of 12-packs of brand C on all six
prices.

d. Additional models
Consider the ratio SalesP12/SalesC12 as
the response. This is equivalent to
analyzing S/(1 − S), where S =
SalesP12/[SalesP12 + SalesC12] is the
market share of brand P. Estimate the
model

M4: ln(SalesP12t/SalesC12t )

= β0 + β1 ln PriceP6t

+ β2 ln PriceP12t

+ β3 ln PriceP24t

+ α1 ln PriceC6t

+ α2 ln PriceC12t

+ α3 ln PriceC24t + εt

Confirm that the elasticities have the
expected signs. Confirm that the response
decreases with increasing 12-pack price of
brand P and decreasing 12-pack price of
brand C. The signs of the two price
coefficients are different, but their
magnitude is approximately the same.
Confirm that the same can be said for the
price coefficients of the other pack sizes,
except that now the signs are reversed.
These regression results lead us to a model
that contains logarithms of price ratios
(i.e., differences of the log prices) as
explanatory variables. Consider the model

M5: ln(SalesP12t/SalesC12t )

= β0 + β1 ln PriceRatio6t

+ β2 ln PriceRatio12t

+ β3 ln PriceRatio24t + εt

Interpret the model and compare it to
model M4. You will find that the R2 is not
much worse, but the model may be easier
to interpret.

8.4. Complete a project as outlined in Section 8.5.
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9 Nonlinear Regression
Models

9.1 INTRODUCTION
So far, we have assumed that the regression function µ = β0 + β1x1 + · · · + βpx p

in the model y = µ + ε is linear in the parameters. Linearity of the regression
function in the parameters β is the key here, because this assumption allows us
to develop a closed-form solution for the least squares estimator. Linearity of the
regression function in the regressor variables is not a relevant issue. The regressor
variables x1, x2, . . . , x p can be any known nonlinear function of the original
regressors, such as squares, powers, exponentials, and logarithms of the x’s,
and the regression function can still be linear in the parameters (see Chapter 1,
Section 1.3).

Models that are nonlinear in the parameters can sometimes be transformed
into linear representations. For example, the nonlinear model y = µε = αxβ

1 xγ

2 ε

can be made linear by applying the logarithm to both sides of the equation, lead-
ing to the linear model in the transformed variables, ln(y) = ln(α) + β ln(x1) +
γ ln(x2) + ln(ε). A linear regression of ln(y) on ln(x1) and ln(x2) gives us esti-
mates of α∗ = ln(α), β, and γ ; the estimate of α can be obtained from exp(α∗).
Note that the errors in the original model are multiplicative. The logarithmic trans-
formation makes the errors additive; constant variance and a normal distribution
must be assumed for the transformed errors ln(ε). The role of transformations in
regression was discussed in Section 6.5.

In certain applications the regression models are intrinsically nonlinear in
the parameters, and these are the models that are discussed in this chapter. In-
trinsically nonlinear means that the model cannot be transformed into a linear
model. Many nonlinear models arise as solutions of differential equations or,
more generally, systems of several differential equations. The differential equa-
tions are usually based on scientific theory from fields such as physics, chemistry,
or the biological sciences. Biologists are interested in the growth of organisms
and they are trying to understand and model the underlying mechanism. Chemists
are interested in understanding chemical reactions that involve the interaction of
several factors over time. Agricultural and environmental scientists are interested

288
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in the growth of crops because they need to understand how tall things grow, how
fast they grow, and how growth is affected by various environmental conditions
and treatments. Pediatricians are interested in knowing about infant growth, and
oncologists study tumor growth. The growth models that arise as solutions to
theory-based differential equations are important for several reasons. The coeffi-
cients in such models mean something to the specialist, and the coefficients can
be parameterized and made dependent on changing conditions and treatments.

Let us illustrate the connection between differential equations and nonlinear
models in the context of a simple example. Consider a situation in which the
growth rate of a certain organism is proportional to the product of present size and
future growth potential. Specifically, let µt be size at time t , α be some limiting
growth value, and (α − µt )/α the proportional amount of growth at time t yet to
be realized. The growth rate is such that

∂µt

∂t
= γµt

α − µt

α
(9.1)

where γ > 0 is a proportionality coefficient. The solution of this differential equa-
tion is given by

µt = α

1 + β exp(−γ t)
(9.2)

If you are rusty solving differential equations, you can always check the
solution “backwards” and show that the derivative of Eq. (9.2) coincides with the
expression in Eq. (9.1). The parameter β in Eq. (9.2) is determined by the initial
conditions. Note that the starting value for µ at t = 0 is α/(1 + β); the limiting
value, as t approaches ∞, is α; hence, for growth models, β > 0. The model in
Eq. (9.2) is called the logistic or autocatalytic growth function.

9.2 OVERVIEW OF USEFUL DETERMINISTIC MODELS, WITH
EMPHASIS ON NONLINEAR GROWTH CURVE MODELS

The simplest growth model is the linear trend model,
µt = α + γ t (9.3)

The exponential trend model is given by

µt = β exp(γ t) (9.4)

The starting value for µ at t = 0 is β. The parameter γ represents the growth rate.
The level µt increases exponentially for positive values of γ . For negative values
of γ the model implies exponential decay toward zero. The model is nonlinear in
the parameters but can be transformed into a linear model by taking the logarithm
on both sides of Eq. (9.4). That is,

ln(µt ) = ln(β) + γ t

Linear and exponential trends imply unbounded growth. However, in most
circumstances one expects that growth will not continue beyond a certain level.
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Trend curves with upper levels, also called saturation levels, must be consid-
ered. The “modified” exponential trend model (also called the monomolecular
model)

µt = α − β exp(−γ t) α > 0, 0 < β ≤ α, γ > 0 (9.5)

achieves such a saturation. The starting value for µ at t = 0 is α − β; the limiting
value, as t approaches ∞, is α. Once these values are set, the parameter γ > 0
determines the speed with which the function approaches the limiting value.
Figure 9.1 shows realizations of this model with α = β = 1 and several values for
γ (0.1, 0.3, 0.5). The increase to the limiting level slows down exponentially.

In certain applications, the growth is described by an early rapid growth,
followed by a more mature period of slower growth and concluding with growth
bounded by some limit that is ultimately attainable. Such “S-shaped” or “sig-
moidal” growth curves can be modeled with the logistic trend model in Eq. (9.2),

µt = α

1 + β exp(−γ t)
α > 0, β > 0, γ > 0 (9.6)

The starting value for µ at t = 0 is α/(1 + β); the limiting value, as t approaches
∞, is α. The parameters α and β determine the initial and the limiting values.
Once these values are set, the parameter γ determines the shape of the sigmoidal
function. Figure 9.2 shows several realizations of this model for α = 1, β = 100,
and several values of γ (0.4, 0.5, 0.6). The logistic growth model implies a
characteristic S-shaped response. Such a response function cannot be achieved
with the modified exponential model in Eq. (9.5).

Another function with an S-shaped appearance is the Gompertz growth
model,

µt = α exp[−β exp(−γ t)] α > 0, β > 0, γ > 0 (9.7)

The limiting value, as t approaches ∞, is α. The starting value for µ at t = 0 is
α exp(−β), and with the restrictions on the parameters 0 < α exp(−β) < α. The
parameter γ > 0 models the shape of the function. Figure 9.3 shows realizations
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of this model with α = 1, β = 10, and several values for γ (0.2, 0.3, 0.4). This
model is also capable of representing an S-shaped response.

The Weibull growth model,

µt = α − (α − β)exp[−(γ t)δ] α > 0, β < α, γ > 0, δ > 0 (9.8)

is another popular model. The starting value for µ at t = 0 is β and the limiting
value, as t approaches ∞, is α. Several typical realizations from this model are
shown in Figure 9.4. For δ = 1, the Weibull model simplifies to the modified
exponential model in Eq. (9.5).

The Richards family (Richards, 1959),

µt = α[1 + (δ − 1)exp(−γ (t − ξ))]1/(1−δ) (9.9)

provides another flexible class of models with four parameters. Special cases of
this model are the logistic model if δ = 2, the Gompertz model as δ approaches
one, and the “modified” exponential (monomolecular) model as δ = 0.
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The Morgan–Mercer–Flodin family (Morgan et al., 1975),

µt = α − α − β

1 + (γ t)δ
(9.10)

represents another, and somewhat different, family of growth models. The param-
eters β and α respectively represent the starting (t = 0) and limiting (t approaches
∞) values of the response. The parameter δ determines the shape of the sigmoid
function, and γ > 0 is a scale parameter.

Until now, we have focused on growth models where µt increases with time.
We conclude this section by discussing an interesting nonlinear model that does
not have this increasing property. It arises as the solution of a system of two
differential equations and is given by

µt = γ1

γ1 − γ2
[exp(−γ2t) − exp(−γ1t)] γ1 	= γ2

= γ1t exp(−γ1t) γ1 = γ2 (9.11)

This model arises in chemical kinetics where a reactant A decomposes to form
the desired product B, which in turn decomposes into an undesired by-product
C. Under the assumption of first-order kinetics, the process can be modeled with
the following two differential equations:

∂µ∗

∂t
= −γ1µ

∗ and
∂µ

∂t
= γ1µ

∗ − γ2µ (9.12)

Here, γ1 > 0 and γ2 > 0 are the reaction rate constants, and µ∗ and µ are the
concentrations of products A and B. The function in Eq. (9.11) is the solution
of the system of the two differential equations in Eq. (9.12). Figure 9.5 shows
special cases of the function (9.11).

Note that in all these models the regressor variable is time, and the x axis in all
figures represents “time.” However, in applications of these models the regressor
can also be a variable other than time. For example, in marketing applications
the regressor variable can be the amount spent on advertising. The sales effect
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of advertising may be characterized by a rapid increase with a moderate level of
advertising, a more mature (and approximately linear) effect to advertising in the
midrange, and ultimately diminishing and no additional returns when advertising
is at very high levels. In chemical or engineering applications, the regressors may
be concentrations of certain input variables or process factors such as temperature
or pressure.

9.3 NONLINEAR REGRESSION MODELS
The nonlinear functions in Section 9.2 model the “signal” in the observation
y. However, no measurement will precisely follow one of these, or any other,
simple functional forms. As in the linear regression situation, we need to add a
probabilistic error component. In the following, we assume that the errors are
additive, independent, and normal with mean zero and constant variance σ 2. Of
course, we need to check whether these assumptions are satisfied. In particular,
we need to confirm that the errors are indeed uncorrelated if observations are
recorded sequentially in time, and that no serial correlation is present. Also,
we must check that the errors are normally distributed, and that the variance of
the errors is constant and does not depend on the level of the series. The usual
regression diagnostics in Chapter 6 apply also to the nonlinear situation.

The nonlinear regression model is given by

yi = µi + εi = µ(xi ,β) + εi (9.13)

where xi = (xi1, . . . , xim)′ is the vector of m covariates for the i th case, β is a
vector of p parameters, andµ(xi ,β) is the nonlinear model component. The errors
εi are independent normal random variables with mean zero and variance σ 2.

The log-likelihood for this model can be written down readily and is given by

ln L(β, σ 2 | y1, y2, . . . , yn) = c − n ln(σ ) − 1

2σ 2

n∑
i=1

[yi − µ(xi ,β)]2 (9.14)
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where c = −(n/2) ln(2π) is a constant that does not depend on the parameters.
The maximum likelihood estimator of β minimizes the sum of squares

S(β) =
n∑

i=1

[yi − µ(xi ,β)]2 (9.15)

and is identical to the least squares estimator of β. Let us denote it by β̂. The
maximum likelihood estimator of the variance σ 2 is given by

σ̂ 2 = S(β̂)

n
=

n∑
i=1

[yi − µ(xi , β̂)]2

n
(9.16)

As in the linear model, one adjusts the denominator by the number of esti-
mated parameters and calculates the unbiased least squares estimator of σ 2 from

s2 = S(β̂)

n − p
=

n∑
i=1

[yi − µ(xi , β̂)]2

n − p
(9.17)

where p is the number of parameters.
So far, this discussion has been identical to our treatment of the linear regres-

sion model. The difference here is that the sum of squares S(β) = ∑n
i=1 [yi −

µ(xi ,β)]2 is no longer a quadratic function of the parameters, and that it is not
possible anymore to write down a closed form expression for the estimator β̂.

Iterative estimation schemes must be used to find the value that minimizes the
sum of squares.

Our goal in this chapter is to give an introduction, but not a comprehensive
treatment, of nonlinear regression modeling. For a comprehensive discussion, we
refer the interested reader to the books by Gallant (1987), Bates and Watts (1988),
Seber and Wild (1989), and Huet et al. (1996). These books go into great detail
on how to maximize the likelihood function (or, equivalently, minimize the sum
of squares) if the function in Eq. (9.14) is not quadratic in the parameters. In the
next section, we give the basic ideas and we discuss the Newton–Raphson and
Gauss–Newton algorithms for finding the values that minimize such functions.

9.4 INFERENCE IN THE NONLINEAR REGRESSION MODEL
9.4.1 THE NEWTON–RAPHSON METHOD OF DETERMINING
THE MINIMUM OF A FUNCTION

Consider finding the minimum of a function f (β) with respect to the p-
dimensional vector β. The negative log-likelihood in Eq. (9.14) or the sum of
squares in Eq. (9.15), S(β) = ∑n

i=1 [yi − µ(xi ,β)]2, are two such functions of
interest. Expand the function f (β) in a (second-order) Taylor series around its
optimum β∗,

f (β) ∼= f (β∗) + g(β∗)′(β − β∗) + 1

2
(β − β∗)′G(β∗)(β − β∗) (9.18)



Abraham Abraham˙C09 November 8, 2004 12:3

9.4 Inference in the Nonlinear Regression Model 295

where g(β) is the column vector of first derivatives of f (β) with respect to β.

It is the vector with elements
∂ f (β)

∂β1
,
∂ f (β)

∂β2
, . . . ,

∂ f (β)

∂βp
. The vector g(β)′ is

the transpose of g(β), and the notation g(β∗) expresses the fact that the vector
of derivatives is evaluated at β =β∗. G(β) in Eq. (9.18) is the p × p matrix of

second derivatives of f (β) with element
∂2 f (β)

∂βi∂β j
in row i and column j . The

notation G(β∗) indicates that the derivatives are evaluated at β =β∗. The matrix
of second derivatives is known as the Hessian matrix.

Differentiating the previous equation with respect to the elements in β yields

g(β) ∼= g(β∗) + G(β∗)(β − β∗) = G(β∗)(β − β∗) (9.19)

as the vector of first derivatives g(β∗) = 0 at the optimum β∗. Solving Eq. (9.19)
for β∗ leads to

β∗ ∼=β − [G(β∗)]−1g(β) (9.20)

For quadratic functions f (β), β can be set equal to any initial value and the
optimum β∗ on the left-hand side of the previous equation is given exactly by
the right-hand side. For example, take the scalar case with p = 1, and f (β) =
a + bβ + cβ2 and c > 0. Then the first and second derivatives are given by g(β) =
b + 2cβ and G(β) = 2c, a positive constant. Note that the β on the right-hand
side of the equation cancels and

β − [G(β∗)]−1g(β) = β − 1

2c
(b + 2cβ) = − b

2c

which is the value that provides the minimum of f (β) = a + bβ + cβ2.
For more general functions f (β), the cancellation of β on the right-hand side

of the equation no longer happens. However, the equation suggests an iterative
procedure in which we revise the current value β̃ to obtain a revised value β∗

according to

β∗ = β̃ − [G(β∗)]−1g(β̃) (9.21)

The revised value β∗ can be expected to be closer to the optimum than the
current value β̃. However, the iterative procedure raises a difficulty because the
Hessian matrix is evaluated at the true optimum β∗, which of course is unknown
at the outset. The solution adopted by Newton–Raphson evaluates the Hessian at
the current value β̃, on the grounds that this will provide a good approximation
if the current value is reasonably close to the optimum. The Newton–Raphson
procedure revises the values according to

β∗ = β̃ − [G(β̃)]−1g(β̃) (9.22)

The procedure progresses toward a minimum only if the Hessian matrix is
positive definite. For concave functions the Hessian can be shown to be positive
definite. The procedure breaks down if the matrix G is not invertible, and the
iterations may go in the wrong direction (toward a maximum) if the matrix G
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is negative definite. However, even with a positive definite Hessian matrix the
method may overshoot the minimum and actually increase the objective function.
Various safeguards (adding components to make the Hessian positive definite and
varying the step size of successive changes) are incorporated in commonly used
numerical optimization procedures.

9.4.2 APPLICATION TO NONLINEAR REGRESSION: NEWTON–RAPHSON
AND GAUSS–NEWTON METHODS

The Newton–Raphson method can be applied to the minimization of the negative
log-likelihood function, − ln L(β) in Eq. (9.14). First and second derivatives of
− ln L(β) need to be calculated and evaluated at the current value β̃. Sometimes
the matrix of negative second derivatives is replaced by its expectation,

E

[
−∂2 ln L(β)

∂β∂β′

]
= I (β) (9.23)

I (β) is called the information matrix. The resulting recursion,

β∗ = β̃ + [I (β̃)]−1 ∂ ln L(β̃)

∂β
(9.24)

is called the method of scoring. The scoring calculations are often simpler,
and since the information matrix is always positive definite, the problems with
nonnegative definite Hessian matrices are avoided.

The least squares (or maximum likelihood with normal errors) estimation of
parameters in nonlinear regression models involves the minimization of a sum of
squares, f (β) = S(β) = ∑n

i=1 [εi (β)]2, where the errors εi (β) = yi − µi (xi ,β)

involve the parameters β in a nonlinear fashion. The vector of first derivatives
and the Hessian matrix can be written as

g(β) = ∂S(β)

∂β
= 2

∑ (
∂εi (β)

∂β

)
εi (β) (9.25)

G(β) = ∂2S(β)

∂β∂β′ = 2
∑ {(

∂εi (β)

∂β

) (
∂εi (β)

∂β

)′
+ ∂2εi (β)

∂β∂β′ εi (β)

}
(9.26)

The vector of derivatives of εi (β) with respect to the parameters in β,
∂εi (β)

∂β
,

consists of the elements
∂εi (β)

∂β1
,
∂εi (β)

∂β2
, . . . ,

∂εi (β)

∂βp
. The last term in Eq. (9.26),

∂2εi (β)

∂β∂β′ , is the p × p matrix of second derivatives of εi (β), with element
∂2εi (β)

∂β j∂β j∗

in row j and column j∗. All sums in Eqs. (9.25) and (9.26) go from i = 1 through
n; we have omitted the limits of the summation in order to simplify the notation.

The Newton–Raphson method revises the estimates according to

β∗ = β̃ −
[∑ {(

∂εi (β)

∂β

) (
∂εi (β)

∂β

)′
+ ∂2εi (β)

∂β∂β′ εi (β)

}]−1∑ (
∂εi (β)

∂β

)
εi (β̃)

(9.27)
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where all first and second derivatives on the right-hand side are evaluated
at β̃.

Ignoring the second derivatives in the Hessian matrix (one can expect that
second derivatives will be small in comparison to first derivatives), the recursions
simplify to

β∗ = β̃ −
[∑ {(

∂εi (β)

∂β

) (
∂εi (β)

∂β

)′}]−1 ∑ (
∂εi (β)

∂β

)
εi (β̃) (9.28)

This is known as the Gauss–Newton method. The method is equivalent to the
first-order Taylor series expansion of the nonlinear regression model at the current
value β̃,

εi (β) = yi − µ(xi ;β) ∼= εi (β̃) +
(

∂εi (β)

∂β

)′
(β − β̃)

and updating the estimates in the linearized version of the nonlinear model

εi (β̃) ∼= −
(

∂εi (β)

∂β

)′
(β − β̃) + εi (9.29)

The vector of first derivatives on the right-hand side of Eq. (9.29),
∂εi (β)

∂β
, is

evaluated at the current estimate β̃ and is known; it takes the place of the regressor
vector in a standard linear regression model. The least squares estimate of (β − β̃)

can be written down, and by rearranging terms one obtains the updated estimates

β∗ = β̃ −
[∑ (

∂εi (β)

∂β

) (
∂εi (β)

∂β

)′]−1 ∑ (
∂εi (β)

∂β

)
εi (β̃)

These are exactly the recursions given in Eq. (9.28).
The estimation methods—the Newton–Raphson iterations in Eq. (9.27) and

the Gauss–Newton recursions in Eq. (9.28)—differ only slightly with respect to
the Hessian matrix that is used in the iterations. In almost all situations, they will
converge to the same estimates. Let us denote this estimate by β̂.

9.4.3 STANDARD ERRORS OF THE MAXIMUM LIKELIHOOD ESTIMATES

In the linear regression situation, we were able to derive the exact sampling
distribution of the least squares estimates in finite samples. This is no longer
possible in the nonlinear situation. However, the inference procedures can be
justified from large sample results.

General maximum likelihood theory establishes the asymptotic (when the
sample size n is large) normality of the estimates β̂. It also establishes that the
asymptotic covariance matrix of the maximum likelihood estimates is given by

the inverse of the information matrix in Eq. (9.23), I (β) = E

[
−∂2 ln L(β)

∂β∂β′

]
.

Evaluating this matrix at the final maximum likelihood estimates gives us an
estimate of the asymptotic covariance matrix. That is,

V (β̂) ∼= [I (β̂)]−1 (9.30)
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The information matrix can be estimated by the Hessian matrix

−∂2 ln L(β)

∂β∂β′ = 1

2σ 2

∂2S(β)

∂β∂β′ = 1

σ 2

∑ {(
∂εi (β)

∂β

) (
∂εi (β)

∂β

)′
+ ∂2εi (β)

∂β∂β′ εi (β)

}

using the result in Eq. (9.26). Hence, the asymptotic covariance matrix of β̂ is
estimated by

V (β̂) ∼= σ 2
[∑ {(

∂εi (β)

∂β

) (
∂εi (β)

∂β

)′
+ ∂2εi (β)

∂β∂β′ εi (β)

}]−1

∼= σ 2
[∑ (

∂εi (β)

∂β

) (
∂εi (β)

∂β

)′]−1

(9.31)

after ignoring the matrix of second derivatives. All derivatives on the right-hand
side of Eq. (9.31) are evaluated at the maximum likelihood estimates.

An alternative way of justifying this covariance result is to expand the non-
linear regression function one additional time at the final estimate [see Eq. (9.29)
and using β̃ = β̂],

εi (β̂) ∼= −
(

∂εi (β)

∂β

)′
(β − β̂) + εi

and to calculate the covariance matrix of the estimates in the last linearization
step. Linear regression theory tells us that the covariance matrix of the estimates
is

V (β̂) ∼= σ 2(X ′ X)−1 = σ 2
[∑ (

∂εi (β)

∂β

) (
∂εi (β)

∂β

)′]−1

which is exactly the result in Eq. (9.31).
The unknown parameter σ 2 in the previous equation is replaced by its least

squares estimate in Eq. (9.17). This results in an estimate of the covariance matrix
V (β̂) that can be calculated. The square roots of the diagonal elements in this ma-
trix provide estimates of the standard errors s.e.(β̂1), . . . , s.e.(β̂ p). Off-diagonal
elements provide estimates of the covariances among the estimates, which in
turn can be used to calculate estimates of the correlation between the parameter
estimates.

Large sample theory allows us to proceed with the inference just like we did
in the linear regression model. That is, the standard errors can be used to obtain
approximate 95% confidence intervals for β j ,

β̂ j ± t (1 − α/2; n − p)s.e.(β̂ j )

and t ratios β̂ j/s.e.(β̂ j ) can be used to test H0: β j = 0 against H1: β j 	= 0. The
significance is assessed from the percentiles of the t distribution. The additional
sum of squares F tests for testing several restrictions among the parameters are
still valid under large sample theory.
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9.4.4 IMPLEMENTATION ISSUES

Computer software is widely available to find the estimates in nonlinear regression
problems. Statistical software packages, such as SPSS, SAS in its routine PROC
NLIN, and S-Plus, include reliable estimation routines. For the user, little more
than specifying the model and supplying initial starting values is required. Usually,
these procedures will work fine.

However, problems with the convergence of these routines may occur. Of-
ten, problems are due to poorly specified models and badly chosen starting val-
ues. Specifying models that leave certain parameters unidentified (or “almost”
unidentified) is a sure roadmap to disaster. The concept of unidentified (or almost
unidentified) parameters is akin to multicollinearity (or near multicollinearity).
In the linear regression model, one would not think about putting the same re-
gressor into the model twice, because this would leave the individual parameters
unidentified; whereas the sum of the two coefficients is identified and estimable,
the individual coefficients are not. We learned how to identify such situations by
looking at variance inflation factors, and we avoided such situations by simplify-
ing the model specification. The same problem arises in nonlinear models, and in
such situations the iterative optimization procedures will experience convergence
difficulties. The structure of many nonlinear models is such that a certain degree
of multicollinearity is present automatically. Often, the challenge with nonlinear
models is to find specifications that are the least subject to the multicollinearity
problem.

Nonlinear optimization procedures work best if the magnitudes of the pa-
rameters are approximately the same. They often fail if the parameters are very
different in size; for example, one parameter is in the range from 0 and 1, whereas
the other is in the thousands. One should attempt to reparameterize the model so
that the parameters are of approximately equal magnitude.

The iterative estimation procedures will work well as long as we fit appro-
priately specified models and the functions (sum of squares functions or negative
log-likelihoods) are reasonably “well behaved.” By that, we mean that the func-
tions are concave and have no local minima that can “trap” iterative algorithms.
If the dimension of the parameter vector p is small (one or two), one can always
evaluate the function over a grid and look at the whole picture. Of course, this is
not feasible if the dimension of β is large. In such cases, one can experiment with
different starting values. The model needs to be reconsidered if different starting
values do not result in the same final estimate.

9.5 EXAMPLES
9.5.1 EXAMPLE 1: LOSS IN CHLORINE CONCENTRATION

The investigation involves a product that at the time of manufacture must have a
fraction 0.50 of available chlorine. The fraction of available chlorine in the product
decreases with time. The decrease under controlled conditions is well understood.
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TABLE 9.1 DATA ON AVAILABLE CHLORINE AND AGE
OF THE PRODUCT [DATA FILE: chlorine]

x = Age: Length of Time
Since Produced y = Available Chlorine (%)

8 0.49, 0.49
10 0.48, 0.47, 0.48, 0.47
12 0.46, 0.46, 0.45, 0.43
14 0.45, 0.43, 0.43
16 0.44, 0.43, 0.43
18 0.46, 0.45
20 0.42, 0.42, 0.43
22 0.41, 0.41, 0.40
24 0.42, 0.40, 0.40
26 0.41, 0.40, 0.41
28 0.41, 0.40
30 0.40, 0.40, 0.38
32 0.41, 0.40
34 0.40
36 0.41, 0.38
38 0.40, 0.40
40 0.39
42 0.39
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FIGURE 9.6
Scatter Plot of
Available Chlorine
against Age of the
Product

In the 8 weeks before the product reaches the consumer, the fraction of available
chlorine declines to approximately 0.49. However, what happens after the 8 weeks
is difficult to predict because the handling and storing procedures in warehouses
are not always the same.

The data in Table 9.1 are taken from Smith and Dubey (1964). Chlorine
concentrations were determined from 44 samples of various ages.

A scatter plot of available chlorine against age is shown in Figure 9.6. Avail-
able chlorine decays exponentially from the level 0.49 at age x = 8.
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TABLE 9.2 SPSS OUTPUT FROM THE NONLINEAR ESTIMATION OF MODEL
(9.32): CHLORINE LOSS

Source DF Sum of Squares Mean Square

Regression 2 7.98200 3.99100
Residual 42 5.001680E-03 1.190876E-04
Uncorrected Total 44 7.98700

(Corrected Total) 43 .03950

R squared = 1 − Residual SS / Corrected SS = .87338

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper
α .390140032 .005044840 .379959134 .400320931
β .101632757 .013360412 .074670354 .128595160

Asymptotic Correlation Matrix of the Parameter Estimates

α β

α 1.0000 .8879
β .8879 1.0000

We consider a nonlinear model of the form

yi = α + (0.49 − α)exp[−β(xi − 8)] + εi (9.32)

The model implies a mean chlorine concentration at x = 8 of 0.49 and an ex-
ponential decay thereafter. The exponential decay flattens out at level α. The
model is similar to the “modified” exponential model in Eq. (9.5), except that
here we model a decrease (and not an increase) and know the initial response at
x = 8.

Judging from the graph in Figure 9.6, it is a reasonable assumption that the
chlorine concentration flattens out at approximately 0.35; hence, a good start-
ing value for α is given by 0.35. A starting value for β can be obtained as
follows: At x = 38, 0.40 ≈ α + (0.49 − α)exp(−30β). Substituting the starting
value α = 0.35 leads to the equation, exp(−30β) = 0.05/0.14 and β = 0.034.

These values are used as starting values for the nonlinear estimation. The
output from the nonlinear regression routine in SPSS is shown in Table 9.2. The
estimates are α̂ = 0.39 and β̂ = 0.10. An estimate of the unexplained variability
σ is given by

s =
√

0.00500168

44 − 2
=

√
0.000119 = 0.011

This amounts to approximately one percentage point. A graph of the fitted val-
ues, together with the observations, is shown in Figure 9.7. The figure shows that
the model provides a fairly good fit. The coefficient of determination, R2 = 1 −
SSE/SST = 1 − 0.00500168/0.03950 = 0.8734, indicates that approximately
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FIGURE 9.7
Observations and
Fitted Regression
Line: Chlorine Loss

87% of the variation around the mean is explained by the nonlinear regression
model.

Because of numerous replications at the values on the covariate, one can also
calculate a pure error sum of squares; see Section 6.4. The pure error sum squares
from the replications is given by 0.002367 and has 26 degrees of freedom. You
can check this by calculating and adding the sums of squares and the degrees of
freedom over all groups with replications. Hence, the F test for lack of fit is given
by

F = (0.00500168 − 0.002367)/(42 − 26)

0.002367/26
= 1.81

This value needs to be compared to the 95th percentile of the F(16, 26) distribu-
tion, which is 2.05. Hence, there is not enough evidence to question the adequacy
of the model in Eq. (9.32). Alternatively, one could have calculated the probability
value P(F ≥ 1.81) = 1 − 0.9134 = 0.0866. Since this is larger than the common
significance level 0.05, we find no reason to reject the model.

The uncertainty in the estimates is reflected in the confidence intervals. The
computer output in Table 9.2 refers to asymptotic standard errors, asymptotic
confidence intervals, and asymptotic correlation matrices because it uses an es-
timate of the asymptotic variance in Eq. (9.31) for these calculations. The 95%
confidence interval for β extends from 0.075 to 0.129. We notice a fair amount
of correlation (0.89) among the estimates of α and β.

9.5.2 EXAMPLE 2: SHOOT LENGTH OF PLANTS EXPOSED TO GAMMA IRRADIATION

Data on the shoot length of plants emerging from seeds exposed to gamma irradia-
tion are given in Table 9.3. The predictor variable is the dose of gamma irradiation
(in kiloRoentgen). The response is the average shoot length of plants (averages of
five plants, in centimeters) of a chickpea cultivar emerging from seeds exposed
to this dose. The data are taken from Singh et al. (1992).
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TABLE 9.3 DATA ON PLANT LENGTH AND GAMMA
IRRADIATION [DATA FILE: shootlength]

x = Gamma Irradiation y = Shoot Length

0 8.85
10 9.40
20 9.18
30 8.70
40 7.53
50 6.43
60 5.85
70 4.73
80 3.98
90 3.50

100 3.10
110 2.80

100500

9.5

8.5

7.5

6.5

5.5

4.5

3.5

2.5

Gamma irradiation

Sh
oo

t L
en

gt
h

FIGURE 9.8
Scatter Plot of Shoot
Length against
Gamma Irradiation

A scatter plot of average shoot length against gamma irradiation in Figure 9.8
shows a nonlinear relationship. Singh et al. (1992) consider the nonlinear model
of the form

y = β1 + β2

1 + exp[−β3(x − β4)]
+ ε (9.33)

The model is similar to the logistic model in Eq. (9.6), except that it is parametrized
differently and that a “background” component β1 has been included.

Fitting this model with the nonlinear regression routine in SPSS leads to the
results in Table 9.4. The table also shows the fitted values and residuals.

The estimate of V (ε) = σ 2 is given by s2 = 0.63504/8 = 0.0794. The stan-
dard deviation s = 0.28 is rather small when compared with the average response
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TABLE 9.4 OUTPUT OF THE SPSS NONLINEAR REGRESSION PROGRAM

Source DF Sum of Squares Mean Square

Regression 4 526.19146 131.54786
Residual 8 .63504 .07938
Uncorrected Total 12 526.82650

(Corrected Total) 11 69.87629

R squared = 1 − Residual SS / Corrected SS = .99091

Asymptotic 95 %
Asymptotic Confidence Interval

Parameter Estimate Std. Error Lower Upper

β1 2.712748521 .313315157 1.990242473 3.435254569
β2 −.063851581 .010626341 −.088355967 −.039347194
β3 6.797488567 .526103337 5.584292096 8.010685038
β4 56.093286476 2.410491142 50.534683935 61.651889017

Asymptotic Correlation Matrix of the Parameter Estimates

β1 β2 β3 β4

β1 1.0000 −.7800 −.8710 −.4613
β2 −.7800 1.0000 .8991 .0411
β3 −.8710 .8991 1.0000 .0514
β4 −.4613 .0411 .0514 1.0000

Observations, Fitted Values, and Residuals

x = Dose y = Length Fitted Residual

0.00 8.85 9.33 −0.48
10.00 9.40 9.17 0.23
20.00 9.18 8.89 0.29
30.00 8.70 8.43 0.27
40.00 7.53 7.72 −0.19
50.00 6.43 6.76 −0.33
60.00 5.85 5.69 0.16
70.00 4.73 4.69 0.04
80.00 3.98 3.93 0.05
90.00 3.50 3.41 0.09

100.00 3.10 3.10 0.00
110.00 2.80 2.92 −0.12

of 6.2. The nonlinear model in Eq. (9.33) implies monotone decreasing lengths
for increasing irradiation; the model is unable to capture the observed “peak”
around x = 10. One should obtain more data at small gamma irradiation levels to
check whether some minor amount of irradiation is actually “helpful” in terms
of increasing length, or whether the observation at x = 10 is unduly affected by
noise. Furthermore, the correlations among the estimates of β1, β2, and β3 make
the interpretation of individual coefficients difficult. Although the model fits quite
well, one should not put too much emphasis on the interpretation of the individual
coefficients.
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EXERCISES
9.1. Consider the data on the age (in years)

and the leaf area (in square meters) of 12
palm trees. [Source: Rasch, D. The
robustness against parameter variation of
exact locally optimum designs in nonlinear
regression—A case study. Computational
Statistics and Data Analysis, 20, 441–453,
1995. Also: Sedlacek, G. Zur Quantifizierung
und Analyse der Nichtlinearitaet von
Regressionsmodellen. Austrian Journal of
Statistics, 27, 171–190, 1998. The data are
given in the file palmtrees.

Plot area against age. Consider the
Gompertz model in Eq. (9.7),
y = µ + ε = α exp[−β exp(−γ Age)] + ε,
with parameters α > 0, β > 0, γ > 0. Discuss
suitable starting values for the parameters.
Determine the estimates and assess the
adequacy of the model.

Age (years) Area (m2)

1 2.02
2 3.62
3 5.71
4 7.13
5 8.33
6 8.29
7 9.81
8 11.30
9 12.18

10 12.67
11 10.62
12 12.01

9.2. Data on the utilization of nitrate in bush
beans as a function of light intensity were
obtained by J. R. Elliott and D. R. Peirson of
Wilfrid Laurier University (Canada). Portions
of leaves from three 16-day-old plants were
subjected to eight levels of light intensity (in
microeinsteins per square meter per second)
and the nitrate utilization (in nanomoles per
gram per hour) was measured. The data are
given in the file nitrate.

Nitrate utilization should be zero at zero
light intensity and should approach an
asymptote as the light intensity increases.
The data listed below are analyzed in Bates
and Watts (1988); the models that we ask you
to consider are taken from their analysis.
Note that the experiment was carried out on
two different days.

Plot nitrate utilization versus light
intensity. Use different symbols for day 1 and
day 2 observations.

Bates and Watts (1988) consider several
nonlinear models for y = µ + ε. Fit these
models to the data, add the fitted regression
line to your scatter plot, and discuss their
adequacy.

µ = f (x; β1, β2) = β1x

β2 + x
(Michaelis–Menton model)

µ = f (x; β1, β2) = β1[1 − exp(−β2x)]

(exponential rise model)

µ = f (x; β1, β2, β3) = β1x

β2 + x + β3x2

(quadratic Michaelis–Menton model)

µ = f (x; β1, β2, β3)

= β1[exp(−β3x) − exp(−β2x)]

(modified exponential rise model)

Bacon and Watts (1988) also investigate
whether the parameters in the Michaelis–
Menton models change with the day. They
consider an indicator variable z that is 1 if
day 2 observations are involved and 0
otherwise, and they study the models

µ = f (x, z; β1, β2, α1, α2) = (β1 + α1z)x

(β2 + α2z) + x

µ = f (x, z; β1, β2, β3, α1, α2, α3)

= (β1 + α1z)x

(β2 + α2z) + x + (β3 + α3z)x2
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Investigate whether these modifications
are needed, or whether all or some parameters
can be taken constant across both days.

