SOLUTIONSTO EXERCISESIN CHAPTER 2

21 (a) Weusetherelationship 3= (X’X)~1(X"Y). Thevector X"Y isof the form

Eyt 10
XY = | Bzuy, | = | 40 |, andthematrix X’X isof the form
DT 40
n Yxi hIATS 10 0 O
X'X = |Zzy Xa3 Exﬂxﬁ] = [O 20 0 ],
Yz 1nrm  Yak 0 0 40

1/10 0 0 10 0 0
sothat (X'X)1=| 0o 1/20 0 |=|0 .05 0
0 0

) 10
(b) Wecaculate 3X'Y =[1 2 1]- [

40] =130,and =13y =510 =
40

=1,
y'y = %y = 165, so that
SSTO =Y’y — ny? = 165 — 10(12) = 155, and SSE = SSTO — SSR =35
The ANOVA tableis
degrees Mean
Source Sum of Squares of freedom Square F-Ratio
ocg _ = _ _ SRR MSR _
Regresson SSR=8X"Y — ny? p=2 MSR= SR MR _ 12
=120 =60
Residual SSE = €e n—p—1 MSE = —SE
=35
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Total SSTO=Y'y — ny? =155 9

R? = &% = 120 = 774, which indicates afairly strong relationship between y and z;,z.

() The standard error of 30 is 85, = S\/Coo s where s = v/MSE = \/5 and c¢;; isthe 4, j-entry in the

matrix C = (X’X)™1, so that ¢ = .10 ( (X’X) L isa(p+ 1)x(p + 1) matrix, and the rows and
columns are numbered from 0 to p). Thus, s = V5 -4/.1 = .7071.
In asimilar way, we have sy =sy/en =5, and sp =Sy = .3536.

)

(c) Thet-statisticsfor 3, , 3, and 3, are ty == L = 1414,

Bo

The residual degrees of freedom are 7, so that ¢ 925(7) = 2.36.

According to the calculated ¢-statistics for 3, , 4, and 3, , for the hypothesis test with null
hypothesis Hy: 5; =0 and aternative H,: 3; # 0, at significance level o = .05, we would
not reject Hy inthetest of 5y (since 1.414 = |t| < t925(7) = 2.36) , but we would reject Hj in
the cases of 3, (since 4.0 > 2.36) and 5, (since 2.828 > 2.36).

(d) The F-ratio for the hypothesis test with null hypothesis Hy: 8, = 8> = 0 and dternative H;: at least
one of 5, or 85 # 0 has F'-ratio (from the ANOVA table) I = 12 . Thecritical value for the test with
alevel of significanceof « = .05is F,(p,n —p — 1) = Fo5(2,7) = 4.74.

Thus, H isrejected at the 5% level of significance (since 12 > 4.74).
In thissimple linear regression exercise, x; =t ,fort = 1,...,n . The norma equations are:

n _ n n _ n n(n+1) _ n
nfo + ﬂl%xt = Efyt — nfo+ ﬂﬁlﬁ = %yt — nf+ =5 b= Efyt and
50%%-1-51%95? = %wtyt — 50%154-@%752 = %L]tyt — n<n2+1) Bo + n(n+l)6<2n+l) B = %tyt-
Since the x;'s are the integersfrom 1 to n, it followsthat = = ”gl ,and
nS(z —T)? = nSa? — (Sz,)2 = nn(n+1)6(2n+1) _ (n(n;»l))Q _ nQ(ré—l) 5o that
the least squares estimates are:

n(n+1)

3 _ nEzwy—(Sz)(By) _ nitye——5 Yy 128ty —6(n+1)Sy,
17 n¥z—(3m)? 112(1112*1) —  n(n—1)(n+1)
B = A= = 120ty—6(n+DSy  ntl - 65ty—3(nt1)Sy,
and Gy =y -5 T=7 n(n=1)(n+1) 2 = n(n—1) :

(@ Thet-valueusedtotest Hy: 5 = 0vs. Hy £0is tﬁ = 31/53 = % =17.25.
1 1 "
With n=17 and p=2, for a test a levdl a=.05 , we find from the i¢-tables that

t.025<’n —p— 1) = t.025(l4> = 2.14. Since tﬁl > t.025<’n —p— 1) , we reject Hj at the 5% level.
(b) The completed ANOVA tableis

Source SS df MS

Regression 66 2 33

Error 34 14 2.429

Total (corr. for mean) 100 16

The entriesin the table are found as follows: SSR = SSTO — SSE = 100 — 34 = 66;

the regression degrees of freedomarep = 2, theerrordfaren —p—-1=17-2—-1=14
and thetotal df aren — 1 = 16 ; MSR = SSR/p = 66/2 = 33,

MSE = SSE/(n — p — 1) = 34/14 = 2.429.

R? = SSR/SSTO = 66/100 = .66.

Totest Hy: 5 = (3 =0 wecdculate F' = MR — 33 — 1359, For atest at the

429 —
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o = .05 level, we find F,(p,n—p—1) = Fo5(2,14) = 3.74. Since F' > F5, we reject H, at the
5% level.

1 cost sinf
. . 1 —sind —cosf
The design matrix is X = 1 eind cosf
1 —cosf —sind
4 0 0 Y1+ Y2 +ys +ya
ThenX’X = |0 2 2sin20 | and XY = | (y1 — ya)cos + (y3 — y2)sind
0 2sin26 2 (y1 — ya)sind + (ys — y2)cost
0 0

and (X'X)~1=

1 —sin26
2c0s220  2co0s?20 so that
—sin26
2c0s220  2co0s?20

O O A=

B=X'X)"IX'Y , whichresultsin 3, = (y1 + v + y3 + y4)/4,

3 _ (y1—ya)[cosO—sind sin20]+(ys—ya)[sinf—cosl sin20] __ (y1—ya)cosO—(y3—y2)sind
- 2c05%20 - 2c0520

since cosf — sinf sin26 = cost — sinf 2sinf cos) = cosf[1—2sin’0] = cosh cos26, and
sinf — cosf sin20 = sind — cosd 2sind cosd = sinf cos26, and similarly,

D (y1—ya)[sinf—cosh sin20]+(ys—ya)[cosO—sind sin20] _  —(y1—ya4)sinf+(ys—y2)cosl
ﬁg - 2c05220 - 2c0520

V(By) = 0% = 3245 (e isthe (1,1)-entry in (X"X) 1), and similarly
V(By) = 0%cas = 5.5

The ANOVA tableis

Source SS df MS

Regression 66 2 33

Error 134 17 7.882

Tota (corr. for mean) 200 19

The entriesin the ANOV A table are calculated as follows:

SSE = SSTO — SSR = 200 — 66 = 134; regressiondf arep = 2, errordf aren — p— 1 = 17,
total df aren — 1 = 19; MSE = SSE/p = 66/2 = 33,

MSR = SSR/(n — p— 1) = 134/17 = 7.882.