Nitrate Nitrate
Light Intensity Utilization, Day Utilization, Day
(µE/m2 sec) 1 (nmol/g hr) 2 (nmol/g hr)

2.2 256 549
685 1,550

1,537 1,882

5.5 2,148 1,888
2,583 3,372
3,376 2,362

9.6 3,634 4,561
4,960 4,939
3,814 4,356

17.5 6,986 7,548
6,903 7,471
7,636 7,642

27.0 9,884 9,684
11,597 8,988
10,221 8,385

46.0 17,319 13,505
16,539 15,324
15,047 15,430

Nitrate Nitrate
Light Intensity Utilization, Day Utilization, Day
(µE/m2 sec) 1 (nmol/g hr) 2 (nmol/g hr)

94.0 19,250 17,842
20,282 18,185
18,357 17,331

170.0 19,638 18,202
19,043 18,315
17,475 15,605

9.3. Consider the following models. Discuss how
these models can be transformed so that they
can be estimated through (linear) least
squares.

y = β0(x1)
β1(x2)

β2ε

y = 1

β0 + β1x + ε

y = 1

1 + [exp(β0 + β1x)]ε

9.4. Search the engineering/chemistry/biology
literature for interesting applications of
nonlinear regression. Replicate the estimation
if the data are given. Provide a brief report on
your findings.
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10
Regression Models
for Time Series
Situations

The standard regression assumptions specify that the errors εt (t = 1, 2, . . . , n) in
the regression model

yt = β0 + β1xt1 + β2xt2 + · · · + βpxtp + εt

are independent, or at least uncorrelated. Independence may be an unreasonable
assumption if we estimate the regression model on time series data. In this chapter,
we replace the standard case index “i” by “t” in order to emphasize the fact that
we deal with time series and not cross-sectional data. That is, we assume that
(yt , xt1, xt2, . . . , xtp) represent the measurements on the response y and the p
explanatory variables x1, x2, . . . , x p at time t—usually months, quarters, or years.
For example, (yt , xt1, xt2), for t = 1, 2, . . . , n, may represent the sales, the price,
and the amount spent on advertisement in month t .

10.1 A BRIEF INTRODUCTION TO TIME SERIES MODELS
In this chapter, we assume that observations become available at equally spaced
time periods, such as months, quarters, or years. The situation becomes more
complicated if time periods are unequally spaced, and we do not address this
issue here. In this section, we introduce several simple models that are very useful
for characterizing the correlations among time series observations. Correlations
among observations k periods apart are referred to as autocorrelations or serial
correlations (see Section 6.2).

10.1.1 FIRST-ORDER AUTOREGRESSIVE MODEL

In our previous discussion on generalized least squares (Section 4.6), we men-
tioned a situation in which errors were serially (auto) correlated. We parameterized

307
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the covariance matrix of the vector of errors ε= (ε1, . . . , εt , . . . , εn)
′ as

V (ε) = σ 2V = σ 2




1 φ φ2 · · φn−1

φ 1 φ φ2 · φn−2

φ2 φ 1 · · ·
· · · · · ·
· · · · 1 φ

φn−1 φn−2 · · φ 1




(10.1)

and referred to the associated model as a first-order autoregressive represen-
tation. Note that the diagonal elements of the matrix V are all one; hence, the
errors have equal variance, V (εt ) = σ 2. The matrix V in Eq. (10.1) is in fact a
correlation matrix.

All correlations among observations one step apart are the same. The lag 1
autocorrelations are

Corr(ε1, ε2) = Corr(ε2, ε3) = · · · Corr(εt−1, εt ) = · · · Corr(εn−1, εn) = φ

Correlations must be between −1 and +1. Hence, we must restrict the autoregres-
sive parameter to |φ | < 1. Note that we also exclude values of φ at the boundary.
The case φ = 1 will be covered in the next model when we discuss the random
walk.

The matrix V in Eq. (10.1) also implies that all correlations among observa-
tions two steps apart (i.e., the lag 2 autocorrelations) are the same and equal to
the square of the lag one autocorrelation. That is,

Corr(ε1, ε3) = Corr(ε2, ε4) = · · · Corr(εt−2, εt ) = · · · Corr(εn−2, εn) = φ2

The autocorrelations of observations k steps apart are

Corr(ε1, εk+1) = Corr(ε2, εk+2) = · · · Corr(εt−k, εt) = · · · Corr(εn−k, εn) = φk

We notice two things about these autocorrelations: (i) They depend only on the
time lag between the observations, and (ii) they decrease geometrically (or expo-
nentially) with the time lag. We can drop the time index (because the autocorre-
lations depend only on the time lag) and write the autocorrelations as

ρ1 = Corr(εt−1, εt) = φ, ρ2 = Corr(εt−2, εt) = φ2, . . . . , ρk = Corr(εt−k, εt) = φk

(10.2)
The autocorrelations, viewed as a function of the lag k, describe the autocor-
relation function. Note that ρ0 = 1, and ρk = ρ−k . Hence, the autocorrelation
function needs to be shown only for nonnegative k’s. We have just seen that the
autocorrelation function of errors that follow a first-order autoregressive model
exhibits an exponential decay; the farther apart the observations, the weaker the
autocorrelation. If the parameter φ is large and close to one in absolute value,
then the decay is slow; even errors far apart are still correlated. With economic
data we usually expect positive values for φ; if errors (e.g., in sales) are unusually
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high in a particular month, then we expect the errors in adjacent months to be
large also.

Why do we call this an autoregressive model? This will become clear now
as we specify the model that implies this particular autocorrelation structure.
Consider the model

εt = φεt−1 + at (10.3)

which “regresses” the correlated error at time t, εt , on the previous error εt−1. The
at ’s are the usual “errors” in the regression model, with the typical properties;
they have mean zero and are uncorrelated. The autocorrelations among the at ’s
are zero at all lags: Corr(at−k, at ) = 0 for all k �= 0. Their variance is denoted by
σ 2

a . The literature refers to such a sequence of uncorrelated random variables {at }
as a white noise sequence. Sometimes, the at ’s are also called random “shocks.”
Figure 10.1 shows the plot of observations from the model (10.3) with φ = 0.5.

The correlated error at time t, εt , can equivalently be written as a linear
function of current and previous white noise errors. By repeated substitution in
Eq. (10.3), we obtain

εt = φεt−1 + at = at + φ(φεt−2 + at−1) = at + φat−1 + φ2εt−2

= at + φat−1 + φ2(φεt−3 + at−2) = · · ·
= at + φat−1 + φ2at−2 + φ3at−3 + · · · (10.4)

This expansion is possible because |φ | < 1, which implies that errors in the distant
past have little weight. The mean E(εt ) = 0 because the weights in the expansion
(10.4) converge to zero.

The autocorrelations that are implied by this autoregressive model are exactly
the ones given by the matrix V in Eq. (10.1). You can see this by multiplying the
model in Eq. (10.3) with εt−k (for k > 0),

εtεt−k = φεt−1εt−k + atεt−k
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and taking the expectation on both sides of this equation,

Cov(εt , εt−k) = φCov(εt−1, εt−k) + E(atεt−k) (10.5)

Here we have used the fact that Cov(εt , εt−k) = E(εtεt−k) since the means
E(εt ) = E(εt−k) = 0. The last term in Eq. (10.5) is zero for k > 0. This is be-
cause εt−k depends on past errors at−k, at−k−1,at−k−2, . . . , and these components
are independent of the current error at . Hence,

Cov(εt , εt−k) = φCov(εt−1, εt−k)

Dividing both sides of this equation by the time-invariant variance V (εt ) leads to

ρk = φρk−1 for all k > 0 (10.6)

This implies that

ρk = φρk−1 = φφρk−2 = · · · = φkρ0 = φk, k = 1, 2, . . . (10.7)

which are exactly the autocorrelations given by the matrix V in Eq. (10.1). The
variance of εt can be obtained from the representation in Eq. (10.4):

V (εt ) = σ 2
a [1 + φ2 + φ4 + φ6 + · · ·] = σ 2

a

/
(1 − φ2) (10.8)

10.1.2 RANDOM WALK MODEL

Consider the first-order autoregressive model in Eq. (10.3), but let the parameter
φ = 1. Then

εt = εt−1 + at = at + at−1 + at−2 + at−3 + · · · (10.9)

We call this the random walk model. It expresses the error at time t as a cumu-
lative sum of all random shocks up to time t . We call the random walk model
an integrated model because it integrates (sums) the current and previous white
noise errors.

The first-order autoregressive model with |φ | < 1 has a fixed level, and in
the model without a constant the level is zero. Realizations from the model (10.3)
scatter around the fixed level and sample paths do not leave this level for long
periods. This “stationary” behavior is different from that of the random walk
because the random walk in Eq. (10.9) does not have a fixed level. We call such a
model “nonstationary.” For nonstationary models, it usually takes a very long time
until realizations return to their starting level. Stock prices are good examples of
random walks. Looking at charts of daily stock prices, one notices long excursions
from any starting point. Also note that the path of a nonstationary time series
sequence usually appears quite smooth. Figure 10.1 shows a realization from a
random walk.

Differences of a random walk, wt = εt − εt−1 = at , are uncorrelated. Al-
though the εt ’s are nonstationary, wandering “smoothly” with long excursions
from any starting point, their first differences wt are stationary and well behaved.
For a random walk, the successive differences are in fact uncorrelated.
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10.1.3 SECOND-ORDER AUTOREGRESSIVE MODEL

The first-order autoregressive model is a very simple model for characterizing
serial correlation in a time series. However, the model imposes a fairly rigid
structure on the autocorrelations. In some circumstances, it may be better to work
with a more flexible model that allows more “freedom” for the autocorrelations.
The second-order autoregressive model is such an extension. It “regresses” the
error at time t on the errors at time t − 1 and t − 2:

εt = φ1εt−1 + φ2εt−2 + at (10.10)

As in the first-order autoregressive model, it is possible—through repeated
substitution—to express εt as a linear combination of the current and previ-
ous white noise errors at ’s. The coefficients in this expansion depend on the two
parameters, φ1 and φ2.

One can derive the autocorrelations that this model implies. The first lag
autocorrelation is given by (see Abraham and Ledolter, 1983)

ρ1 = φ1

1 − φ2

and the remaining autocorrelations can be obtained from the difference equation,

ρk = φ1ρk−1 + φ2ρk−2 for k > 1

With ρ1, one calculates ρ2 = φ1ρ1 + φ2, then ρ3 = φ1ρ2 + φ2ρ1, and so on. It
can be shown [see standard textbooks on time series analysis, such as Abraham and
Ledolter (1983) and Box et al. (1994)] that the autocorrelations of a second-order
autoregressive model are combinations of two exponential decays or damped sine
waves.

As in the first-order autoregressive model, one needs to put restrictions on
the autoregressive parameters; otherwise, the realizations from this model would
wander without a fixed level. The parameters must satisfy the constraints

φ2 + φ1 < 1, φ2 − φ1 < 1, −1 < φ2 < 1

These are known as the stationarity conditions.

10.1.4 NOISY RANDOM WALK MODEL

The following model provides another useful representation for nonstationary
error sequences. The model adds an uncorrelated error (noise) at to a fraction of
the random walk that we considered previously. It is given by

εt = (1 − θ)[at−1 + at−2 + at−3 + · · ·] + at = (1 − θ)

∞∑
j=1

at− j + at (10.11)

The parameter θ that controls the fraction is restricted within −1 and +1.
There are several ways of writing this model, and the equivalent representa-

tions give useful insights into the nature of the model. Simple manipulation shows
that

εt = εt−1 + at − θat−1 (10.12)
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Write down εt and εt−1 in Eq. (10.11), and convince yourself that their difference
equals at − θat−1. The representation in Eq. (10.12) shows that the noisy random
walk expands on the random walk model by adding to the equation a fraction
of the previous white noise error (−θat−1). The model is capable of character-
izing nonstationary error sequences, and it simplifies to the random walk if the
parameter θ = 0. Figure 10.1 gives a realization from the model (10.12) with
θ = 0.5.

Another representation of the noisy random walk expresses the error at time
t as an infinite regression on previous errors,

εt = (1 − θ)[εt−1 + θεt−2 + θ2εt−3 + · · ·] + at (10.13)

Note that the regression coefficients are all functions of the single parameter θ ,
and that they decrease geometrically to zero (because the parameter θ is between
−1 and +1). You can derive the representation in Eq. (10.13) by substituting
into the model (10.11) at−1 = εt−1 − (1 − θ)[at−2 + at−3 + at−4 + · · ·], at−2=
εt−2 − (1 − θ)[at−3 + at−4 + at−5 + · · ·], and so on.

Successive differences of a noisy random walk, wt = εt − εt−1 = at − θat−1,
are linear combinations (or “moving averages”) of the present and the previous
white noise errors. Since the εt ’s are the result of “integrating” (summing) the
differences, the literature refers to the model in Eq. (10.12) as the integrated mov-
ing average model of order 1. It is abbreviated as IMA(1,1) because it involves
one difference and one moving average term.

Autoregressive models and the integrated models involving differences can
be extended. Box and Jenkins discuss autoregressive integrated moving aver-
age (ARIMA) models that contain autoregressive components (such as the ones
we considered), differences (such as the one in the random walk and the noisy
random walk), and moving average components (such as the one in the noisy
random walk). Time series books will tell you more about these models and their
extensions to capture seasonal variation. For our introductory treatment of regres-
sion models with time series errors, the models in Eqs. (10.3), (10.9), (10.10),
and (10.12) are general enough to illustrate the basic idea.

The first-order integrated moving average (or noisy random walk) model
provides a very good representation of a wide range of economic time series. If
a simple specific model is assumed on a priori grounds, the first-order integrated
moving average model is usually a serious candidate for many economic time
series. We typically expect it to provide a better representation than the first-order
autoregressive model.

10.1.5 SUMMARY OF TIME SERIES MODELS

In this chapter, we expand the standard regression models by adding autocor-
related errors. Our analysis focuses on the following three models: the first-
order autoregressive model, the random walk model, and the noisy random
walk model. The autoregressive model describes stationary errors, especially
if its parameter φ is away from the boundary 1. The other two models describe
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nonstationary behavior. In order to show the differences among these three mod-
els, we have simulated from each of the three models sequences of length 250.
Figure 10.1 shows the results for φ = 0.5 and θ = 0.5. The same sequence of
standard normal random variables at ’s is used for all three series.

10.1.6 REMARK

In regression modeling, the primary objective is to make inferences about the
regression component E( y) =µ= Xβ. So why is it not sufficient to just adopt
a more general covariance matrix V ( y) = σ 2V —perhaps reasonably parameter-
ized—and use generalized least squares of Section 4.6 to obtain the estimate ofβ?
Why is it necessary to study the models that give rise to the various correlation
structures?

There are several advantages to an approach that models the autocorrelation
in the errors, and these advantages will become clear in the following sections.
A model-based approach allows us to (i) get estimates of both the regression
parameters and the parameters that govern the autocorrelation in the errors and
(ii) derive the optimal forecasts for the response variable.

10.2 THE EFFECTS OF IGNORING THE AUTOCORRELATION
IN THE ERRORS

In this section, we illustrate the effects of autocorrelation on standard least squares
estimation. In Section 10.5, we discuss the effect of autocorrelation on the fore-
casts. The consequences of ignoring the autocorrelation in the errors can be very
serious, and the assumption of independence among errors should not be taken
lightly.

10.2.1 INEFFICIENCY OF LEAST SQUARES ESTIMATION

We assume the multiple linear regression model

y = Xβ + ε (10.14)

with errors that have mean vector zero and covariance matrix V (ε) = σ 2V . The
standard least squares estimator

β̂ = (X ′ X)−1 X ′y (10.15)

is still unbiased, but now with covariance matrix

V (β̂) = σ 2(X ′ X)−1 X ′V X(X ′ X)−1 (10.16)

Our discussion of generalized least squares and the Gauss–Markov result in
Section 4.2 shows that the generalized least squares (GLS) estimator

β̂
GLS = (X ′V −1 X)−1 X ′V −1 y (10.17)
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has the smallest variance among all linear unbiased estimators. This shows that
the least squares estimator in Eq. (10.15) is inefficient because its covariance
matrix exceeds V (β̂GLS) = σ 2(X ′V −1 X)−1 by a positive semidefinite matrix.

A Special Case
Let us study the loss in efficiency of the least squares estimator when the errors
follow a first-order autoregressive model. The inverse of the correlation matrix
V in Eq. (10.1) can be written as V −1 = (1 − φ2)−1L ′L , where L is the n × n
matrix

L =




√
1 − φ2 0 0 0 . 0

−φ 1 0 0 . 0

0 −φ 1 0 . 0
. . . . . .

0 0 0 −φ 1 0

0 0 0 0 −φ 1




(10.18)

This result can be checked by writing out the elements of the n × n matrix (1 −
φ2)−1LV and premultiplying the resulting matrix with L ′. This leads to (1 −
φ2)−1L ′LV = I and proves that (1 − φ2)−1L ′L is the inverse of V .

Consider the simple linear regression without an intercept, yt = βxt + εt . The
least squares estimator has variance

V (β̂) = σ 2(X ′ X)−1 X ′V X(X ′ X)−1 = σ 2

n∑
t=1

x2
t + 2

n−1∑
j=1

n− j∑
t=1

φ j xt xt+ j[
n∑

t=1
x2

t

]2 (10.19)

On the other hand, the generalized least squares estimator has variance

V (β̂GLS) = σ 2(X ′V −1 X)−1 = σ 2 1 − φ2

n∑
t=1

x2
t + φ2

n−1∑
t=2

x2
t − 2φ

n−1∑
t=1

xt xt+1

(10.20)

The loss in efficiency depends on the regressor variable. Consider the special case
in which the regressor variable is time; that is, xt = t , for t = 1, 2, . . . , n. The
relative efficiencies, V (β̂GLS)/V (β̂), for various values of φ and sample sizes
n = 50 and 100, are listed in Table 10.1. The loss in efficiency of the standard
least squares estimator is relatively small if the autoregressive parameter φ is not
too close to the nonstationarity boundary, 1; for φ smaller than 0.8, the relative

TABLE 10.1 RELATIVE EFFICIENCIES, V (β̂GLS)/V (β̂), FOR VARIOUS VALUES
OF φ AND SAMPLE SIZES n= 50 AND 100

φ 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99
n = 50 0.999 0.998 0.994 0.989 0.982 0.970 0.951 0.915 0.833 0.719 0.331
n = 100 0.9997 0.999 0.997 0.994 0.990 0.984 0.973 0.953 0.899 0.819 0.497
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efficiency of the least squares estimator is larger than 90%. Only if φ is close to
the nonstationarity boundary does the loss in efficiency become substantial; the
least squares estimator should not be used in such a situation.

10.2.2 SPURIOUS REGRESSION RESULTS WHEN NONSTATIONARY
ERRORS ARE INVOLVED

The calculations in Table 10.1 show that the loss in efficiency for the standard
least squares estimate when errors follow a stationary model (such as the first-
order autoregression discussed previously) is usually relatively small. Problems
with nonstationary errors are more worrisome.

In many observational studies with time series data, both the response and the
regressor variables are nonstationary, and it is in this situation that the standard
regression analysis is misleading. Box and Newbold (1971) and Granger and
Newbold (1974) examine the situation in which the response and the explanatory
variable follow independent random walks; in this case, both series drift without
fixed level (as the graph of a random walk in Figure 10.1 shows), but there is
no relationship among the series. One would expect that the standard t ratio,
β̂1/s.e.(β̂1), in the simple linear regression assuming independent errors rejects
the null hypothesis β1 = 0 in at most 5% of the cases (if the test is conducted
at the 5% significance level). This, however, is far from true. Simulations (with
sample size n = 50) show that the null hypothesis of no relationship between
the series is rejected wrongly in approximately 75% of all cases. This is because

the standard error, s.e.(β̂1) = s/
√∑n

t=1(xt − x̄)2, grossly underestimates the true

variability of the estimate. Consequently, the t ratio β̂1/s.e.(β̂1) is too large, and
the null hypothesis is rejected far too often. The standard analysis errs on the side
of finding “spurious” regression relationships; one is led incorrectly to conclude
that there is a relationship when none is present.

Equivalently, one could talk about the effect of autocorrelation on the F
ratio in the analysis of variance table because in the simple linear regression
model the F ratio is the square of the t ratio. The simulations with regres-
sions of two independent random walks show that also the F ratio is way too
large. The relationship between the F ratio and the coefficient of determination
R2, F = (n − 2)R2/(1 − R2), implies that also the coefficient of determination
from such regressions is too high; the simulations by Granger and Newbold
(1974) with independent random walks of lengths n = 50 show that the aver-
age R2 is approximately 0.25, with 5% of the simulations leading to an R2 that
exceeds 0.7.

A theoretical explanation for the inflated R2 when regressing (or correlating)
two autocorrelated but independent time series can be given. The variance of the
correlation coefficient rxy between two independent but autocorrelated series x
and y with autocorrelation functions ρx(k) and ρy(k) is given by

V (rxy) ≈ n−1
∞∑

j=−∞
ρx( j)ρy( j) (10.21)
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see Box et al. (1994). For two first-order autoregressive processes with the same
autoregressive parameter and ρx( j) = ρy( j) = φ| j |, this variance simplifies to

V (rxy) ≈ n−1 1 + φ2

1 − φ2
(10.22)

If the autoregressive parameter is large, indicating that the series approach
nonstationarity, the ratio (1 + φ2)/(1 − φ2) can become quite large. Hence, it is
not uncommon to obtain an unusually large sample correlation coefficient, or an
unusually large R2, when dealing with two autocorrelated but independent series.
In the simple linear regression of yt on xt , the coefficient of determination is
the square of the correlation coefficient, R2 = r2

xy . Hence, for two uncorrelated
first-order autoregressive series x and y,

E(R2) = E
(
r2

xy

) = V (rxy) ≈ n−1 1 + φ2

1 − φ2

It is straightforward to replicate and confirm these findings through additional
simulations. In Exercise 10.6, we ask you to generate independent random walks
of various lengths, run the standard regression analysis, and confirm that one
rejects the null hypothesis of no association way too often and that the coefficient
of determination R2 can be quite large.

How can one guard against being tricked into accepting spurious regressions?
The answer is simple. One needs to be on the alert and watch for possible autocor-
relations in the residuals. If autocorrelations are present, they must be modeled
and the standard regression model must be enlarged to take account of the auto-
correlation. A model that combines the regression with time series models for the
errors must be considered.

A standard correction for serial correlation in the regression errors is to adopt
a first-order autoregressive model for the error components in the regression and
use the Cochran–Orcutt approach to correct for first-order autoregressive errors.
This approach is discussed in the following section. Simulations by Newbold and
Davies (1978) show that although this approach is better than taking no correction
at all, it is still subject to finding spurious associations if the series in the regression
are independent but generated from first-order integrated moving average models.
A preferable strategy is to allow for the possibility of alternative time series models
for the regression errors and use the data to distinguish among them.

10.3 THE ESTIMATION OF COMBINED REGRESSION
TIME SERIES MODELS
10.3.1 A REGRESSION MODEL WITH FIRST-ORDER AUTOREGRESSIVE ERRORS

Consider the regression model with an intercept and p explanatory regressor
variables, and assume that the errors follow a first-order autoregressive model.
That is,

yt = x′
tβ + εt = β0 + β1xt1 + · · · + βpxtp + εt

(10.23)
εt = φεt−1 + at
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We assume that the random components at ’s (t = 1, 2, . . . , n) are uncorrelated
with mean zero and variance σ 2

a .
Writing the equation for yt−1 and subtracting φyt−1 from yt results in

yt − φyt−1 = x′
tβ − φx′

t−1β + at

= (1 − φ)β0 + β1(xt1 − φxt−1,1) + · · · + βp(xtp − φxt−1,p) + at

(10.24)

The regression of the transformed response yt − φyt−1 on the p transformed
regressor variables (xt1 − φxt−1,1), . . . , (xtp − φxt−1,p) satisfies the standard re-
gression assumptions. The regression, using the n − 1 cases (t = 2, 3, . . . , n) of
the transformed variables, results in the best linear unbiased estimator of β.

The problem with this approach is that the parameter φ is unknown and the
transformed model in Eq. (10.24) is no longer linear in the parameters. It involves
products of φ and the regression parameters β0, β1, . . . , βp.

We need an estimate of φ. One approach proceeds as follows. We start with
the standard regression in Eq. (10.23) but ignore the autocorrelations and assume
independent errors. The estimates of the regression parameters are inefficient
because they ignore the autocorrelation (see Section 10.2). Nevertheless, the
estimated lag 1 autocorrelation r1 of the residuals provides an initial estimate
of φ, and this value can be used to transform the response and the explanatory
variables. The regression of the transformed response on the transformed regres-
sors (which is carried out next) results in revised estimates of the regression
coefficients β. The new estimates are more efficient because they incorporate
the serial correlation in the errors. With the better estimates we can calculate
a better estimate of the errors, yt − x′

t β̂ = yt − (β̂0 + β̂1xt1 + · · · + β̂ pxtp), and
from the lag 1 autocorrelation of the new errors we can get an improved esti-
mate of φ. The iteration continues; we calculate new transformed variables, get
new estimates of the regression parameters, get new residuals and another es-
timate of φ, and so on. One or two iterations are usually sufficient. Standard
errors of the regression estimates can be obtained from the last regression of
model (10.24).

This is a good and often used approach. It is known as the Cochran–Orcutt
approach after the researchers who developed it. However, their approach works
only for autoregressive errors and not for errors that follow a model with moving
average components, such as the nonstationary noisy random walk discussed in
Section 10.1.4. In this case, one cannot use an approach that transforms the model
equation with correlated errors into one with uncorrelated errors.

The maximum likelihood approach, which is discussed next, works more
generally. We now assume that the errors at are independent and normal, with
mean zero and variance σ 2

a .
Let us first revisit the regression model with first-order autoregressive errors

in Eq. (10.24), which we write in transformed form as

yt = φyt−1 + (1 − φ)β0 + β1(xt1 − φxt−1,1) + · · · + βp(xtp − φxt−1,p) + at

= µ(xt , ξ) + at (10.25)



Abraham Abraham˙C10 November 8, 2004 12:5

318 Regression Models for Time Series Situations

where ξ = (φ,β)t is the vector of parameters and xt = (yt−1, xt1, . . . , xtp)
′ is the

vector of the regressors on the right-hand side of Eq. (10.25). The time index t
runs from t = 2, 3, . . . , n. We treat y1 in the equation with t = 2 as an observed
value.

From the joint probability density

p(a2, a3, . . . , an) =
(

1√
2πσa

)(n−1)

exp

{
− 1

2σ 2
a

n∑
t=2

a2
t

}
we obtain the joint probability density of y2, y3, . . . , yn:

p(y2, y3, . . . , yn |β, φ, σa)

=
(

1√
2πσa

)(n−1)

exp

{
− 1

2σ 2
a

n∑
t=2

{yt − [φyt−1 + (1 − φ)β0 + β1(xt1 − φxt−1,1)

+ · · · + βp(xtp − φxt−1,p)]}2

}

Treating the joint probability density as a function of the parameters leads to
the likelihood and the log-likelihood function

l(β, φ, σa | y2, y3, . . . , yn) = c − (n − 1) ln σa − 1

2σ 2
a

S(β, φ) (10.26)

where c = −((n − 1)/2) ln(2π) is a constant and

S(β, φ) =
n∑

t=2

{yt − [φyt−1 + (1 − φ)β0 + β1(xt1 − φxt−1,1)

+ · · · + βp(xtp − φxt−1,p)]}2

is the sum of squares of errors. Estimates of β and φ are obtained by minimiz-
ing this sum of squares. Since this sum of squares is conditional on the given
starting value y1, one refers to this sum of squares as the conditional sum of
squares and to the estimators that minimize this sum of squares as the condi-
tional least squares (or conditional maximum likelihood) estimators. The model
in Eq. (10.25) is no longer linear in the parameters because it involves products of
the parameters β and φ. Hence, it is not possible to give an explicit expression of
the least squares estimates. The estimates must be computed iteratively. Nonlinear
least squares procedures (in particular, the Newton–Raphson and Gauss–Newton
procedures of Section 9.4) are used for their calculation. The procedures are it-
erative. They linearize the model, starting from initial estimates and refining the
linear expansion as better estimates become available.

From the final nonlinear least squares estimates β̂ and φ̂, one can obtain the
maximum likelihood estimate of σ 2

a :

σ̂ 2
a = 1

n − 1
S(β̂, φ̂)

It is common to “adjust” the number of observations in the denominator, n − 1,
by the number of estimated parameters, p + 1 + 1 = p + 2, and work with the
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unbiased estimator of σ 2
a ,

s2
a = 1

n − p − 3
S(β̂, φ̂) (10.27)

For statistical inference (such as confidence intervals and tests of hypotheses)
one needs standard errors of the estimates. The usual approach is to expand the
nonlinear model in Eq. (10.25) in a Taylor series expansion around the final
parameter estimates ξ̂. This leads to

yt ≈ µ(xt , ξ̂) + (ξ − ξ̂)′
∂µ(xt , ξ)

∂ξ

∣∣∣∣
ξ=ξ̂

+ at (10.28)

In our model, the parameter vector ξ consists of the regression parameters β and
the autoregressive parameter φ. The elements of the column vectors of derivatives
of µ(xt , ξ) in Eq. (10.25) with respect to β0, β1, . . . , βp and φ are given by

(1 − φ), (xt1 − φxt−1,1), . . . , (xtp − φxt−1,p),

(yt−1 − β0 − β1xt−1,1 − · · · − βpxt−1,p)

and they are evaluated at the least squares estimates β̂0, β̂1, . . . , β̂ p, φ̂.The vectors
of first derivatives are collected in the matrix X , and the covariance matrix of the
(iterated) least squares estimates is calculated from

V (ξ̂) = σ 2
a (X ′ X)−1 (10.29)

An estimate is obtained by replacing σ 2
a by s2

a in Eq. (10.27).

10.3.2 REGRESSION MODEL WITH NOISY RANDOM WALK ERRORS

Let us use this approach to estimate the parameters in the regression model with
errors that follow a noisy random walk model,

yt = x′
tβ + εt = β0 + β1xt1 + · · · + βpxtp + εt

εt = εt−1 + at − θat−1

or

�yt = β1�xt1 + · · · + βp�xtp + at − θat−1 (10.30)

where � is the differencing operator such that �yt = yt − yt−1. Note that with
differences the intercept β0 no longer appears in the model.

Assuming that a1 in

at = �yt − β1�xt1 − · · · − βp�xtp + θat−1, t = 2, 3, . . . , n

is a fixed (nonrandom) constant, we can write the log likelihood function

l(β, θ, σa | �y2, �y3, . . . , �yn) = c − (n − 1) ln σa − 1

2σ 2
a

S(β, θ) (10.31)

where the sum of squares

S(β, θ) =
n∑

t=2

[at (β, θ)]2
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The errors at (β, θ) in the sum of squares are functions of the parameters β and
θ . They can be calculated recursively from

a2 = �y2 − β1�x21 − · · · − βp�x2p + θa1

a3 = �y3 − β1�x31 − · · · − βp�x3p + θa2
(10.32)

. . . .

an = �yn − β1�xn1 − · · · − βp�xnp + θan−1

All that is needed is a starting value a1. One common approach is to start with
a1 = 0, a reasonable starting value because the unconditional mean E(a1) = 0.
This is known as the conditional least squares (or conditional maximum likeli-
hood) approach. Another approach starts from the mean E(a1 | �y2, . . . , �yn),
which can be calculated from the data. The time series literature refers to this
second approach as the unconditional least squares approach.

Iterative approaches need to be employed to minimize the sum of squares.
With given starting values for the parameters β and θ (and starting value a1), it is
straightforward to compute recursively all subsequent errors a2, a3, and an . From
these, we can calculate the resulting sum of squares, S(β, θ) = ∑n

t=2 [at(β, θ)]2.
The nonlinear least squares procedures from Chapter 9 can be applied to obtain
the estimates and their approximate standard errors.

A Note on Software The combined regression time series models require nonlin-
ear least squares procedures for their estimation. Several computer packages are
available for the estimation, including SCA (distributed by Scientific Comput-
ing Associates, http://www.scausa.com) and Eviews (distributed by Quantitative
Micro Software, http://www.eviews.com).

10.4 FORECASTING WITH COMBINED REGRESSION
TIME SERIES MODELS

In this section, we show how to use the regression time series models to predict
future values of the response. Our assumption is that we have available data on the
response up to and including time period n. The objective is to predict the response
at time period n + r ; that is, we are interested in an r step-ahead prediction of
yn+r . We use the notation yn(r) to denote the r step-ahead forecast; the subscript
n stands for the forecast origin; and the number in parentheses, r , stands for the
forecast horizon.

Initially (in the following two subsections), we assume that the explana-
tory variables are under the control of the investigator, and that future values of
the explanatory variables are known. This is a reasonable assumption in many
applications. For example, when predicting future sales from a model that in-
cludes one’s own price and advertising expenditures, one knows their values in
future periods. However, this would not be a good assumption for variables such
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as the competitor price or the economic climate. These variables are not under
the control of the model user, and they would have to be predicted.

It is tempting to ignore the autocorrelation in the model

yt = x′
tβ + εt = β0 + β1xt1 + · · · + βpxtp + εt

and predict the value of the future response yn+r as

yn(r) = x′
n+rβ = β0 + β1xn+r,1 + · · · + βpxn+r,p

However, as the subsequent discussion shows, this is incorrect.

10.4.1 FORECASTS FROM THE REGRESSION MODEL WITH FIRST-ORDER
AUTOREGRESSIVE ERRORS

In order to simplify the notation, we consider the case of a single explanatory
variable. The model is given as

yt = β0 + β1xt + εt and εt = φεt−1 + at (10.33)

Suppose that we have data available for time periods t = 1, 2, . . . , n. The obser-
vation at the next time period, n + 1, can be written as

yn+1 = φyn + (1 − φ)β0 + β1(xn+1 − φxn) + an+1

The value of the explanatory variable at time n + 1, xn+1, is assumed known.
However, the random error an+1 is unknown. Since random errors are assumed
independent, an+1 is not predictable from the previous errors an, an−1, . . . , a1,
and E(an+1 | an, an−1, . . . , a1) = E(an+1) = 0. Hence, the one-step-ahead predic-
tion is

yn(1) = φyn + (1 − φ)β0 + β1(xn+1 − φxn) (10.34)

and the one-step-ahead prediction error is yn+1 − yn(1) = an+1, with variance σ 2
a .

A 95% prediction interval for the future observation yn+1 is given by

yn(1) ± (1.96)σa or φyn + (1 − φ)β0 + β1(xn+1 − φxn) ± (1.96)σa

The observation two-steps-ahead is

yn+2 = φyn+1 + (1 − φ)β0 + β1(xn+2 − φxn+1) + an+2

= φ[φyn + (1 − φ)β0 + β1(xn+1 − φxn)] + (1 − φ)β0

+ β1(xn+2 − φxn+1) + an+2 + φan+1

Future random shocks have mean zero. The two-step-ahead forecast is

yn(2) = φ[φyn + (1− φ)β0 + β1(xn+1 − φxn)] + (1− φ)β0 + β1(xn+2 − φxn+1)

= φyn(1) + (1 − φ)β0 + β1(xn+2 − φxn+1) (10.35)

The two-step-ahead forecast error is yn+2 − yn(2) = an+2 + φan+1, with variance
(1 + φ2)σ 2

a .
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The r -step-ahead forecast of yn+r can be calculated from the difference
equation

yn(r) = φyn(r − 1) + (1 − φ)β0 + β1(xn+r − φxn+r−1) (10.36)

The r-step-ahead forecast error yn+r − yn(r) = an+r + φan+r−1 + · · · + φr−1an+1

has variance (1 + φ2 + · · · + φ2(r−1))σ 2
a = 1 − φ2r

1 − φ2
σ 2

a . A 95% prediction interval

is given by

yn(r) ± 1.96σa[(1 − φ2r )/(1 − φ2)]1/2 (10.37)

If the parameters are estimated from past data, we must replace the parameters
β0, β1, and φ with their estimates. In the prediction interval, we replace σ 2

a by s2
a

in Eq. (10.27). However, note that the resulting interval is “optimistic” and too
narrow because the substitution approach does not incorporate the uncertainty
from the parameter estimation. One can also incorporate this uncertainty, but the
analysis becomes tedious.

10.4.2 FORECASTS FROM THE REGRESSION MODEL WITH ERRORS
FOLLOWING A NOISY RANDOM WALK

In this case, the observation at time n + 1 can be written as

yn+1 = yn + β1(xn+1 − xn) + an+1 − θan (10.38)

where an+1 is a future error, and its mean E(an+1 | an, an−1, . . . , a1) = E(an+1) = 0.
However, an is an error that has been realized already. Assuming that β1 and θ

are known, the forecast is

yn(1) = yn + β1(xn+1 − xn) − θan (10.39)

The term an is the last component in the recursions of Eq. (10.32), which for given
values of the parameters is easy to calculate. Note that the model in Eq. (10.38) in-
volves only a single regressor and all terms in Eq. (10.32) involving the regressors
x2, . . . , x p can be ignored.

Observations two or more steps beyond the forecast origin (r ≥ 2),

yn+r = yn+r−1 + β1(xn+r − xn+r−1) + an+r − θan+r−1

involve only future errors, and expectations of future errors are zero. Hence, the
forecasts are given by

yn(r) = yn(r − 1) + β1(xn+r − xn+r−1) for r ≥ 2 (10.40)

The r -step-ahead forecast error is yn+r − yn(r) = an+r + (1 − θ)[an+r−1 + · · · +
an+1], with variance [1 + (r − 1)(1 − θ)2]σ 2

a .
It is instructive to write the one-step-ahead forecast of Eq. (10.39) in a slightly

different form. In Section 10.1, we showed that the noisy random walk can be
expressed as

εt = (1 − θ)[εt−1 + θεt−2 + θ2εt−3 + · · ·] + at
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This implies that the model yn+1 = β0 + β1xn+1 + εn+1 can be written as

yn+1 − (1 − θ)[yn + θyn−1 + θ2 yn−2 + · · ·]
= β1{xn+1 − (1 − θ)[xn + θxn−1 + θ2xn−2 + · · ·]} + an+1

The one-step-ahead forecast is

yn(1) = (1 − θ)[yn + θyn−1 + θ2 yn−2 + · · ·]
+ β1{xn+1 − (1 − θ)[xn + θxn−1 + θ2xn−2 + · · ·]}

= EWMA(yn, yn−1, . . .) + β1[xn+1 − EWMA(xn, xn−1, . . .)] (10.41)

where EWMA (yn, yn−1, . . .) = (1 − θ)[yn + θyn−1 + θ2 yn−2 + · · ·] and EWMA
(xn, xn−1, . . .) = (1 − θ)[xn + θxn−1 + θ2xn−2 + · · ·] are exponentially weigh-
ted averages. The coefficients in the EWMA decay exponentially to zero, and
they define weighted averages as the sum of the weights (1 − θ)[1 + θ + θ2 +
· · ·] = 1. The forecast in Eq. (10.41) adjusts the exponentially weighted average
of past responses by the difference between the new level of the regressor vari-
able and its exponentially weighted average. It is not just the new level, xn+1, that
goes into the forecast, but its difference to the historic (exponentially weighted)
average.