2 _ SSR __ 66 __
R _SSTO_QOO_'?)?)
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The F-ratiois F = N = -2 = 4187,
and the critical value for o = .05 is F5(2,17) =359, so that Hy: 51 = B2 = 0 isregected at the

.05 significance level, since F' > Fos(p,n —p —1).

We can test whether 5, = 0 by using the extra sum of squares approach. From the origina
information, we know that SSR(X;, X») =66 , and we are now told that SSR(X;) = 50 (for the
simpler one-variable regression model considered in this part of the problem). The extra
regression sum of squaresis
SSR(X 41, - Xp | X1, X2, ..., Xy) = SSR(X4, X2, ..., Xgy ey Xp) — SSR(X7, Xo, ..., Xy)
= SSR(X1, Xy) — SSR(X;) = 16
(herep = 2 and ¢ = 1). Thenthe I Statisticto test Hy : fg41 = --- = 8, = 0,

whichinthiscaseis Ho: 8y = 0, is F* = SRWeeto ol X1:X3.. %) (p0)

* _ 16/1
sothat F" = ;ii- = 2.030.

The critical value for the hypothesis test at level = .05 is Fos(1,17) = 4.45 , so that H, is not
rejected at the 5% level of significance, since 2.030 < 4.45.

R?= SR . SSR=(.88)(100) = 88 , and then SSE — SSTO — SSR = 100 — 88 = 12.
The F-ratiototest Hy: 31 = B, = 83 = 0 is F = % = 85 _ 1467, and

Fos5(3,6) = 4.76, sothat Hy isrejected at the 5% level.

From the information given, we can find SSR(X7, X5) = SSR(X; | X3) + SSR(X;) = 85,
SSR(X, X3) = SSR(X3 | Xa) + SSR(X>) = 41,

SSR(X1, X5) = SSR(X1, X3, X3) — SSR(X, | X1, X3) =88—2=286

(note that SSR( X, X5, X3) is SSR for the full 3-variable regression from part (a)).

The partial test for X, (with o = .05) uses F'-ratio

P SROGGX)1 SSRXX)-SRUG.X;) _ 8841 _ oo
= SEXLXG.XG)(np-1) SSE(X1,X2,X3)/6 = Tiz6 — 499

and critical value Fp5(1,6) = 5.99 , so that X; appears to make a significant additional effect on Y’
after X, and X3 have already been included.

The partial test for X, (with o = .05) uses F'-ratio

o SROGIXLX)A_ SSR(X.X).Xa)-SSRUX.X5) _ 83-86 _ 1
= XX (n—p-1) SSE(X1,X2,X3)/6 = e — Y

and critical value Fg5(1,6) = 5.99, so that X, appears to make no significant additional effect on Y’
after X, and X3 have already been included.

The partial test for X3 (with o = .05) uses F'-ratio

o SSR(X;5|X1,X2)/1 _ SSR(X;,X9,X3)-SSR(X;,X;) _ 88-85 — 15,

= SSE(X1.X0.X3)(n—p-1) SSE(X1,X2,X3)/6 = 126

and critical value Fo5(1,6) = 5.99, so that X3 appears to make no significant additional effect on Y’
after X; and X, have already been included.

Totest Hy: B = B3 = 0, we use the extra sum of squares approach and find

o SSR(X2, X5|X:1)/(3-1)

_ [SSROX.X.X5)-SSROG)I2 _ (88822 _ 4 5
= SSE(X;,X2.X3)/(10-3-1) SSE(X1,X2,X3)/6 = T16 T O

and the critical valueis Flo5(2,6) = 5.14. Thus, we do not reject H, at the .05 level.
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These tests clearly point to X as being the most important variable in describing the effect on Y, with
X5 and X3 being of little or no significance.

Thereare3+ 3+ 3+ 3+ 5= 17 = n datapointsand k£ = 5 settings of X.

The ANOVA tableis

Source SS df MS F
Regression 73 1 73 36.5
Error 30 15 2.0

Lack of fit 21 3 7.0

Pure error 9 12 0.75
Total (corr. for mean) 103 16

The entriesin the ANOVA table are found as follows: MSR = SSR/1 = 73,
SSEhasn —p—1=17—-1— 1= 15df and MSE = SSE/15 = 30/15 = 2.0,
I'=MSR/MSE = 73/20=36.5; SSLF=SSE — SSPE =30-9 =21,
SSLFhask —p—1=5—-1—-1=3df , MSLF = SSLF/3 = 21/3 = 7.0,
SSPE hasn — k = 17 — 5 = 12 df , MSPE = SSPE/12 = 9/12 = 0.75.
SSTOhasn — 1 = 16 df.

Wecantest Hy: 5; = Ousing theusual F-test: F' = 36.5 and Fl5(1,15) = 4.54,
so that H, isrejected at the 5% level - there appearsto be asignificant effect on Y by X.

We can perform alack of fit F-test: Fr = Sg’éf(;f;)” = MSF_ 10 — 933,

and since Fly5(3,12) = 3.49, we conclude that lack of fit isindicated in this model.

Usualy s> = MSR (2.0 in this example) is taken as the estimate of o2. Since the model appears to
suffer from lack of fit, the appropriate estimate of o2 is MSPE = 0.75.

The model can bewritten as y; = fBx; + ¢, where y; = z; — 100 and z; = y;_1.
We have 9 datapoints (xs,¥2) , ..., (z10,%10) (thereisno a, since thiswould be y,).

Thisis now asimple regression model through the origin, so that
3 _ Smys _ ToyottTioyio . yiyettyeyio 160 80

ZZ? - Z§+"'+Z%O - y%++yg 216—16 —
(notethat y? + - +y2 =y + - +v2 +v3 — ydy)-

Ui = Pau = Py = (80)(4) =32 — 2, =7, +100 = 1032,

and j,, = By, = 7, = (.80)(38.2) =256 — %, = 102.56.