Parameter estimates are used in place of the unknown values β1 and θ , and
the estimate s2

a replaces the error variance σ 2
a .

10.4.3 FORECASTS WHEN THE EXPLANATORY VARIABLE MUST BE FORECAST

What happens if the future value of the explanatory variable is not given but
must be forecast? Future economic climate, for example, will not be known to
the modeler.

Let us assume that we have available forecasts xn(r), r = 1, 2, . . . . Let us
suppose that the forecast error xn+r − xn(r) is independent of the future random
errors an+1, . . . , an+r in the model, and that it has mean zero (i.e., the forecast is
unbiased) and variance σ 2

x (r). The variance expresses the accuracy of the forecast
of the explanatory variable; usually, it is not negligible because the prediction of
the regressor variable is often difficult.

Consider the regression with first-order autoregressive errors, and assume
that the parameters φ, β0, and β1 are known. Replacing the unknown value xn+1

with its forecast xn(1) leads to the forecast

yn(1) = φyn + (1 − φ)β0 + β1[xn(1) − φxn]

and the one-step-ahead forecast error

yn+1 − yn(1) = an+1 + β1[xn+1 − xn(1)]

with variance σ 2
a + β2

1σ 2
x (1). The uncertainty in predicting the future value of the

regressor variable inflates the variance, and it may be a large part of the uncertainty
of the forecast.
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Forecasts more than one step ahead are given by

yn(r) = φyn(r − 1) + (1 − φ)β0 + β1[xn(r) − φxn(r − 1)]

Simple substitution leads to the resulting r -step-ahead forecast error

yn+r − yn(r) = an+r + φan+r−1 + · · · + φr−1an+1 + β1[xn+r − xn(r)]

Its variance is given by (1 + φ2 + · · · + φ2(r−1))σ 2
a + β2

1σ 2
x (r) = 1 − φ2r

1 − φ2
σ 2

a +
β2

1σ 2
x (r).

10.5 MODEL-BUILDING STRATEGY AND EXAMPLE
Our strategy to guard against problems from autocorrelations in the errors is to
combine regression models with simple time series models for the errors. Of
course, in the beginning one does not know which error model to consider and
one needs to adopt an iterative strategy.

We illustrate the modeling strategy in the following example. We analyze the
sales and advertising expenditures for a dietary weight control product over 36
consecutive months (Table 10.2). The data are taken from Blattberg and Jeuland
(1981). The scatter plot of sales on advertising in Figure 10.2 shows a linear asso-
ciation between the response (Sales) and the explanatory variable (Advertising),
suggesting the regression model

yt = β0 + β1xt + εt (10.42)

TABLE 10.2 SALES AND ADVERTISING EXPENSES FOR
36 CONSECUTIVE MONTHSa

Month Sales Advert Month Sales Advert

1 12.0 15 19 30.5 33
2 20.5 16 20 28.0 62
3 21.0 18 21 26.0 22
4 15.5 27 22 21.5 12
5 15.3 21 23 19.7 24
6 23.5 49 24 19.0 3
7 24.5 21 25 16.0 5
8 21.3 22 26 20.7 14
9 23.5 28 27 26.5 36

10 28.0 36 28 30.6 40
11 24.0 40 29 32.3 49
12 15.5 3 30 29.5 7
13 17.3 21 31 28.3 52
14 25.3 29 32 31.3 65
15 25.0 62 33 32.2 17
16 36.5 65 34 26.4 5
17 36.5 46 35 23.4 17
18 29.6 44 36 16.4 1

a The data are given in the file salesadvert.
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FIGURE 10.2
Scatter Plot of Sales
against Advertising

TABLE 10.3 MINITAB REGRESSION OUTPUT FOR THE MODEL
yt =β0 + β1xt + εt

The regression equation is
Sales = 18.3 + 0.208 Advert

Predictor Coef SE Coef T P
Constant 18.323 1.489 12.31 0.000
Advert 0.20786 0.04378 4.75 0.000

S = 4.863 R-Sq = 39.9% R-Sq(adj) = 38.1%

Analysis of Variance

Source DF SS MS F P
Regression 1 533.20 533.20 22.54 0.000
Residual Error 34 804.15 23.65
Total 35 1337.35

Durbin-Watson statistic = 1.25

The regression output in Table 10.3 shows that approximately 40% of the
variation is explained by the regression model (R2 = 0.399). Since time series
observations are involved, one needs to check whether the residuals are autocor-
related. The Durbin–Watson test statistic (DW = 1.25) indicates a problem with
autocorrelations; it is much smaller than the desired value of 2. The first five au-
tocorrelations of the residuals are shown in Table 10.4. The approximate standard
error of a lag k autocorrelation is given by (n)−1/2, and with n = 36 the standard
error is 0.17. The estimated lag 1 autocorrelation is approximately two times its
standard error, indicating that there may be serial correlation among the errors.
The autocorrelations decay with the lag, suggesting a first-order autoregressive
model as an appropriate representation. The series are short, and although 36
observations are sufficient to detect gross violations of the independence assump-
tion, they are usually not sufficient to “fine-tune” the error model. Luckily, the
particular choice of the error model usually matters little as long as the model
allows for autocorrelation.
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TABLE 10.4 FIRST FIVE LAG AUTOCORRELATIONS OF THE RESIDUALS
FROM THE MODEL yt =β0 + β1xt + εt

ACF of residuals
−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

+----+----+----+----+----+----+----+----+----+----+
1 0.317 XXXXXXXXX
2 0.162 XXXXX
3 0.196 XXXXXX
4 0.096 XXX
5 0.086 XXX

TABLE 10.5 ESTIMATION RESULTS FOR THE THREE REGRESSION MODELS:

Model 1: yt = β0 + β1xt + εt , with εt = φεt−1 + at

Model 2: yt = φyt−1 + β0 + β1xt + β2xt−1 + at

Model 3: yt = φyt−1 + β0 + β1xt + at

Model 1 (Eq. 10.43) Model 2 (Eq. 10.44) Model 3 (Eq. 10.45)

Estimatesa

Constant 22.08 (1.85) 9.08 (2.38) 7.45 (2.47)
φ 0.567 (0.128) 0.364 (0.115) 0.528 (0.102)
β1 0.095 (0.037) 0.130 (0.031) 0.146 (0.033)
β2 0.097 (0.039)

R2 0.588 0.728 0.672

Residuals
Durbin–Watson 1.70 1.62 2.03
Autocorrelations
r1 0.11 0.16 −0.05
r2 −0.09 −0.15 −0.14
r3 −0.03 0.14 0.06
r4 −0.14 0.03 −0.09
r5 −0.07 −0.11 −0.02

a Standard errors in parentheses.

Combining the regression model with the autoregressive errors leads to the
new model

yt = β0 + β1xt + εt with εt = φεt−1 + at , or
(10.43)

yt = φyt−1 + β0(1 − φ) + β1(xt − φxt−1) + at

We use the SCA (Scientific Computing Associates) software to estimate the
model. The estimation results and the first five autocorrelations of the residuals
(the estimates of at ) are shown under model 1 in Table 10.5. The results indicate
that the first-order autoregressive component has been successful in removing
the autocorrelation among the errors; all residual autocorrelations are now within
one standard error, and no obvious patterns (like the one we saw in Table 10.4)
are visible. The R2 has increased from 0.40 to 0.59. Also note that the estimates
of β0 and β1 have changed.
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The model

yt = φyt−1 + β0 + β1xt + β2xt−1 + at (10.44)

is slightly more general than the model in Eq. (10.43) because it relaxes the
constraint that β2 = −β1φ. This model is also easier to estimate because it can be
estimated by standard linear least squares software. This is model 2 in Table 10.5.
The estimate β̂2 = 0.097 is positive and not negative as implied by the results of
model (10.43). This indicates that the constraint imposed by model 1 may not be
appropriate; also, the increase in R2 from 0.59 in model 1 to 0.73 in model 2 is
considerable. Again, the estimates of β0 and β1 are different from those of models
(10.42) and (10.43).

Another alternative is to consider

yt = φyt−1 + β0 + β1xt + at (10.45)

a model that includes a lag on the response but not a lag on the explanatory
variable. The results are given under model 3 in Table 10.5. The reduction in
R2 (from 0.73 in model 2 to 0.67 in model 3) is not very large. Nevertheless,
there is evidence that the lag on advertising may be needed because the estimate
β̂2 = 0.097 in model 2, with standard error s.e.(β̂2) = 0.039, is significant.

This analysis shows that the inclusion of the lagged response yt−1 in the re-
gression equation goes a long way toward correcting the autocorrelation problem.
The question whether one should use a regression model with lagged response
and lagged explanatory variables, or a combined regression time series model
that restricts the coefficients, is an issue that can be settled from the data. In this
example, the regression model (10.44),

yt = φyt−1 + β0 + β1xt + β2xt−1 + at

provides a good description of the data. The advantage of this model is that it can
be estimated by standard linear least squares. Forecasts from this model can be
obtained as in Section 10.4. The r -step-ahead forecast of yn+r can be calculated
from the difference equation

yn(r) = φyn(r − 1) + β0 + β1xn+r + β2xn+r−1

10.6 COINTEGRATION AND REGRESSION WITH
TIME SERIES DATA: AN EXAMPLE

When modeling economic time series, it is often the case that the response yt and
the regressor xt are nonstationary with changing levels, but that their differences
yt − yt−1 and xt − xt−1 are stationary. One calls such nonstationary series (first-
order) integrated because each series can be thought of as a sum of stationary
differences. Random walks, for example, are first-order integrated series.

If the relationship between two nonstationary (integrated) series yt and xt is
such that the residuals εt in the regression

yt = β0 + β1xt + εt (10.46)
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are stationary, then one refers to the two nonstationary series yt and xt as coin-
tegrated. The errors in the regression (10.46) need not be independent but can
follow any stationary time series model, such as the first-order autoregressive
model in Eq. (10.3). Stationarity of the errors εt is important because it im-
plies that the unexplained component in the regression relationship linking the
two nonstationary series is predictable with a time-invariant level. Although the
two series drift without fixed levels, the error in the regression relationship is
stationary.

Assume that the integrated series yt and xt in Eq. (10.46) are independent.
In Section 10.2, we discussed the dangers of regressing (correlating) two inde-
pendent integrated random walk series. Because of the independence between yt

and xt , the errors in the regression in Eq. (10.46) are also integrated and non-
stationary. This is because β1xt does not enter the model and εt = yt − β0 is a
nonstationary series. This nonstationarity in the errors causes the problems of
spurious regression.

For nonstationary but cointegrated series yt and xt , on the other hand, the
errors εt in Eq. (10.46) are stationary. Although there are still problems with the
efficiency of least squares estimates if the autocorrelation in the errors is ignored,
the problems are not nearly as serious as in the case of nonstationary errors.
Also, one can always adjust for the autocorrelation by incorporating time series
structure into the errors of the regression.

Many economic laws arise from cointegration relationships. Although the
series are nonstationary individually, the errors in the regression are in fact sta-
tionary. We illustrate this fact with the U.S. hog series studied by Quenouille
(1968). The data set consists of annual data on the price of hogs, the number of
hogs, the price of corn, the supply of corn, and the farm wage rate and covers
the years from 1867 through 1948. Quenouille logarithmically transforms each
variate and then linearly codes the logs, so as to produce numbers of comparable
magnitude in the different series. Box and Tiao (1977), in their analysis of this
data set, suggest that the price of hogs and the wage rate be shifted backward in
time by 1 year. The data set in Table 10.6 lists the transformed and time-shifted
observations.

Time sequence plots of the five series are shown in Figure 10.3. The graphs
show that individually all five series are integrated. The series are nonstationary
without fixed levels, and their autocorrelations (not shown) decay slowly.

Here, we model the price of the hogs as a function of the remaining four
variables. We expect the price of hogs to increase with decreasing supply of hogs,
increasing price of corn, and increasing farm wage rate. Despite the nonstationary
nature of the individual series, we expect that the relationship among the five series
is stable, and that the errors in the regression are stationary. In other words, we
expect that the relationship is cointegrated.

The results of the regression

yt = β0 + β1xt1 + β2xt2 + β3xt3 + β4xt4 + εt (10.47)
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TABLE 10.6 ANNUAL NUMBER OF HOGS, PRICE OF HOGS, PRICE OF CORN,
SUPPLY OF CORN, AND FARM WAGE RATE FROM 1867 THROUGH 1947a

Year Hog Price Hog Supply Corn Price Corn Supply Farm Wage Rate

1867 509 538 944 900 719
1868 663 522 841 964 716
1869 751 513 911 893 724
1870 739 529 768 1,051 732
1871 598 565 718 1,057 740
1872 556 594 634 1,107 748
1873 594 600 735 1,003 756
1874 667 584 858 1,025 748
1875 776 554 673 1,161 740
1876 754 553 609 1,170 732
1877 689 595 604 1,181 744
1878 498 637 457 1,194 756
1879 643 641 612 1,244 778
1880 681 647 642 1,232 799
1881 728 634 849 1,095 799
1882 829 629 733 1,244 799
1883 751 638 672 1,218 799
1884 704 662 594 1,289 801
1885 633 675 559 1,313 803
1886 663 658 604 1,251 806
1887 709 629 678 1,205 806
1888 763 625 571 1,352 806
1889 681 648 490 1,361 810
1890 627 682 747 1,218 813
1891 667 676 651 1,368 810
1892 804 655 645 1,278 806
1893 782 640 609 1,279 771
1894 707 668 705 1,208 771
1895 653 678 453 1,404 780
1896 639 692 382 1,427 789
1897 672 710 466 1,359 799
1898 669 727 506 1,371 820
1899 729 712 525 1,423 834
1900 784 708 595 1,425 848
1901 842 705 829 1,234 863
1902 886 680 654 1,443 884
1903 784 682 673 1,401 906
1904 770 713 691 1,429 928
1905 783 726 660 1,470 949
1906 877 729 643 1,482 960
1907 777 752 754 1,417 971
1908 810 766 813 1,409 982
1909 957 720 790 1,417 987
1910 970 682 712 1,455 991
1911 903 743 831 1,394 1,004
1912 995 743 742 1,469 1,013
1913 1,022 730 847 1,357 1,004

(Continued )
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TABLE 10.6 (Continued)

Year Hog Price Hog Supply Corn Price Corn Supply Farm Wage Rate

1914 998 723 850 1,402 1,013
1915 928 753 830 1,452 1,053
1916 1,073 782 1,056 1,385 1,149
1917 1,294 760 1,163 1,464 1,248
1918 1,346 799 1,182 1,388 1,316
1919 1,301 808 1,180 1,428 1,384
1920 1,134 779 805 1,487 1,190
1921 1,024 770 714 1,467 1,179
1922 1,090 777 865 1,432 1,228
1923 1,013 841 911 1,459 1,238
1924 1,119 823 1,027 1,347 1,246
1925 1,195 746 846 1,447 1,253
1926 1,235 717 869 1,406 1,253
1927 1,120 744 928 1,418 1,253
1928 1,112 791 924 1,426 1,255
1929 1,129 771 903 1,401 1,223
1930 1,055 746 777 1,318 1,114
1931 787 739 507 1,411 982
1932 624 773 500 1,467 929
1933 612 793 716 1,380 978
1934 800 768 911 1,161 1,013
1935 1,104 592 816 1,362 1,045
1936 1,075 633 1,019 1,178 1,100
1937 1,052 634 714 1,422 1,097
1938 1,048 649 687 1,406 1,090
1939 891 699 754 1,412 1,100
1940 921 786 791 1,390 1,188
1941 1,193 735 876 1,424 1,303
1942 1,352 782 962 1,487 1,422
1943 1,243 869 1,050 1,472 1,498
1944 1,314 923 1,037 1,490 1,544
1945 1,380 774 1,104 1,458 1,582
1946 1,556 787 1,193 1,507 1,607
1947 1,632 754 1,334 1,372 1,629

a The data are given in the file hogs.

assuming independent errors εt = at , are shown in Table 10.7. The time sequence
plot of the residuals in Figure 10.4 and the autocorrelations of the residuals
in Table 10.7 show that the residuals are stationary, and that the relationship
in Eq. (10.47) is indeed cointegrated. There is evidence of autocorrelation in
the residuals. We notice a somewhat large positive autocorrelation at lag 1 (r1 =
0.27, with approximate standard error 1/

√
81 = 0.11), implying a Durbin–Watson

statistic (DW = 1.36) smaller than the desired value of 2.
Here, we model the autocorrelation with a first-order moving average process

and consider
yt = β0 + β1xt1 + β2xt2 + β3xt3 + β4xt4 + εt

(10.48)
εt = at − θat−1
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FIGURE 10.3
(Continued)
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TABLE 10.7 REGRESSION RESULTS OF MODEL (10.47): QUENOUILLE U.S.
HOG SERIES

The regression equation is
HogPrice = − 260 − 1.25 HogSupply + 0.491 CornPrice + 0.678

CornSupply + 0.750 FarmWageRate

Predictor Coef SE Coef T P
Constant −259.6 102.3 −2.54 0.013
HogSupply −1.249 0.165 −7.55 0.000
CornPrice 0.491 0.082 5.98 0.000
CornSupply 0.678 0.105 6.47 0.000
FarmWageRate 0.750 0.086 8.71 0.000

S = 61.62 R-Sq = 94.3% R-Sq(adj) = 94.0%

Analysis of Variance

Source DF SS MS F P
Regression 4 4742722 1185681 312.31 0.000
Residual Error 76 288537 3797
Total 80 5031259

Durbin-Watson statistic = 1.36

Autocorrelations of residuals

Lag 1 0.268
Lag 2 −0.100
Lag 3 −0.220
Lag 4 0.127
Lag 5 0.075
Lag 6 0.140

TABLE 10.8 REGRESSION RESULTS OF MODEL (10.48): QUENOUILLE U.S.
HOG SERIES

The regression equation is
HogPrice =− 210− 1.10 HogSupply + 0.443 CornPrice + 0.563 CornSupply

+ 0.780 FarmWageRate + 0.373 Error(t-1)

Predictor Coef SE Coef T P
Constant −209.7 123.7 −1.70 0.094
HogSupply −1.095 0.178 −6.17 0.000
CornPrice 0.443 0.096 4.62 0.000
CornSupply 0.563 0.113 4.99 0.000
FarmWageRate 0.783 0.103 7.57 0.000
MA Parameter −0.373 0.112 −3.33 0.001

Durbin-Watson statistic = 1.95

The results of the nonlinear estimation are shown in Table 10.8. We have used
the computer software EViews, but results from other software packages, such
as SCA, are similar. The lag 1 autocorrelation of the errors has now disappeared,
and the Durbin–Watson statistic is approximately 2. The changes in the estimates
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and the standard errors of the regression parameters are minor; major changes
were not expected because the autocorrelations of the errors in model (10.47)
are small. The standard errors of the coefficients in Table 10.8 are slightly larger
because the new model adjusts for the positive autocorrelation of the errors.

Box and Tiao (1977) give this model an interesting interpretation. Notice that
the coefficient of hog supply is approximately −1, and that the coefficients of corn
supply and corn price are positive and of approximately equal size. Bringing the
variable hog supply to the left-hand side of the equation and taking antilogs leads
to an equation that relates the product of supply and price of hogs to the product of
supply and price of corn. The former measures the return to the farmer, whereas
the latter measures the farmer’s expenditures.

EXERCISES
10.1. Show the following useful fact. Economic

time series often increase proportionally,
which means that observations can be
expressed as yt = yt−1(1 + rt ), where 100rt

represents the percentage change of the
series. Expand ln(1 + rt ) in a Taylor series
around 1, and show that ln(yt ) =
ln(yt−1) + ln(1 + rt ) ∼= ln(yt−1) + rt .
Hence, the proportional changes in a time
series can be expressed as successive
differences of the logarithms of the series.
That is, rt

∼= ln(yt ) − ln(yt−1). (Also see
Section 6.5).

10.2. Prove that V −1 = (1 − φ2)−1 L ′L , where V
is the correlation matrix in Eq. (10.1), and L
is the n × n matrix in Eq. (10.18).

10.3. Consider the n = 52 sales data on thermostat
replacement components given here. The
data, taken from R. G. Brown, Smoothing,
Forecasting and Prediction of Discrete Time
Series (Englewood Cliffs, NJ: Prentice Hall,
1962), are given in the file thermostat.

Sales Thermostat Replacement Components
(n = 52; Read Across)

206 245 185 169 162 177 207 216 193 230
212 192 162 189 244 209 207 211 210 173
194 234 156 206 188 162 172 210 205 244
218 182 206 211 273 248 262 258 233 255
303 282 291 280 255 312 296 307 281 308
280 345

a. Construct a time series plot of the data.

b. Regress sales on time, yt = β0 + β1t + εt ,
and use this regression to obtain the
predictions and 95% prediction intervals
for the next three observations. Use the
results in Section 4.3.2.

c. Investigate the adequacy of the linear
trend model in part (a) by constructing
appropriate residual diagnostics. In
particular, calculate the autocorrelations
of the residuals from this model and
compute the Durbin–Watson test
statistic. Explain why this model does
not appear to be an adequate
representation.

d. Consider a random walk for the errors
and estimate the model in terms of its
differences, �yt = β1 + at . Repeat the
diagnostics. Obtain the forecasts for the
next three periods, and obtain 95%
prediction intervals. How do they differ
from those obtained in part (b).

e. Consider a noisy random walk for the
errors, �yt = β1 + at − θat−1, and repeat
the analysis. Use standard software (such
as the time series procedures in Minitab)
to estimate the model.

10.4. The Vienna University of Economics and
Business Administration is Austria’s top
business school. The following table lists
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the annual enrollments from 1977 through
1997:

Annual Enrollment at Vienna University of Economics (n = 21;
Read Across)

7,887 8,284 8,916 8,018 8,968 9,863 11,347 13,167
14,800 16,187 17,517 18,202 18,799 19,190 20,086 20,738
20,952 21,150 21,594 21,624 21,531

a. Study the time trends in enrollment and
obtain predictions for the next 3 years.
Also calculate 95% prediction intervals.
Would a linear trend model be appropriate?
Check the model assumptions carefully
by considering the appropriate residual
diagnostics. Check whether adjacent
residuals are autocorrelated.

b. Investigate whether a model with
successive differences would be more
appropriate.

c. Explore whether a second-order
autoregressive model would be more
appropriate for answering these
questions.

Remarks
One can think of several forecasting
approaches. At one extreme, one can
consider a (linear) regression on time,
yt = β0 + β1t + εt . Such a model is
appropriate if one believes that the time
trend is globally constant and does not
change over time; that is, the coefficients β0

and β1 are fixed. If one wants to use this
model, one must make sure that there is no
autocorrelation in the residuals.

Alternatively, one could consider a
model of the form yt = yt−1 + β1 + εt and
r -step-ahead predictions of future yt+r of
the form yt (r) = yt + rβ1. This model treats
the change from one period to the next (β1)

as stable and uses the (equally weighted)
average of historic differences as its
estimate. However, this model allows the
“intercept” in the linear prediction equation
(yt ) to change with time.

Another possibility is to consider the
model yt = 2yt−1 − yt−2 + εt , with
predictions yt (1) = 2yt − yt−1 =
yt + (yt − yt−1); yt (2) = 2yt (1) − yt =
yt + 2(yt − yt−1); yt (3) = 2yt (2) − yt (1) =
yt + 3(yt − yt−1); etc. Here, the predictions
are on the linear trend that passes through
the two most recent observations; all other
observations are ignored. This model is the
most adaptive one because the forecasts
change very quickly. The model is quite
different than the trend regression model,
which assumes a stable, nonchanging trend.

Consider a second-order autoregressive
model of the form yt = β0 + φ1 yt−1 +
φ2 yt−2 + εt to explore these latter two
models. Estimate the model, check for
autocorrelations in the residuals, compare
its mean square error with the mean square
error of the linear trend model, and decide
which model to use. Keep in mind that we
have only few data, and hence the decision
may not be very clear.

10.5. The following table contains monthly sales
for a center-city bookstore in Vienna,
Austria. The last column of the table
contains the advertising expenditures of the
center-city bookstore. All data are in $100.
The data are given in the file bookstore.

Advertising
Year Month Sales Expenditures

1990 1 320 5
1990 2 423 1
1990 3 414 3
1990 4 506 3
1990 5 419 3
1990 6 544 2
1990 7 392 7
1990 8 449 4
1990 9 502 4
1990 10 520 9
1990 11 689 11
1990 12 1,377 14
1991 1 375 3
1991 2 318 2
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Advertising
Year Month Sales Expenditures

1991 3 378 4
1991 4 497 2
1991 5 433 2
1991 6 426 2
1991 7 421 8
1991 8 448 3
1991 9 519 4
1991 10 638 8
1991 11 714 13
1991 12 1,501 15
1992 1 356 3
1992 2 338 1
1992 3 428 4
1992 4 490 8
1992 5 434 2
1992 6 487 4
1992 7 381 7
1992 8 472 4
1992 9 699 6
1992 10 310 2
1992 11 795 18
1992 12 1,605 16
1993 1 292 5
1993 2 295 1
1993 3 408 10
1993 4 480 5
1993 5 460 5
1993 6 576 2
1993 7 436 6
1993 8 436 4
1993 9 437 5
1993 10 556 3
1993 11 747 13
1993 12 1,531 11
1994 1 406 6
1994 2 314 2
1994 3 503 8
1994 4 438 5
1994 5 453 4
1994 6 417 3
1994 7 352 4
1994 8 439 4
1994 9 533 6
1994 10 618 9
1994 11 706 11

Advertising
Year Month Sales Expenditures

1994 12 1,647 5
1995 1 350 4
1995 2 361 0
1995 3 502 7
1995 4 417 4
1995 5 565 5
1995 6 432 2
1995 7 353 3
1995 8 495 4
1995 9 528 6
1995 10 612 4
1995 11 715 20
1995 12 1,487 5
1996 1 447 3
1996 2 364 4
1996 3 437 7
1996 4 478 2
1996 5 504 2
1996 6 438 9
1996 7 429 1
1996 8 439 2
1996 9 544 5
1996 10 671 6
1996 11 848 17
1996 12 1,504 13
1997 1 374 3
1997 2 394 1
1997 3 508 11
1997 4 470 3
1997 5 444 12
1997 6 366 4
1997 7 406 2
1997 8 509 4
1997 9 551 6
1997 10 654 13

a. Construct a time series plot of monthly
sales. Confirm that sales in December
alone make up a considerable portion of
annual sales. Ignore the information on
advertising. Consider models with a
linear time trend and monthly indicators
that account for the strong seasonal
pattern. Interpret the model coefficients.
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Describe the trend. Describe the seasonal
pattern. Use this model to predict the
sales for the next 12 months. Obtain 95%
prediction intervals. Interpret the
findings. Discuss the assumptions that
are made by your predictions. Discuss
their shortcomings. Check the model
assumptions. In particular, investigate
whether adjacent residuals are
uncorrelated. Calculate the
autocorrelations and the Durbin–Watson
statistic.

b. Model the autocorrelations in the
residuals if autocorrelations are present.
Use autoregressive models of low orders
(a first-order autoregressive model may
be sufficient). Combine the regression
model with the model for the
autocorrelated errors. Estimate the
combined regression/time series model.
Check whether this model results in a
better representation of the data. Use this
model for forecasting.

c. Investigate the impact of advertising on
sales. In addition to advertising
expenditures, your model should
probably also include a time trend and
indicator variables for the seasonality.
Advertising is also seasonal, but it would
be incorrect to assume that seasonality in
sales is primarily due to the seasonality
in advertising. Also check whether there
are lagged effects of advertising (i.e.,
whether current sales are affected by
present as well as past advertising
expenditures).

10.6. Generate two independent random walks of
length n = 50 (n = 100). Use your computer
program of choice to generate two
independent sets of standard normal
variables,{at } and {bt }; generate the random
walks from yt = yt−1 + at and
xt = xt−1 + bt ; and fit the regression model
yt = β0 + β1xt + εt to the data. Examine the
behavior of the standard t ratio for testing
β1 = 0, repeating your simulations 10 times.
Discuss your findings. Also examine the

coefficient of determination R2 in each
simulation.

10.7. The table on page 338 lists quarterly sales of
four different chemical products that are
input factors to many chemical and
industrial equipment goods. Quarterly
production indices for chemicals and
industrial equipment are also shown. The
data are given in the file saleschemical.

a. For each product, explore the
relationships between sales and the two
indices. Check the residuals for serial
correlation.

b. You will find contemporaneous
relationships between product sales and
the two indices (i.e., a relationship
between sales at time t and the indices
at the same time period). It is claimed
that the indices help you predict future
product sales. Assess this claim.
Consider regression models that relate
the sales at time t to the production
indices at previous periods (such as
one quarter prior). What is your
conclusion?

10.8. (continuation of Exercise 8.3). In Exercise
8.3, we analyzed weekly sales and prices of
two soft drinks, brand P and brand C. The
data are given in the file softdrink. In part
(a) of this exercise, we regressed the
logarithms of the sales of 12-packs on the
logarithms of the prices of 6-, 12-, and
24-packs. We noticed autocorrelation in
the residuals. Identify a time series model
for the errors and combine it with the
regression model. Show that the
autocorrelations of the residuals suggest an
ARIMA(0,1,1) model
(1 − B)εt = (1 − θB)at . Estimate the
combined regression time series model

yt = ln SalesP12t

= β0 + β1 ln PriceP6t

+ β2 ln PriceP12t

+ β3 ln PriceP24t + εt

(1 − B)εt = (1 − θ B)at
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Table for Exercise 10.7

Year Quarter Product1 Product2 Product3 Product4 Chemicals (Index) Industrial Equipment (Index)

1994 1 391.484 12.1774 185.597 20.0000 101.555 113.257
1994 2 439.438 11.6094 199.984 20.1719 104.844 115.588
1994 3 405.381 11.7619 192.825 22.6349 104.769 117.300
1994 4 417.176 12.2941 209.250 28.7353 103.826 119.648
1995 1 452.143 19.0794 228.095 29.7460 108.015 124.513
1995 2 393.156 15.5938 240.281 28.3281 107.591 125.111
1995 3 403.419 16.5806 237.661 31.0968 104.553 128.057
1995 4 443.677 19.9355 241.339 30.6613 102.020 129.813
1996 1 429.359 11.3438 243.188 31.2656 102.776 130.424
1996 2 437.750 11.4219 264.734 32.9219 104.707 130.592
1996 3 434.258 14.4355 263.919 33.3226 105.529 130.996
1996 4 461.048 19.1774 256.468 34.1935 106.811 132.022
1997 1 439.565 16.1290 251.516 34.6129 110.398 134.551
1997 2 463.077 17.4462 293.646 37.2923 111.482 135.940
1997 3 440.302 17.0794 296.286 35.3333 112.496 137.971
1997 4 449.306 18.2258 282.274 40.1613 113.475 139.388
1998 1 469.242 17.1129 269.726 34.6290 114.492 138.520
1998 2 452.063 13.2188 281.766 42.1563 114.556 138.134
1998 3 399.127 15.0952 261.587 28.0159 110.618 139.660
1998 4 473.066 17.3934 314.852 34.3607 109.197 137.933
1999 1 427.677 14.2154 305.077 35.6615 112.660 135.662
1999 2 476.563 16.6875 312.578 41.9375 117.656 134.934
1999 3 472.661 16.9839 305.419 44.8710 115.985 135.500
1999 4 466.647 20.3971 296.118 40.6176 119.506 136.320
2000 1 480.200 23.3692 317.538 46.2308 119.219 141.640
2000 2 498.031 23.0313 308.703 44.2500 120.355 143.446
2000 3 445.694 23.2419 329.468 49.8548 116.129 146.991
2000 4 417.726 29.1129 287.952 44.7903 112.136 146.144
2001 1 409.969 22.2864 245.285 37.9138 107.045 134.013
2001 2 399.444 9.4418 268.266 35.6807 101.799 127.045
2001 3 386.098 5.1210 247.031 33.5933 101.157 121.842
2001 4 393.686 7.2955 202.202 33.3136 101.037 117.610
2002 1 426.159 10.1111 220.683 32.6984 104.129 113.992
2002 2 470.563 13.1094 243.156 42.8750 108.863 115.461
2002 3 407.349 12.5873 208.143 39.6190 109.395 115.910

and show that the estimate of θ is
close to 1. Interpret the result. This model is
equivalent to relating differences of log
sales to differences of log prices, with
moving average errors and a moving
average parameter close to 1. Remember
that first differences of logs are equivalent to
percentage changes.

Note that the data set includes a few
weeks with missing data. For simplicity, we
suggest that you omit these weeks. For a
small number of missing weeks, as in our
case, this strategy is reasonable even though
it alters the time lag between certain
observations.
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Note that we have introduced the
backshift notation, which is standard
notation in the time series literature. B is the
backshift operator. When applied to a time
series, the backshift operator shifts the time
index by one unit. That is, Byt = yt−1,

B2 yt = yt−2, B3 yt = yt−3, and so on. Hence,
(1 − B)εt = (1 − θ B)at is a short way of
writing εt − εt−1 = at − θat−1.

The “design” of the price data is
interesting because there are periods during
which prices are rather flat. Look at the time
series graph of (ln) prices. There appears to
be a certain “industry price” that stores use
as the base when reducing their prices.
Occasionally, the industry price changes.
One could argue that it is not the actual price
but, rather the “unanticipated” price that
matters and affects sales. One could
measure the unanticipated price by
considering the difference between the
price pt and the exponentially weighted
average of past prices. That is, one could
consider

pt − (1 − α)[pt−1 + αpt−2 + α2 pt−3 + · · ·]
= [(1 − B)/(1 − αB)]pt

as the relevant regressor variable. The
parameter α determines how quickly the
price information is forgotten. Here, B is
the backshift operator, and you should
check that the left-hand side of the previous
expression can be written this way. For
simplicity of exposition, we have considered
a single price series. This leads to the
model

yt = β0 + β1[(1 − B)/(1 − αB)]pt

+ {unanticipated prices in other pack

sizes} + εt

or

(1 − αB)yt = β∗
0 + β1(1 − B)pt

+ · · · + (1 − αB)εt

Estimate this model, and confirm that α is
close to 1. In essence, this goes back to the
model with differences in all variables

(response as well as regressor variables) and
a moving average parameter that is close
to 1. It coincides with the regression time
series model considered at the beginning of
this exercise.

10.9. The following table lists the first few daily
stock closing prices at the Vienna Stock
Exchange of Lenzing AG, a major producer
of viscose fibers. The complete data for all
trading days in 2002 are given in the file
lenzingstock. Construct a time series graph
of the data. Assess the stationarity of the
data. Calculate first differences, graph the
data, and assess the stationarity of the first
differences.

Time (Day Closing Stock Price,
Date of Year) Lenzing AG (EURO)

1/2/2002 2 72.50
1/3/2002 3 75.00
1/4/2002 4 73.00
1/7/2002 7 73.00
1/8/2002 8 71.80
1/9/2002 9 71.10

. . . .

10.10. The following data are taken from Kadiyala,
K. R. Testing for the Independence of
Regression Disturbances. Econometrica, 38,
97–117, 1970. The data are given in the file
icecreamsales.

Ice cream consumption (in pints per
capita) is measured over consecutive
4-week periods from March 18, 1951, to
July 11, 1953. In addition, the data set
includes the price of the ice cream
(in dollars per pint), the weekly family
income of the panel of customers (in
dollars), and the mean temperature of the
panel city (in ◦F). The data are taken from
an unpublished report by Hildreth and Lu
(1960).

Construct a model that relates ice cream
consumption to the price, the family
income, and the temperature. Pay particular
attention to any serial correlation of the
error terms. Calculate the Durbin–Watson
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statistic and the autocorrelations of the
residuals. Incorporate any serial correlation
into a new error model (by using, for
example, a first-order autoregressive model
for the errors), and estimate a regression
model with serially correlated errors. What
are your conclusions with regard to price
and income?

Ice Cream Family
Week Consumption Price Income Temperature

1 0.386 0.270 78 41
2 0.374 0.282 79 56
3 0.393 0.277 81 63
4 0.425 0.280 80 68
5 0.406 0.272 76 69
6 0.344 0.262 78 65
7 0.327 0.275 82 61
8 0.288 0.267 79 47
9 0.269 0.265 76 32

10 0.256 0.277 79 24
11 0.286 0.282 82 28
12 0.298 0.270 85 26
13 0.329 0.272 86 32
14 0.318 0.287 83 40
15 0.381 0.277 84 55
16 0.381 0.287 82 63
17 0.470 0.280 80 72
18 0.443 0.277 78 72
19 0.386 0.277 84 67
20 0.342 0.277 86 60
21 0.319 0.292 85 44
22 0.307 0.287 87 40
23 0.284 0.277 94 32
24 0.326 0.285 92 27
25 0.309 0.282 95 28
26 0.359 0.265 96 33
27 0.376 0.265 94 41
28 0.416 0.265 96 52
29 0.437 0.268 91 64
30 0.548 0.260 90 71

10.11. The data are taken from Shaw, N. Manual of
Meteorology, Vol. 1, p. 284. Cambridge,
UK: Cambridge University Press. The
following table shows the mean annual level

of Lake Victoria Nyanza for the years
1902–1921, relative to a fixed standard, and
the number of sunspots in the same years.
The data are given in the file lakelevel.

Relate the lake levels (y) to the number
of sunspots (x). Pay particular attention to
any serial correlation of the error terms.
Calculate the Durbin–Watson statistic
and the autocorrelations of the residuals,
and check the adequacy of the fitted
model(s).

Year Y = Lake Level X = Sunspots

1902 −10 5
1903 13 24
1904 18 42
1905 15 63
1906 29 54
1907 21 62
1908 10 49
1909 8 44
1910 1 19
1911 −7 6
1912 −11 4
1913 −3 1
1914 −2 10
1915 4 47
1916 15 57
1917 35 104
1918 27 81
1919 8 64
1920 3 38
1921 −5 25

10.12. The data are taken from Hanke, J. E., and
Reitsch, A. G. Business Forecasting, 3rd ed.,
Needham Heights, MA: Allyn & Bacon,
1989. Annual Sears Roebuck sales (y) and
U.S. disposable personal income (in billions
of dollars) for the years 1955–1975 are
listed in the following table. The data are
given in the file sears.

a. Regress sales on disposable income,
carefully checking for autocorrelations
in the errors.
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b. Modify the independent error model, and
consider a noisy random walk model for
the errors in the regression model.

c. Consider a regression of changes in sales
(Salest− Salest−1) on changes in
disposable income (Incomet −
Incomet−1).

d. Consider a regression of relative changes
in sales (Salest − Salest−1)/Salest−1

∼=
ln(Salest ) – ln(Salest−1) on relative
changes in disposable income,
(Incomet− Incomet−1)/Incomet−1

∼=
ln(Incomet ) – ln(Incomet−1).

e. Comment on your findings.

Year Sears Sales U.S. Disposable Income

1955 3.307 273.4
1956 3.556 291.3
1957 3.601 306.9
1958 3.721 317.1
1959 4.036 336.1
1960 4.134 349.4
1961 4.268 362.9
1962 4.578 383.9
1963 5.093 402.8
1964 5.716 437.0
1965 6.357 472.2
1966 6.769 510.4
1967 7.296 544.5
1968 8.178 588.1
1969 8.844 630.4
1970 9.251 685.9
1971 10.006 742.8
1972 11.200 801.3
1973 12.500 903.1
1974 13.101 983.6
1975 13.640 1,076.7

10.13. The data are taken from Coen, P. J.,
Gomme, E. D., and Kendall, M. G. Lagged
relationships in economic forecasting.
Journal of the Royal Statistical Society,
Series A, 132, 133–163, 1969. The data are
given in the file cgk.

The authors analyze quarterly data
(from quarter 3 of 1952 to quarter 4 of
1967) on the Financial Times (FT) share
index, the FT commodity index, and the
seasonally adjusted UK car production. One
of their models regresses the FT share index
(y) on the lagged FT commodity index (with
lag 7) and the lagged UK car production
(lag 6).

a. Reproduce their regression model,
carefully checking the model
assumptions. In particular, check whether
the errors are uncorrelated. You will find
large autocorrelations among the errors
that were overlooked by the authors.

b. Consider simple time series models for
the errors (such as the random walk or
the noisy random walk) and estimate the
combined regression time series models.

c. Interpret the findings of your analysis.
Discuss how this is related to the
discussion of spurious regression in
Section 10.2.

y = FT x1 = Car x2 = FT
Year Quarter Share Index Production Comm Index

1952 3 112.7 105,761 96.21
1952 4 115.0 121,874 93.74
1953 1 121.4 126,260 91.37
1953 2 118.4 145,248 86.31
1953 3 122.7 160,370 84.98
1953 4 128.8 163,648 86.46
1954 1 135.7 178,195 90.04
1954 2 148.5 187,197 94.74
1954 3 165.4 195,916 92.43
1954 4 178.5 199,253 92.41
1955 1 187.3 227,616 91.65
1955 2 195.9 215,363 89.38
1955 3 205.2 231,728 91.05
1955 4 191.5 231,767 89.89
1956 1 183.0 211,211 90.16
1956 2 184.5 185,200 86.78
1956 3 181.1 152,404 88.45
1956 4 173.7 156,163 90.69
1957 1 185.4 151,567 86.03
1957 2 201.8 213,683 84.85
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y = FT x1 = Car x2 = FT
Year Quarter Share Index Production Comm Index

1957 3 198.0 244,543 84.07
1957 4 168.0 253,111 81.96
1958 1 161.6 266,580 80.03
1958 2 170.2 253,543 79.80
1958 3 184.5 261,675 80.19
1958 4 211.0 249,407 80.13
1959 1 218.3 246,248 80.42
1959 2 231.7 293,062 82.67
1959 3 247.4 285,809 82.78
1959 4 301.9 366,265 82.61
1960 1 323.8 374,241 82.47
1960 2 314.1 375,764 81.86
1960 3 321.0 354,411 79.70
1960 4 312.9 249,527 77.89
1961 1 323.7 206,165 77.61
1961 2 349.3 258,410 78.90
1961 3 310.4 279,342 79.72
1961 4 295.8 264,824 78.08
1962 1 301.2 312,983 77.54
1962 2 285.8 300,932 76.99
1962 3 271.7 323,424 76.25

y = FT x1 = Car x2 = FT
Year Quarter Share Index Production Comm Index

1962 4 283.6 312,780 78.13
1963 1 295.7 363,336 80.38
1963 2 309.3 378,275 81.78
1963 3 295.7 414,457 82.81
1963 4 342.0 459,158 84.99
1964 1 335.1 460,397 86.31
1964 2 344.4 462,279 85.95
1964 3 360.9 434,255 90.73
1964 4 346.5 475,890 92.42
1965 1 340.6 439,365 87.18
1965 2 340.3 431,666 85.20
1965 3 323.3 399,160 85.44
1965 4 345.6 449,564 87.85
1966 1 349.3 437,555 89.95
1966 2 359.7 426,616 90.20
1966 3 320.0 399,254 88.89
1966 4 299.9 334,587 83.25
1967 1 318.5 367,997 81.21
1967 2 343.1 393,808 79.90
1967 3 360.8 375,968 78.70
1967 4 397.8 381,692 81.50
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11.1 THE MODEL
In this chapter, we discuss the regression situation when the response variable
is categorical. The simplest situation arises if the response is binary, indicating
the presence or absence of a characteristic. For such situations, we consider a
special model, referred to as the logistic regression model. We explain how
to estimate and interpret its parameters and show how to check this model for
possible misspecification. Furthermore, we extend the analysis to the situation in
which the response is categorical with more than two possible outcomes.

We introduce the logistic regression model through the illustrative example
in Table 11.1. Part (a) of the table lists the outcomes (y) of individual capital
punishment cases, together with the severity of the crimes (x) thought to be a
determining factor for getting the death penalty. The outcome variable can take
on only two distinct values: y = death sentence, coded as 1, and y = life sentence,
coded as 0. The regressor (explanatory) variable x is measured as an index from
1 to 10.

The outcome yi of case i is assumed to have a Bernouilli distribution with
“success” and “failure” probabilities

P(yi = 1) = π and P(yi = 0) = 1 − π, for i = 1, 2, . . . , n (11.1)

The parameter π defines the mean of the distribution: E(yi ) = π . The logistic
regression models the success probability as a function of the severity (x). That
is, π = π(x) so that for case i with severity xi , πi = π(xi ).

Table 11.1 considers a single explanatory (regressor) variable, the severity of
the crime. In general, we may also want to consider the race of the victim, the
race of the defendant, the gender of the defendant, and so on. Then the logistic
regression models the probability of getting the death sentence π as a function
of p explanatory (regressor) variables, x1, x2 , . . . , x p. For case i , with values of
the explanatory variables xi = (xi1, xi2, . . . , xip)

′, πi = π(xi ).

343
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TABLE 11.1 ILLUSTRATIVE EXAMPLE: DEATH PENALTY DATA

(a) Individual Cases

Severity of Capital Punishment
Case Crime (x) Outcome (y)

1 5 y1 = 1 (death)
2 4 y2 = 0 (life)
3 5 y3 = 0 (life)
4 7 y4 = 1 (death)
5 5 y5 = 0 (life)
6 5 y6 = 1 (death)

. . . . . . . . .

i xi yi

. . . . . . . . .

. . . . . . . . .

n 9 yn = 1 (death)

(b) Grouped According to Constellations

Setting Severity of Capital Punishment Outcome (Number
Constellation Crime (x) of Death Sentences)

1 5 y1 = 2 (death sentences among 4 cases)
2 . . . . . .

3 7 y3 = 4 (death sentences among 8 cases)
. . . . . . . . .

i xi yi death sentences among the ni cases
. . . . . . . . .

m 9 ym death sentences among the nm cases

In our illustration, a case refers to a defendant in a death penalty case. In
other examples, the case may represent a subject in a medical experiment on the
effectiveness of a new drug, a company or a credit customer in studies of credit
risk, or a manufactured component in experiments assessing failure.

In many situations, especially if the explanatory variables are categorical,
one observes several cases at the same values of the explanatory variables. In the
example in Table 11.1, there are several different (and unrelated) cases with the
same exact severity index. For example, there are four cases with crime severity 5,
there are eight cases with crime severity 7, and so on. In general, there may be ni

cases with a certain crime severity xi . We call the categories that are characterized
by identical levels on all explanatory variables a setting or a constellation. We may
have a total of n cases that occur at m constellations (m ≤ n), with (n1, . . . , ni , . . . ,
nm) observations at the m distinct constellations, and n = n1 + n2 + · · · + nm . See
the illustration in Table 11.1b. The number of successes yi at the i th constellation
is obtained by summing independent 0/1 Bernouilli outcome variables over all
individual cases that make up that constellation. Because of the independence
assumption for the individual cases, the number of successes yi follows a binomial
distribution with parameters ni (the number of cases within the i th constellation)
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and success probability π i = π (xi ). That is,

P(Yi = yi ) = f (yi ) =
(

ni

yi

)
[π(xi )]

yi [1 − π(xi )]
ni −yi , for i = 1, 2, . . . , m

(11.2)

with mean E(yi ) = niπ (xi ). We use the term case if we refer to an individual
observation, and constellation if we refer to the grouped information at distinct
levels of the explanatory variables. We use the same symbol yi to denote both
the (Bernouilli) outcome in an individual case i and the (binomial) number of
successes at a constellation i consisting of ni cases. The reference to either a case
or a constellation indicates whether yi is a binary or a binomial response variable.

Fitting a standard linear regression model yi = π(xi ) + εi = x′
iβ + εi with

normal errors to binary response data yi would be incorrect. A linear represen-
tation permits estimates of the response to be outside the range 0 to 1, which
is wrong when we model probabilities. Moreover, the normal error distribution
is no longer valid because with a binary response only two different errors are
possible: −π(xi ) if the response is zero and 1 − π(xi ) if the response is 1.

In the logistic regression model the probabilities π(xi ) are parameterized as

π(xi ) = ex′
iβ

1 + ex′
iβ

= 1

1 + e−x′
iβ

and 1 − π(xi ) = 1

1 + ex′
iβ

= e−x′
iβ

1 + e−x′
iβ

(11.3)
where x′

iβ = β0 + β1xi1 + · · · + βpxip . The probabilities are nonlinear functions
of the parameters β. It is instructive to look at the probabilities for the case of
a single explanatory variable x , as illustrated in the context of the death penalty
example in Table 11.1. Another example is the outcome of a purchasing decision
y (buy or not buy a product) and the price x of the product. In Figures 11.1 and
11.2, we show the function

P(y = 1) = π(x) = eβ0+β1x

1 + eβ0+β1x
(11.4)

0 5 10

0.0

0.5

1.0

Explanatory variable x

P
(y

 =
 1

)

−5 + x
−2.5 + (0.5)x

−7.5 + (1.5)x

FIGURE 11.1
Graph of Eq. (11.4)
for β1 > 0
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1.0

0.5

0.0

Explanatory variable x

P
(y

 =
 1

)

5 − (0.75)x

5 − (1.25)x

FIGURE 11.2
Graph of Eq. (11.4)
for β1 < 0

for positive and negative values of β1. The parameters β0 and β1 determine the
inflection point and the steepness of the sigmoid-like function. A graph such as
the one in Figure 11.1 is appropriate in the death penalty study, in which the
likelihood of receiving a death sentence increases with the severity of the crime.
A graph such as the one in Figure 11.2 is appropriate in the purchasing study, in
which the likelihood of buying decreases with increasing price of the product.

11.2 INTERPRETATION OF THE PARAMETERS
The probabilities in Eq. (11.3) are nonlinear functions of β. However, a simple
transformation results in a linear model. It can be shown that

ln
π(xi )

1 − π(xi )
= x′

iβ (11.5)

Much of the interpretation of the logistic regression model centers on the
ratio

π(x)

1 − π(x)
= exp(x′β) (11.6)

This ratio compares the probability of the occurrence of a characteristic to the
probability of its nonoccurrence and is usually referred to as the odds of occur-
rence. Whereas probabilities are constrained to lie between 0 and 1, odds can
take on values between zero and infinity. For example, for π = 0.5, the odds are
1 (i.e., even odds, or 1:1 odds). For π = 0.8, the odds for (in favor of) occurrence
are 0.8/0.2 = 4, or 4:1, implying that the probability of occurrence is four times
as large as the probability of nonoccurrence.

The logarithm of the odds in Eq. (11.6), ln [π/(1 − π)], is referred to as the
log odds or the logit. The logistic regression model assumes a linear model for
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the logit; that is,

ln
π(x)

1 − π(x)
= x′β = β0 + β1x1 + · · · + βpx p (11.7)

This representation shows that the regression coefficients represent changes in the
log odds. Let us change one of the regressor variables, for example, variable x,

by one unit while keeping the values of all other regressors in the model constant.
For simplicity of notation, we have omitted the subscript of the changed regressor
and its associated parameter β. The shift of the regressor from value x to the new
value x + 1 changes the log odds by β units. That is,

β = ln
π(x + 1)

1 − π(x + 1)
− ln

π(x)

1 − π(x)
= ln(a/b) (11.8)

where a = π(x + 1)

1 − π(x + 1)
are the odds for occurrence if the considered explanatory

variable is at level x + 1, and b = π(x)

1 − π(x)
are the odds for occurrence at level

x . Exponentiation of the regression coefficient provides the odds ratio, a/b. That
is,

exp(β) = (a/b) (11.9)

For example, a regression coefficient β = −0.2 with exp(β) = exp(−0.2) = 0.82
indicates that a change from x to x + 1 changes (reduces) the odds of oc-
currence by the multiplicative factor 0.82; it reduces the odds of occurrence
by 18%. A value of β = 0 and exp(β) = exp(0) = 1 implies that a change in
the explanatory variable has no effect on the odds of occurrence. A value of
β = 1.5 and exp(β) = exp(1.5) = 4.48 indicates that a one-unit change in the ex-
planatory variable increases the odds for occurrence by a factor of 4.48, or by
100(4.48 − 1) = 348%.

What do the regression results imply if we change a regressor variable by k
units (e.g., k = 10, from a value x to the value x + 10) while keeping the values
of all other regressor variables constant? In this case,

ln
π(x + k)

1 − π(x + k)
− ln

π(x)

1 − π(x)
= βk

and exp(βk)measures the odds ratio that is implied by this change. For a meaning-
ful interpretation of the coefficients in logistic regression models, the user needs
to decide on the magnitude of the change, k, that is relevant to the variables at
hand.

11.2.1 RELATIONSHIP BETWEEN LOGISTIC REGRESSION
AND THE ANALYSIS OF 2×2 CONTINGENCY TABLES

The interpretation of the regression coefficients in terms of odds ratios has made
logistic regression a very powerful tool. The odds ratio is a familiar concept in
the analysis of categorical data.



Abraham Abraham˙C11 November 8, 2004 12:14

348 Logistic Regression

TABLE 11.2 FREQUENCIES IN A 2 × 2 TABLEa

x = 0 x = 1 Row Sum

y = 0 n00 (n00/n+0) n01 (n01/n+1) n0+
y = 1 n10 (n10/n+0) n11 (n11/n+1) n1+
Column Sum n+0 n+1 n++
a Relative frequencies, based on column sums, are given in parentheses.

If there is just one categorical explanatory variable x with two outcomes
(coded as 0 or 1), we can arrange the information in the 2×2 contingency table
as shown in Table 11.2. The table lists the cell frequencies ni j and the relative
frequencies in parentheses for each outcome of the explanatory variable x . Fur-
thermore, it shows row and column sums and the total number of cases. The
response y may indicate the presence or absence of disease, and x may be an
indicator for exposure. Or, y may indicate the type of sentence in a death penalty
case (death or life), and x may stand for the race of the defendant (White or
non-White). Or, the response y may be the outcome of a hiring decision (hired or
not hired), and x may be the gender of the applicant (male or female). The odds
ratio in the 2 × 2 table is defined as (n11/n01)/(n10/n00) = (n00n11/n01n10).

Consider the logistic regression model P(y = 1) = π(x) = eβ0+β1x

1 + eβ0+β1x
, with

π(x = 0) = eβ0

1 + eβ0
andπ(x = 1) = eβ0+β1

1 + eβ0+β1
. The odds at x =1and x =0 are res-

pectivelyπ(x = 1)/[1 − π(x = 1)] = exp(β0 + β1) andπ(x = 0)/[1 − π (x = 0)]
= exp(β0), and the odds ratio is exp(β1). This shows that the exponentiation of
the slope coefficient in the logistic regression coincides with the odds ratio in the
2 × 2 table.

The logistic regression model is more flexible than a contingency table
because it (i) can adjust odds ratios for the presence of other explanatory variables
and (ii) can make the odds ratios depend on other variables. As an illustration,
let the response y be the outcome of a hiring decision (hired or not hired), x the
gender of the applicant (male or female), and z the experience. Assume that z is
an indicator that is 1 for applicants with prior experience and 0 for those with no
prior experience.

Consider the following three logistic regression models for the probability of
being hired:

P(y = 1) = π(x) = eβ0+β1x

1 + eβ0+β1x
(11.10a)

P(y = 1) = π(x, z) = eβ0+β1x+β2z

1 + eβ0+β1x+β2z
(11.10b)

P(y = 1) = π(x, z, xz) = eβ0+β1x+β2z+β3xz

1 + eβ0+β1x+β2z+β3xz
(11.10c)
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The odds ratio computed from the 2 × 2 contingency table of y (hiring
decision) and x (gender), or equivalently computed as exp(β1) from the results of
the logistic regression with success probability (11.10a), is suspect if the omitted
variable z affects the probability of being hired [and the model in Eq. (11.10b) is
correct], or if the odds ratios vary with the omitted variable [and the model in Eq.
(11.10c) is needed].

The second model in Eq. (11.10b) allows the variable z to affect the proba-
bility of being hired. However, as simple substitution with Eq. (11.10b) shows,
the gender odds ratio for getting hired is still given by exp(β1). [The odds for
getting hired is exp(β0 + β1x + β2z), but the term β2z cancels when forming the
ratio of the odds at x = 1 and x = 0.] Nevertheless, estimating the model (11.10a)
without the needed term β2z may affect the estimate of β1 and hence the estimated
odds ratio. Omission becomes a problem if the omitted variable z is related to
the included variable x and if the gender proportions in the experienced group
are much different from the gender proportions in the group without experience.
We have seen the same effect in the linear regression model when we discussed
the bias that results when omitting from the model an explanatory variable that
is correlated with other explanatory variables (see the appendix to Chapter 6).

The third model with success probability given in Eq. (11.10c) includes
an “interaction” allowing the gender odds ratio to depend on the explanatory
variable z. Simple substitution shows that the gender odds ratio for getting hired
is exp(β1) when z = 0 and exp(β1 + β3) when z = 1. Ignoring the interaction and
fitting the model in Eq. (11.10b) without the term β3xz results in an estimated
odds ratio that is a combination of the two odds ratios.

This discussion indicates that one should always check whether the analysis
needs to be adjusted for other covariates. The logistic regression framework makes
such an adjustment straightforward.

11.2.2 ANOTHER ADVANTAGE OF MODELING ODDS RATIOS
BY LOGISTIC REGRESSION

A reason for the wide spread use of odds ratios and logistic regression is that it is
very easy to adjust the analysis for different sampling schemes. For odds ratios,
it does not matter whether the data are obtained through a case–control study or
through a retrospective study that samples units conditional on the outcome vari-
able y. A case–control (or prospective) study selects subjects on the basis of their
explanatory variables (covariates). For example, in an investigation of smoking
(x) and lung cancer (y), such a study selects random samples of nonsmokers and
smokers and classifies the subjects according to the presence of the disease (y). In
a retrospective study, on the other hand, the sampling is carried on the response;
random samples of disease-free and diseased patients are taken, and subjects are
classified according to their smoking history (x). It is clear from looking at Table
11.2 that the odds ratio is the same under both sampling strategies. For retro-
spective sampling, the odds-ratio is (n11/n10)/(n01/n00) = (n00n11/n01n10)–the
same as in the prospective study.
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The only coefficient that is affected by the sampling scheme is the intercept
in the logistic regression model. We demonstrate this in the following discussion
for the general logistic model with success probability

P(y = 1) = π(x) = eβ0+x′β

1 + eβ0+x′β

and vector of covariates x. Suppose that the data are sampled retrospectively. Let
the indicator variable w express whether or not the individual is included in the
sample, and denote the sampling proportions by

P(w = 1 | y = 1) = γ1 and P(w = 1 | y = 0) = γ0

The sampling proportion varies with the outcome but does not depend on the
covariate x. Applying Bayes theorem, the probability of success in a sampled
case with covariates x is given by

P(y = 1 |w = 1, x)

= P(w = 1 | y = 1, x)P(y = 1 |x)

P(w = 1 | y = 1, x)P(y = 1 |x) + P(w = 1 | y = 0, x)P(y = 0 |x)

= γ1 exp(β0 + x′β)

γ1 exp(β0 + x′β) + γ0
= exp(β∗

0 + x′β)

1 + exp(β∗
0 + x′β)

where β∗
0 = β0 + ln(γ1/γ0). The last equality follows from straightforward alge-

bra. Although the data have been sampled retrospectively, the same logistic model
continues to apply, with exactly the same slopes β but with a different intercept.
The methods described in the context of prospective studies can be applied to
retrospective studies as well, with the exception of the intercept, which is now
affected by the sampling proportions.

11.3 ESTIMATION OF THE PARAMETERS
Under the Bernouilli assumption in Eq. (11.1) (see Table 11.1a), and assuming in-
dependence among the n individual cases, the probability density of y1, y2, . . . , yn

is given by

p(y1, y2, . . . , yn |β) =
n∏

i=1

[π(xi )]
yi [1 − π(xi )]

1−yi

with the parametersβ entering into the probabilities πi = π(xi ). Accordingly, the
log-likelihood function is given by

ln L(β | y1, y2, . . . , yn) =
n∑

i=1

yi ln π(xi ) +
n∑

i=1

(1 − yi ) ln[1 − π(xi )] (11.11)

Nonlinear optimization procedures such as the Newton–Raphson method of
Chapter 9 are employed to determine the estimates that maximize this function.

Assume that the observed values on the p explanatory variables comprise m
different settings (constellations); see Table 11.1b. It is this situation that we use in
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the subsequent discussion. Suppose that at these m different settings we observe
n1, n2, . . . , nm responses, where n = n1 + n2 + · · · + nm . Of the ni responses, yi

are ones and ni − yi are zeros. Then, adopting the notation πi = π(xi ), the log-
likelihood function from the binomial distribution in Eq. (11.2) can be written
as

ln L(β | y1, y2, . . . , ym) = c +
m∑

i=1

yi ln πi +
m∑

i=1

(ni − yi ) ln(1 − πi ) (11.12)

where c = ∑m
i=1 ln

(
ni

yi

)
does not depend on the parameters and can be taken as a

constant in the maximization. Taking the derivative of the function in Eq. (11.12)
with respect to πi leads to

∂ ln L

∂πi
=

m∑
i=1

yi

πi
−

m∑
i=1

ni − yi

1 − πi
=

m∑
i=1

yi − niπi

πi (1 − πi )
(11.13)

The vector of derivatives of the success probabilities πi in Eq. (11.3) with respect
to the elements of the parameter vector β is given by

∂πi

∂β
=


 ex′

iβ

1 + ex′
iβ

−
[

ex′
iβ

1 + ex′
iβ

]2

 xi = πi (1 − πi )xi (11.14)

Hence, we find that
∂ ln L

∂β
= ∂ ln L

∂πi

∂πi

∂β
=

m∑
i=1

(yi − niπi )xi (11.15)

Setting the vector of first derivatives equal to zero leads to the maximum
likelihood score equations

X ′( y −µ) = 0

where X is the m × p design matrix with the m rows x′
1, . . . , x′

i , . . . , x′
m rep-

resenting the levels of the explanatory variables, y = (y1, y2, . . . , ym)′ is the
m × 1 column vector of the responses (the numbers of ones) at these levels, and
µ= (n1π1, n2π2, . . . , nmπm)′ is the vector of means. These equations resemble
the normal equations in the standard linear model. However, in the linear model
we have µ= Xβ, whereas here the mean vector µ is a nonlinear function of the
parameters β.

An iterative method such as the Newton–Raphson algorithm is used to find the
maximum likelihood estimates. The Newton–Raphson procedure was discussed

in Section 9.4; see Eq. (9.22). One component of the iterations is g = −∂ ln L

∂β
,

the vector of first derivatives of the negative log-likelihood function, evaluated
at the current value β̃. The results in Eq. (11.15) show that the derivative g =
− ∑m

i=1 (yi − niπi )xi is easy to calculate; all that is needed is an evaluation of
the probabilities πi in Eq. (11.3) at the current value β̃.

The Hessian matrix G in the Newton–Raphson procedure is the matrix of
second derivatives of the negative log-likelihood function, evaluated at the current
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value β̃. Taking a derivative of the first derivative in Eq. (11.15) leads to the second
derivative with respect to the two (scalar) components β j and β j∗ of the parameter
vector β,

− ∂2 ln L

∂β j∂β j∗
= − ∂

∂β j

{
m∑

i=1

(yi − niπi )xi j∗

}
=

m∑
i=1

(ni xi j∗)
∂πi

∂β j

=
m∑

i=1

niπi (1 − πi )xi j xi j∗ (11.16)

Here, we have used the result in Eq. (11.14) on the derivative ∂πi/∂β. The second
derivative in Eq. (11.16) becomes the ( j , j∗) element in the matrix G. The p × p
matrix G can be written as

G =
m∑

i=1

niπi (1 − πi )xi x′
i (11.17)

and the Newton–Raphson iterations are given by

β∗ = β̃ − [G(β̃)]−1g(β̃) (11.18)

Here, β̃ is the current value, and β∗ is the updated (next) estimate in the iteration.
The Hessian matrix G(β̃) does not depend on any random variables. Hence, the
scoring method (which uses the expected value of the Hessian matrix) and the
Newton–Raphson method reduce to the same algorithm. Let us denote the final
estimate by β̂.

Comment This procedure is also known as the iteratively reweighted least
squares (IRLS) algorithm. The idea behind all iterative estimation procedures
is to piece together successive linear estimation steps. It can be shown that a
weighted linear regression of the iteratively computed response

zi = x′
i β̃ + 1

ni π̃i (1 − π̃i )
[yi − ni π̃i ] , for i = 1, 2, . . . , m (11.19)

on the explanatory vector xi , with case weights wi = ni π̃i (1 − π̃i ), is equivalent
to the Newton–Raphson procedure in Eq. (11.18). Here, the new (scalar) response
zi (and the success probabilities π̃i ) is evaluated at the current value β̃.

This is easy to see. The weighted least squares (WLS) estimator of β in

the regression of zi = x′
i β̃ + 1

ni π̃i (1 − π̃i )
[yi − ni π̃i ] on xi is given by (see

Section 4.6.3)

β̂
WLS =

[
m∑

i=1

wi xi x′
i

]−1 [
m∑

i=1

wi xi zi

]

=
[

m∑
i=1

ni π̃i (1 − π̃i )xi x′
i

]−1 [
m∑

i=1

ni π̃i (1 − π̃i )xi zi

]
(11.20)
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where
m∑

i=1

ni π̃i (1 − π̃i )xi zi =
[

m∑
i=1

ni π̃i (1 − π̃i )xi x′
i

]
β̃ +

m∑
i=1

(yi − ni π̃i )xi

= Gβ̃ − g (11.21)

Hence, the weighted least squares estimate

β̂
WLS = G−1(Gβ̃ − g) = β̃ − G−1g (11.22)

is identical to the Newton–Raphson iteration in Eq. (11.18). This shows that one
can think of the Newton–Raphson procedure of estimating the coefficients in
the logistic regression model as a sequence of weighted least squares steps. The
current estimate β̃ is used to calculate the “response” vector and the weighting
matrix at each step of the iteration.

11.4 INFERENCE
11.4.1 LIKELIHOOD RATIO TESTS

Computation for a given logistic regression model can be carried out with a
wide variety of statistical software packages. These packages use the Newton–
Raphson method to obtain the maximum likelihood estimates β̂. Furthermore,
they evaluate—through substitution of the estimates into Eq. (11.12)—the
maximum value of the likelihood function, L(β̂), and its logarithm, ln L(β̂).

Likelihood ratio tests can be used to compare the maximum likelihood un-
der the current model with success probability π(xi ) = exp(x′

iβ)/[1 + exp(x′
iβ)]

(which we call the “full” model), with the maximum likelihood obtained under
alternative competing models. Other models of interest have one or more of the
explanatory variables omitted (we call these the “restricted” models; see also Sec-
tion 4.5). Likelihood ratio (LR) tests look at twice the logarithm of the likelihood
ratio of the full [L(full)] and the restricted [L(restricted)] models. That is,

LR test statistic = 2 ln
L(full)

L(restricted)
= 2 {ln L(full) − ln L(restricted)} (11.23)

If the constraints imposed by the restricted model are valid, then the LR statistic
in Eq. (11.23) follows, in large samples, a chi-square distribution with degrees
of freedom given by the number of independent constraints. We reject the im-
posed restrictions at significance level α if the LR test statistic is larger than the
100(1 − α) percentile of the applicable chi-square distribution. We retain the
restrictions if the test statistic is smaller than this percentile.

LR tests can be used to test the significance of an individual coefficient
(a partial test), the significance of two or more coefficients, and the significance
of all regressor coefficients (test of overall regression). The test of overall regres-
sion compares the maximum log-likelihood of the full model, ln L(β̂), with the
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maximum likelihood of the model with constant success probability exp(β0)/

(1 + exp(β0)) that is unaffected by all covariates. The maximum likelihood esti-
mate of this constant success probability is given by y/n, where y is the overall
number of successes and n is the total number of cases. Substituting this es-
timate into the log-likelihood function in Eq. (11.12) leads to the maximum
log-likelihood

ln L0 = c + y ln(y) + (n − y) ln(n − y) − n ln(n) (11.24)

Hence, the test statistic for testing the overall significance of the regression is
given by

LR test statistic = 2

{
m∑

i=1

yi ln π̂i +
m∑

i=1

(ni − yi ) ln(1 − π̂i )

− [y ln(y) + (n − y) ln(n − y) − n ln(n)]

}
(11.25)

A large value of the statistic in Eq. (11.25) indicates that the success probability
depends on one or more of the regressors. On the other hand, a small value
indicates that none of the regressors in the model influence the success probability.

11.4.2 DEVIANCE

The model with a single success probability unaffected by the covariates, exp(β0)/

(1 + exp(β0)), is the simplest one can consider. The most elaborate model is
the saturated model, where each constellation of the explanatory variables is
allowed its own distinct success probability. Such constellation-specific suc-
cess probabilities are estimated by yi/ni , where ni and yi are the number of
cases and the number of successes at the i th constellation, respectively. The
deviance D is defined as twice the log-likelihood ratio between the saturated
model and the parameterized (full) model with estimated success probability
π̂i = π̂(xi ) = exp(x′

i β̂)/[1 + exp(x′
i β̂)]. It follows from the log-likelihood func-

tion in Eq. (11.12) that

D = 2
ln L(saturated)

ln L(full)
= 2

m∑
i=1

[
yi ln

(
yi

ni π̂i

)
+ (ni − yi ) ln

(
ni − yi

ni (1 − π̂i )

)]
(11.26)

A note on the calculation of the deviance: For y = 0, the term y ln(y/nπ̂) = 0.
Similarly, (n − y) ln[(n − y)/n(1 − π̂)] = 0 if y = n.

The deviance is part of the standard computer output for logistic regression.
A large deviance should be viewed as a warning that the parameterization in the
full model is not adequate.

The likelihood ratio test statistic in Eq. (11.23) can equivalently be expressed
through the deviances,

LR test statistic = 2{ln L(full) − ln L(restricted)}
= D(restricted) − D(full) (11.27)
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Comment One can also define the deviance in the linear regression model with
normal errors. In the saturated model, each individual observation serves as the es-
timate of the “mean,” and the deviance in the regression model with normal errors
is given by D = σ−2SSE = σ−2 ∑

(yi − µ̂i )
2. We learned in Chapter 4 that it fol-

lows a chi-square distribution with n − p − 1 degrees of freedom. With normal
errors, the deviance includes the nuisance parameter σ 2 and cannot be calculated
directly. Programs such as GLIM (Generalized Linear Interactive Modelling) list
the deviance as σ 2 D = SSE = ∑

(yi − µ̂i )
2 and provide a scale parameter that is

an estimate of σ 2, σ̂ 2 = D/(n − p − 1). Deviance and error sum of squares are
equivalent concepts.

11.4.3 STANDARD ERRORS OF THE MAXIMUM LIKELIHOOD ESTIMATES

The matrix of second derivatives of the negative log-likelihood function is given in
Eq. (11.17), G = ∑m

i=1 niπi (1 − πi )xi x′
i . The inverse of the matrix G, evaluated

at the maximum likelihood estimates β̂, provides an estimate of the asymptotic
covariance matrix of the maximum likelihood estimates,

V (β̂) ∼=
[

m∑
i=1

ni π̂i (1 − π̂i )xi x′
i

]−1

(11.28)

The square roots of the diagonal elements in this matrix provide the asymp-
totic standard errors s.e.(β̂0), s.e.(β̂1), . . . , s.e.(β̂p) of the estimates β̂0, β̂1, . . . ,

β̂p; off-diagonal elements provide the covariances between different estimates.
Of course, this approximation requires that the sample size n is reasonably
large.

The standard errors can be used to obtain approximate 95% confidence in-
tervals for β j ,

β̂ j ± 1.96 s.e.(β̂ j ) (11.29)

and to calculate the t ratios, β̂ j/s.e.(β̂ j ), to test H0 : β j = 0 against the alternative
hypothesis H1: β j �= 0. The significance is assessed from the percentiles of the
normal distribution. These tests are referred to as Wald tests.

As indicated previously, the coefficient β j represents the logarithm of the
odds ratio. Hence, the transformed value exp(β j ), the odds ratio, becomes an
important quantity for the interpretion. Transforming the estimate and the con-
fidence interval in Eq. (11.29) leads to the estimated odds ratio exp(β̂ j ) and
the confidence interval from exp[β̂ j − 1.96 s.e.(β̂ j )] to exp[β̂ j + 1.96 s.e.(β̂ j )].
The confidence interval for the odds ratio is skewed but still has the specified
95% coverage. The point estimate exp(β̂ j ) represents the median of its sampling
distribution.

The covariance matrix can be used to obtain standard errors of other statis-
tics that are of interest, particularly, estimates of the probabilities, π̂i = π̂(xi ) =

ex′
i β̂

1 + ex′
i β̂

. The derivative in Eq. (11.14), ∂πi/∂β = πi (1 − πi )xi , and the ex-

pansion π̂i ≈ πi + (β̂ − β)′∂πi/∂β = πi + πi (1 − πi )x′
i (β̂ − β) can be used to
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approximate the variance

V (π̂i ) ≈ [πi (1 − πi )]
2 x′

i V (β̂)xi

= [πi (1 − πi )]
2 x′

i

[
m∑

j=1

n jπ j (1 − π j )x j x′
j

]−1

xi (11.30)

where the probabilities πi are evaluated at the maximum likelihood estimates β̂.

11.5 MODEL-BUILDING APPROACH IN THE CONTEXT
OF LOGISTIC REGRESSION MODELS
11.5.1 PRELIMINARY MODEL SPECIFICATION

General regression modeling principles also apply to the logistic regression situa-
tion. One seeks to determine parsimonious (simple) models that explain the data.
The rationale for preferring simple models is that they tend to be numerically
more stable, and they are easier to interpret and generalize. Overfitting a model
also leads to unstable estimated coefficients with large standard errors. Although
many of the tools for model selection discussed in Chapter 7 are still useful, some
modifications need to be made when modeling a binary response.

For situations in which the covariate (the x variable) is categorical with two or
more possible outcomes, one may want to start the analysis by performing a chi-
square test of homogeneity (independence) in the contingency table of x and y.
Rejection of the hypothesis of independence is an indication that the covariate has
an influence on the response, and one can proceed to the odds ratios to explore
the form of the relationship. In the case of more than one categorical covariate,
one can calculate a chi-square test for each covariate separately. Of course, we
know from standard regression modeling that such an approach may mask the
joint effect. It can be that a collection of covariates, each of which is weakly
associated with the outcome, becomes an important predictor if the covariates
are considered together. The fact that logistic regression is able to address the
effects of more than two covariates on the response is one of its advantages over
a pairwise contingency table analysis.

If the covariate x is continuous, one can investigate whether there are differ-
ences in the covariate between the success and failure groups. If there are covariate
differences among the two groups, one can conclude that the covariate is related
to the response and that it should be part of the model. Comparative dot plots of
the covariate observations, as well as a two-sample t test, can give us preliminary
feedback.