The 95% prediction interval for z;, is 21, £ £ g5(n — p)Sy/1+ g_ilg .
10 9

Z11 = ¥10, and %x? = %yf , and the df isn — p because

there is no constant term in the regression model. The interval becomes

2 HLs(8)-1- |14 é’— — 1032+ (231)/ 1+ 15 — 1032+ 240.
lyt

The wording suggeststhat s = (.7)4/ SSTO/(n — 1) , since without the regression, the residual standard
deviation is the sample standard deviation of the y;'s , i.e, v/ SSTO/n — 1, whereas, with the
regression, the residual standard deviationiss = y/SSE/(n — p — 1). But then

SSE/(n—p— SSE/(n—p—
52 = (AQ[SSTO/(n — 1)] — Togly) =49 — RZ=1-FGh = 51
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Yy = BXX(X'X)"ly = B'X'y (sncethe X'X(X'X)~1 =1).

_ MSR _ SSR/p _ SSR(n—p-1) __ SgTo(n p—1) R n—p-1
MSE = SSH(n—p-1) ~ (SSTO-SR)p _ (20 ), — 1-B  p

If estimation had been done using the true model y; = Gy + Bi1x: + €; , then in the course of the
estimation, it isfound that 5, = 7 — 5,7 isan unbiased estimate of 5,. Thus, usingy
as an estimate of 4, resultsinabiasof 3,7 .

Since E(Y) = X161 + X2ﬁ2 it follows that
E(B,) = E[(X1X1) 71X]y] = (X{X1) 71X{[X181 + X2B82] = B1 + (X[ X1) 71X X2
B2

If the X1 is“orthogonal” to X2 ,i.e., Y azyz; =0 for any z; from Xy and z; from Xo ,
t=1

then X X2 = 0 (amatrix with al entries 0), and the 3, from part (a) will be unbiased.

V(/ﬂ\l - BQ) = (ﬂ1) + V(ﬂo) = Slan- 1'1) + Z@t?x K Smceﬂl and 52 are
independent (they are found from independent samples). o? and o7 are estimated as
= SSE,/(n —p—1) = 21,357/13 = 1642.85 and
=SSE)/(n—p—1) = 29,064/13 = 2235 69 . The estimated variance is

V(Bl - 32) - /‘7(31) + /‘7(32> - :vﬂ z1)2 + Z(l'iZ Iz) - 116543%5 + 212538(?19 - .257 )
Totest Hy: 51 = 3, , we calculate the t-value ¢ = \/‘Eg@?ﬁ) = 2-3};_‘;159 = _272.
P1—=P2 2ol

The critical value for the hypothesistest with e = .10is 7 5(26) = 1.71 (df are 13 + 13
from the two samples). Since |t| > t05(26) , Hy isrejected at the 10% level of significance.

V (B, — By) = V(B + V(B,) istill true.

1 -1 —c¢

1 -1 —¢

1 -1 c
Combining the dataresultsin ann x 3 design matrix ~ X = :

1 -1 c

1 1 0

11 0 |

The model canbewrittenas Y ,Z = X8 + €,
indicating that both Y and Z are incorporated into the



model.

2.14 (b) Thenormal equationsare (X’X)8 = X’y , which
in this case becomes

N Y
n n —4m 0 B 2m n
n—4m n 0 Gl =1 % v JrQmEJr 1%
0 0 2mc? ﬁ m 2m
2 — Ly + X
T Y ma 1yt
n —n+4m 0
. 8mn—16m? 8mn—16m?
— ~2(Y! -1 _ 2 —n+4m n
V(,B) =0 (X X) =0 8mn—16m? 8mn—16m?2 0
0 0 5L

2mc?

The variance of  (asaprediction) is V (§) = o[ 1 + X}, (X"X) " 1xg] .

Inthiscase, Xj; =[1 1 c] and n=7,s0tha V(§) = o’ [ 1+ -2 + 5= ]

The minimum V() occurs at the minimum of g(m) = +—=— + ;- . Sincen = 7, and

m <, wemust have m < 3 (m isaninteger). First, m # 0 since division by 0 is not allowed. By
trial and error, if m=1,¢g(1)=.7,if m=2, ¢(2)=.583 ,and if m =3, g(3) =117 . The
minimum occurs at m = 2.

2.15 Theregression model isy; = By + Srxu + Boxs + B3z + Baxpg + € -
Using a computer solution for the problem, we get
Yy, = 2483 4 2.292z1; — .050zk2 + 13.924x),3 — .042x;4 .
Withzp = 10, 249 = 6.0, 243 = 1.5 and x4 = 20, the predicted sale value will be
7, = 45.09 (thousands). s> = MSE = 17.55 (withn —p —1 =23 df) — s =4.19.
The 95% prediction interval is §, = t g25(23) s\/l + X} (X" X) 71X , where

Xj =1[1 10 6 15 20]. Thisinterval is 45.09 + (2.07)(4.19)\/1.19 = 45.09 + 9.46 .

216 (a) Fase. Least squares estimation introduces restrictions among residuals.

(b) True. SSR=B X'y — nz? ,but B = (X’X)"1X'y sothat
B — (XX 1X0y) = yX [(XX) 1) = yX (X'X)
( X’X isasymmetric matrix and soisitsinverse (X’X)~ , which means that
(X"X)~! isequal to its own transpose).
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True. SSE will never increase (and will usually decrease) with the addition of a variable into a
regression model, but MSE = SSE/(n — p — 1) may increase as the number of variablesin
model goesfromptop + 1.

False. Ant-test of asingle f3; isatest of significance of 5; after all other variables have been included
in the model. A ; may be insignificant because the variable X; is strongly correlated with another
variable and doesn't provide any “significant" additional description of the behavior of Y.

False.

2 _ SSR _ %39’
Fase. R? = &% = 240 .

False. The definition of 52 is 52 = 27" and 2 = 2D

2 B(w=7)(%—7) _ B(z:—7)(y:=7) _
ﬁl - (z—7)? and r = T(@—2)? % (y:—7)° r S(z—Z)? s

(then — 1 'scancel).
False.

True. See Example 1 on p. 59 of the text.
Fase. A quaitative variable with & levelsis represented by & — 1 indicator or “dummy variables.
False. The model will have to be transformed so that the error term is additive.

True. Usethetransformation z; = — In( ;- — 1) = fBo + fize + In(er) .

False. The procedure allows for alack-of-fit test for any number p of independent variables. See p. 57
of the text.