Scatter plots of the response yi against each explanatory variable xi are part
of the standard model specification tool-kit. With a binary response and very
little replication at the covariate constellations (m ∼= n), these plots need to be
modified and replaced by scatter plots of some smoothed response ỹi against xi .
Many different smoothing methods can be used. For example, one can calculate
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smoothed values

ỹi =
∑n

j=1 wi (x j )y j∑n
j=1 wi (x j )

where wi (x j ) = exp[−(x j − xi )
2/c] is a weight function that gives most of the

weight to observations with similar values of xi , and c > 0 is a constant that
controls the width of the smoothing window. Of course, if the number of cases
in each constellation group is large, then the relative frequencies π̂i = yi/ni and
their logits, logit = ln(π̂i/1−π̂i ), can be graphed directly against the explanatory
variables. However, adjustments need to be made if there are zero successes in a
particular constellation [see Agresti (2002) for a discussion on how to calculate
empirical logits and Eno and Terrill (1999) for grayscale graphics].

11.5.2 ASSESSING MODEL FIT

With today’s computer power, it is not difficult to fit a large number of different
logistic regression models once one has identified the appropriate covariates and
thought about whether to include nonlinear components (such as the square of
the covariates) and interaction terms. Models can be simplified by looking at
appropriate likelihood ratio (or Wald-type) tests, and stepwise modeling proce-
dures can be employed. Since model building is iterative and involves multiple
significance tests, the significance levels for these tests should not be set too low; a
significance level of α = 0.10 is often reasonable. In cases in which the covariates
are multicollinear, stepwise procedures may lead to several models with similar
fits.

The selection of the “best” model from among all that have been tried depends
on the criterion that is chosen. The deviance and the Pearson chi-square are two
commonly used criteria. One prefers models with low values on these statistics.

In the discussion of the standard linear regression model, we showed how
replicate observations at each configuration of the explanatory variable(s) allow
us to obtain a measure of the pure error sum of squares, which subsequently
can be used to test for lack of fit (see Section 6.4). The deviance statistic in
Eq. (11.26) does exactly this in the context of logistic regression. The deviance
is a likelihood ratio statistic that compares the saturated model to a parametric
model that explains the success probabilities through fewer parameters.

The goodness of fit is usually assessed over the different constellations of
the explanatory variables. We may start with n cases and a model π(xi ) =
exp(x′

iβ)/[1 + exp(x′
iβ)] that includes p explanatory variables and p + 1

coefficients. However, there may only be a set of m distinct configurations of
the explanatory variables. If the number of cases becomes large, but the num-
ber of distinct configurations does not expand fast enough so that the number of
replications for each configuration becomes large also, the distribution of the de-
viance can be approximated by a chi-square distribution with m − p − 1 degrees
of freedom. The deviance can be compared with the (90th or 95th) percentile of
the chi-square distribution with m − p − 1 degrees of freedom. Lack of fit and
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model inadequacy are indicated if the deviance is large and exceeds the percentile.
On the other hand, a deviance that is smaller than the percentile indicates that the
model is adequate.

The Pearson chi-square is a similar statistic for evaluating model adequacy.
The logistic regression model specifies probabilities of success and failure at
each of the m distinct constellations of the explanatory variables. These lead
to the frequencies that are expected under the logistic model; ni π̂i successes
and ni (1 − π̂i ) failures at the i th constellation, i = 1, 2, . . . , m. These expected
frequencies can be compared with the observed frequencies, yi and ni − yi . The
Pearson statistic is the chi-square statistic that results from a 2 × m table where the
rows correspond to the two outcomes 1 (success) and 0 (failure), and the columns
correspond to the m distinct covariate patterns. The Pearson chi-square statistic
is given by

χ2 =
m∑

i=1

[
[yi − ni π̂i ]2

ni π̂i
+ [(ni − yi ) − ni (1 − π̂i )]2

ni (1 − π̂i )

]
=

m∑
i=1

[yi − ni π̂i ]2

ni π̂i (1 − π̂i )

(11.31)

The asymptotic result for the deviance also applies for the Pearson chi-square
statistic. The statistic in Eq. (11.31) can be compared with the percentile of a
chi-square distribution with m − p − 1 degrees of freedom. Large values of this
test statistic suggest that the logistic regression model with estimated success
probabilities π̂(xi ) = exp(x′

i β̂)/[1 + exp(x′
i β̂)] is inadequate.

One often standardizes the deviance and the Pearson chi-square statistic by
dividing them by their degrees of freedom, m − p − 1. The adequacy of the model
is questioned if these standardized goodness-of-fit statistics are much larger than 1.

The deviance and the Pearson chi-square statistics are useful measures of
(lack of) fit, provided that we have replicate observations at each constellation
of the explanatory variable(s). If we do not have replicate observations (such is
often the case with continuous covariates), their interpretation as measures of
model adequacy becomes tenuous. Of course, one can always group continuous
covariates into a smaller number of groups.

Methods for grouping the cases if there are no replicates on the explanatory
variables (and hence m = n) have been suggested in the literature. Hosmer and
Lemeshow (1980) and Lemeshow and Hosmer (1982) propose to group the cases
on the basis of the estimated probabilities π̂i = π̂(xi ). They recommend to rank the
estimated probabilities from the smallest to the largest and to use this ranking to
categorize the cases into g groups of equal size. Usually, g = 10, in which case the
groups are referred to as “deciles of risk.” For each group k , k = 1, 2, . . . , g, one
calculates the number of successes ok and the number of failures nk − ok that are
associated with the nk cases in the group. The observed frequencies are compared

with the expected frequencies nk π̄k and nk(1 − π̄k), where π̄k =
∑

i∈ Group k π̂i

nk
is

the average estimated success probability in the kth group. The Pearson chi-square
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statistic is calculated from the resulting 2 ×g table,

HL =
g∑

k=1

[ok − nk π̄k]2

nk π̄k(1 − π̄k)
(11.32)

It is referred to as the Hosmer–Lemeshow statistic and is standard output of
most software packages. Hosmer and Lemeshow study this grouping in the case
in which there are no replicates on the explanatory variables. Assuming that the
fitted logistic regression is the correct model, they show that the distribution of HL
is well approximated by a chi-square distribution with g − 2 degrees of freedom.
Large values of the Hosmer–Lemeshow statistic indicate lack of fit.

11.5.3 MODEL DIAGNOSTICS

The Pearson chi-square statistic and the deviance are overall goodness-of-fit mea-
sures. Each of these statistics is made up of m squared residuals, which are known
as Pearson residuals and deviance residuals, respectively. The Pearson residual
for covariate pattern i is defined as

ri = r(yi , π̂i ) = yi − ni π̂i√
ni π̂i (1 − π̂i )

(11.33)

The deviance residual is given by

di = d(yi , π̂i ) = ±
{

2

[
yi ln

(
yi

ni π̂i

)
+ (ni − yi ) ln

(
ni − yi

ni (1 − π̂i )

)]}1/2

(11.34)

where the sign is determined by the sign of yi − ni π̂i . For covariate patterns
with yi = 0, the deviance residuals are d(yi , π̂i ) = −√−2ni ln(1 − π̂i ), and for
yi = ni , the deviance residuals are d(yi , π̂i ) = √−2ni ln π̂i .

The deviance D and the Pearson chi-square χ2 are sums of squares of the re-
spective residuals. They provide single numbers that summarize the agreement of
observed and fitted values. However, it is important to examine the fit at individ-
ual constellations and check whether the fit is supported over the entire range of
covariate patterns or whether there are certain covariate patterns for which there
is lack of fit. Case diagnostics for logistic regressions have been developed and
are part of most computer packages. Case diagnostics include leverage and mea-
sures of influence of a given covariate constellation on the deviance, the Pearson
chi-square, and the parameter estimates.

Starting from the iteratively reweighted least squares representation of logis-
tic regression, Pregibon (1981) obtains a linear approximation to the fitted values
that yields a “hat” matrix for logistic regression, µ̂= (n1π̂1, n2π̂2, . . . , nmπ̂m)′ ∼=
H y. This matrix is given by

H = V −1/2 X (X ′V −1 X)−1 X ′V −1/2 (11.35)

where V −1 is the diagonal matrix containing the weights ni π̂i (1 − π̂i ) in the
iteratively reweighted least squares algorithm. The diagonal elements of the hat
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matrix, hii , can be used to standardize the Pearson residuals,

r s
i = ri√

1 − hii
= yi − ni π̂i√

ni π̂i (1 − π̂i )
√

1 − hii
(11.36)

Absolute values larger than 2 or 3 (roughly) indicate lack of fit at that particular
covariate constellation. Pregibon extends Cook’s influence measure to the logistic
regression and approximates the change in the estimates from omitting the i th
covariate constellation as

�β̂ i = (
β̂ − β̂(i)

)′
(X ′V −1 X)−1(β̂ − β̂(i)

) ≈ (
r s

i

)2 hii

1 − hii
(11.37)

where β̂(i) is the estimate with the i th constellation dropped from the estimation.
Residual diagnostic statistics are usually graphed against the estimated (suc-

cess) probabilities. Quite often, the square of the standardized residuals is consid-
ered because large residuals—irrespective of their signs—indicate poorly fitted
points. When working with the squares, one can use the value “4” to judge the
magnitude of the residual. It should be noted that the visual assessment of diag-
nostics in logistic regression is more challenging than in the normal regression
situation because the discreteness of binary data makes the interpretation of the
resulting displays more difficult.

Pregibon (1981) and Landwehr et al. (1984) give a detailed discussion of case
diagnostics for logistic regression. Many useful suggestions on model checking
are also given by Cook and Weisberg (1999) and Hosmer and Lemeshow (2000).

11.6 EXAMPLES
The previous sections gave a detailed theoretical discussion of logistic regression.
In this section, we give several examples that illustrate the technique.

11.6.1 EXAMPLE 1: DEATH PENALTY AND RACE OF THE VICTIM

George Woodworth and Dave Baldus of the University of Iowa collected extensive
data on death penalty sentencing in Georgia—information they presented for
defendant McClesky in the 1988 law case, McClesky v. Zant. Here, we look at a
subset of their data. Table 11.3 provides information on 362 death penalty cases.
For each case, we consider the outcome (death penalty: yes/no), the race of the
victim (White/Black), and the aggravation level of the crime. The cases with
the lowest aggravation level (level 1) involve bar room brawls, liquor-induced
arguments, and lovers’ quarrels. Level 6 comprises the most vicious, cruel, cold-
blooded, unprovoked crimes. There are a total of 362 cases (n = 362) and a total
of 12 different covariate patterns (m = 12).

Table 11.3 also lists the race of victim odds ratios for receiving the death
penalty at each aggravation level as well as the odds ratio for the summary in-
formation when collapsing the tables of frequencies over all aggravation levels.
The odds of receiving the death penalty when a White victim is involved are 8.24
times higher than when the victim is Black.
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TABLE 11.3 DEATH PENALTY DATAa

Aggravation Race of Death Penalty Death Penalty
Level Victim Yes No Odds Ratio

1 White 2 60 (2/60)/(1/181) = 6.03
Black 1 181

2 White 2 15 2.80
Black 1 21

3 White 6 7 3.86
Black 2 9

4 White 9 3 6.00
Black 2 4

5 White 9 0 Cannot be calculated
Black 4 3

6 White 17 0 Cannot be calculated
Black 4 0

Summary White 45 85 (45/85)/(14/218) = 8.24
All levels Black 14 218

a The data are given in the file deathpenalty.

For the logistic regression, we code the response y as 1 if the sentence is
death and 0 otherwise, and we code the covariate “race of victim” x1 as 1 if the
victim is White and 0 if the victim is Black. The aggravation index x2 is treated
as a continuous measurement variable.

We fit the logistic regression model with probability

P(y = 1) = π(x1, x2) = exp(β0 + β1x1 + β2x2)

1 + exp(β0 + β1x1 + β2x2)
(11.38a)

and logit

ln
P(y = 1)

1 − P(y = 1)
= β0 + β1x1 + β2x2 (11.38b)

Most computer packages include routines for logistic regression, and using
these procedures is as easy as running a standard regression model. The partial
output from the Minitab logistic regression function in Table 11.4 shows the
maximum likelihood estimates and their standard errors. The hypothesis that
neither covariate is important, H0: β1 = β2 = 0, is soundly rejected. The likelihood
ratio test statistic = 208.4 [calculated from Eq. (11.25), and denoted by G in
Minitab] is highly significant when compared to percentiles of the chi-square
distribution with 2 degrees of freedom. The probability of receiving the death
sentence is affected by one or both of the covariates.

The maximum likelihood estimate of the effect of race of victim is β̂1 = 1.81,
leading to the odds ratio exp(β̂1) = exp(1.81) = 6.11. The estimate is statistically
different from zero; the probability value of the standardized test statistic is 0.001
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TABLE 11.4 REGRESSION OUTPUT OF MODEL (11.38). DEATH PENALTY DATAa

Logistic Regression Table
Odds 95% CI

Predictor Coef SE Coef Z P Ratio Lower Upper
Constant −6.6760 0.7574 −8.81 0.000
RaceVictim 1.8106 0.5361 3.38 0.001 6.11 2.14 17.49
Aggravation 1.5397 0.1867 8.25 0.000 4.66 3.23 6.72

Log-Likelihood = −56.738
Test that all slopes are zero: G = 208.402, DF = 2, P-Value = 0.000

Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 3.094 9 0.960
Deviance 3.882 9 0.919

a Note that Z = Coef/SE Coef is the usual t ratio of the estimated coefficient.
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and much smaller than any reasonable significance level. A 95% confidence in-
terval for β1 is given by 1.81 ± (1.96)(0.5361), and the 95% confidence interval
for the odds-ratio extends from exp(0.759) = 2.14 to exp(2.861) = 17.49. Condi-
tioning on the severity of the crime, the odds of receiving death when the victim
is White are 6.11 times the odds of getting death when the victim is Black. There
is no doubt that the victim’s race makes a major difference.

The aggravation of the crime also has a significant impact. The partial t statis-
tic is 8.25, and its probability value is very small. The severity of the crime
increases the odds of receiving death. Each extra unit on the aggravation scale
multiplies the odds of receiving the death penalty by a factor of 4.66. This effect
can be seen very clearly from Figure 11.3, in which the estimated probabilities of
receiving death as a function of aggravation are graphed separately for a White
and Black victim.
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TABLE 11.5 OBSERVED AND EXPECTED FREQUENCIES AND PEARSON
AND DEVIANCE RESIDUALS: DEATH PENALTY DATA

Pearson
Aggravation Race: 0, Black; Number Probability Observed Expected Observed Expected Pearson Residual Deviance

1–6 1, White of cases (Death) (Death) (Death) (Life) (Life) Residual (Standardized) Residual

1 1 62 0.035 2 2.15 60 59.85 −0.105 −0.139 −0.106
1 0 182 0.006 1 1.06 181 180.94 −0.062 −0.080 −0.063
2 1 17 0.144 2 2.44 15 14.56 −0.305 −0.351 −0.313
2 0 22 0.027 1 0.59 21 21.41 0.546 0.588 0.497
3 1 13 0.439 6 5.70 7 7.30 0.166 0.202 0.165
3 0 11 0.113 2 1.25 9 9.75 0.716 0.800 0.666
4 1 12 0.785 9 9.42 3 2.58 −0.293 −0.353 −0.287
4 0 6 0.373 2 2.24 4 3.76 −0.203 −0.237 −0.205
5 1 9 0.944 9 8.50 0 0.50 0.728 0.781 1.014
5 0 7 0.735 4 5.15 3 1.85 −0.984 −1.229 −0.936
6 1 17 0.988 17 16.79 0 0.21 0.463 0.488 0.653
6 0 4 0.928 4 3.71 0 0.29 0.556 0.589 0.771

Table 11.5 lists the observed and expected frequencies for death and life at
each of the 12 covariate constellations as well as the Pearson and the deviance
residuals. You may want to check the calculations that are involved for at least
one of the covariate constellations. For example, consider the case of a White
victim (x1 = 1) and aggravation level 3(x2 = 3). The probability of receiving the
death penalty is

π̂ = exp(−6.676 + 1.81 + (3)(1.54))

1 + exp(−6.676 + 1.81 + (3)(1.54))
= 0.439

Six of 13 defendants received the death penalty. Hence, the Pearson residual
is given by

r(y, π̂) = 6 − (13)(0.439)√
(13)(0.439)(0.561)

= 0.166

The deviance residual is given by

d(y, π̂) = +
{

2

[
(6) ln

6

(13)(0.439)
+ (7) ln

7

(13)(1 − 0.439)

]}1/2

= 0.165

The two residuals are very similar. This is also true for the residuals at the other
constellations.

The Pearson chi-square from Eq. (11.31) is 3.094, with m − p − 1 = 12 −
3 = 9 degrees of freedom; see Table 11.4. It is much smaller than the 95th per-
centile of the chi-square distribution with 9 degrees of freedom, and it indicates
that we have found an adequate model. The deviance, calculated from Eq. (11.26),
is 3.822; it, too, leaves little doubt that the model is adequate. There is no need to
calculate the Hosmer–Lemeshow statistic because the number of different covari-
ate constellations (m =12) is much smaller than the number of cases (n = 362).
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There is good evidence that we have found an adequate model. Nevertheless,
we extend the model in various directions, always checking whether such exten-
sions are really necessary. The aggravation index entered the logits in a linear
fashion. One should check whether this is appropriate or whether a quadratic
component is needed. We revise the model to include a quadratic component but
find that the estimate of β3 in

ln
P(y = 1)

1 − P(y = 1)
= β0 + β1x1 + β2x2 + β3(x2)

2

is insignificant.
Our model in Eq. (11.38) implies that the aggravation index has an impact

on the probability of receiving the death sentence. However, this is different
from having the odds ratio depend on the aggravation. Odds ratios depend on the
aggravation if there is a significant interaction effect of race and aggravation. We
check this by adding the product x1x2 to the model,

ln
P(y = 1)

1 − P(y = 1)
= β0 + β1x1 + β2x2 + β3(x1x2)

but find that the coefficient β3 is insignificant, given that both x1 and x2 are already
in the model.

A plot of the squared standardized Pearson residuals against the estimated
probabilities for model (11.38) is shown in Figure 11.4a. All points are consider-
ably smaller than 4, our usual cutoff value. Figure 11.4b plots the influence mea-
sures in Eq. (11.37). It shows that the constellation of aggravation level 5 and
Black victim, where four of seven defendants receive death, has the largest influ-
ence on the regression estimates. Omitting this constellation from the regression
reduces the odds ratio for race from 6.11 to 4.82, and the odds ratio for aggra-
vation changes from 5.21 to 4.66. However, these estimates fall well within the
confidence intervals that are obtained with the complete data set, and they remain
highly significant.

11.6.2 EXAMPLE 2: HAND WASHING IN BATHROOMS AT THE UNIVERSITY OF IOWA

During the fall semester of 2001, a group of undergraduate students in the intro-
ductory statistics course collected data on hand washing after using the restroom.
Students took observations at several locations around campus. They developed
ingenious ways of “hiding” in bathrooms so that students being observed were not
aware of their presence. They collected data on whether users of the bathroom
washed their hands (0, no; 1, yes), gender (0, male; 1, female), whether users
carried a backpack (0, no; 1, yes), and whether others were present (0, no; 1, yes).
The data are listed in Table 11.6.

At the preliminary model specification stage, we looked at pairwise cross-
classification tables of washing vs. gender, washing vs. backpack, and washing vs.
others present (Table 11.7). Gender seems to matter most, with women washing
hands more frequently.
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We start out with a model that includes all three covariates. We find that
“Others Present” is not statistically significant, which leads us to the logit

ln
P(y = 1)

1 − P(y = 1)
= β0 + β1Gender + β2Backpack (11.39)

The estimation and goodness-of-fit results for this model in Table 11.8 are sat-
isfactory. The standardized goodness-of-fit statistics (Pearson and deviance) do
not exceed the 95th percentile. All terms in the model are significant. Women
are more likely to wash hands; the odds for females are 4.27 times the odds for
males. The presence of a backpack reduces the odds that people wash hands.
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TABLE 11.6 UNIVERSITY OF IOWA WASHROOM DATAa

Gender Backpack Others Present Washing: No Washing: Yes

Male No Alone 27 26
Male No Others 5 5
Male Yes Alone 13 8
Male Yes Others 3 2
Female No Alone 4 28
Female No Others 0 5
Female Yes Alone 7 7
Female Yes Others 4 6

a The data are given in the file washroom.

TABLE 11.7 PRELIMINARY MODEL SPECIFICATION: UNIVERSITY OF IOWA
WASHROOM DATA. CHI-SQUARE TEST OF INDEPENDENCE (HOMOGENEITY)
IN A 2 × 2 CONTINGENCY TABLE.

Rows: Washing Columns: Gender

MALE FEMALE All
0 (NO) 48 15 63
1 (YES) 41 46 87
All 89 61 150

Chi-Square = 12.792, DF = 1, P-Value = 0.000

Rows: Washing Columns: Backpack

NO YES All
0 (NO) 36 27 63
1 (YES) 64 23 87
All 100 50 150

Chi-Square = 4.433, DF = 1, P-Value = 0.035

Rows: Washing Columns: People Present

NO YES All
0 (NO) 51 12 63
1 (YES) 69 18 87
All 120 30 150
Chi-Square = 0.062, DF = 1, P-Value = 0.804

11.6.3 EXAMPLE 3: SURVIVAL OF THE DONNER PARTY

Ramsey and Schafer (2002) analyze the survival of members of the Donner
party. The Donner party left Springfield, Illinois, in 1846. They tried to reach
the Sacramento Valley but were stranded in the eastern Sierra Nevada Mountains
when they tried to use an untested route. By the time they were rescued in April
1847, many of their members had died. Data on this group have been used by
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TABLE 11.8 ESTIMATION RESULTS: UNIVERSITY OF IOWA WASHROOM DATA

Model with Gender, Backpack, Others
Response Information
Variable Value Count
Wash 1 87 (Event)

0 63
Total 150

Logistic Regression Table
Odds 95% CI

Predictor Coef SE Coef Z P Ratio Lower Upper
Constant 0.0998 0.2465 0.40 0.685
Sex 1.4433 0.3880 3.72 0.000 4.23 1.98 9.06
Backpack −1.0149 0.3914 −2.59 0.010 0.36 0.17 0.78
People 0.1398 0.4500 0.31 0.756 1.15 0.48 2.78

Log-Likelihood = −91.915
Test that all slopes are zero:G = 20.258, DF = 3, P-Value = 0.000

Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 4.160 4 0.385
Deviance 4.890 4 0.299

Model with Gender, Backpack

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant 0.1184 0.2391 0.50 0.620
Sex 1.4533 0.3871 3.75 0.000 4.28 2.00 9.13
Backpack −0.9958 0.3860 −2.58 0.010 0.37 0.17 0.79

Log-Likelihood = −91.963
Test that all slopes are zero:G = 20.161, DF = 2, P-Value = 0.000

Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 3.461 1 0.063
Deviance 3.507 1 0.061

anthropologists to test the hypothesis that females are better able to withstand
harsh conditions than males. The covariates include categorical information (gen-
der) as well as a continuous variable (age) (Table 11.9).

The 2 × 2 cross-classification table with respect to gender and survival shows
that 10 of 15 females survived compared to only 10 of 30 males. The odds ratio
is (10/5)/(10/20) = 4, implying that the female odds of survival are four times
better than the male odds. However, this analysis does not adjust for the age of
the person. The dot plots in Figure 11.5 show that the age of survivors is slightly
younger than the age of those who perished.
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TABLE 11.9 GENDER, AGE, FAMILY STATUS, AND SURVIVAL
OF THE DONNER PARTY MEMBERS, 15 YEARS AND OLDERa

Name MultiFamily Gender Age (years) Survival

Antonio 0 0 23 0
Breen, Mary 1 1 40 1
Breen, Patrick 1 0 40 1
Burger, Charles 0 0 30 0
Denton, John 0 0 28 0
Dolan, Patrick 0 0 40 0
Donner, Elizabeth 1 1 45 0
Donner, George 1 0 62 0
Donner, Jacob 1 0 65 0
Donner, Tamsen 1 1 45 0
Eddy, Eleanor 1 1 25 0
Eddy, William 1 0 28 1
Elliot, Milton 0 0 28 0
Fosdick, Jay 1 0 23 0
Fosdick, Sarah 1 1 22 1
Foster, Sarah 1 1 23 1
Foster, William 1 0 28 1
Graves, Eleanor 1 1 15 1
Graves, Elizabeth 1 1 47 0
Graves, Franklin 1 0 57 0
Graves, Mary 1 1 20 1
Graves, William 1 0 18 1
Halloran, Luke 0 0 25 0
Hardkoop, Mr. 0 0 60 0
Herron, William 0 0 25 1
Noah, James 0 0 20 1
Keseberg, Lewis 1 0 32 1
Keseberg, Phillipine 1 1 32 1
McCutcheon, Amanda 1 1 24 1
McCutcheon, William 1 0 30 1
Murphy, John 1 0 15 0
Murphy, Lavin 1 1 50 0
Pike, Harriet 1 1 21 1
Pike, William 1 0 25 0
Reed, James 1 0 46 1
Reed, Margaret 1 1 32 1
Reinhardt, Joseph 0 0 30 0
Shoemaker, Samuel 0 0 25 0
Smith, James 0 0 25 0
Snyder, John 0 0 25 0
Spitzer, Augustus 0 0 30 0
Stanton, Charles 0 0 35 0
Trubode, J.B. 0 0 23 1
Williams, Baylis 1 0 24 0
Williams, Eliza 1 1 25 1

a The data are given in the file donner. Multifamily: 0, single; 1, other members present.
Gender: 0, male; 1, female. Survival: 0, no; 1, yes.
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The results of the logistic regression with gender and age are given in
Table 11.10. The partial tests for both variables, age and gender, are statistically
significant. Older age reduces one’s chance of survival. For example, a 10-year
increase in age changes the odds of survival by a factor of exp[(−0.0782)(10)] =
0.46; it reduces the odds of survival by 54%. Gender is important; the female odds
of survival are 4.94 times higher than the male odds of survival. Graphs of the
estimated survival probabilities are shown in Figure 11.6. Table 11.10 also shows
the results of the logistic regression model with an added interaction between gen-
der and age. However, the interaction is insignificant and can be dropped from
the model (t ratio, −1.71; p = 0.086).

In this data set, we have n = 45 subjects and a total of m = 28 different covari-
ate constellations. The number of subjects in most constellation groups is 1. Hence,
the assumption of a chi-square distribution for the deviance and the Pearson statis-
tic is suspect, and not much weight should be given to these statistics. It is prefer-
able toconsider theHosmer–Lemeshowstatistic, which aggregates the frequencies
into fewer groups. Here, we use the commonly suggested aggregation into decile
groups. The Hosmer–Lemeshow statistic, 10.95 with 8 degrees of freedom from
its chi-square approximation, does not indicate serious overall lack of fit.

Residual diagnostics are shown in Figure 11.7. The graph of the squared
standardized Pearson residuals against the estimated probabilities in Figure 11.7a
shows one worrisome residual that is somewhat larger than expected. The residual
comes from a 46-year-old male who survived. Survival in this case is unusual be-
cause the model indicates a low probability for survival. The graph in Figure 11.7b
shows that two other constellations have a major impact on the estimates.
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TABLE 11.10 ESTIMATION RESULTS: SURVIVAL OF THE DONNER PARTY

Model with Gender and Age

Response Information

Variable Value Count
survival 1 20 (Event)

0 25
Total 45

Logistic Regression Table
Odds 95% CI

Predictor Coef SE Coef Z P Ratio Lower Upper
Constant 1.633 1.110 1.47 0.141
Gender 1.5973 0.7555 2.11 0.034 4.94 1.12 21.72
age −0.07820 0.03729 −2.10 0.036 0.92 0.86 0.99

Log-Likelihood = −25.628
Test that all slopes are zero: G = 10.570, DF = 2, P-Value = 0.005

Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 24.353 25 0.499
Deviance 26.441 25 0.384
Hosmer-Lemeshow 10.952 8 0.204

Table of Observed and Expected Frequencies:
(See Hosmer-Lemeshow Test for the Pearson Chi-Square Statistic)

Group
Value 1 2 3 4 5 6 7 8 9 10 Total
1
Obs 0 3 1 2 1 1 3 3 4 2 20
Exp 0.2 1.0 1.3 1.8 2.9 2.7 2.2 2.9 3.3 1.7

0
Obs 4 2 3 3 6 5 1 1 0 0 25
Exp 3.8 4.0 2.7 3.2 4.1 3.3 1.8 1.1 0.7 0.3
Total 4 5 4 5 7 6 4 4 4 2 45

Model with Gender. Age, and Gender*Age

Logistic Regression Table
Odds 95% CI

Predictor Coef SE Coef Z P Ratio Lower Upper
Constant 0.318 1.131 0.28 0.778
Gender 6.928 3.399 2.04 0.042 1020.50 1.30 7.98E+05
age −0.03248 0.03527 −0.92 0.357 0.97 0.90 1.04
gender*age −0.16160 0.09426 −1.71 0.086 0.85 0.71 1.02

Log-Likelihood = −23.673
Test that all slopes are zero: G = 14.480, DF = 3, P-Value = 0.002

Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 20.781 24 0.652
Deviance 22.532 24 0.548
Hosmer-Lemeshow 5.169 7 0.639

Model With Family Only
Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant −1.4663 0.6405 −2.29 0.022
Family 1.8146 0.7432 2.44 0.015 6.14 1.43 26.35

Log-Likelihood = −27.389
Test that all slopes are zero: G = 7.048, DF = 1, P-Value = 0.008
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Finally, we put forward another possible interpretation of the data. We create
a new covariate that indicates whether a subject has other family members present
or whether the subject travels alone. One could argue that family support structure
enhances the chance of survival. The indicator gets value 1 if other members with
the same family name are present and 0 otherwise. We use the family name
as an indicator of the relationship. This may be a crude approximation because
there may be relationships among members with different family names. The
information in Table 11.9 indicates that none of 16 members without family ties
survived, whereas 15 of 29 members with family ties survived. Because of “zero”
survivors in the first group, we cannot calculate a “crude” odds ratio for survival.
However, we can fit a logistic regression model to the data. The results in Table
11.10 show that the odds of survival for subjects with other family members
present are 6.14 times higher than the odds for members traveling as individuals.
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11.7 OVERDISPERSION
When estimating logistic regression models on grouped data, sometimes the
model does not fit. The deviance and the Pearson chi-square statistic are too
large, relative to their degrees of freedom. This lack of fit can arise for one (or
all) of the following reasons:

� The choice of the logit may be inappropriate. In such a situation, one should
explore other functional forms, such as the probit or the complementary
log–log models discussed in the next section.

� The specification of covariate terms in the logit may be incorrect. In this
case, one should check whether added nonlinear terms (such as terms
involving the square of the covariates and interactions) help improve the fit.

� Outliers may be present, and this may explain why the observed frequencies
at some of the covariate constellations are not explained by the model.

� The lack of fit may arise because of extra binomial variation; one refers to
this as overdispersion. This issue is discussed in the current section.

Overdispersion is quite common if one has grouped data. With grouped data,
the response is the number of occurrences at the various covariate constella-
tions. It is often the case that the variability of the response exceeds the variance
niπi (1 − πi ) that is implied by the binomial distribution. A common root cause
for this is unobserved heterogeneity. Let us explain this in more detail by con-
sidering a single covariate constellation. Assume that n subjects are involved
at this particular constellation, and assume that their success probabilities (the
π ′s) are not identical but vary around mean µπ with variance σ 2

π . The number
of successes among the n subjects is subject to two sources of variability: the
variability in the outcomes of each of the n cases that is due to the Bernouilli
variability (occurrence or nonoccurrence) and the variability in the success prob-
abilities that change from case to case. Results from mathematical statistics allow
us to calculate the mean and the variance of a random variable (here, y) in terms
of the mean and variance of the conditional distribution of y given a second ran-
dom variable (here, π). The number of successes y among the n subjects has
mean

E(y) = Eπ [Ey|π(y |π)] = nEπ [π ] = nµπ

and variance

V (y) = Vπ [E(y |π)] + Eπ [V (y |π)] = Vπ(nπ) + Eπ [nπ(1 − π)]

= n2σ 2
π + nE[π ] − nE[π2] = n2σ 2

π + nµπ − n
[
σ 2

π + µ2
π

]
= nµπ(1 − µπ) + n(n − 1)σ 2

π

= φnµπ(1 − µπ) (11.40)
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where the scale parameter φ = 1 + (n − 1)σ 2
π

µπ(1 − µπ)
> 1 accounts for the

overdispersion.
Overdispersion can also be expected if the independence assumption among

the subjects within the i th covariate constellation group is violated. In a medical-
type study, a certain constellation may involve animals from the same litter, and
the responses of animals from the same litter may be correlated. Similarly, the
constellation may involve subjects from the same region, firms that belong to the
same family, and so on. Of course, one could incorporate this information into
the logit specification, but often this is not possible because one does not know
about these factors.

Overdispersion implies a true variance V (yi ) = φniπi (1 − πi ), where φ > 1,
and this affects the variance of the estimated regression coefficients. The covari-
ance matrix V (β̂) in Eq. (11.28) needs to be adjusted for the overdispersion. The
corrected variance of the estimates

V (β̂) = φ

(
m∑

i=1

niπi (1 − πi )xi x′
i

)−1

(11.41)

is a multiple φ > 1 of the variance that ignores the overdispersion. Consequently,
the standard errors that ignore overdispersion are too small, t ratios are too large,
probability values are too small, and estimates appear “too” significant. Ignor-
ing the overdispersion may lead the investigator to find “spurious” regression
relationships.

In grouped logistic regression in which the sample sizes in each group are
large, it is reasonable to estimate φ in the previous equation by the standardized
deviance, D/(m − p − 1). Alternatively, one can use the scaled Pearson chi-
square statistic, χ2/(m − p − 1), as an estimate of the scale parameter φ. Also,
the likelihood ratio tests need to be adjusted for the overdispersion; the expressions
in Eqs. (11.23) and (11.25) need to be divided by the standardized deviance.

11.8 OTHER MODELS FOR BINARY RESPONSES
In the analysis of binary responses, the probability of sucess π = π(x) needs to be
restricted between 0 and 1. The logistic regression model achieves this restriction

by transforming π into the logit ln

(
π

1 − π

)
, which is between −∞ and +∞,

and modeling the logit as a linear function of the covariates,

logit(π) = ln
π

1 − π
= x′β or π = exp(x′β)

1 + exp(x′β)
(11.42a)

Functions other than the logit can also be used to transform a probability into
a quantity on (−∞,+∞). An alternate function that transforms a probability π

into a quantity on (−∞,+∞) is the probit �−1(π), the inverse of the distribution
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function � of the standard normal distribution. A linear regression can be used
to model the effects of covariates on the probit,

probit(π) = �−1(π) = x′β or π = �(x′β) (11.42b)

The comparison of the two transformations for a single regressor x with
x′β = β0 + β1x in Figure 11.8 shows that the logit and probit transformations
are very similar, except in situations in which the probabilities are very close to
0 or 1. Furthermore, both models achieve success probability π = 1/2 when x
takes the value x0 = −β0/β1. The function π(x) exhibits “symmetry” around this
value in the sense that π(x0 + k) = 1 − π(x0 − k). One rarely obtains qualitative
differences in the conclusions from the logistic and the probit models.

Another possible transformation of π is provided by log[− log(1 − π)]. The
model with

log[−log(1 − π(x))] = x′β or π = 1 − exp(−exp(x′β)) (11.42c)

is referred to as the complementary log–log model. It lacks the symmetry of the
logit and probit models and is not used as often as the other two models.

11.9 MODELING RESPONSES WITH MORE
THAN TWO CATEGORICAL OUTCOMES

Logistic regression models the relationship between a binary (or dichotomous)
outcome and a set of covariates. The model can be extended to the polytomous
situation in which the response has more than two outcomes. A distinction needs
to be made depending on whether the polytomous response is on an ordinal
(ordered) or a nominal (not ordered) scale.

An extension of logistic regression for a nominal response when there is no
particular ordering among the possible outcomes is discussed first. Assume that
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we have k + 1 possible outcomes, which we list as 0, 1, 2, . . . , k. As before, we
assume that we have several covariates and that their values for the i th case are
collected in the vector xi .

The probabilities that the response on the i th case takes on one (and only
one) of the k + 1 possible outcomes are modeled by

P(yi = 0) = 1

1 + ∑k
j=1 exp

[
x′

iβ
( j)]

P(yi = 1) = exp
[
x′

iβ
(1)

]
1 + ∑k

j=1 exp
[
x′

iβ
( j)]

(11.43)
. . . . .

P(yi = k) = exp
[
x′

iβ
(k)

]
1 + ∑k

j=1 exp
[
x′

iβ
( j)]

The probabilities are nonnegative, and they sum to 1. The model in Eq. (11.43)
includes k parameter vectors, β(1),β(2), . . . ,β(k), and with p covariates each of
these k vectors includes p + 1 parameters.

Pairing each response category with the baseline group 0 (a choice that is
arbitrary) leads to logits

ln
P(yi = 1)

P(yi = 0)
= x′

iβ
(1), ln

P(yi = 2)

P(yi = 0)
= x′

iβ
(2), . . . , ln

P(yi = k)

P(yi = 0)
= x′

iβ
(k)

(11.44)

that are linear functions of the parameters. Similarly, the logits of group r with
respect to group r∗ other than 0 are given by

ln
P(yi = r)

P(yi = r∗)
= x′

i
(
β(r) − β(r∗)) (11.45)

The distribution of yi is multinomial with the probability vector given in Eq.(11.43).
Maximum likelihood estimates of the parameters and their approximate standard
errors can be obtained by extending the analysis in Sections 11.3 and 11.4. The
extensions involved are fairly straightforward mathematically.

The interpretation is not always easy because the model involves many pa-
rameters. Changing the explanatory variable xs by one unit (from a value x to a
value x + 1) and keeping all other covariates fixed, changes the odds of outcome
group r relative the base group 0 by the factor exp(β

(r)
s ). If we are interested in

the effect of such a change on the odds of outcome group r relative to a group
r∗ other than 0, then the odds are changed by the factor exp(β

(r)
s − β

(r∗)
s ). If a

single continuous covariate x is involved, the interpretation simplifies because
the probabilities in Eq. (11.43) can be graphed as functions of x .