False. Asmentioned on p. 47, “... it is quite possible that backward elimination and forward selection
lead to models that include different explanatory variables ...".

False. Correlation is not causation.

False. Residuals should always be checked for correlation.

False. The sum of residuals from alinear regressionis 0 if the model includes a constant term.

yr = Bo + it + 61IND; +¢; , where IND; =1if ¢t >0 andis O otherwise. Thisis a 2-variable
model, variable 1 is time, ¢, and variable 2 is the indicator variable, IND, which is 0 or 1 depending

upon whether the treatment has not yet been applied (¢ < 0) or has been applied (¢ > 0). The design
matrix is

1 —5 0
L8 6 0 3 71
X = 1 _11 2 and X’X =10 70 9 ,X’y=[99]
3 9 3 49

1 3 1

1 5 1]
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A computer generated solution results in parameter estimates of 3, = 10.708, 3, = 1.125,

', = 2.250 . The t-value for the ¢-test of significance of 6; is t; = 2192, and since ¢ g95(3) = 3.18
(n—p—1=6-2—1=3df),weseethat Hy: 6, = 0isnot rejected at the

5% level of significance (however Hy: 51 = O isrejected at the 5% level). The data indicates that the
jump is not significant.

This situation can be modeled by y: = 5y + fit + 52t IND; + ¢, , where IND; is the same as in part
(a). The design matrix is now

1 -5 0
1 -3 0
1 —1 0
=11 1 1
1 3 3
1 5 5
The computer generated solution resultsin 3, = 12.208, 3, = 1.539 , B, = —.250, but

the t-test at the 5% level of [ : 5, = 0 isnot rejected (it isrejected for 51).

As mentioned on p. 51 of the text, “if the usual least squares procedures are employed in the presence
of serialy correlated errors, the parameter estimates may appear significantly different from zero when
in fact they are not". If error terms follow the random walk, a modified model of the type in Equation
2.64 on p. 67 of the text can be used.

The usual least squares estimator is ﬁ — Z2r and it is unbiased, since

2
Yai

%] X Y E Yx B + z H D
Ep) = E( Z%h) = Ifméyﬂ = Za éi? @) — gf;f = (. Thevariance of § is

V) = B( 5 ) = T = sk [ Sado® + 238 mauCovly, yi)

(Cov(ys, yu) = Corr(ys, v )V V@)V (yu) = po? if t =u—1, and 0 otherwise, since only
€ and e, 1 are correlated).

The standard deviation of /3 in the denominator of the usual ¢ statistic is s / Vv Xx? , which

will understate or overstate the true standard deviation of ﬁ depending upon whether p > 0 or p < 0.
This can lead to an incorrect ¢ statistic and an incorrect test resullt.

The usual least squares estimateis 3 = Eg—g . Asin Exercise 2.20(a) above, it is unbiased.
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i B > TtYt _ TeYt) I? r) x?o2xt7 o
Thevarianceof g is V(5) = E( EZT? ) = V((sz?)%) = E(ZZ;)‘%) = E(Z(Z;;2 ) = (Z;?)Z .

E(B*) _ E( Srizay ) _ X2}E(y) _ Sa}B(frcte) _ Zaifr _ 4 - unbiased.

Saia] P P P

IN

=" Ty 2V (y) _ Safela?) _ Tate’ _ o o o D

V<6 ) - V( EZz?z? ) - Z(ZZ?()%) - Z(ng?)Q : - (ZZQU?)2 - 27;? : 2 — V(ﬂ)

(thisistruesince (Xz?)? > Nzf).

The variance stabilizing technigue on p. 58-59 of the text can be applied. In the example mentioned,
the transformation g(y,) = In(y;) would be appropriate.

] nXziyi— (D) (Dy: > — D =
pr= nzyz;£(2g25)2y) ad B, =7 4T.

Sincey; and n; areknownforeachj=1,...,c,wecanfind n = ¥n;,

and Xy = ni¥y + noly + -+ + ney, andthen 7= L ¥y, .

Also, Sz = nyzy + noxs + -+ + nexe and T = L Nz, Thus, once 5, isfound, B, follows.
Tofind 3, we must still find Sy, and a2 .

n,7, isthesum of all y values that come from the independent = value of «; , and in general,
n;y; isthe sum of all y values that come from the independent = value of z; , so that

EItyt = xlnlyl + IEQnng 4+t xcncyc . =R
The z;'sare all known, so that 27 can be found. 3, can now be calculated.
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Zn(k) = alZ,(k— 1)+ (1 — o)Z,(k —

SOLUTIONSTO EXERCISESIN CHAPTER 3

With simple exponential smoothing, Z,(1) =%,(2)=---=2,(¢) for al ¢, so tha

Z230(2) = Z30(1) = 102.5. One form of the updating relationship for simple exponential smoothing is
Znt1(1) =@z + (1 — @) Z,(1) sothat
Za1(1) = (1)z31 + (.9)230(1) = (.1)(105) + (.9)(102.5) = 102.75.

The prediction of total sales for the next 12 monthsis Zeo(1) + Z60(2) + - - - + Z60(12) = 960.

(n is 60 since 5 years = 60 months of past datais available). As pointed out in the solution to problem
3.1, under simple exponential smoothing all Z,,(¢) for £ > 1 are equal. Thus, Z(1) = 80, and once
261 = 90 isknown, we can update to Zg; (1) = - -- = Z61(11), where

Z61(1) = (.2)(90) + (.8)(80) = 82. Therevised sales forecast for the rest of the year is (82)(11) = 902

The method for determining « is described in Section 3.3.2 of the text on pages 87-88.
If the trend is dowly moving, simple exponential smoothing may be appropriate. Ideally, the residuas
should be tested for autocorrelation to if a simple exponential smoothing model is appropriate.

/Z\n(2> = a[zn+l + (l - Od)Zn + (1 — 04)2271—1 + - ]

= azp +a(l =)z + (L= a)zat + -] = @z + (L a)Za(1)
If we substitutez,, (1) for z,1 in this expression, it becomes

20(2) = aZ,(1) + (1 — a)Z,() = Z,(2) .

Supposethat %, (k) =%,(1) and
R m
+ Q- 22,0 +0-a)f 1z, +--1=2,01) for k=1,2,..,0—1.
Thenz,(¢) = afz,({ — 1) + (1 — &)z, (¢ — ) Jr (1 —a)Z,(0—3) + -

+ (1= + (1 - a)'s

= aZ,(l — )Jr(l—oz)oz[’in(ﬁ—l) (1 —a)zn(€—3)+~~~
+ (1-a)%Z,0+01-a)2%
= Qz n(g )+ (1 - O‘)/'én(e - 1) (f - 1) = Zn(l)

The optimal smoothing constant o (the one that minimizes SSE(«)) is « = 0 (or w = 1), which gives
the same minimum SSE(«) as the globally constant mean model.

For the smoothed statistic, the updating equation is S; = az; + (1 — «)Si-1 .
The N -observation moving averageis EZEN) = % [zt + zec1 + - + 2-N41]
and attimet — 1itis EﬁNf = N (201 + 200+ + 2z n] .
It follows that NE,E ) = 2t + 2i-1 4+ -+ zi—ny1 @nd
Nzgf =z 1tz o+ -+ zN= NEﬁN) — 2z + z_nN , Or equivalently,
Zg = §1)+ (2t — 2-n) -
=pte and S;_1 are uncorrelated since the e's are uncorrelated, and S;_; depends only upon what
has occurred on or beforetime¢ — 1. Let us denote the variance of S,, by V'
(assumed to be the same for all n). Then (assuming o # 0),
VIS =a?Varlz] +(L—a)?*V[S; 1] — V=a?c?+(1-0a)V

a? g2 = 2 52
- V_l(la)2 229 -



3.6

3.7

3.8

2

SinceEffN) isasample mean, its variance is V[EQN)] =%

In order for the variances of .S; and EﬁN ) to be equal, we must have %~ =

or equivalently, o = 5 .

L
N

Sp=alzn+ (1 —a)zy 1+ (1 —a)z, o+ + (1 —a) oz + -]

E(Sy) = a[E(zn) + (1 — a)B(za-1) + (1 = @) E(zn-2) + -+ + (1 — )" ™" E(z,) + -]

E(z) = p for al t except ¢y for which E(z;,) = p + 6 , so that
ES)=ap+(1-ap+1-afpt-+1-a)@+8+-1=p+al-a)

(this is actually a limit assuming r is large and observations go back indefinitely into the past). If
O<a<lthenasn— oo, (1— )" — 0,sothat £(S,) — i .

Sp=alzn+ (1 —a)zm1 + (1 —a)zya+ -+ (1 — )" oz + -]
ES)=alp+6+0—a)p+8)+(1—a)@+8)+- -+ (1—a)"(u+é)
+(1—a)" 0+ (1— )"0 2+ -]
=ptalf+(1—-a)f+(1—-a)?6+ -+ (1 —a)" ] =p+6[1-(1—a)y 0t
which hasalimitof u; =p+6 asn— .

S =(1—w) Swiz_j= =1 —w) Swlz,_; (shifttheindex of j by 1),

j=0 j=1

Sl 1—w)?? >+ Dwize; = (1 —w)? Y jw gy -

j=>0 j=1
Zu(1) = 2901 — ¥ 4 e (gl gl

=2(1 - w) Yw ey — (1= w)? P/ 2nsi-y

=1 =1

=+ I_T“ [(1-w) ijilszrlfj —(1-w)? ijjilszrlfj]
j=1 j=1

=12 —w)+ & (1w Ot
j=1

w

— m=[21 - W)+ EL @) et
Fora = .10 (w = .90), 7, = (.2111 — .01115)(.9)/

2.(2) = 2541 — s 2122 (s — s

=2(1-w) Y’ ey — (1= w)? g’ enin
i =

+ 250 (1 - w) Yo? anp1oy — 21— w)? 3o ju? an14 ]

=1 =1

—w)? . —w)® 1 -
= S[20-w)+ E 1wy - A iy

Jz1



. 71' o 21— w) 4 K (1 )2 — A
For a = .10 (w = .90), 7; = (.2222 — .0122;)(.9)/~ 1

39 @ wi=1-0y=8 ad wy=1—-ay=.9 . Usng Equation 3.41 of the text with n = 24,
fin = Bon =30a0d B, = By, = 2 weget
Bowi1 = Bpyr = Mzs = (1 —w)za1 +wr1(@, + B,) = -2(28) + (8)(30+ 2) = 312 and
Brns1 = Brp1 = Bos = (L= w)@yy — B,) + w2, = (1)(31.2 — 30) + (.9)(2) = 1.92.
The original forecasts were (using Equation 3.38) %,(1) = f,,, + 8,,, = 32 (the forecast of z.;),
2.(2) = By, + 2B,,, = 34 (the forecast of z5) and 2,(3) = B, + 3B,,, = 36 (the forecast of z,7),
and the updated forecasts are (using Equation 3.42)
Zni1(1) = Ty + By = 312+ 1.92 = 33.12 (the forecast of zy) and
Zn41(2) = oy + 28,1 = 312+ 2(1.92) = 35.04 (the forecast of zo).
Since z,40 (= 296) @and z,,.3 ( = 297) are known, it is possible to repeat the procedure to
get i, ., and 5, , and updated forecasts %, 2(1) , etc.

3.9 (b) Using Equation 3.40 with n = 24, we get updated values
Boos = o225 + (1= w?)(Boq + Pr24) = (19)(28) + (.9)*(30 4 2) = 31.24 and

Braos = iﬁ (Bo.2s — Boos) + 1+w Bros = 5(31.24 - 30) + 2( 9) (2) = 1.96.
The updated forecasts are then found using Zo5(¢£) = B 5 + ﬂ1,25 ¢, so that
Zo5(1) = Boas + P15 = 31.24 4+ 1.96 = 33.20 (the forecast of z45) and
225(2) = Byos + 2By 55 = 31.24 + 2(1.96) = 35.16.

o~

From Equation 3.37 we have B,,, = Byaq = 250 — s — 25l — sl — 30, and

2]

Bin = Pros = 22 (Sy) — S — L (sl — sk]) = 2. solving these two equations for

sl and 52 resultsin SIY) =12 and 52 = —&.

Thenfrom Equanon 3.34, 5215] =1 —w)zs + w524] = (.1)(28) + (.9)(12) = 13.6
S = (1 —w)SH +wS) = (1)(13.6) + (9)(— 6) = — 4.04,

SW = (1= w)zeg + wSJ}S = (1)(31) + (.9)(13.6) = 15.34

St = (1—w)Sk +wS = (1)(15.34) + (.9)( — 4.04) = — 2,102, and

S = (- wayr + wS% = (.1)(36) + (.9)(15.34) = 17.406

SE = (1—w)Sl + wsl = (1)(17.406) + (.9)(— 2.102) = — .1512.