For a binary 0/1 covariate xs (indicating the absence/presence of a condition),
an alternative but equivalent approach calculates the odds ratios from the 2 × 2
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table of frequencies for groups r and 0 on the response, and conditions 0 and 1
on the covariate xs . However, an advantage of modeling the probabilities with
Eq. (11.43) and calculating the odds ratios from exp(β

(r)
s ) is the fact that all other

explanatory variables are included in this analysis, and the resulting odds ratios
are adjusted for the other covariates.

Next, we discuss the case in which the response variable is ordinal. For
example, a bond may be rated as junk bond, B grade, or A grade; of course, finer
groups, such as triple A, double A, etc., can be considered. Or, mental impairment
may be rated as fully impaired, with moderate symptoms of impairment, with mild
symptoms, and fully functional. Let us order these outcomes into k + 1 groups
from the smallest (least inclusive) group, coded 0, to the largest (most inclusive)
outcome group, coded k. In the bond example, junk bond rating is coded as 0,
B-rated bonds as 1, and A-rated bonds as 2. In the mental health example, fully
impaired is coded as 0, moderate symptoms as 1, mild symptoms as 2, and fully
functional as 3.

For ordinal data such as these, a parsimonious model representation considers
the logits of the cumulative probabilities. That is, for subject i with covariate
vector xi we model

ln
P(yi ≤ r)

1 − P(yi ≤ r)
= αr + x′

iβ, for r = 0, 1, 2, . . . , k − 1 (11.46)

We can express the cumulative probabilities as

P(yi ≤ r) = exp(αr + x′
iβ)

1 + exp(αr + x′
iβ)

, for r = 0, 1, 2, . . . , k − 1 (11.47)

The intercepts are increasing (α0 ≤ α1 ≤ . . . ≤ αk−1) as the cumulative probabili-
ties in Eq. (11.47) increase in r for fixed xi . Observe that the model specification
assumes constant covariate coefficients β for all r . Also note that for the last
group k, P(yi ≤ k) = 1.

It is instructive to examine the cumulative probability for the case of a single
continuous covariate x . For r > s, we can write

P(yi ≤ r |x) = exp(αr + xβ)

1 + exp(αr + xβ)
=

exp
(
αs + [

x + αr −αs
β

]
β
)

1 + exp
(
αs + [

x + αr −αs
β

]
β
)

= P

(
yi ≤ s |x + αr − αs

β

)
(11.48)

For r > s , the curve P(yi ≤ r) is the curve for P(yi ≤ s), but translated by
(αr − αs)/β in the x direction. This shows that the response curves (for r = 0,
1, 2, . . . , k − 1) share the same rate of increase or decrease but are horizontally
displaced from each other.

The ratio of the odds of cumulative probabilities, P(yi ≤ r)/[1 − P(yi ≤ r)],
is called the cumulative odds ratio. The model in Eq. (11.46) implies that the
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logarithm of the cumulative odds ratio is given by

ln
P(yi ≤ r |x)/[1 − P(yi ≤ r |x)]

P(yi ≤ r |x∗)/[1 − P(yi ≤ r |x∗)]
= (x − x∗)′β (11.49)

The log odds ratio is proportional to the distance between x and x∗. The odds of
observing a response y ≤ r at x are exp((x − x∗)′β) times the odds at x∗. The
same proportionality constant applies to all groups r ; hence, one refers to this
model as the proportional odds model.

If one wants to learn how changes in a (single) continuous covariate x affect
the probabilities of each group, P(y = r |x), one needs to calculate these prob-
abilities recursively from Eqs. (11.47). Starting with P(y = 0 |x) = P(y ≤ 0 |x),
one calculates P(y = 1 |x) from P(y ≤ 1 |x) and P(y = 0 |x); P(y = 2 |x) from
P(y ≤ 2 |x) andP(y ≤ 1 |x); and so on. Graphs of these probabilities as a function
of x indicate how the covariate affects P(y = r |x).

EXERCISES
11.1. This exercise deals with the production of a

certain viscose fiber, a wood-based product
(made from beech trees) that is an important
component of modern textiles. The
production process is described in Ledolter
(2002). The second phase of the production
process involves liquid viscose being pressed
through very fine nozzles into a certain spin
bath solution.

Here, we consider weekly production data
(51 consecutive weeks in 1998) on two
spinning machines (called “streets” 5 and 6)
that are being fed by the same batch of liquid
viscose. Our interest is to study the presence
of a quality problem that is related to the
presence of “long fibers.” The presence of
long fibers is thought to be a major
contributor to downstream production
problems when fibers are spun into textile
fabric. For each of the 51 consecutive weeks,
we record the total number of samples taken
and the number of positive samples that
contain fibers. Since the two spinning
machines are not identical, data are taken on
both machines (streets).

It is thought that the amount of stretch that
is applied by the spinning machine is an
important factor, with a lower stretch
reduction increasing the odds for quality
problems. The two spinning machines are

also somewhat different (different age) and
they use slightly different production
processes. The production processes have to
do with the number of direction changes
when fibers are being pulled through the spin
bath. Street 5 uses only the standard process
(process 1), whereas street 6 uses both
process 1 and process 2. Process 2 is thought
to be slightly “tougher” on the fiber,
increasing the odds of quality problems. It is
also thought that the throughput may have
an impact on the presence of quality
problems; hence, data on total production
(sum of both streets) are given.

Analyze the data.

a. Calculate weekly proportions of long
fibers for each street. For each street
separately, construct time series graphs of
these proportions and graph the
proportions against stretch reduction, total
throughput, and the type of process being
used (street 6 only).

b. For each street separately, conduct a
logistic regression with stretch reduction,
throughput, and production process (street
6 only) as explanatory variables. Interpret
the output and draw conclusions. What
can you say about the effects of stretch
reduction, throughput, and type of
process?
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Samples Positive Process Stretch Samples Positive Process Stretch Production
Week Street6 Street6 Street6 ReductionStreet6 Street5 Street5 Street5 ReductionStreet5 Combined

1 57 1 1 58.3810 51 0 1 58.0000 396.767
2 55 0 1 58.0000 51 0 1 58.0000 394.729
3 52 0 1 58.0000 56 2 1 57.8025 398.143
4 57 1 1 58.0000 55 1 1 57.7664 388.000
5 55 2 1 58.0000 51 1 1 57.9057 392.329
6 65 3 1 57.8865 59 2 1 57.6273 398.171
7 57 1 1 57.1304 54 1 1 57.1286 395.643
8 55 1 1 57.0000 59 2 1 57.3630 394.871
9 60 1 1 57.0000 50 0 1 57.2203 386.371

10 54 3 1 57.8879 56 0 1 57.0819 395.386
11 55 1 1 57.7857 60 2 1 57.7091 392.786
12 62 1 1 57.5720 56 3 1 57.2397 383.086
13 50 1 1 57.0000 50 2 1 57.1805 366.900
14 55 0 1 57.0000 55 0 1 57.0749 384.157
15 62 1 1 56.9416 55 1 1 57.3986 392.371
16 61 2 1 56.6290 49 0 1 57.0000 389.657
17 56 2 1 57.7587 55 0 1 57.5532 386.371
18 56 1 1 56.9901 62 2 1 58.0000 393.029
19 58 1 1 56.5204 63 2 1 57.0440 396.686
20 58 3 1 57.2875 48 0 1 57.0000 391.200
21 57 1 1 57.5397 59 1 1 57.1817 387.217
22 58 2 1 57.9437 66 3 1 57.9328 391.343
23 55 0 1 57.6205 56 1 1 57.2621 389.486
24 42 1 1 57.0313 34 1 1 57.2671 377.860
25 49 1 1 57.0962 46 0 1 55.2997 411.767
26 58 1 1 57.2647 54 1 1 57.0894 408.757
27 60 1 1 57.8860 58 0 1 55.6831 404.029
28 75 6 1 56.0348 83 5 1 56.0000 397.643
29 61 3 1 55.9564 63 3 1 56.1179 406.686
30 63 3 1 57.0203 69 4 1 57.2488 385.700
31 57 1 1 57.0186 57 3 1 54.6700 392.886
32 63 3 1 54.6460 73 2 1 57.0900 369.971
33 69 5 1 55.4447 61 2 1 56.0000 370.357
34 121 6 1 54.1579 87 5 1 55.3558 383.357
35 72 4 1 53.4398 55 1 1 55.1995 381.843
36 70 4 1 54.1363 69 5 1 54.9039 378.571
37 70 2 1 53.9795 76 5 1 53.2166 380.214
38 71 5 1 53.8262 79 4 1 54.6508 368.729
39 57 2 1 53.2414 57 3 1 53.1061 361.571
40 67 5 1 53.4392 64 3 1 52.4849 388.900
41 58 1 1 53.0000 67 3 1 52.1213 404.171
42 62 2 1 53.4306 56 2 1 52.7922 402.700
43 87 5 2 52.0000 77 6 1 52.6179 410.714
44 113 7 2 52.0538 90 6 1 52.2571 409.043
45 61 6 2 51.3803 82 6 1 52.8258 382.333
46 122 7 2 51.6279 73 6 1 52.0000 385.214
47 100 7 2 51.0000 86 5 1 52.0000 382.971
48 118 7 2 51.1126 71 4 1 51.0594 398.014
49 67 6 2 51.0099 55 1 1 51.0000 389.514
50 85 5 2 51.0000 69 3 1 51.7356 405.543
51 56 4 2 51.0000 46 4 1 52.0000 387.560
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c. Check your models by considering the
appropriate diagnostics. In particular,
obtain the Pearson and deviance residuals.
Check for the presence of serial
correlation among the residuals.

The data are given in the file lenzing.

11.2. The data used in this exercise derive from a
study by the Cranfield Network on European
Human Resource Management (Cranet-E), a
research network dedicated to analyzing
developments in the area of human resource
management in public and private
organizations with more than 200 employees
(Brewster & Hegewisch, 1994).

Organizations are surveyed on various
aspects of human resource management
through extensive questionnaires. Here, we
analyze the 1999 UK data on private sector
for-profit organizations. We study the
relationship between the profitability of the
firm and firm-specific factors such as the size
of the firm, the sector of the firm (primary,
secondary, and tertiary), and two
management practices, the number of
incentives and the presence of a formal
evaluation procedure, that are thought to have
an influence on the success of the firm.
Profitability, the response variable, is
defined as an indicator that is 1 if gross
revenues are “well in excess of costs.” Size is
a categorical variable with three groups: 1 for
firms with 200–500 employees, 2 for firms
with 501–1,000 employees, and 3 for firms
with more than 1,000 employees. Two
different sectors are distinguished: the
primary/secondary sector and the tertiary
sector. Firms are asked whether incentives
(tied to share options, profit sharing, group
bonus, and merit pay) apply to the following
four groups of employees: management,
professional, clerical, and manual. An
incentives index ranging from 0 to 16 is
calculated, where 0 indicates no incentives
and 16 expresses the fact that all four types of
incentives are offered to all four groups.
Firms are also asked whether their
performance is regularly evaluated through a

formal process. Evaluation is an indicator
that is set 1 if such special evaluation takes
place and 0 otherwise.

Data on 429 firms are listed in the file
cranfield. Information on the first 10 firms is
given here.

Sector
Sector Size Incentives Evaluation Profitable Recoded

2 1 7 0 0 2
2 2 4 0 0 2
3 3 2 0 0 3
2 3 13 0 1 2
2 2 8 1 0 2
2 1 0 0 1 2
3 2 5 0 1 3
2 3 8 0 1 2
2 3 0 0 0 2
3 1 10 0 1 3
. . .

a. Construct a plot of the success proportions
against the incentive index. Furthermore,
plot the success proportions against the
size of the firm, the sector, and the
evaluation indicator.

b. Consider a logistic regression model with
the following regressors: size (two
parameters for the three groups), sector
(one parameter), evaluation, and a linear
component for incentive index. Can you
simplify the model by omitting certain
regressor variables? If so, estimate the
simplified model. Check the fitted model
by considering appropriate model
diagnostics. Interpret the results.

11.3. The following data are taken from Higgins,
J. E., and Koch, G. G. Variable selection and
generalized chi-square analysis of categorical
data applied to a large cross-sectional
occupational health survey. International
Statistical Review, 45, 51–62, 1977. The data
are given in the file byssinosis.

The data derive from an extensive survey
of workers in the cotton industry. The variable
of interest is the presence of lung byssinosis.
Byssinosis, also called brown lung disease, is
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a chronic, asthma-like narrowing of the
airways resulting from inhaling particles of
cotton, flax, hemp, or jute. It has been
recognized as an occupational hazard for
textile workers. More than 35,000 textile
workers, mostly from textile-producing
regions of North and South Carolina, have
been disabled by byssinosis and 183 have
died between 1979 and 1992.

Numbers of workers suffering from
(yes) and not suffering from (no) byssinosis
for different categories of workers are given
here. The covariates are race (1, White; 2,
other), gender (1, male; 2, female), smoking
history (1, smoker; 2, nonsmoker), length of
employment in the cotton industry (1, less
than 10 years; 2, between 10 and 20 years; 3,
more than 20 years), and the dustiness of
the workplace (1, high; 2, medium; 3,
low).

Analyze the data. In particular,

Employment
Yes No Number Dust Race Sex Smoking Length

3 37 40 1 1 1 1 1
0 74 74 2 1 1 1 1
2 258 260 3 1 1 1 1

25 139 164 1 2 1 1 1
0 88 88 2 2 1 1 1
3 242 245 3 2 1 1 1
0 5 5 1 1 2 1 1
1 93 94 2 1 2 1 1
3 180 183 3 1 2 1 1
2 22 24 1 2 2 1 1
2 145 147 2 2 2 1 1
3 260 263 3 2 2 1 1
0 16 16 1 1 1 2 1
0 35 35 2 1 1 2 1
0 134 134 3 1 1 2 1
6 75 81 1 2 1 2 1
1 47 48 2 2 1 2 1
1 122 123 3 2 1 2 1
0 4 4 1 1 2 2 1
1 54 55 2 1 2 2 1
2 169 171 3 1 2 2 1
1 24 25 1 2 2 2 1
3 142 145 2 2 2 2 1
4 301 305 3 2 2 2 1

Employment
Yes No Number Dust Race Sex Smoking Length

8 21 29 1 1 1 1 2
1 50 51 2 1 1 1 2
1 187 188 3 1 1 1 2
8 30 38 1 2 1 1 2
0 5 5 2 2 1 1 2
0 33 33 3 2 1 1 2
0 0 0 1 1 2 1 2
1 33 34 2 1 2 1 2
2 94 96 3 1 2 1 2
0 0 0 1 2 2 1 2
0 4 4 2 2 2 1 2
0 3 3 3 2 2 1 2
2 8 10 1 1 1 2 2
1 16 17 2 1 1 2 2
0 58 58 3 1 1 2 2
1 9 10 1 2 1 2 2
0 0 0 2 2 1 2 2
0 7 7 3 2 1 2 2
0 0 0 1 1 2 2 2
0 30 30 2 1 2 2 2
1 90 91 3 1 2 2 2
0 0 0 1 2 2 2 2
0 4 4 2 2 2 2 2
0 4 4 3 2 2 2 2

31 77 108 1 1 1 1 3
1 141 142 2 1 1 1 3

12 495 507 3 1 1 1 3
10 31 41 1 2 1 1 3

0 1 1 2 2 1 1 3
0 45 45 3 2 1 1 3
0 1 1 1 1 2 1 3
3 91 94 2 1 2 1 3
3 176 179 3 1 2 1 3
0 1 1 1 2 2 1 3
0 0 0 2 2 2 1 3
0 2 2 3 2 2 1 3
5 47 52 1 1 1 2 3
0 39 39 2 1 1 2 3
3 182 185 3 1 1 2 3
3 15 18 1 2 1 2 3
0 1 1 2 2 1 2 3
0 23 23 3 2 1 2 3
0 2 2 1 1 2 2 3
3 187 190 2 1 2 2 3
2 340 342 3 1 2 2 3
0 0 0 1 2 2 2 3
0 2 2 2 2 2 2 3
0 3 3 3 2 2 2 3
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a. Discuss whether (and which of) the
covariates have an influence on the
presence of byssinosis.

b. Explore the presence of interactions.

c. Check the adequacy of the logistic
regression model. Interpret the deviance
and the Pearson statistic. Investigate
whether your model(s) is adequate in
explaining the presence of byssinosis.

11.4. The following data are taken from Brown, P.
J., Stone, J., and Ord-Smith, C. Toxaemic
signs during pregnancy. Applied Statistics,
32, 69–72, 1983. The data are given in the file
toxemia.

Data collected in Bradford, United
Kingdom, between 1968 and 1977 relate to
13,384 women giving birth to their first child.
The data set includes information on
toxaemic signs exhibited by the mother
during pregnancy: hypertension only,
proteinurea (i. e., the presence of protein in
urine) only, both hypertension and
proteinurea, and neither hypertension nor
proteinurea. The aim of the study was to
determine if the level of smoking is related to

Both Hypertension Proteinurea Hypertension Neither Problem
Class Smoking and Proteinurea Only Only Exhibited Total

1 1 28 82 21 286 417
1 2 5 24 5 71 105
1 3 1 3 0 13 17
2 1 50 266 34 785 1,135
2 2 13 92 17 284 406
2 3 0 15 3 34 52
3 1 278 1,101 164 3,160 4,703
3 2 120 492 142 2,300 3,054
3 3 16 92 32 383 523
4 1 63 213 52 656 984
4 2 35 129 46 649 859
4 3 7 40 12 163 222
5 1 20 78 23 245 366
5 2 22 74 34 321 451
5 3 7 14 4 65 90

the incidence of toxaemic signs and how this
might depend on social class. The two
covariates are social class (1–5) and the
number of cigarettes smoked (1, none; 2,
1–19 cigarettes per day; 3, 20 or more
cigarettes per day).

Analyze the data. Discuss whether (and
which of) the covariates have an influence
on the presence of toxaemic signs. Consider
each symptom group separately. In
particular,

a. Suppose hypertension is the response in a
logistic model. Find a suitable logistic
model using the covariates social class
and smoking history, and interpret the
model and the associations it implies.

b. Suppose proteinurea is the response in a
logistic model. Repeat the analysis.

c. Suppose the occurence of both
hypertension and proteinurea is the
response. Repeat the analysis.

d. Suppose that the occurence of either
hypertension or proteinurea is the
response. Repeat the analysis.

Check the adequacy of your models.
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Generalized Linear
Models and Poisson
Regression

12.1 THE MODEL
The logistic regression model of Chapter 11 is a special case of the generalized
linear model considered by Nelder and Wedderburn (1972). Generalized linear
models are extensions of traditional linear models that allow (i) the mean of a
population to depend on a linear predictor through a nonlinear link function and
(ii) the response probability distribution to be any member of a special set of
distributions referred to as the exponential family.

Generalized linear models consist of three major building blocks:

� Response variates y1, y2, . . . , yn , which are assumed to share the same
distribution from the exponential family. For a definition of the exponential
family, consult any text on mathematical statistics. The normal, the Poisson,
and the binomial distributions are all members of this general class.

� A set of parameters β and p explanatory variables x1, x2, . . . , x p.
� A monotone link function that relates a transform of the mean µi = E(yi )

linearly to the explanatory variables. That is, a function g such that

g(µi ) = β0 + β1xi1 + · · · + βpxip = x′
iβ (12.1)

In the standard linear regression model, the link function is the identity g(µ) =
µ, and the response follows a normal distribution. In the logistic regression model

of Chapter 11, the link function is the logit, g(µ) = ln
µ

1 − µ
, and the response

follows a Bernoulli (or binomial) distribution. In the Poisson regression model
considered in this chapter, the link function is the logarithm g(µ) = ln µ, and the
response follows a Poisson distribution. All three link functions are monotone
functions of µ. That is, g(µ) ≥ g(µ∗) for µ > µ∗.

The link function notation g is standard in the generalized linear models
literature. The link g should not be confused with the derivative of the log-
likelihood function in nonlinear least squares (see Chapter 9).

382
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Discussion of generalized linear models, in all their generality and details,
can be found in the 1972 paper by Nelder and Wedderburn and in books by Agresti
(2002), Dobson (2002), Fahrmeir and Tutz (2001), McCullagh and Nelder (1987),
and Myers et al. (2002). A detailed discussion of the logistic regression model was
given in Chapter 11. In this section, we describe the Poisson regression model.

The Poisson regression model arises when the response represents count data.
The Poisson distribution is commonly used when modeling variables such as the
number of daily equipment failures, the number of weekly traffic fatalities, the
monthly number of insurance claims, the incidence of rare diseases in a certain
locality, the counts of certain organisms in an area, and the yearly number of coup
d’etats in South America. The Poisson distribution is described by the probabilities

P(Y = y) = µy

y!
e−µ, y = 0, 1, 2, . . . (12.2)

Its mean and its variance are given by µ > 0.

The mean of the Poisson distribution may depend on explanatory variables,
but the relationship cannot be linear because this could lead to negative values
for µ. However, a logarithmic link and a linear model for

g(µ) = ln µ = β0 + β1x1 + · · · + βpx p (12.3)

satisfies the nonnegativity constraint. This parameterization implies that the mean
is

µ = exp(β0 + β1x1 + · · · + βpx p) (12.4)

The interpretation of the coefficients in the Poisson regression model is as
follows. Assume that we change one of the explanatory variables, for example, the
first one, by one unit from x to x + 1 while keeping all other regressors x2, . . . , x p

fixed. This change affects the mean of the Poisson response by

100
exp[β0 + β1(x+1) +β2x2 + · · · + βpx p] − exp[β0+β1x+β2x2 + · · · +βpx p]

exp[β0 + β1x +β2x2 + · · · + βpx p]

= 100[exp(β1) − 1] (12.5)

percent.

12.2 ESTIMATION OF THE PARAMETERS
IN THE POISSON REGRESSION MODEL

It is straightforward to write down the likelihood function for this model. It is
given by

L(β | y1, y2, . . . , yn) =
n∏

i=1

(µi )
yi

yi !
exp(−µi ) (12.6)

The parameters β enter through the means µi = exp(β0 + β1xi1 + · · · + βpxip).
The factor

∏n
i=1 yi ! does not involve the parameters. Hence, the log-likelihood
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function is given by

ln L(β | y1, y2, . . . , yn) = c +
n∑

i=1

yi ln µi −
n∑

i=1

µi (12.7)

where c = − ∑n
i=1 ln(yi !) is a constant that does not depend on the parameters.

The Newton–Raphson method (see Section 9.4) can be used to determine the
estimates that maximize this function. The steps here are very similar to the ones
we used for the estimation in the logistic regression model.

The derivative of the log-likelihood function in Eq. (12.7) with respect to µi

is
∂ ln L

∂µi
=

n∑
i=1

[
yi

µi
− 1

]
=

n∑
i=1

[
yi − µi

µi

]
(12.8)

The (p + 1) vector of first derivatives of µi = exp(β0 + β1xi1 + · · · + βpxip) is
given by ∂µi/∂β = µi xi , where xi = (1, xi1, . . . , xip)

′ is a (p + 1) column vector.
Hence, we find that

∂ ln L

∂β
= ∂ ln L

∂µi

∂µi

∂β
=

n∑
i=1

[
yi − µi

µi

]
µi xi =

n∑
i=1

(yi − µi )xi (12.9)

Setting the vector of first derivatives equal to zero leads to the p + 1 maximum
likelihood score equations

X ′( y −µ) = 0 (12.10)

where X is the design matrix with the n rows x′
1, . . . , x′

i , . . . , x′
n representing

the levels of the explanatory variables at the n cases, y = (y1, y2, . . . , yn)
′ is the

n × 1 column vector of the responses at these levels, and µ= (µ1, µ2, . . . , µn)
′

is the vector of means. The Eqs. (12.10) resemble the normal equations in the
standard linear model, but as in the logistic regression model, the mean vector µ
is a nonlinear function of the parameters β.

One component of the Newton–Raphson procedure in Section 9.4 is the nega-

tive first derivative of the log-likelihood function, g= −∂ln L

∂β
=−∑n

i=1(yi−µi)xi,

evaluated at the current value β̃. The derivative is easy to calculate; all that is
needed is an evaluation of the means µi in Eq. (12.4) at the current value β̃.

The Hessian matrix G in the Newton–Raphson procedure is the matrix of
second derivatives of the negative log-likelihood function, evaluated at the current
value β̃. Taking another derivative of the first derivative in Eq. (12.9), we obtain
the second derivative with respect to the two scalar elements β j and β j∗ of the
parameter vector β,

− ∂2 ln L

∂β j∂β j∗
= − ∂

∂β j

{
n∑

i=1

(yi − µi )xi j∗

}
=

n∑
i=1

µi xi j xi j∗ (12.11)

The Hessian matrix

G =
n∑

i=1

µi xi x′
i (12.12)
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is evaluated at the current value β̃, and the Newton–Raphson iteration is given by

β∗ = β̃ − [G(β̃)]−1g(β̃) (12.13)

The Hessian matrix G(β̃) does not depend on random variables. Hence, the
scoring method and the Newton–Raphson method reduce to the same algorithm.
Let us denote the final estimate by β̂.

Comment As in the logistic regression model, this procedure can be implemented
through an iteratively reweighted least squares (IRLS) algorithm. A weighted
linear regression of the iteratively computed response

zi = x′
i β̃ + 1

µ̃i
(yi − µ̃i ), for i = 1, 2, . . . , n (12.14)

on the explanatory vector xi , with weights wi = µ̃i , is equivalent to the Newton–
Raphson iteration in Eq. (12.13).

This is easy to show. The weighted least squares (WLS) estimate is

β̂
WLS =

[
n∑

i=1

wi xi x′
i

]−1 [
n∑

i=1

wi xi zi

]
=

[
n∑

i=1

µ̃i xi x′
i

]−1 [
n∑

i=1

µ̃i xi zi

]
(12.15)

with[
n∑

i=1

µ̃i xi zi

]
=

n∑
i=1

µ̃i xi

[
x′

i β̃ + 1

µ̃i
(yi −µ̃i )

]
=

[
n∑

i=1

µ̃i xi x′
i

]
β̃ +

n∑
i=1

(yi −µ̃i)xi

= Gβ̃ − g

Hence, the weighted least squares estimate

β̂
WLS = G−1(Gβ̃ − g) = β̃ − G−1g

is identical to the Newton–Raphson iteration in Eq. (12.13).

12.3 INFERENCE IN THE POISSON REGRESSION MODEL
12.3.1 LIKELIHOOD RATIO TESTS

Likelihood ratio (LR) tests compare the log-likelihoods of competing models (the
full and the restricted models),

LR test statistic = 2 ln
L(full)

L(restricted)
= 2{ln L(full) − ln L(restricted)} (12.16)

If the constraints imposed by the restricted model are valid, then the LR statistic
in Eq. (12.16) follows, in large samples, a chi-square distribution with degrees of
freedom given by the number of independent constraints. We reject the imposed
restrictions at significance level α if the LR test statistic is larger than the 100(1 −
α) percentile of the appropriate chi-square distribution. We retain the restrictions
if the test statistic is smaller than the percentile. LR tests can be used to test the
significance of an individual coefficient (a partial test), the joint significance of
two or more coefficients, and the significance of all regression coefficients (test
of overall regression).
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12.3.2 STANDARD ERRORS OF THE MAXIMUM LIKELIHOOD
ESTIMATES AND WALD TESTS

The inverse of the matrix of second derivatives of the negative log-likelihood func-
tion, G = ∑n

i=1 µ̂i xi x′
i , evaluated at the maximum likelihood estimates β̂, pro-

vides an estimate of the covariance matrix of the maximum likelihood estimates,

V (β̂) ∼= G−1 =
[

n∑
i=1

µ̂i xi x′
i

]−1

(12.17)

Of course, this approximation requires that the sample size n is reasonably large.
The standard errors s.e.(β̂ j ), the square roots of the diagonal elements of the ma-
trix in Eq. (12.17), can be used to obtain Wald confidence intervals for individual
regression parameters, β̂ j ± 1.96 s.e.(β̂ j ).

Standard Errors of the Estimated Mean
The estimate of the ith mean µi = exp(β0 + β1xi1 + · · · + βpxip) = exp(x′

iβ) is
given by µ̂i = exp(x′

i β̂). Its variance can be approximated after expanding µ̂i

in a Taylor series around β, µ̂i
∼= µi + (β̂ − β)′

∂µ̂i

∂β̂

∣∣∣
β̂=β

= µi + µi x′
i (β̂ − β).

Hence, the estimated variance of µ̂i is

V (µ̂i ) ∼= µ2
i V (x′

i (β̂ − β)) = µ2
i x′

i V (β̂)xi
∼= µ̂2

i x′
i

[∑n

j=1
µ̂ j x j x′

j

]−1
xi

(12.18)
after using the covariance matrix in Eq. (12.17) and replacing the unknown param-
eters by their estimates. Approximate 95% confidence intervals can be obtained
from

µ̂i ± 1.96µ̂i

√
x′

i

[∑n

j=1
µ̂ j x j x′

j

]−1
xi (12.19)

Deviance, Goodness of Fit, and Residual Diagnostics
The saturated model, in which a separate parameter is estimated for each ob-
servation, is the most elaborate model one can consider. The contribution of the
ith observation to the log-likelihood, yi ln(µi ) − µi , is maximized for µi = yi .
Hence, the log-likelihood function in Eq. (12.7) for the saturated model is given
by c + ∑n

i=1 [yi ln(yi ) − yi ]. The deviance of the estimated model with parame-
terization µ̂i = exp(β̂0 + β̂1xi1 + · · · + β̂ pxip) is

D = 2 {ln L(saturated) − ln L(parametrized)}

= 2

{
n∑

i=1

[yi ln(yi ) − yi ] −
n∑

i=1

[yi ln(µ̂i ) − µ̂i ]

}

= 2
n∑

i=1

[
yi ln

(
yi

µ̂i

)
− (yi − µ̂i )

]
= 2

n∑
i=1

[
yi ln

(
yi

µ̂i

)]
(12.20)

since
∑n

i=1 [yi − µ̂i ] = 0 as long as an intercept is included in the model; see
Eq. (12.10). For y = 0, y ln(y) = 0.
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Expanding y ln

(
y

µ

)
in a second-order Taylor series around y = µ, y ln

(
y

µ

)
∼=

(y − µ) + 1

2µ
(y − µ)2, and substituting this result into Eq. (12.20) leads to

D ∼= 2
n∑

i=1

[
(yi − µ̂i ) + 1

2µ̂i
(yi − µ̂i )

2 − (yi − µ̂i )

]
=

n∑
i=1

(yi − µ̂i )
2

µ̂i
= χ2

(12.21)

This is known as the Pearson chi-square statistic, which is also part of the standard
output of Poisson regression programs.

The deviance and the Pearson chi-square statistics are useful measures of
(lack of) fit. One often standardizes the deviance and the Pearson chi-square
statistic by dividing them by their degrees of freedom, n − p − 1. If the standard-
ized goodness-of-fit statistics are much larger than 1, one starts to question the
adequacy of the model.

Residuals can be defined from the expressions in Eqs. (12.20) and (12.21).
Deviance residuals are defined as

di = ±
√

2

[
yi ln

(
yi

µ̂i

)
− (yi − µ̂i )

]
(12.22)

where the sign is positive if yi − µ̂i > 0 and negative if yi − µ̂i < 0. Pearson
residuals are given by

ri = yi − µ̂i√
µ̂i

(12.23)

12.4 OVERDISPERSION
Large standardized deviances (and large standardized Pearson chi-square statis-
tics) indicate that the fitted model is not adequate. One possible reason for lack of
fit is an incorrect functional specification of the mean vector. However, deviances
of richly parameterized models may still be large. In this case, overdispersion
may be at work.

The Poisson model restricts the mean and the variance to be the same. In some
cases, the variability is larger than what is allowed by the Poisson distribution.
“Extra” Poisson variation may be present because of unmeasured effects, certain
clustering of events, or other contaminating influences that combine to produce
more variation than what is predicted by the Poisson model. For small count
data, overdispersion is usually not much of an issue. For large count data, it may
be a problem. One approach to working with large count data is to transform
the data; in many cases, the square root transformation stabilizes the variance
and also achieves normality. The transformed data are then modeled by standard
regressions with normal errors and a variance parameter that is not tied to the
mean.
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Overdispersion in the Poisson model implies a true variance V (yi ) = φµi ,
where φ > 1 is the overdispersion parameter. Overdispersion affects the variance
of the estimates in Eq. (12.17). We saw that the estimates are the weighted least

squares estimates in the regression of zi = x′
i β̃ + 1

µ̃i
(yi − µ̃i ) on xi , given in

Eq. (12.15). With overdispersion V (yi ) = φµi ,

V (zi ) = V

[
x′

iβ + 1

µi
(yi − µi )

]
= 1

µ2
i

V (yi ) = 1

µ2
i

φµi = 1

µi
φ = 1

wi
φ

where wi = µi are the weights in the regression. Hence,

V (β̂
WLS

) = V




[
n∑

i=1

wi xi x′
i

]−1 [
n∑

i=1

wi xi zi

]


=
[

n∑
i=1

wi xi x′
i

]−1[ n∑
i=1

w2
i xi x′

i
1

wi
φ

] [
n∑

i=1

wi xi x′
i

]−1

= φ

[
n∑

i=1

wi xi x′
i

]−1

(12.24)

The true variance of the estimates is a multiple φ > 1 of the variance that ignores
the overdispersion. Consequently, the standard errors that ignore overdispersion
are too small, t ratios are too large, probability values are too small, and estimates
appear “too” significant. Ignoring the overdispersion may lead the investigator to
find “spurious” regression relationships.

The solution to this problem is rather simple and involves a correction to
the variance of the estimates. The standardized deviance (or equivalently, the
standardized Pearson chi-square statistic) provides an estimate of φ, and φ̂ =
D/(n − p − 1) can be substituted into Eq. (12.24). Also, the likelihood ratio
tests need to be adjusted for the overdispersion; the expressions in Eq. (12.16)
need to be divided by φ̂.

A Comment on the Analysis of Correlated Data
The analysis of correlated data arising from time series measurements when the
measurements follow the standard regression model with normal errors has been
studied in Chapter 10. However, the normal assumption is not reasonable when
the responses are discrete, as in the logistic or Poisson regression models. A
different methodology must be used in the data analysis when the responses are
discrete and correlated. Generalized estimating equations (GEEs) provide a
practical method with reasonable statistical efficiency to analyze such data, and
this approach has been implemented in the SAS procedure GENMOD. We do
not discuss this here but refer the interested reader to the book by Diggle et al.
(2002).
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12.5 Examples
We illustrate the Poisson regression analysis on two data sets. The first one deals
with the mating success of African elephants. The second example concerns the
number of organisms and its relationship to a certain chemical in the environment.

The SAS PROC GENMOD routine is used for the calculations. This is a
very general routine that allows the estimation of a wide variety of generalized
linear models, such as logistic and Poisson regressions. Alternatively, one can use
routines in other packages, such as S-Plus.

12.5.1 EXAMPLE 1: MATING SUCCESS OF AFRICAN ELEPHANTS

The data are taken from Poole (1989) and are given in Table 12.1. This data set
is also analyzed in Ramsey and Schafer (2002). The paper reports on a study
of 41 male African elephants over a period of 8 years. The age of the elephant
at the beginning of the study and the number of successful matings during the
8 years were recorded. The objective was to learn whether older animals are more
successful at mating or whether they have diminished success after reaching a
certain age.

A graph of the numbers of successful matings y against the ages x of the
41 male elephants is shown in Figure 12.1. We notice an exponential-like increase
in matings with age, which is expected with the link µ = exp(β0 + β1x). The
fitted values µ̂ = exp(β̂0 + β̂1x), where the estimates are taken from the Poisson
regression model that is discussed next, are shown as the solid line in Figure 12.1.
The fit from the model with µ = exp(β0 + β1x + β2x2) is shown as the dashed
line.

How do we get the estimates, how can we decide whether the quadratic com-
ponent of age is needed, and how do we judge the adequacy of the model? Here
is where the theory discussed in this chapter comes into play, and where we use
statistical software such as the SAS PROC GENMOD routine. The slightly edited
output from fitting the Poisson regression with µ = exp(β0 + β1x) is shown in
Table 12.2. It lists the estimates calculated by the iteratively reweighted least
squares algorithm, the covariance matrix of the estimates in Eq. (12.17), and the
correlation matrix. The square roots of the diagonal elements of the covariance
matrix are the standard errors of the estimates, s.e.(β̂ j ), and they are listed imme-
diately to the right of the estimates. Approximate 95% confidence intervals are
obtained from β̂ j ± 1.96 s.e.(β̂ j ); SAS calls these the Wald confidence intervals.
For the coefficient on age β1, the 95% confidence interval is given by 0.0687 ±
(1.96)(0.0137); it extends from 0.0418 to 0.0956. The likelihood ratio statistic
for testing β1 = 0 (the coefficient on age) is given next to the confidence interval.
The likelihood ratio test statistic is twice the difference of the log-likelihood of
the full model (here, the model with intercept and age) and the log-likelihood of
the reduced model (the model with just the intercept); it is given by 24.97. The
p value is the probability that a chi-square random variable with one degree of
freedom exceeds 24.97, and it is less than 0.0001. Since it is small—smaller than
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TABLE 12.1 AGE AND MATING SUCCESS OF AFRICAN ELEPHANTSa

Age of Elephant Number of Matings

27 0
28 1
28 1
28 1
28 3
29 0
29 0
29 0
29 2
29 2
29 2
30 1
32 2
33 4
33 3
33 3
33 3
33 2
34 1
34 1
34 2
34 3
36 5
36 6
37 1
37 1
37 6
38 2
39 1
41 3
42 4
43 0
43 2
43 3
43 4
43 9
44 3
45 5
47 7
48 2
52 9

a The data are given in the file elephants.

the usual significance level 0.05—we reject the hypothesis that β1 = 0. Age is
indeed an important predictor of mating success. The estimate β̂1 = 0.0687 with
exp(β̂1) − 1 = exp(0.0687) − 1 = 0.071 implies that each additional year of age
increases the number of matings by 7.1%, at least over the considered age range.
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Also note the large correlation among the estimates of the intercept and the coef-
ficient of age. The magnitude of this correlation is to a large extent a consequence
of the data design.