3.10 We are givenw = 9 (a =.1) and o isknown . Then from Equation 3.62, V[e,(¢)] = 0% 2,
where ¢ = 1+ gy 5 [(1+ 4w + 5w%) + 20(1 — w)(1 + 3w) + 20*(1 — w)?] , so that

Viea(1)] = 0%¢? = ﬁ [(1+4(.9) +5(.9) + 2(.1)(3.7) + 2(.1)?] o2 = 260752 ,

Vien(2)] = 282852 , V[e,(3)] = .30610% and V[e,(4)] = .330502.

The 95% prediction intervals are:

for 1-step-ahead Z,(1) £ 1.96 0 4/.2607 which becomes Z,(1) £+ 1.000

for 2-step-ahead Z,(2) + 1.0420 , for 3-step-ahead Z,(3) + 1.0840 , and

for 4-step-ahead Z, (1) £ 1.1270 .

It is assumed that the mean absolute deviation 56 is known. The estimate for o, isthen 7, = 1.25

A =5,/c1.



3.10

311

Equation 3.68 on page 130 of the text gives the prediction interval for a sum of K future observations.
For the case of double exponential smoothing, the matrix F—1 is

F1 1-o® (1-w) E. — # (1:32_)2
- (1- w)2 (1-w)? and = —u? W (14u?)
TP TRy

(page 129 of the text).

(cont'd) With o = .1 (w = .9) these matrices become

1 [19 0o _ [ 52632  —224377
= {.01 .00111] and F. = {—22.4377 213748 |
1p o1 [ 1261 005394

PR = [.005394 .0002916}

0-[] = gro- £[1]- (211 - 2] -]

=1 =1

&

Fork =4, ( fjf’(e))F—lF*F—l ( if(zz)) — /(1) FIRF1f(1)
(=1

(=1

_[4 10] { 1261 .005394] {4

.005394 .0002916 10} = 2418,

The 95% prediction interval for the sum of the next four observationsis then

4 -~ o~
Zn(£) +1.96% [ 4 4 2.478]*/2 . The same comment that 5. =~ 1.25A, applies.
(=1

4
The average of the next four observationsis { >.%,(¢) , and has a standard deviation
(=1

4
whichis 1 of that of }"Z,(¢) , so that the prediction interval for the averageis
(=1

M-

Za(0) £1.96% -} [4+2.478]"/2
1

1
4
4

- J 1 J w
giwﬂ:wm ;}w:w%[ﬁ]:m,
J]= J]=



3.12

Wl wPr2ed W) w(ltw)
E%J w = Wa 2«7”] —Wam o = 1wy = Qw)p

0 w(ltw
ygoj wl = wa ZJ Wl = W as L(bl(—t)g

_ w0 (1 20) 3wt w)(1-w)?] _ w(l+dwtw?)
- 1-w) T 1wt

g — 0 S8 0 w(ltdwte?)
ij_wawzjw_wau, (1-w)*

_ w[(1—w)4(1+8\L+3\L2)+4w(1+4w+w2)(1—»0)3] w(14+11w 4110 )
- (1) ()

The smoothed statistics are calculated from on the relationship
S — (1- w)ST[Lk_” + wS,[ﬁl. We use proof by induction on k. Suppose that the

statement S = ( ) > { 1:[(34—2')] wiz,_;istrueforr = 1,2, ...,k and for al n.
j7=0 i=1

We wish to show that the statement istruefor r = k£ + 1.
But SEH = (1 —w)st 4wl = (1 — ) 4 W@ — w)st | 4 25l

— (1) + w1 — )Y, 4@ — w8, 1

=(1-w) =5 Z { ZHll(erz)} wan_;
+w(l [ ZHll(jJri)} wWzn_1-j

r-a ik T | T+ @y + -

i=1

— W)kt k=1 . ; .
= S 2 [ H(HZ)} wznj

j>0 L i=1

(1—w)+1 k1o -
+ e 2| G+ [ ez
720 L =1
=D i j+2
o o | LG+ @y 4
JZ 1=




3.12

_w)ktL k=1
=Y X H(g—r+z>]wzn_J
>0 jzr i=1

W zn_j

(cont'd) If we can show that ij { kHI(j—rJri)} =1+ TI@+1i) (Equation A)

r=0 i=1 =1

then the result follows from mathematical induction.
Doing the change of variable ¢t = j — r, Equation A becomes

i [ k=1
> [ H(t+z’)] =+ TI(j+4%) . Thisequation can be established by induction on ;.
t=0 i=1 i=1

Itistruefor j = 0 and for any value of k, since for j = 0, the left-hand-sideis (k — 1)!, and the right-
hand-sideis %k! = (k—1)!'. Suppose that the statement is true for all values of j
fromj=0,1,2,...,s. Wewishto show that itistruefor s + 1.

f[ kﬁl(tﬂ‘)} = Z[ k]:[l(tﬂ')] + ]ﬁl(s+1+i)

t=0 i=1 t=0 i=1 i=1

k=1 k-1 k-1

] 1(s+i) + _:Hl(s+1+z'):% _:Ho(s+1+z') + _1;[1(s+1+z')

=

1
k

k-1
= 1:[1(5—1—1—1—2') [H+1] =1 1:[1(5+1+i) , which is the statement for s + 1.

This establishes the validity of Equation A and completes the result.

3.13 (a) True. As pointed out on page 86 of the text, under simple exponential smoothing, the forecasts from a

fixed forecast origin n are the same for al lead times /.

(b) True. From Equation 3.38 on page 106 of the text, we see that Z,,(¢) isalinear function of ¢.

(c) True. From Equation 3.60 on page 128 of the text we see that the prediction intervals under simple

exponential smoothing are the same for all ¢.
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(b)

(b)

SOLUTIONSTO EXERCISESIN CHAPTER 4

Inthis case k = 0 for the trend component and m = 1 for the seasonal component. The

transition matrix L isa3x 3 matrix of the form (see pages 153-154 of the text) { |-01 LO ]
2

where L1 isthe 1x 1 transition matrix for the trend component, [ 1] ,
and L 5 isthe 2x 2 matrix

o 1 0 0

COoS % sin s

L2=[ 7 %]_[o l},sothaxL= 0 0 1
—S|n§ COS§ 0 0

k = 1for the trend component and m = 1 for the seasonal component. The transition matrix

L isthe 4x 4 matrix [Lol LO } , where L 1 isthe 2x 2 transition matrix for the trend
2

10

component (see p. 97 of thetext), L1 = [1 1

} and L o isthe 2x 2 matrix asin part (a),

10 0 0

__ [ cosi sni] [0 1 |11 1 0 O
L2 = {—sjng cosg]_[—l o}'s‘“ha“‘_ 00 0 1
00 —10

k = 1for the trend component and m = 2 for the seasonal component. The transition matrix

. Ly O . - . .