The deviance and the Pearson chi-square statistic are calculated from
Eqs. (12.20) and (12.21); they are D = 51.0116 and χ2 = 45.136. These statistics
use the observations and the fitted means µ̂i = exp(β̂0 + β̂1xi ). Their degrees
of freedom are given by n − p − 1 = 41 − 2 = 39. The 95th percentile of a chi-
square distribution with 39 degrees of freedom is 54.57. The model is adequate
because the deviance (as well as the Pearson statistic) is smaller than this per-
centile. Division of the goodness-of-fit statistics by their degrees of freedom leads
to the standardized values, also shown in Table 12.2. They are not much larger
than 1, indicating that there is little evidence of overdispersion. Hence, we see
little need to adjust the standard errors and the likelihood ratio tests.

The estimates can be used to obtain the mean number of matings of an elephant
with a certain age, for example, x = 40 years. The estimate is given by µ̂x=40 =
exp[−1.5820 + (0.0687)(40)] = 3.21. Its standard error from Eq. (12.18) can be
calculated as follows. With the covariance matrix of the parameter estimates in
Table 12.2, we find

[1 40]V (β̂)

[
1

40

]
= [1 40]

[
0.29661 −0.007371

−0.007371 0.0001889

] [
1

40

]
= 0.00917

Hence,

s.e.(µ̂x=40) ∼= µ̂x=40

√
0.00917 = (3.21)(0.096) = 0.31

Deviance and Pearson residuals can also be calculated, and they should be
graphed against the explanatory variables (here, just age) and the fitted values µ̂.
One should see no patterns in these graphs; furthermore, the variance should be
roughly constant. The residual plots in Figure 12.2 show no major inadequacies.

Another issue that needs to be settled is whether the model can be im-
proved by fitting a more elaborate model that involves the square of age.
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TABLE 12.2 OUTPUT FOR THE POISSON REGRESSION MODEL WITH µ= exp(β0 + β1x)

The GENMOD Procedure
Model Information

Data Set WORK.ELEPHANTS
Distribution Poisson
Link Function Log
Dependent Variable mating
Observations Used 41

Parameter Information

Parameter Effect

Prm1 Intercept
Prm2 age

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 39 51.0116 1.3080
Scaled Deviance 39 51.0116 1.3080
Pearson Chi-Square 39 45.1360 1.1573
Scaled Pearson X2 39 45.1360 1.1573
Log Likelihood 10.7400

Estimated Covariance Matrix

Prm1 Prm2

Prm1 0.29661 −0.007371
Prm2 −0.007371 0.0001889

Estimated Correlation Matrix

Prm1 Prm2

Prm1 1.0000 −0.9846
Prm2 −0.9846 1.0000

The GENMOD Procedure
Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr> ChiSq

Intercept 1 −1.5820 0.5446 −2.6494 −0.5146 8.44 0.0037
age 1 0.0687 0.0137 0.0418 0.0956 24.97 <.0001
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

The slightly edited output from fitting the Poisson regression with µ = exp(β0 +
β1x + β2x2) is shown in Table 12.3. The log-likelihood of the full model (the
model with intercept, age, and age2) is ln L(full) = 10.8327 from Table 12.3. The
log-likelihood of the reduced model (the model with just age) is ln L(reduced) =
10.7400 from Table 12.2. The likelihood ratio test statistic for testing β2 = 0 is



Abraham Abraham˙C12 November 8, 2004 12:17

12.5 Examples 393

5040

(a)

30

2

1

0

−1

−2

−3

Age

D
ev

ia
nc

e 
re

si
du

al

7654

(b)

321

2

1

0

−1

−2

−3

Fitted value

D
ev

ia
nc

e 
re

si
du

al

FIGURE 12.2
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2(10.8327 – 10.7400) = 0.185. The associated probability value, 0.6693 in
Table 12.3 in the line corresponding to age2 = age2, is the probability that a
chi-square random variable with 1 degree of freedom exceeds this statistic. The
probability value is much larger than the usual significance level of 0.05 (note
that the LR test statistic is much smaller than the 95th percentile of the chi-square
with one degree of freedom). Hence, we cannot reject the null hypothesis that
β2 = 0. We conclude that β2 = 0, which indicates that the square of age is not
needed. The same conclusion is reached from the 95% confidence interval of
β2. The interval from −0.0048 to 0.0031 in Table 12.3 includes zero, indicat-
ing that age2 is not significant. The confidence interval uses the standard error
s.e.(β̂2) = 0.0020 = √

0.0000040497, the square root of the corresponding diag-
onal element in the covariance matrix. The two tests, the likelihood ratio test and
the test using the Wald confidence intervals, are equivalent.
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TABLE 12.3 OUTPUT FOR THE POISSON REGRESSION MODEL WITH µ= exp(β0 + β1x + β2x2)

The GENMOD Procedure
Model Information

Data Set WORK.ELEPHANTS
Distribution Poisson
Link Function Log
Dependent Variable mating
Observations Used 41

Parameter Information

Parameter Effect

Prm1 Intercept
Prm2 age
Prm3 age2

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 38 50.8262 1.3375
Scaled Deviance 38 50.8262 1.3375
Pearson Chi-Square 38 44.6574 1.1752
Scaled Pearson X2 38 44.6574 1.1752
Log Likelihood 10.8327

Estimated Covariance Matrix

Prm1 Prm2 Prm3

Prm1 9.21510 −0.47737 0.006006
Prm2 −0.47737 0.02497 −0.000317
Prm3 0.006006 −0.000317 4.0497E-6

Estimated Correlation Matrix

Prm1 Prm2 Prm3

Prm1 1.0000 −0.9952 0.9831
Prm2 −0.9952 1.0000 −0.9960
Prm3 0.9831 −0.9960 1.0000

The GENMOD Procedure

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 −2.8574 3.0356 −8.8071 3.0923 0.89 0.3466
age 1 0.1360 0.1580 −0.1737 0.4456 0.74 0.3896
age2 1 −0.0009 0.0020 −0.0048 0.0031 0.18 0.6693
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.



Abraham Abraham˙C12 November 8, 2004 12:17

12.5 Examples 395

12.5.2 EXAMPLE 2: REPRODUCTION OF CERIODAPHNIA ORGANISMS

The second data set is taken from Myers, et al. (2002). The data are listed in
Table 12.4. This example deals with the number of Ceriodaphnia organisms that
are counted in a controlled environment in which reproduction occurs among

TABLE 12.4 REPRODUCTION
OF CERIODAPHNIA ORGANISMSa

Ceriodaphnia Concentration Strain

82 0 1
106 0 1

63 0 1
99 0 1

101 0 1
45 0.50 1
34 0.50 1
26 0.50 1
44 0.50 1
42 0.50 1
31 0.75 1
22 0.75 1
16 0.75 1
30 0.75 1
29 0.75 1
22 1 1
14 1 1
10 1 1
21 1 1
20 1 1
15 1.25 1

8 1.25 1
6 1.25 1

14 1.25 1
13 1.25 1
10 1.50 1

8 1.50 1
11 1.50 1
10 1.50 1
10 1.50 1

8 1.75 1
8 1.75 1
3 1.75 1
8 1.75 1
1 1.75 1

58 0 2
58 0 2
62 0 2
58 0 2
73 0 2

(Continued )
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TABLE 12.4 (Continued)

Ceriodaphnia Concentration Strain

27 0.50 2
28 0.50 2
31 0.50 2
28 0.50 2
38 0.50 2
19 0.75 2
20 0.75 2
22 0.75 2
20 0.75 2
28 0.75 2
14 1 2
14 1 2
15 1 2
14 1 2
21 1 2

9 1.25 2
10 1.25 2
12 1.25 2
10 1.25 2
16 1.25 2

7 1.50 2
3 1.50 2
1 1.50 2
8 1.50 2
7 1.50 2
4 1.75 2
3 1.75 2
2 1.75 2
8 1.75 2
4 1.75 2

a The data are given in the file ceriodaphnia.

the organisms. Two different strains of organisms are involved, and the environ-
ment is changed by adding varying amounts of a chemical component intended
to impair reproduction.

Scatter plots of counts against concentration, for each of the two strains of
organisms, are shown in Figure 12.3. The counts decrease with concentration,
and the decrease is roughly exponential. Looking at the two graphs, one notices
differences among the two strains.

The scatter plots suggest a Poisson regression with link µ = exp(β0 + β1x1 +
β2x2) = exp(β0 + β1Conc + β2Strain), where Strain is an indicator that is 0 for
strain 1 and 1 for strain 2. The output from the Poisson regression is shown in
Table 12.5. The estimates, the standard errors, and 95% Wald confidence intervals
are shown in the last part of this table. All estimates are significantly different from
zero; the confidence intervals do not cover zero and the probability values of the
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partial likelihood ratio tests are smaller than 0.05. Hence, we cannot simplify the
model. The estimate β̂1 = −1.54 and exp(β̂1) − 1 = exp(−1.54) − 1 = −0.786
implies that for both strains each additional unit of concentration reduces the mean
count by 78.6%. The estimate β̂2 = −0.275 and exp(β̂2) − 1 = exp(−0.275) −
1 = −0.240 implies that the mean count for strain 2 is 24% smaller than that for
strain 1.

The deviance and the Pearson chi-square statistic in Table 12.5 (86.38 and
79.83, respectively) indicate that the fitted model is adequate; the statistics do not
exceed the 95th percentile (87.11) of the chi-square distribution with 70 − 2 −
1 = 67 degrees of freedom. The standardized deviance and Pearson chi-square
statistic are not much larger than 1. Residual plots (deviance residuals against
concentration, against strain, and against fitted values; not shown) indicate no
unusual patterns.
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TABLE 12.5 OUTPUT FOR THE POISSON REGRESSION MODEL WITH µ= exp(β0 + β1x1 + β2x2)

The GENMOD Procedure
Model Information

Data Set WORK.CERIODAPHNIA
Distribution Poisson
Link Function Log
Dependent Variable count
Observations Used 70

Parameter Information

Parameter Effect

Prm1 Intercept
Prm2 concent
Prm3 strain

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 67 86.3765 1.2892
Scaled Deviance 67 86.3765 1.2892
Pearson Chi-Square 67 79.8301 1.1915
Scaled Pearson X2 67 79.8301 1.1915
Log Likelihood 4493.8023

Estimated Covariance Matrix

Prm1 Prm2 Prm3

Prm1 0.001532 −0.001064 −0.001010
Prm2 −0.001064 0.002172 1.525E-18
Prm3 −0.001010 1.525E-18 0.002340

Estimated Correlation Matrix

Prm1 Prm2 Prm3

Prm1 1.0000 −0.5836 −0.5335
Prm2 −0.5836 1.0000 0.0000
Prm3 −0.5335 0.0000 1.0000

The GENMOD Procedure

Analysis Of Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square Pr > ChiSq

Intercept 1 4.4546 0.0391 4.3779 4.5313 12954.8 <.0001
concent 1 −1.5431 0.0466 −1.6344 −1.4517 1096.34 <.0001
strain 1 −0.2750 0.0484 −0.3689 −0.1802 32.31 <.0001
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.
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Finally, we check whether it is necessary to include an interaction term in
the model and we fit the Poisson regression model with µ = exp(β0 + β1x1 +
β2x2 + β3x1x2). The partial likelihood ratio statistic for testing β3 = 0 is given
by 1.78, and its probability value is 0.18 (output is not shown). The probability
value is considerably larger than the significance level of 0.05 (equivalently, the
95% Wald confidence interval of β3 covers zero). Hence, we do not reject β3 = 0
and find no reason to include an interaction term in the model.

What if the standardized deviance (or the Pearson chi-square statistic) were
large and it were not possible to decrease these statistics to acceptable levels
by considering more elaborate specifications of the mean function? In such a
case, one would conclude that overdispersion is present, and one would adjust
the standard errors and the likelihood ratio tests. PROC GENMOD in SAS does
this if one asks for this option. It uses either the standardized deviance or Pearson
chi-square statistic as the estimate of φ in the adjustment in Eq. (12.24). One
could use this adjustment in Example 2 because the deviance 86.38 is close to the
95th percentile of 87.11. Although this adjustment increases the standard errors
slightly, our conclusions about the very strong effects of concentration and strain
are unaffected.

EXERCISES
12.1. The data are taken from P. McCullagh and

J. A. Nelder. Generalized Linear Models.
New York: Chapman & Hall, 1983. The data
are given in the file damage.

Consider the number of reported damage
incidents (response y) and the aggregate
months of service by ship type, year of
construction, and period of operation. Data
on five different types of ships (1–5), four
different years of construction (1–4, with
1960–64 coded 1, 1965–1969 coded 2,
1970–1974 coded 3, and 1975–1979 coded
4), and two periods of operation (1 and 2,
with 1960–1974 coded 1, and 1975–1979
coded 2) are available.

X = Z = W = MS = Y =
Type Year Period Months Number of

of of of of Damage
Ship Construction Service Service Incidents

1 1 1 127 0
1 1 2 63 0
1 2 1 1,095 3
1 2 2 1,095 4
1 3 1 1,512 6

X = Z = W = MS = Y =
Type Year Period Months Number of

of of of of Damage
Ship Construction Service Service Incidents

1 3 2 3,353 18
1 4 1 * *
1 4 2 2,244 11
2 1 1 44,882 39
2 1 2 17,176 29
2 2 1 28,609 58
2 2 2 20,370 53
2 3 1 7,064 12
2 3 2 13,099 44
2 4 1 * *
2 4 2 7,117 18
3 1 1 1,179 1
3 1 2 552 1
3 2 1 781 0
3 2 2 676 1
3 3 1 783 6
3 3 2 1,948 2
3 4 1 * *
3 4 2 274 1
4 1 1 251 0
4 1 2 105 0
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X = Z = W = MS = Y =
Type Year Period Months Number of

of of of of Damage
Ship Construction Service Service Incidents

4 2 1 288 0
4 2 2 192 0
4 3 1 349 2
4 3 2 1,208 11
4 4 1 * *
4 4 2 2,051 4
5 1 1 45 0
5 1 2 * *
5 2 1 789 7
5 2 2 437 7
5 3 1 1,157 5
5 3 2 2,161 12
5 4 1 * *
5 4 2 542 1

a. The first three variables are categorical. A
program such as SAS GENMOD allows
you to enter categorical variables into the
model and it creates the associated
indicator variables automatically. The
program creates indicator variables X1–X5
for the type of ship, Z1–Z4 for the year of
construction, and W1 and W2 for the
period of operation. Consider the Poisson
regression model with link

ln µ = β0 + β1 ln(MS) + β2 X2 + · · · + β5 X5

+ β6 Z2 + · · · + β8 Z4 + β9W 2

and estimate this model using an available
software program such as SAS GENMOD.

b. It seems reasonable to suppose that the
number of damage incidents is directly
proportional to MS, the months of service,
and one can expect that the coefficient β1

is 1. Test whether β1 = 1. The literature
refers to the term ln(MS) as an “offset.”

c. Set β1 = 1 and consider the model with
link

ln µ = β0 + ln(MS) + β2 X2 + · · · + β5 X5

+ β6 Z2 + · · · + β8 Z4 + β9W 2

SAS GENMOD allows you to fit models
with an offset. Interpret the estimates of
the regression coefficients β2, . . . , β9.

d. Different ships are involved in this study,
and one can expect intership variability in
the proneness for accidents. Check for
overdispersion. Adjust for overdispersion
if necessary.

e. The model in (c) treats the factor effects as
additive. Explore whether interaction
components are needed.

f. Summarize your findings.

12.2. Aitkin et al. (1989) model insurance claims
that are classified according to two factors:
age group A (two levels) and car type T
(three levels). The number of insurance
claims (Y ) and the number of insurance
policyholders (H ) are listed for the six claim
groups. The number of policy holders can be
treated as an “offset” because one can expect
that the number of claims should be strictly
proportional to the number of policies [see
Exercise 12.1(b) for discussion].

H = Number Y = Number A = Age T = Car
of Policies of Claims Group Type

500 42 1 Small
1,200 37 1 Medium

100 1 1 Large
400 101 2 Small
500 73 2 Medium
300 14 2 Large

Consider the Poisson regression model with
link

ln µ = β0 + ln(H) + β1 A2 + β2T2 + β3T3

where A1, A2 and T1, T2, T3 are the
corresponding indicator variables. Estimate
and interpret the model.

12.3. The data are taken from Jorgenson, D. W.
Multiple regression analysis of a Poisson
process. Journal of the American Statistical
Association, 56, 235–245, 1961. The data are
given in the file failures.

The following table lists the number of
failures for a complex piece of electronic
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equipment that is operating under cycles of
operation (weeks) in which each cycle is
divided into two operating regimes. The
number of failures and the time spent in
regime 1 and regime 2 during the cycle are
listed.

T 1 = Time in T 2 = Time in Y = Number
Regime 1 Regime 2 of Failures

33.3 25.3 15
52.2 14.4 9
64.7 32.5 14

137.0 20.5 24
125.9 97.6 27
116.3 53.6 27
131.7 56.6 23

85.0 87.3 18
91.9 47.8 22

Under each regime of operation, the number
of failures should be proportional to the time
spent in this regime, but the constants of
proportionality λ1 and λ2 may not be the
same. The number of failures should follow a
Poisson regression model with link

ln µ = λ1T1 + λ2T2

Obtain estimates of the parameters λ1 and λ2,
and interpret the results.

12.4. The following data are from Hand et al. A
Handbook of Small Data Sets, Chapman and
Hall, 1994. They show the incidence of
nonmelanoma skin cancer among women in
Minneapolis–St. Paul (coded 0) and
Dallas–Ft. Worth (coded 1). The data are
given in the file skincancer.

Number of Age
Cases Town Group Population

1 0 15–24 172,675
16 0 25–34 123,065
30 0 35–44 96,216
71 0 45–54 92,051

102 0 55–64 72,159
130 0 65–74 54,722
133 0 75–84 32,185

40 0 85+ 8,328

Number of Age
Cases Town Group Population

4 1 15–24 181,343
38 1 25–34 146,207

119 1 35–44 121,374
221 1 45–54 111,353
259 1 55–64 83,004
310 1 65–74 55,932

Missing 1 75–84 Missing
65 1 85+ 7,583

a. Cancer incidence should be directly
proportional to the size of the population
(POP). Hence, it is reasonable to consider
ln(POP) as an offset. Age is a categorical
variable. Use indicator variables for the
eight age groups (X1–X8) and consider
the Poisson regression with link

ln µ = β0 + ln(POP) + β2 X2 + · · ·
+ β8 X8 + β9Town

Fit the model and interpret the regression
coefficients β2, . . . , β8 (measuring the
age effect) and β9 (measuring the effect
of location). One would expect that sun
exposure is greater in Texas than in
Minnesota.

b. Estimate the more general model

ln µ = β0 + β1 ln(POP) + β2 X2 + · · ·
+ β8 X8 + β9Town

and test whether β1 = 1.

12.5. The data are from G. Rodrı́guez (Princeton
University). The following table gives
information on the number of lung cancer
deaths by age and smoking status. The data
are given in the file lungcancer. The four
columns represent

Age: in 5-year age groups coded 1–9, for age
brackets 40–44, 45–49, 50–54, 55–59, 60–64,
65–69, 70–74, 75–79, and 80+;

Smoking status: coded 1, does not smoke; 2,
smokes cigars or pipe only; 3, smokes
cigarettes and cigar/pipe; and 4, smokes
cigarettes only;
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Population: in hundreds of thousands; and
Deaths: number of lung cancer deaths in a
year.

Smoking Population Lung Cancer
Age Status (100,000) Deaths

1 1 656 18
2 1 359 22
3 1 249 19
4 1 632 55
5 1 1,067 117
6 1 897 170
7 1 668 179
8 1 361 120
9 1 274 120
1 2 145 2
2 2 104 4
3 2 98 3
4 2 372 38
5 2 846 113
6 2 949 173
7 2 824 212
8 2 667 243
9 2 537 253
1 3 4,531 149
2 3 3,030 169
3 3 2,267 193
4 3 4,682 576
5 3 6,052 1001
6 3 3,880 901
7 3 2,033 613
8 3 871 337
9 3 345 189
1 4 3,410 124
2 4 2,239 140
3 4 1,851 187
4 4 3,270 514
5 4 3,791 778
6 4 2,421 689
7 4 1,195 432
8 4 436 214
9 4 113 63

Age and smoking status are categorical
variables. A program such as SAS GENMOD
creates the associated indicator variables—
X1–X9 for the nine age groups and Z1–Z4 for
smoking status—automatically. Population
size (POP) can be treated as an offset because
one can expect that the incidence of lung
cancer is directly proportional to population.

Consider the Poisson regression model
with link

ln µ = β0 +β1 ln(POP)+β2 X2 + · · · + β9 X9

+ β10 Z2 + β11 Z3 + β12 Z4

and estimate the model using an available
software program such as GENMOD.
Interpret the regression coefficients and
summarize your findings. Check the model
for overdispersion and explore whether
interaction terms are needed in the model.

12.6. Hill et al. (2001, Section 10.4) discuss the
results of a survey that assessed the number
of household visits to Lake Keepit per year,
the distance of the household from the lake,
the household income, and the number of
household members. The data are given in the
file lake. Data for the first 5 of the 250
households are listed here.

INC = SIZE = Y =
DIST = Family Family Number
Distance Income Members of Visits

27 4.45 5 1
72 7.69 4 1
44 10.04 4 5
23 8.97 4 4
89 9.15 5 2

Consider the Poisson regression with link

ln µ = β0 + β1DIST + β2INC + β3SIZE

Fit the model and interpret your findings.
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CHAPTER 1
1.1 Data from experiments are usually more

informative because one can control the
conditions under which the experimental runs
are carried out. Experimentation is probably not
possible in case (f). The relative humidity
conditions in the plant cannot be varied
according to a fixed experimental plan. Instead,
one takes measurements in the plant on the
relative humidity and at the same time on the
output (performance) of the process. A danger
with such data is that the relative humidity in the
plant may be affected by factors that also affect
the output.

1.2 A graph of ln(Payout) against the product of
interest rate and maturity indicates a linear
relationship. This is expected from the model
Payout = PeRT . Taking the logarithm on both
sides of the equation leads to ln(Payout) =
ln(P) + RT . The intercept changes with the
logarithm of the invested principle; the
regression coefficient of RT is one.

1.3 Selected examples:

Exercise 2.9: MBA grade point average and
GMAT score: observational study

Exercise 4.14: Survival of bull semen:
experimental data

Exercise 8.2: Height and weight of boys:
observational study

1.6 Usually, it is not easy to spot relationships
from three-dimensional graphs. The bivariate

scatter plots for the silkworm data are easier to
interpret.

1.7 The polynomial model (with p > 1)

y = β0 + β1x + β2x2 + · · · + βpx p + ε

is nonlinear in the explanatory variable x but
linear in the parameters.

1.8 The model y = α + (0.49 −α) exp[−β(x − 8)] +
ε is nonlinear in the parameters. Trace out the
mean response for changing levels of x . Take
α = 0.39 and β = 0.10, and consider x values
between 8 and 40. This particular model is
studied in Chapter 9; x is the age of a chemical
product in weeks, and the response y is its
remaining chlorine.

1.9 Think in terms of percentages. The variability
(expressed as standard deviation) may be
±10%. If sales are at level 10, this implies an
uncertainty of ±1 units. For level 1000, the
uncertainty is ±100 units. If the standard
deviation is proportional to the level, one should
analyze the logarithm of sales; see chapter 6.

1.10 Poverty of a school district affects the number
of students in subsidized lunch programs, with
poorer districts having more children in these
nationally subsidized programs. Poverty also
affects the scholastic test scores in these
districts. The strong positive correlation
between the number of children in subsidized
lunch programs and test achievement scores in
these districts does not imply that there is a

403
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causal connection between subsidized lunch and
test scores. It is poverty that is the driving causal
factor.

1.12 a. Absolute raise (raise in terms of dollars
earned) can be written as

AbsoluteRaise = (R)(PreviousSalary)

= (βPreviousSalary)Performance

A graph of AbsoluteRaise against
Performance does not exhibit a perfect linear
association because the slope depends on the
previous salary that changes from person to
person. A regression of AbsoluteRaise on
Performance may not provide the correct
estimate of the parameter β. Take two
workers; the previous salary of the first
worker is half the salary of the second one,
but the first worker is twice as productive.
Their absolute raises are the same. The slope
in the plot of AbsoluteRaise against
Performance is zero and not the desired
parameter β.

b. Let R = RelativeRaise, where R is a small
number such as 0.03 (3%). The ratio
CurrentSalary/PreviousSalary =
[(1 + R)PreviousSalary]/PreviousSalary =
1 + R. A first-order Taylor series expansion
of ln(1 + R) ≈ R is valid for small R.
Hence, ln(CurrentSalary/PreviousSalary) =
ln(1 + R) ≈ R = βPerformance is linearly
related to Performance. A regression of
ln(CurrentSalary/PreviousSalary) on
Performance provides an estimate of β.

CHAPTER 2

2.1 a. 95th percentile = 14.93; 99th percentile =
16.98

b. t (0.95;10) = 1.812; t (0.95;25) = 1.708;
t (0.99;10) = 2.764; t (0.99;25) = 2.485

c. χ2(0.95;1) = 3.841; χ2(0.95;4) = 9.488;
χ2(0.95;10) = 18.307
χ 2(0.99;1) = 6.635; χ2(0.99;4) = 13.277;
χ2(0.99;10) = 23.209

d. F(0.95;2,10) = 4.10; F(0.95;4,10) = 3.48;
F(0.99;2,10) = 7.56; F(0.99;4,10) = 5.99

2.3 Correlation = 0.816; R2 = 0.667; Estimated
equation: µ̂ = 3 + 0.5x

Same (linear regression) results for all four
data sets. However, scatter plots show that linear
regression is only appropriate for the first data
set.

2.6 c. Estimated equation: µ̂ = 49.268 +
0.478x; R2 = 0.998; s = √

MSE = 0.402.
Model is appropriate.

d. (i) β̂1 = 0.478; s.e.(β̂1) = 0.0040; 95%
confidence interval: (0.470 , 0.486)

(ii) µ̂(x = 100 ln(25)) = 203.19; 95%
confidence interval: (202.95, 203.44)

e. Estimates and standard errors of β0 and β1

change by a factor of 5/9.

2.8 a. Estimated equation: µ̂ = 31.9114 +
0.2625x; t ratio(β̂1) = 0.2625/0.0393=
6.68; p value= 0.0002; number of cars sold
is a significant predictor variable.

b. 95% confidence interval for β1: (0.172,
0.353)

c. 90% confidence interval for β1: (0.189,
0.336)

d. R2 = 0.848

e. s = √
MSE = 264.0, compared with

sy = 638.4

f. µ̂(x = 1187) = 343.5

2.10 a. Approximate 95% prediction interval:
(2.104, 3.111)

b. Approximate 95% prediction interval:
(1.592, 2.599)

2.11 R2 =
[

1 + n − p − 1

pF

]−1

2.13 a. Estimated equation: µ̂ = 0.520x; s2 =
46.2/16 = 2.89; β̂1 = 0.520; s.e.(β̂1) =
0.0132; 95% confidence interval: (0.492,
0.548)

b. Estimated equation: µ̂ = 0.725 + 0.498x;
β̂0 = 0.725; s.e.(β̂0) = 1.549; β̂0/s.e.(β̂0) =
0.725/1.549 = 0.47; p value = 0.65;
conclude β0 = 0.

2.15 a. Estimated equation: µ̂ = 68.45 − 0.41x;
R2 = 0.677; s = 4.563; F statistic = 10.47;
p value = 0.023; reject β1 = 0.

b. s.e.(β̂0)=12.93; β̂0/s.e.(β̂0)=68.45/12.93 =
5.29; p value = 0.003; s.e.(β̂1) = 0.127;
β̂1/s.e.(β̂1) = −0.41/0.127 = −3.23;
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p value = 0.023; reject β1 = 0.
99% confidence interval for β1: (−0.92,

0.11)

c. µ̂(x = 100) = 27.41; s.e.(µ̂(x = 100)) =
1.73; 95% confidence interval: (22.97,
31.86)

d. µ̂(x = 84) = 33.98; s.e.(µ̂(x = 84)) = 2.76;
95% confidence interval: (26.88, 41.07)

2.17 b. Estimated equation: µ̂ = −46.44 + 1.792x ;

95% confidence interval for β0: (−77.37,

−15.50)

95% confidence interval for β1: (1.48, 2.11)

c. Good fit; R2 = 0.956

d. µ̂(x = 100) = 132.8; 95% prediction
interval: (122.39,143.22)

e. Strong linear relationship

2.18 b. Estimated equation: µ̂ = 33.31 + 2.168x

c.

Analysis of Variance
Source DF SS MS F P
Regression 1 4361.5 4361.5 14.58 0.002
Residual Error 13 3889.4 299.2
Total 14 8250.9

d. F = 14.58; p value = 0.002; reject β1 = 0.

e. s.e.(β̂1) = 0.568; β̂1/s.e.(β̂1) = 2.168/

0.568 = 3.82; same p value = 0.002; reject
β1 = 0.

f. Individual with x = 63 and y = 220 unusual.
Estimates and standard errors change; R2

increases.

2.19 a. Estimated equation: µ̂ = 3.707 − 0.0123x;
R2 = 0.950

b. F statistic = 75.41; p value = 0.001; reject
β1 = 0 at the 0.01 significance level.

c. Response is average of three observations.
Use of individual values would improve the
sensitivity of the analysis.

d. No; molecular weight 200 is far outside the
region of experimentation; one does not
know whether the linear relationship will
continue to hold.

2.21 Estimated equation: µ̂ = 8.957 + 0.587x;
R2 = 0.537; F = 59.21; reject β1 = 0.

Significant linear relationship between the
methods. However, variability is large and
predictive power low.

2.22 Plot of y (memory retention) against x (time)
shows a nonlinear (exponentially decaying)
pattern. Graphs of ln(y) against x and ln(y)
against ln(x) show similar patterns. Plot of y
against ln(x) shows a linear pattern.

Estimated equation: µ̂ = 0.846 −
0.079 ln(x); R2 = 0.990; good model.

2.27

y = Takeup(kg): µ̂ = −9.896 + 0.0753x; R2 = 0.986;
F = 1530.3; reject β1 = 0.

y = Takeup(%): µ̂ = 4.737 + 0.00162x; R2 = 0.703;
F = 52.07; reject β1 = 0.

CHAPTER 3

3.1 a. A′ =


 2 3 2

0 2 1

1 2 4


 b. A′ A =


 17 8 16

8 5 8

16 8 21




c. tr(A) = 8; tr(A′ A) = 43

d. det(A) = 11; det(A′ A) = 121

3.2 a.

X ′X =


4 0 0

0 4 0

0 0 4


; (X ′X)−1=


1/4 0 0

0 1/4 0

0 0 1/4


;

X ′ y =


 19

1

5


 ; (X ′ X)−1 X ′ y =


 4.75

0.25

1.25




3.5 a. det(A) = 10; A−1 =


 0.4 0 −0.2

0 0.5 −0.5

−0.2 −0.5 1.1




b. Eigenvalues: 5.8951, 2.3973, 0.7076.
Eigenvectors are the columns in

P =


 −0.4317 0.8857 0.1706

−0.7526 −0.4579 0.4732

−0.4973 −0.0759 −0.8643



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c.

A=P
P ′ ==


 −0.4317 0.8857 0.1706

−0.7526 −0.4579 0.4732

−0.4973 −0.0759 −0.8643




×


5.8951 0 0

0 2.3973 0

0 0 0.7076





−0.4317 0.8857 0.1706

−0.7526 −0.4579 0.4732

−0.4973 −0.0759 −0.8643




′

d. Eigenvalues are positive. Correlation matrix


 1 0.289 0.408

0.289 1 0.707

0.408 0.707 1




3.7 a. det(A) = 0

b. Eigenvalues: 9, 1, and 0. Eigenvectors are
the columns in

P =


 1/

√
6 1/

√
2 −1/

√
3

1/
√

6 −1/
√

2 −1/
√

3

2/
√

6 0 1/
√

3




c. One eigenvalue is zero. The linear
combination −y1 − y2 + y3 has variance
zero.

3.8 a. AB =
[

16 17

18 13

]
; b. B A =


 7 17 10

8 10 8

14 12 12




3.11 a. Bivariate normal, with mean vector

[
2

6

]

and covariance matrix

[
1 0

0 2

]
.

b. Bivariate normal, with mean vector

[
7/3

17/3

]

and covariance matrix

[
2/3 1/3

1/3 5/3

]
.

3.17 Quadratic form with A =


 1 0 0

0 0.5 0.5

0 0.5 0.5


 .

Matrix A is idempotent, with determinant 0 and
rank 2. Distribution of the (normalized)
quadratic form (y2

1 + 0.5y2
2 + 0.5y2

3 + y2 y3)/σ
2

is chi-square with 2 degrees of freedom.

CHAPTER 4

4.1

X ′ X =
[
10 55

55 385

]
; (X ′ X)−1=

[
0.4667 −0.0667

−0.0667 0.0121

]
;

V (β̂) = σ 2

[
0.4667 −0.0667

−0.0667 0.0121

]

V (β̂0) = (0.4667)σ 2; V (β̂1) = (0.0121)σ 2

4.5 a. V (β̂1) = 18

b. Cov(β̂1, β̂3) = 1.2

c. Corr(β̂1, β̂3) = 0.0943

d. V (β̂1 − β̂3) = 24.6

4.7 a. R2 = 0.9324

b. F statistic = 110.35; p value = 0.000; reject
β1 = β2 = β3 = 0.

c. 95% confidence interval for βtaxes : (0.074,

0.306); reject βtaxes = 0; cannot simplify
model.

95% confidence interval for βbaths:
(−16.83, 180.57); cannot reject βbaths = 0;
can simplify model by dropping “baths.”

4.10 a. Estimated equation: µ̂ = 3.453 + 0.496x1 +
0.0092x2; s2 = 4.7403; s.e.(β̂0) = 2.431,

s.e.(β̂1) = 0.00605, s.e.(β̂2) = 0.00097

b. β̂1/s.e.(β̂1) = 81.98; p value = 0.000; reject
β1 = 0. β̂2/s.e.(β̂2) = 9.48; p value = 0.000;
reject β2 = 0.

4.12 Output (R software, using the function “lm”):

Coefficients Estimate Std. Error t value Pr(> |t|)
Intercept 39.437054 12.110986 3.256 0.00765
TEMP 0.084067 0.060469 1.390 0.19194
PROD 0.001876 0.000607 3.091 0.01027
DAYS 0.131704 0.289800 0.454 0.65833
PAYR −0.215677 0.098810 −2.183 0.05162
HOUR −0.014475 0.030052 −0.482 0.63949

R2 = 0.645; adjusted R2 = 0.483; s = 3.213;
F statistic = 3.99; p value = 0.026

b. Using additional SS, F = [(205.956 −
183.48)/2]/10.322 = 1.09; p value =
P(F(2, 11) > 1.09) = 0.37; cannot reject
H0: β1 = β3 = β5 = 0

c. Prefer reduced model µ̂ = 46.02 +
0.00204PROD − 0.216PAYR; R2 = 0.574
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d. PROD has smallest p value

e. Water usage as linear function of PROD and
PAYR

4.14 c. Estimated equation: µ̂ = 39.482 +
1.0092x1 − 1.873x2 − 0.367x3

d. (i) (22.802, 25.653); (ii) (20.109, 28.346)

e. F statistic = 30.08; p value = 0.000; reject
H0: β1 = β2 = β3 = 0

4.16 a. SST = 60; SSR = 57.9725; SSE = 2.0275

Source DF SS MS F P
Regression 3 57.9725 19.3242 47.66 2.129815e-05
Residual 5 2.0275 0.4055
Total 8 60.0000

F statistic = 47.66; reject β1 = β2 = β3 = 0.

b. Estimated equation: µ̂ = −1.16346 +
0.13527x1 + 0.01995x2 + 0.12195x3;
s2 = 0.4055; s.e.(β̂0) = 1.974; s.e.(β̂1) =
0.45474; s.e.(β̂2) = 0.23784; s.e.(β̂3) =
0.01225; t (β̂1) = 0.295; p value = 0.78;
cannot reject β1 = 0. t (β̂2) = 0.084;
p value = 0.94; cannot reject β2 = 0.
t (β̂3) = 9.955; p value = 0.000; reject
β3 = 0.

4.20 a. β̂WLS = ∑
yi/

∑
xi ; V (β̂WLS) = σ 2/

∑
xi

b. β̂WLS = 30/2 = 15; V (β̂WLS) = σ 2/150

4.22 a. Linear model not appropriate.

b. Fitted equation: TensileStrength =
−6.674 + 11.764 Hardwood − 0.635
(Hardwood)2

Source DF SS MS F P
Regression 2 3104.2 1552.1 79.43 0.000
Residual Error 16 312.6 19.5
Total 18 3416.9

Model adequate; quadratic term needed;
increases R2 from 0.305 to 0.909

95% confidence interval: (38.14, 44.00)

95% prediction interval: (31.25, 50.88)

4.23 Quadratic model. Estimated equation:
µ̂ = 82.385 − 38.310x + 4.703x2

Regression significant; adequate fit
Stars with ln(surface temperature) <4 appear
different and should be investigated separately.
Without these stars, a linear model is
appropriate.