L isthe 4x 4 matrix 0 L.l where L 1 isthe 2x 2 transition matrix asin part (b),
2

L= H 2] ,and Lo isthedx4 matrix Lo =

oNeoNe]

, S0 that

o
[N ool
OPFr OO

10 0 0 0 O
11 0 0 0 0
L |00 0o 1 0 o
00 -10 0 0
00 0 0 0 1
00 0 0 —1 0]
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@

(b)

(@
(b)

(©

(d)

()

SOLUTIONSTO EXERCISESIN CHAPTER 5

The slowly decaying sample autocorrelation function of the z;'s and the more rapidly exponential decay
in the SACF of the differenced series indicates that the z; series is non-stationary but the series of first
differences is stationary. A possible choice for the model of the differenced series is AR(1) (MA
would require the autocorrelations to be very near O after afew lags).

The SACF seems to be a damped sine wave, which indicates an AR(2) model (or ARMA(2,1) or
ARMA(2,2) model).

A stationary model requires (among other things) [£(z;) = ¢ for dl ¢. This is not the case for this
model. Thismodel is not stationary in the mean.

The z;'s are not stationary, but the series of second differencesis stationary with an MA(1) model.

The modél is invertible since the sum of the |7;|'s is finite (they form an infinite geometric progression
with |] < 1 - see part (d) following).

The second differences form a MA(1) model so that for te second difference series, p; is 11—‘; and for
k Z 2, Pk = 0.

The v weights are found from (1 4 ¢, B + ¢»B? +---)(1 — B)?> = 1 — 6B, or equivalently
QL+ B+ynB?>+--)1—-2B+B? =1-0B,sothat

Biyh—2=—0 — oy =2—0

By — 2 +1=0 — thp=2p —1=22—-0)—1=3—20

B by =2y +4p1 =0 — i3 =24y —1py =4 — 30

BE:hp — 2+ 2 =0 — Yy =21 — o =k+1—kf

The = weights are found from (1 — B)? = (1 - 0B)(1 + m B + mB? + ---) , or equivaently,
1-2B+B?>=(1-6B)1+mB+mB*+---),sothat

B:m—-0=-2 — m=0-2

B m—0m=1 - m=0m+1=00-2)+1

B s —0m=0 — m=0m=0*0—-2)+40

Bf: my=0m1 — mp=0m =010 —-2)+0"2.

We can use Equation 5.62 on p. 239to get z,(1) = Y1 a; + tp2ai—1 + -+ -, Where the ¢'s were
found in part (d) above.

Alternatively, we canwrite z; 1 = 2z; — 231 + a1 — Ba; SO that

Zt(1> = E(Zt_H | Zty Zt—1, ) =22 — 21 — Oay (SinceE(aHl | 2ty Zt—1, ) = 0)

e/(1) = a1 , which has variance o (thisis true for the 1-step-ahead forecast for any model).



54 (a) Y=o+ 2 =z +ar + 2, but Yi—1 = Ty—1 + 24—1, S0 that

55

5.6

(b)

@

(b)

Ty = Y1 — Z—1 A Yy = d(Wi—1 — 2e—1) +ar + 20 = dYe—1 + ap + 2 — Pz
Alternatively, themodel (1 — ¢B)z; = a; becomes (1 — ¢B)(y; — ) = a; , or equivalently,
QL-¢B)ys =+ (1 —dB)z — Yo = Oy +as + 2 — P21 -
Then, y; = Ployi—o + a1 + 2021 — dzio] +ar + 20 — Pz
= P*y—o + ar + dar—y + 2 — P 2o
Continuing in this way, we get
Yo = Ok + a4 daim1 + - + O a1 + 2 — drzp , SOthat if [¢] < 1, then
ask — ocowehave y; = a; + da;_1 + -+ + z . Sincethe z's are uncorrelated with the a's,
the variance of y; isthe same as that for the AR(1) model plus V () = o2,

2
a

i.e, Viy) = 1:,)2 + o2 . Also, the covariance k-steps-apart for k > 1 isthe same as for the

AR(1) model because the z'sand a's are uncorrelated, i.e., CovV(yiir, ¥1) = ¢'ol <o that

17(752 1
_ (¢t o 2y _ ¢" _ k-1
Pk = (1—4’2 )/(1—4’2 +UZ> C-0)% o

7

The ARMA(1,1) model has autocorrelation function p, = ¢*~!p; which is the same form as the model
in part (8).

If the model is represented as  z; = ¢r1zi—1 + Prozi—2 + - + Prizi—r + a¢ , then the partia
autocorrelation for lag & for is ¢y, .

(i) Thisisan AR(2) model with ¢; = 1.2 and ¢, = — .8 . Using the representations for the
partial autocorrelations as given on p. 210 of the text we have ¢, = p; = 1_19,)2 = % .

2 2
A0, py = 12 + ¢ = 0, s0that ¢y = 55 = — 8.

For the AR(2) model, ¢, = 0fork > 3.
(if) Thisisan AR(1) model with¢ =.7. Then ¢, =p1 = ¢ =.7 and ¢y, =0fork > 2.

(iii) Thisisan ARMA(1,1) model with¢ = .7and 8 = .5. From p. 222 of the text we have
that ¢, = py = U200 — 2364 and ¢y, for k > 1 isasfor the MA(L) model (as

1+62—2¢0
found n page 218 of the text) so that ¢, = ’0190202) = —.1905 and
_p3 1— 2
oy = D) — 0041 .

(iv) Thisisan MA(1) model with8 = .5. The PACF for the MA(1) isfound on page 218 of

the text. ¢y, — <=2 — — 4, and ¢y — — 1905 , ¢y, — — 0941 are the same as in part (i)
above.

n
Nau=zm+zm+-tzm=a—at+a—a+--+a, —a,1 =a, —ap SOtha
t=1



n
ic 1 — ap—ag
the sample meaniis ;ztf ~4 and

(s Z) =V (@te) = L Vi +tag) = h(0* +0%) = %

n2

Since the form of the model has a's canceling out when successive z's are added, the total random
component remains small in the sum.