Predictor Coef SE Coef T P
Constant 82.385 9.581 8.60 0.000
x −38.310 4.790 −8.00 0.000
x2 4.7025 0.5939 7.92 0.000

S = 0.3667 R-Sq = 60.6% R-Sq(adj) = 58.8%

Analysis of Variance
Source DF SS MS F P
Regression 2 9.0945 4.5472 33.82 0.000
Residual Error 44 5.9165 0.1345
Total 46 15.0110

CHAPTER 5

5.2 a. $3000; b. $900

5.4 VIF1 = 2.5; VIF2 = 5; VIF3 = 10; evidence of
multicollinearity

5.6 F statistic = 22.33; p value < 0.0001; reject
H0: µ1 = µ2 = µ3.

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 2 31.112 15.556 22.33 <.0001
Error 42 29.261 0.697
Corrected Total 44 60.372

5.8 a. Expected difference in systolic blood
pressure for females versus males who drink
the same number of cups of coffee, excercise
the same, and are of the same age

b. Represents variation due to measurement
error and omitted factors

c. Association, but not causation

d. Represents interaction between gender and
coffee consumption

5.9 a. E(yt ) =
{

β0 + β1t, t = 1, 2, . . . , 7

β2 + β3t, t = 8, 9, . . . , 14

Intersecting lines at t = 8 : β2 = β0 +
8(β1 − β3), and

E(yt)=
{
β0 + β1t, t = 1, 2, . . . , 7

β0 +β18+β3(t −8), t = 8, 9, . . . , 14

b. E(yt ) = β0 + β1t, t = 1, 2, . . . , 14

c. F = 55.95; p value = P(F(1, 11) >

55.95) = 0.0000; model in (a) is
preferable.

5.12 b. µ̂ = −0.9122 + 0.1607x1 + 0.2198x2 +
0.0112x3 + 0.1020x4; R2 = 0.692;
s = 0.8365

(i) t (β̂1) = 2.43; p value = 0.023; reject
β1 = 0.
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(ii) F = 3.90; p value = 0.034; reject
hypothesis β3 = β4 = 0

(iii) F = 14.07; p value < 0.0001; reject
hypothesis β1 = β2 = β3 = β4 = 0

c. µ̂ = −1.462 + 0.1536x1 + 0.3221x2 +
0.0166x3 + 0.0571x4 − 0.00087x2x3 +
0.00599x2x4; F = 0.40; p value = 0.67;
interactions are not important.

5.13 b. z = 0 (protein-rich); z = 1 (protein-poor);
µ̂ = 50.324 + 16.009x + 0.918z − 7.329xz
F = 107.24; p value < 0.0001; reject
β2 = β3 = 0; linear relationship between
height and age is not the same for the two
diets.

5.15 Weight (x1); x2 = 0 (type A engine); x2 = 1
(type B engine);

a. µ = β0 + β1x1 + β2x2;

b. µ = β0 + β1x1 + β2x2 + β3x1x2

CHAPTER 6

6.2 a. Linear model: µ̂ = 23.35 + 1.045x;
R2 = 0.955; s = 0.737; F(lack of fit) =
10.01; p value = 0.002; lack of fit

b. Quadratic model: µ̂ = 22.56 + 1.67x −
0.068x2; R2 = 0.988; s = 0.394; t (β̂2) =
−0.06796/0.01031 = −6.59; reject β2 = 0;
F(lack of fit) = 2.30; p value = 0.13; no lack
of fit

6.7 a. True. For a correct model, Cov(e, µ̂) = O,
and a plot of the residuals ei against the
fitted values µ̂i should show no association.
However, Cov(e, y) = σ 2(I − H); the
correlation makes the interpretation of the
plot of ei against yi difficult.

b. Not true. Outliers should be scrutinized but
not necessarily rejected.

c. True.

6.8 a. 5; b. 2; c. 4; d. 1

6.11 a. No; b. No; c. No; d. No; e. True

6.12 A (Palm Beach); B (Broward); C (Dade); D
(Pasco)

6.15 Estimate of transformation parameter in
Box–Cox family λ̂ ≈ 0, indicating a logarithmic
transformation of the response y.

Regression of ln(y) on x : µ̂ = 2.436 +
0.000567x; R2 = 0.986; s = 0.0845.

The first case is quite influential (x = 574;
y = 21.9; Cook = 0.585).

6.21 Scatter plot of ln(y) against ln(x) shows a linear
association with three outlying observations
(brachiosaurus, diplodocus, and triceratops).
Omitting these three cases and fitting the linear
model to the reduced data set leads to an
adequate fit.

Estimated equation: µ̂ = 2.15 + 0.752 ln(x);
R2 = 0.922; s = 0.726. The two observations
with the largest positive residuals and the largest
Cook influence are human (stand. residual =
2.72; Cook = 0.174) and rhesus monkey (stand.
residual = 2.25; Cook = 0.119).

6.22 Estimated equation: µ̂ = 74.319 −
2.089Conc + 0.430Ratio − 0.372Temp;
R2 = 0.939; s = 0.74; F(lack of fit) = 7.44; p
value = 0.036; indication of lack of fit

Analysis of Variance
Source DF SS MS F P
Regression 3 92.304 30.768 56.17 0.000
Residual Error 11 6.026 0.548
Lack of Fit 7 5.596 0.799 7.44 0.036
Pure Error 4 0.430 0.108

Total 14 98.329

Run #2 (Conc = 1, Ratio = −1, Temp = −1;
Yield = 73.9) is influential, with a large Cook’s
distance. This run should be investigated.
Without this run, there is no lack of fit.

6.26 Linear model: µ̂ = 0.131 + 0.241x , with
R2 = 0.874, is not appropriate.

Quadratic model: µ̂ = −1.16 + 0.723x −
0.0381x2, with R2 = 0.968, is a possibility.
90% confidence interval: (1.972, 2.102).

Reciprocal transformation on x: µ̂ = 2.98 −
6.93(1/x), with R2 = 0.980, is better.
90% confidence interval: (1.951, 2.026).

CHAPTER 7

7.1 a. Backward elimination: Drop x3 (step 1);
drop x4 (step 2); next candidate x2 for
elimination cannot be dropped. Model with
x1 and x2.

b. Forward selection: Enter x4 (step 1); enter x1

(step 2); enter x2 (step 3); next candidate x3
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for selection cannot be entered. Model with
x1, x2, and x4.

c. Stepwise regression: Steps 1, 2, and 3 of
forward selection; x4 can be dropped from
model containing x1, x2, and x4; no reason to
add x3 to the model with x1 and x2. Model
with x1 and x2.

d. Model with x1 and x2 : Cp = 2.68, close to
desired value 3. Full model: Cp = 5. Prefer
model with x1 and x2.

e. x2 and x4 highly correlated.

f. F = 68.6; p value <0.001; reject
β1 = β3 = 0.

7.2 a. Cp: Model with x1 and x2 (Cp = 2.7).
R2: Model with x1 and x2, or model with x1

and x4. Small gain by going to more
complicated models.

b. Backward elimination (αdrop = 0.1): Model
with x1 and x2.

Forward selection (αenter = 0.1): Model
with x1, x2, and x4.

Stepwise regression (αdrop = αenter =
0.1): Model with x1 and x2.

7.7 µ̂ = −5.0359 + 0.0671AirFlow +
0.1295CoolTemp; R2 = 0.909; Cp = 2.9

Last case (AirFlow = 70; CoolTemp = 20;
StackLoss = 1.5) is an influential observation
and should be scrutinized. Without this case.

µ̂ = −5.1076 + 0.0863AirFlow + 0.0803CoolTemp;
R2 = 0.946

7.8 Stepwise regression (αdrop = αenter = 0.15) :
µ̂ = −62.60 + 7.427%ASurf +
6.828%ABase − 5.2685Run; R2 = 0.724;
R2

adj = 0.693; Cp = 1.3
Similar model: µ̂ = −23.00 +

5.975%AsphSurf − 5.4058Run;
R2 = 0.695; R2

adj = 0.673; Cp = 1.9
Cases 13 and 15 with large Cook’s influence.

Second set of runs with considerably smaller
change in rut depth.

CHAPTER 8

8.1 b. Extremely small sample sizes (n = 13 and
n = 11) make it difficult to detect violations
of the independence assumption.

c. Root mean square errors of the fitted models
range from 1.5 to 2 percentage points. Their

size implies that half-widths of 95%
prediction intervals are at least 3 or 4
percentage points without considering the
estimation error. Incorporating the
uncertainty from the estimation with small
samples makes the actual prediction intervals
even wider. Predictions are “within-sample”
predictions (the case being predicted is part
of the data used for estimation). Prediction
errors for “out-of-sample” predictions (the
case being predicted is not part of the data
used for estimation) are larger; see part d.

d. Leaving out case i , running the regression on
the reduced data set, and predicting the
response of the case that has been left out
using the estimates from the reduced data set
lead to PRESS residuals e(i) = y(i) − ŷ(i) =
ei/(1 − hii ); see Chapter 6.

e. The four prediction models studied in this
exercise are no better and no worse than the
models proposed by Fair and
Lewis-Beck/Tien. Although they give some
indication about the winner of presidential
elections, their large uncertainty makes them
only useful in the rather uninteresting
situation in which there is little doubt about
the outcome of the election.

8.2 1a. Models with a linear component of Age
provide an adequate representation of the
relationships. The addition of Age2 is not
needed. The models lead to R2 of
approximately 60% for height and 45% for
weight. Addition of birth weight to the
regression of weight at referral on age at
referral increases the R2 from 45.9 to 48.3%.
Birth weight is marginally significant
(estimate 2.26, with p value 0.064). Each
extra pound at birth increases the weight at
referral by 2.26 pounds.

1c. Models with a linear component of AgeCo
provide an adequate representation of the
relationship between HeightCo and AgeCo.
For weight, the addition of the quadratic
component AgeCo2 becomes necessary. The
scatter plot of weight against age suggests
that the variability increases with the level.
The scatter plot of the logarithm of weight
against age indicates that the variability is
stabilized by this transformation. No major



Abraham Abraham˙Answers October 21, 2004 10:52

410 Brief Answers to Selected Exercises

lack of fit can be detected in the residuals
from the regression of ln(WeightCo) on
AgeCo.

The estimate of the transformation
parameter λ in the Box–Cox family of
transformations results in an estimate
that is close to zero, confirming the
appropriateness of the logarithmic
transformation.

2b. The correlation between the height of
mothers and the height of fathers is small
(0.077). The correlation between the weight
of mothers and the weight of fathers is larger
(0.242). There is (weak) evidence that both
partners tend to be above or below the
average weight. The scatter plot shows three
unusual cases. In one case, the father is quite
heavy, whereas the mother is of average
weight. In the other two cases, the fathers are
of average weight, whereas the mothers are
heavy. However, the omission of these three
cases does not change the correlation
coefficient (r = 0.243).

CHAPTER 9

9.1 Scatter plot of leaf area against age indicates a
nonlinear relationship.

Model with a quadratic component of age:
µ̂ = −0.123 + 2.15Age − 0.096(Age)2.
Quadratic term needed (estimate −0.096, with
t ratio −4.95); R2 = 0.966.

Gompertz model: µ̂ = 12.5 exp[−2.5
exp(−0.36Age)]. Least squares estimates are
statistically significant. Some correlation among
the estimates. Coefficient of determination
R2 = 0.961 similar to the one for quadratic
regression. Quadratic regression (linear in the
parameters) and the nonlinear Gompertz model
lead to similar fitted curves.

9.2 Large R2 for all four models.
Michaelis–Menton (R2 = 0.954) and its
modification (R2 = 0.979). The modification
leads to a significant improvement. Modified
Michaelis–Menton and modified exponential
rise models perform similarly; fitted values are
virtually indistinguishable. Reject the null
hypothesis α1 = α2 = α3 = 0 in the quadratic
Michaelis–Menton model with day indicator;

F = [(43,222,556 − 32,022,591)/3]/
[32,022,591/42] = 4.90, with probability value
P[F(3,42) ≥ 4.90] = 1 − 0.995 = 0.005.

9.3 Logarithmic transformations of the response
and the regressors in model 1; reciprocal
transformation of the response in model 2;
ln[(1/y) − 1] in model 3.

CHAPTER 10

10.3 b. Regression of sales on time:
Salest = 166.396 + (2.325)t; R2 = 0.566

Predictions and 95% prediction intervals
(from Minitab):

y52(1) = 289.60; 224.65 to 354.56

y52(2) = 291.93; 226.84 to 357.02

y52(3) = 294.25; 229.02 to 359.49

c. Significant autocorrelations in residuals,
especially at lag 1 (0.41); Durbin–Watson =
1.09. Regression of sales on time is not an
appropriate forecasting model.

d. �yt = 2.7255 + at . σ̂a = 32.51. Lag one
autocorrelation (−0.37) exceeds twice its
standard error 0.14. Not an appropriate
forecasting model.

Predictions and 95% prediction intervals:

y52(1) = 347.73; 347.73 ± 63.72

y52(2) = 350.46; 350.46 ± 90.11

y52(3) = 353.19; 353.19 ± 110.37

e. �yt = yt − yt−1 = 2.252 + at − 0.72at−1.
Autocorrelations of the residuals are small;
acceptable model.

10.4 a. Regression on time: Enrollmentt = 6527 +
(830)t . Positive autocorrelations and
unacceptable Durbin–Watson test statistic
(0.26).

c. Regression of enrollment on previous two
enrollments:

Enrollmentt = 914 + 1.469 Enrollmentt−1

−0.506 Enrollmentt−2

Autocorrelations of the residuals are small.
Durbin–Watson = 2.32. Appropriate
forecasting method. Predictions: y21(1) =
21,536; y21(2) = 21,592; y21(3) = 21,670.
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10.5 a. Regression model:

Sales = 1500 + 0.449 Time − 1154 IndJan

− 1169 IndFeb − 1073 IndMar

− 1049 IndApr − 1057 IndMay

− 1061 IndJun − 1126 IndJul

− 1062 IndAug − 984 IndSep

− 951 IndOct − 776 IndNov

b. Autocorrelation function of residuals with
spike at lag one, suggesting a first-order
moving average error model:

Salest = 1501 + 0.44Time − 1155IndJant

−1169IndFebt +· · · − 779IndNovt

+ at − 0.27at−1

Residuals are uncorrelated. Trend coefficient
small and negligible for all practical
purposes. Strong seasonal component.

c. Model with current advertising:

Salest = β0 + β1t + β2IndJant + β3IndFebt

+ · · · + β12IndNovt + β13Advt

+ at − θat−1

Insignificant advertising effect (β̂13 = 2.04
with t ratio = −0.88). Residuals are
uncorrelated.

10.10 Regression model: Cons = 0.197 − 1.04Price +
0.00331Income + 0.00346Temp. Independent
error model inadequate. Durbin–Watson
statistic = 1.02. Lag one autocorrelation (0.32)
large compared to its standard error 0.18.
Regression model with MA(1) errors:

Const = 0.33 − 1.39Pricet + 0.0029Inct

+ 0.0034Tempt + at + 0.50at−1

Regression coefficients for income and
temperature significant (t ratios exceed two).
Income and temperature with positive
regression coefficients; ice cream sales increase
with increasing income and rising temperature.
Coefficient of price is negative and not very
significant (t ratio = −1.77).

10.13 a. Regression model: FTESharest = 595 +
(0.000514)CarProdt−6 −
(5.54)FTEComt−7 + εt

Significant t ratios: t (β̂1) = 15.10 and
t (β̂2) = −8.24. Durbin–Watson (0.87)

unacceptable. Significant autocorrelations in
residuals.

b. Noisy random walk model for errors.
Regression in first differences with moving
average errors

�FTESharest = (0.0001)�CarProdt−6

− (0.69)�FTEComt−7 + at

+ 0.15at−1

No autocorrelation in the residuals.

c. Moving average parameter close to zero.
Regression model with random walk errors

�FTESharest = 3.71 + (0.00014)�CarProdt−6

− (0.79)�FTEComt−7 + at

No autocorrelation in the residuals.
Regressors not statistically significant ( p
values of 0.085 and 0.51), implying the
random walk model

�FTESharest = FTESharest − FTESharest−1

= at

Expected result: “Significant” regression in
(a) is spurious, implied by the incorrect
model for the error terms.

CHAPTER 11

11.1 Scatter plots of weekly proportions of long
fibers against time and the explanatory variables
show an increase during the second half of the
year and a relationship to the amount of stretch
reduction.

Logistic regressions of the proportions of
long fibers on stretch reduction, throughput, and
the type of process show that stretch reduction
remains the only significant variable. An
increase in the stretch reduction of one unit
(percent) reduces the odds for the occurrence of
long fibers on machine (street) 6 by 15%. A
small stretch reduction increases the odds for
quality problems. The model is adequate,
considering the small Hosmer–Lemeshow
statistic and the absence of serial correlation in
the residuals.

The fitted proportion of long fibers π at a
certain stretch reduction x is given by

π̂(x) = exp(5.928 − 0.1662x)

1 + exp(5.928 − 0.1662x)
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For example, π̂(x = 52) = 0.062, π̂(x = 53) =
0.053, and π̂(x = 57) = 0.028.

Minitab Logistic Regression Output
Odds 95% CI

Predictor Coef SE Coef Z P Ratio Lower Upper
Constant 5.928 1.818 3.26 0.001
stretch6 −0.16619 0.03359 −4.95 0.000 0.85 0.79 0.90

Log-Likelihood = −566.554
Test that all slopes are zero: G = 24.891,
DF = 1, P-value = 0.000

Goodness-of-Fit Tests
Method Chi-Square DF P
Pearson 27.801 41 0.943
Deviance 26.951 41 0.955
Hosmer-Lemeshow 6.938 7 0.435

11.3 Logistic regressions relating the proportions of
affected workers to the five factors—dust, race,
sex, smoking, and length of employment—show
that race and sex can be omitted from the model.

Smoking is an important contributor to
byssinosis. Everything else equal, not smoking
reduces the odds of contracting byssinosis by
46%.

The length of employment in the cotton
industry matters. The odds that a worker with
10 to 20 years of employment contracts
byssinosis are 1.66 times the odds of a worker
with less than 10 years in the industry. The odds
for a worker with more than 20 years are twice
(1.96) the odds of a worker with less than 10
years in the industry.

Dustiness of the workplace matters. The
odds of contracting byssinosis at workplaces
with medium and low levels of dustiness are
considerably less than the odds for workplaces
with a high level of dustiness.

The evidence for interaction terms is not
particularly strong.

CHAPTER 12

12.1 a. The Poisson regression on ln(MS) and the
three factors—type of ship, year of
construction, and period of
service—involves the estimation of 10
parameters. All three factors are needed in
the model. Type 3 ships report the smallest
number of damage incidents. Ships
constructed in years 2 (1965–1969) and 3
(1970–1974) experience the highest number

of reported damage incidents. The second
period of operation (1975–1979) is
associated with a higher number of reported
damage incidents.

b. The parameter estimate for ln(MS) is
β̂1 = 0.9027. The 95% confidence interval
0.70 ≤ β1 ≤ 1.10 includes one, which makes
the offset interpretation plausible.

c. The estimation results of the model with
offset are similar to the results in (a).

d. The deviance D = 37.80, with probability
value P(χ2(24) ≥ 37.80) = 0.0363,
indicates some overdispersion. Adjusting
the analysis for overdispersion (by using
the SCALE = DEVIANCE option in
SAS GENMOD) does not change the
findings.

e. Interaction terms indicate that interaction
components are not needed.

12.4 a. The Poisson regression of lung cancer
incidence with offset ln(POP) and the two
factors—age group and town—involves nine
parameters. Both age and town are
significant. The estimate of the town effect is
β̂9 = 0.85, with standard error 0.06. Women
in Texas have a 100[exp(0.85) − 1] =
134% higher incidence of skin cancer. The
deviance and the Pearson chi-square
statistics are approximately one and indicate
no problem with over- or underdispersion.

b. The estimation of the general model without
assuming an offset leads to the estimate
β̂1 = 1.96. The 95% confidence interval
0.73 ≤ β1 ≤ 3.18 includes one, which makes
the offset interpretation plausible.

In a subsequent analysis, age is
introduced as a continuous variable. Both
age and town are significant. Every 10 years,
the cancer rate (deaths per population)
increases by 100[exp(0.6133) − 1] =
85%.

12.6 Treating size, with groups 1–5, as a
continuous variable leads to the Poisson link
ln µ = β0 + β1DIST + β3SIZE. Income is
not significant and can be omitted from the
model. A change in distance by 10 miles
reduces the mean number of visits by 19%.
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A change in the family size by one unit
increases the mean number of visits by
14.5%.

A test whether size needs to be treated as
a class factor (with five groups requiring
four indicators) or as a continuous variable

was carried out. The log-likelihood ratio test
statistic, 2(10.7564 − 9.8849) = 1.74, is
small compared to cutoffs of the chi square
distribution with 3 degrees of freedom. It is
appropriate to treat size as a continuous
variable.
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Table A Cumulative Probabilities P (Z ≤ z) for the Standard
Normal Distribution

Table A (Continued) Cumulative Probabilities P (Z ≤ z)
for the Standard Normal Distribution

Table B Percentiles of Chi Square Distributions: α Is the
Upper Tail Area and χ2(1 −α; v) Is the 100(1 −α)
Percentile

Table C Percentiles of Student t Distributions: α Is the Upper
Tail Area and t(1 −α; v) Is the 100(1 −α)
Percentile

Table D 95th Percentiles of F Distributions: α= 0.05 Is the
Upper Tail Area and F (0.95; v,w) Is the 95th
Percentile

Table D (Continued) 99th Percentiles of F Distributions:
α= 0.01 Is the Upper Tail Area and F (0.99; v,w)
Is the 99th Percentile
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TABLE A: CUMULATIVE PROBABILITIES P(Z ≤ z) FOR THE STANDARD
NORMAL DISTRIBUTION

−2 −1 0 1 2
z

Normal Distribution Table (Each entry is the total area under the standard normal curve to the left
of z, which is specified to two decimal places by joining the row value to the column value.)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

−3.9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
−3.8 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
−3.7 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
−3.6 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
−3.5 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
−3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
−3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
−3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
−3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
−3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
−2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
−2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
−2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
−2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
−2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
−2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
−2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
−2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
−2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
−2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
−1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
−1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
−1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
−1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
−1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
−1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
−1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
−1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
−1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
−1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
−0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
−0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1921 0.1894 0.1867
−0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
−0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
−0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2812 0.2877 0.2843 0.2810 0.2776
−0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
−0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
−0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
−0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
−0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
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TABLE A: (CONTINUED) CUMULATIVE PROBABILITIES P(Z ≤ z) FOR THE
STANDARD NORMAL DISTRIBUTION

−2 −1 0 1 2
z

Normal Distribution Table (Each entry is the total area under the standard normal curve to the left
of z, which is specified to two decimal places by joining the row value to the column value.)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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TABLE B: PERCENTILES OF CHI-SQUARE DISTRIBUTIONS: α IS THE UPPER
TAIL AREA AND χ2(1 −α; v) IS THE 100(1 −α) PERCENTILE

c2 (1 − a ; v)0

a

v α = 0.995 α = 0.99 α = 0.975 α = 0.95 α = 0.05 α = 0.025 α = 0.01 α = 0.005 v

1 0.04393 0.03157 0.03982 0.00393 3.841 5.024 6.635 7.879 1
2 0.0100 0.0201 0.0506 0.103 5.991 7.378 9.210 10.597 2
3 0.0717 0.115 0.216 0.352 7.815 9.348 11.345 12.838 3
4 0.207 0.297 0.484 0.711 9.488 11.143 13.277 14.860 4
5 0.412 0.554 0.831 1.145 11.070 12.832 15.086 16.750 5
6 0.676 0.872 1.237 1.635 12.592 14.449 16.812 18.548 6
7 0.989 1.239 1.690 2.167 14.067 16.013 18.475 20.278 7
8 1.344 1.646 2.180 2.733 15.507 17.535 20.090 21.955 8
9 1.735 2.088 2.700 3.325 16.919 19.023 21.666 23.589 9

10 2.156 2.558 3.247 3.940 18.307 20.483 23.209 25.188 10
11 2.603 3.053 3.816 4.575 19.675 21.920 24.725 26.757 11
12 3.074 3.571 4.404 5.226 21.026 23.337 26.217 28.300 12
13 3.565 4.107 5.009 5.892 22.362 24.736 27.688 29.819 13
14 4.075 4.660 5.629 6.571 23.685 26.119 29.141 31.319 14
15 4.601 5.229 6.262 7.261 24.996 27.488 30.578 32.801 15
16 5.142 5.812 6.908 7.962 26.296 28.845 32.000 34.267 16
17 5.697 6.408 7.564 8.672 27.587 30.191 33.409 35.718 17
18 6.265 7.015 8.231 9.390 28.869 31.526 34.805 37.156 18
19 6.844 7.633 8.907 10.117 30.144 32.852 36.191 38.582 19
20 7.434 8.260 9.591 10.851 31.410 34.170 37.566 39.997 20
21 8.034 8.897 10.283 11.591 32.671 35.479 38.932 41.401 21
22 8.643 9.542 10.982 12.338 33.924 36.781 40.289 42.796 22
23 9.260 10.196 11.688 13.091 35.172 38.076 41.638 44.181 23
24 9.886 10.856 12.401 13.848 36.415 39.364 42.980 45.558 24
25 10.520 11.524 13.120 14.611 37.652 40.646 44.314 46.928 25
26 11.160 12.198 13.844 15.379 38.885 41.923 45.642 48.290 26
27 11.808 12.879 14.573 16.151 40.113 43.194 46.963 49.645 27
28 12.461 13.565 15.308 16.928 41.337 44.461 48.278 20.993 28
29 13.121 14.256 16.047 17.708 42.557 45.722 49.588 52.336 29
30 13.787 14.953 16.791 18.493 43.773 46.979 50.892 53.672 30

Source: Reproduced from Table 8 of E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, Vol. 1
(Cambridge, UK: Cambridge University Press, 1954). Reproduced with permission of the Biometrika Trustees.
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TABLE C: PERCENTILES OF STUDENT t DISTRIBUTIONS: α IS THE UPPER
TAIL AREA AND t(1 −α; v) IS THE 100(1 −α) PERCENTILE

0

a

t(1 − a; v)

v α = 0.10 α = 0.05 α = 0.025 α = 0.01 α = 0.005

1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169
11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947
16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845
21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787
26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
30 1.310 1.697 2.042 2.457 2.750
40 1.303 1.684 2.021 2.423 2.704
60 1.296 1.671 2.000 2.390 2.660

120 1.289 1.658 1.980 2.358 2.617
∞ 1.282 1.645 1.960 2.326 2.576

Source: Reproduced from Table 12 of E. S. Pearson and H. O. Hartley, Biometrika Tables for
Statisticians, Vol. 1 (Cambridge, UK: Cambridge University Press, 1954). Reproduced with permission
of the Biometrika Trustees.
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Monomolecular (“modified”

exponential trend) model, 290
Monotone link function, 382
Morgan-Mercer-Flodin family of

growth models, 292
Multicollinearity

correlation among regressor
variables, 158

description, 157
detection of, 158–159
example, 157
guarding against, 159–160
nonlinear regression models,

299
observational studies, 225
variance inflation factors,

158–159
Multiple linear regression

additional sum of squares
principle, 112–121

adequate residual plots, 100
analysis of variance and, 121–124
assumptions with, 89–90
coefficient of determination,

124–125
confidence intervals, 102,

104–106
data plots with same R2, 125–126
degrees of freedom, 97
estimation of the model, 90–102
gas consumption example, 88–89,

106–108, 112–113, 123–124
Gauss-Markov Theorem, 98–99
generalized least squares, 125–130
general model, 89–90
HDLC/oral contraceptive data

example, 113–114
least squares geometric

interpretation, 91–95
linear combination of coefficients,

105–106
marginal distributions, 97
prediction with, 108, 110–111
proofs, 130–134
properties of least squares

estimates/vectors, 95–99
residuals/ plots, 99–100, 103,

109–110

statistical inference, 102–111
UFFI example, 87–88, 101–102,

103, 104–106
in vector form, 88, 89, 90

Multivariate normal distribution
conditional distributions of, 81
equivalence of zero

covariance/independence,
81–82

marginal distributions of, 81
overview, 80–82
properties of, 80–82
reproductive property of, 80–81

Myers, R.H., 383, 395

Nelder, J.A., 382, 383
Newbold, P., 315, 316
Newton-Raphson procedure, 295,

296–297, 350–353, 384–385
Noise, 3
Noisy random walk errors/model, 309,

311–312, 319–320
Nominal response, 374–376
Nonlinear regression models

chlorine loss example, 299–302
computer software and, 299
deterministic models, 289–293
differential equations and, 288–289
examples, 299–304
growth models and, 288–289
inference in, 294–299
intrinsically nonlinear regression

models, 288
iterative estimation schemes and,

294, 299
multicollinearity and, 299
overview, 288–289, 293–294
plant shoot length/irradiation

example, 299–302
resources on, 294

Nonsingular matrix, 70, 71, 73
Normal distribution

multivariate, 80–82
univariate, 53, 54, 80

Normal equations
multiple linear regression, 91
simple linear regression, 28–29

Normality assumption check,
177–179

Normal probability plots/paper,
177–179

Observational studies
data from, 22–23, 222
description, 8
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multicollinearity and, 225
UFFI example, 7–9

Odds of occurrence, 346
One-sample problem, 144–145
One-way classification, 151–154
Oral contraceptive/HDLC example,

9–11
additional sum of squares

principle, 113–114, 119–120
Ordinal response, 376
Orthogonal matrix, 71
Orthogonal projection, 94
Orthogonal regressor variables, 158
Orthogonal transformations, 73
Orthogonal vectors, 69
Orthonormal basis vectors, 72
Oscillation of pendulum example, 3
Outliers

description, 182–186
scatter plots of types, 185
treatment of, 185–187
in the x dimension, 182, 185
in the y dimension, 183, 185

Overdispersion
logistic regression, 372–373
Poisson regression, 387–388

Parameter estimation, logistic
regression, 350–353

Parameter interpretation
logistic regression, 346–350
Poisson regression, 383

Parsimonious model, See also
Model simplicity

description, 15
gas consumption data example,

11–15
in model building, 356

Partial F tests, 119
Partial sum of squares, 119
Pearson chi-square, 358–359, 387
Pearson residuals, 359, 363–364,

365, 371, 387, 391
Pendulum oscillation example, 3
PESS (pure error sum of squares),

200–201
Plant shoot length/irradiation

example, 299–302
Poincare, Henri, 18–19
Poisson regression

deviance/Pearson residuals, 387
elephant mating success

example, 389–394
generalized estimating

equations (GEEs), 388

inference in, 385–387
link function of, 382
overdispersion, 387–388
overview, 382–383
parameter estimation, 383–385
reproduction of ceriodaphnia

organisms, 395–399
Polynomial models, 146–147
Polytomous situation, 374
Poole, J.H., 389
Positive definite/semidefinite

matrix, 71, 73
Positive semidefinite covariance

matrix, 79, 80
Power plant example

all possible regressions with,
228–231

automatic model selection
methods, 235–236, 237,
238

backward elimination model
selection, 237

correlations among regressor
variables, 226

C p statistic/plot, 232–233
description, 223–224
forward (model) selection,

235–236
multicollinearity and, 225, 226
PRESS statistic, 234
stepwise regression model

selection, 238
Power transformations (Box-Cox

transformations), 206–207
Predicting Presidential Elections

and Other Things (Fair),
257

Predicting price of Bordeaux wine
overview, 253–258
price predictions, 257–258
scatter plots, 255–256

Predicting U.S. presidential elections
Fair/“economy incumbency model,”

266–279
political scientists, 274–279

Prediction
caution on, 111
with modeling, 17
multiple linear regression, 108,

110–111
simple linear regression, 38–41

Prediction error sum of squares.
See PRESS

Prediction interval, 40
Pregibon, D., 359, 360

PRESS residuals/statistic, 190, 192,
233–234

Probability value, 36
Probit, 372, 373–374
Probit v. logit, 374
Problem-solving cycle, 280
Production function, 1
Proofs, 130–134

independence of β̂ and S(β̂),
132–133

minimization of S(β), 130–131
unbiasedness of s2, 131–132

Prospective (case-control) study,
349

Purdue University Online Writing
Lab, 281

Pure error sum of squares (PESS),
200–202

p value. See Probability value

Quadratic forms, 71, 82–83
Quenouille, M.H., 328

Ramsey, F.L., 366, 389
Random sample, 12
Random vectors

covariance matrix and, 77–80
expected value/mean of, 76–77
overview, 76–80

Random walk model, 309, 310
Rank of matrix, 70
Regression (model sum of squares),

122
Regression modeling, 1–2, 313
Regression sum of squares (SSR)

multiple linear regression, 122
simple linear regression, 42

Regression through the origin, 51–52
Reproduction of ceriodaphnia

organisms, 395–399
Reproductive property of multivariate

normal distribution, 80–81
Residual (error) sum of squares (SSE)

description, 42
in multiple linear regression, 122
in simple linear regression, 30–31

Residual analysis
added variable plot, 173, 176
normal probability plots, 177–179
residuals/residual plots, 170–173,

174–175, 195–198
serial correlation among errors, 177,

179–182
standardized residuals, 172
studentized residuals, 172
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Residual analysis (Continued)
UFFI example residual plots,

183–184
Response variable, 2
Restricted model v. full model,

112–114, 118, 119
Retrospective study, 349–350
Richards family of growth models,

291–292

SAS software, 50, 107, 388, 389, 399
Saturated model

logistic regression, 354
Poisson regression, 386–387

Saturation levels, 290
SCA (Scientific Computing

Associates) software, 320
Schafer, D.W., 366, 389
Scientific Computing Associates

(SCA) software, 320
Seber, G.A.F., 294
Second-order autoregressive model,

311
Serial correlation. See Autocorrelation

(serial correlation)
Shrinkage example, 160–162
Signal, 3
Simple linear regression

analysis of variance approach to,
41–46

assumptions with, 26–27
educational achievement (Iowa)

example, 46–51
estimation of parameters, 27–29
estimation of σ , 30–31
inference about regression

parameters, 33–38
least squares fit, 30, 31–33
matrix approach to, 74–76
normal distribution, 33–34
objectives of, 27
prediction with, 38–41
random x’s with, 52–53
regression through the origin,

51–52
residual, 29
univariate distributions, 53–56

Singh, M., 302
Singular matrix, 70
Smith, H., 300
Snell, E.J., 223
Social sciences

data problems with, 23
starting from the data in, 21

Spatial correlation, 127

Specification issues in regression
models

catalyst/temperature examples,
147–149, 151–154

comparison of “treatments,” 151–154
elementary special cases, 144–147
one-sample problem, 144–145
pizza sales example, 154–158
polynomial models, 146–147
systems of straight lines, 147–151
two-sample problem, 145–146
UFFI example, 149–151
X matrices

with nearly linear-dependent
columns, 154–160

with orthogonal columns,
160–162

Spectral representation (canonical
reduction), 73–74

S-Plus, 101–102, 193, 199, 389
SPSS software, 50
Square matrix

determinant of, 70–71
eigenvalues/eigenvectors of, 73, 74
idempotent matrix, 72, 94
overview, 67, 70–71, 72
trace of, 72

Stabilizing the variance. See
Variance-stabilizing
transformations

Standardized residuals, 172
Standard normal distribution, 80
Standard order of listing runs, 160
Studentized residuals, 172
Student projects, 280–282
Student t distribution, 54, 55
Surveys, 23
Symmetric matrix, 68, 73–74

t distribution, 104
Teachers’ salary example, 3–5
Tiao, G.C., 328, 334
Tien, C., 274
Time series models

cointegration/regression with,
327–334

combined regression time series
models, 316–324

first-order autoregressive model,
307–310

hog series example, 328–334
ignoring autocorrelation in errors,

313–316
model-building strategy/example,

324–327

noisy random walk model, 309,
311–312

overview, 307–313, 312–313
random walk model, 309, 310
sales/advertising weight control

product example, 324–327
second-order autoregressive model,

311
simulations from error models, 309

Total sum of squares (SST)
multiple linear regression, 122
simple linear regression, 41–42

Transformations, 288
t ratio, 36, 46, 104
Treatment sum of squares, 154
Tutz, G., 383
Two-sample problem, 145–146

UFFI example
confidence intervals, 104–106
description, 7–9
estimates of the full model, 149–151
multiple linear regression, 87–88,

101–102, 103, 104–106
prediction with, 108, 110–111
residual analysis/plots, 103, 182–184
S-Plus input/output, 101–102
statistical inference, 104–106
in vector form, 87–88

Unit vector, 68
Univariate distributions

chi-square distribution, 53, 54, 55
F distribution, 55–56
normal distribution, 53, 54, 80
overview, 53–56
Student t distribution, 54, 55

University of Florida–The Reading
and Writing Center, 281

University of Victoria (Canada)
Writer’s Guide, 281

University of Wisconsin Writing
Center, 281

Unobserved heterogeneity, 372–373
Urea formaldehyde foam insulation

example. See UFFI example

Variance inflation factors, 158–159
Variance-stabilizing transformations

Box-Cox transformations,
206–207

logarithmic transformations, 207
overview, 205

Vectors
addition/subtraction, 68
basis vectors, 72
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linearly dependent/independent
vectors, 69–70

orthogonal vectors, 69
overview, 68, 69, 72–73
product of, 68
projections of, 73
random vectors, 76–80
of residuals, 75, 94
unit vector, 68
zero vector, 68

Vector space, 72–73

Wald confidence intervals, 389,
393, 396

Wald tests, 355, 357, 386

Watts, D.G., 294
Websites

for combined regression time
series models software, 320

for writing resources, 281
Wedderburn, R.W.M., 382, 383
Weibull growth model, 291–292
Weighted least squares (WLS)

estimate, 129–130, 385
Weisberg, S., 360
White noise sequence, 309
Wild, C.J., 294
Wine price prediction example.

See Predicting price of
Bordeaux wine

Within group sum of squares, 154,
See Residual (error) sum of
squares (SSE)

Woodworth, George, 360
Writing resources, 281

X matrices
with nearly linear dependent

columns, 154–170
with orthogonal columns, 160–162

Zant, McClesky v., 360
Zero matrix, 67
Zero vector, 68
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