57 2t — 21 = ¢
— D =z2— 2em = (2 — 2m1) + (21 — 2e—2) + - (Ztmmt1 — Zt—m)
=g tag ot arm — VA =024 024+ 02 = mo?

t D=L — 2m) + (241 — 2e-mi1) + -+ (Germe1 — 21))]

= % [(ar + a1 + -+ @p—mi1) + (ar11 +ag + - + @—mi2)

+ (@t4m-1+ Apm—2 + -+ + ag)]
= La—mi1 + 2a-mi2 + 31—z + -+ (m — Day—
+ma;+ (m— Dagg + - + 2a010m—2 + Geym—1] -
Then, V(i &) = X [0? + 2262 + 3262 4 -+ + (m — 1)%0?
+m20% + (m —1)%0% + - + 2202 + 7]
— VAL = 25200 +2(22) + 2(3) + - + 2(m — 1)* + m?]

_ 70n_22 [2 < 2122> i m2] _ 70n_22 [Zm(m+1é(2m+1) _ m2] _ ;_22 [ 2m33+m] .

Then V(A7) [V &) = 2 1275 fmo® = 2 + 1y, which hasalimit of 2 asm — oc

5.9 The Portmanteau test for model adequacy gives avalue of Q" of
Q" = 99[( — .32)? + (.20) + (.05)*> + (— .06)*> + (— .08)*] = 15.34.
The chi-sguare distribution has K — p — ¢ = 5 — 1 = 4 (assuming a mean wasn't estimated).
At the 5% level, we have x%.(4) = 9.49 . The large value of Q" indicates that the model is not
adequate.

5.10 (&) (1) AR(1) model which hasforecast equation (Equation 5.66 on page 241 of the text)
zo(6) = p+Blzn(f—1) —p] = p+ (lﬁé(zn — K.
(2) AR(2) model which has forecast equation (Equation 5.72, p.
243) zn(0) = drza(C — 1) + Goza(¢€ — 2) (assuming u = 0) .
(3) ARIMA(1,1,1) model which has (Equation 5.78 on p.245)
2(0) =600+ 1+ @)z (£ — 1) — ¢z, (£ — 2) .
(4) ARlMA(O,2,3) model with z; = 2z;_1 — zy_9 + a; — Bras_1 — Osay_o — Oz3a4_3
so that Zn<1) =2z, — Zp—1 — Glan — Ggan_l — Ggan_Q
2n(2) = 22,(1) — 25 — B2a,, — 30,1
2n(3) = 22,(2) — 2,(1) — b3a,, and z,(¢) = 2z,(( — 1) — z,(£ — 2) for ¢ > 4.
5.10 (b) (1) Thederivationsfor £ = 1 and 2 for the AR(1) model are given on page 241 of the text.
en(3> — Fn+3 — Zn(3> =p+ ¢<Zn+2 - M) + Qny3 — [M + ¢3<Zn - M)]
= P(znr2 — ) + anyz — ¢ (20 — ) = BlD(zn11 — 1) + Gnsa] + Gnys — (20 — 1)
= ¢2(zn+1 - M) + ani3 + Pan 2 — ¢3 (Zn - M)
= ¢2[¢(zn — ) + ani1]| + anys + Panya — ¢3 (2n — ) = @nyz + dani2 + ¢2an+l

Then, Ve, (3)] = o[1 + ¢* + ¢%] = o2 ijzz (asin Equation 5.68 on page 241).

(2) For any model, Ve, (£)] = o?(1 + 4% + 3 +--- + 2 ). For the AR(2) model, we have
1 = ¢ and s = ¢ + ¢o . Thus, Vie,(1)] =02, Vien(2)] = o*(1+ 4?) and
Viea(3)] = o*[ 14 67 + (81 + ¢2)°] -



(3) For any moddl, e,,(1) = a,,1 sothat V[e,(1)] = ¢*. For simplicity we assume 6, = 0.
For the ARIMA(1,1,1) model, z,.2 = (1 + ¢)zni1 — 2y + anyo — Bayyq SO that
en(2) = Zn42 — Zn(2) - (1 + ¢)Zn+1 - (bzn + Ant2 — 9an+l - [(1 + QS)Zn(l) - ¢Zn]
(this uses the formulation for z,(2) for the ARIMA(1,1,1) model on page 245) , then using the
formulation for z,; and 2, (1) on page 245, we have
en(2> =L+ P[(A+P)zn — Pzn-1 + any1 — Oan] + any2 — Bania
— 1+ A+ @)z — P21 — Oan)
= ani2+ (1+0— )ansy ad Viea(2)] = 0?[1+ (1 +0 — ¢)?] .
For ¢ = 3wehave ¢,(3) = 2,413 — z:(3) .
We first write z,.3 = (1 4+ ¢)zpn1o — ¢2ni1 + Gnas — Ban,o , and then using the model form for
Zpyo @ 21, Wehave z,10 = (14 @)2ni1 — @20 + any2 — Oan i
and z,11 = (1+P)zn — pzn1 + any1 — Oa, sOthat
Znis = L+ O(L+ @)zni1 — dzn + any2 — bani1]
= AL+ d)zn — d2n1 + anp1 — ban] + aniz — O0an 2
=1+ (]5)22”+1 =21+ ¢)pzn + ¢2Zn71
+ani3 + (14 ¢ — Oania — [(1+ 9)0 + dlani1 + pba,
= (1 + ¢)2[(l + ¢)Zn - ¢Zn—1 + any1 — ean] - 2(1 + ¢)¢Zn
+ ¢?2n1 + anys + (L + ¢ — Oanis — [(L+ )0 + Plans1 + Ppba,
= [+ ¢)* =261+ )z + [¢* — (1 + )91 zn-1 + anga + (L + ¢ — Oan2
+[A+ ) = (1 + 9)0 — plani1 + ban
Inasimilar way,
zn(3) = (1 + ¢)2n(2) — d2a(1)
= (14 ¢)[(1 + ¢)za(1) = dzn] — S[(1 + @)z — P21 — fan]
(1 + (Z)) [A+P)zn — Pzn-1] — 20(1 + @)z, + ¢22n71¢ +fda, .
Then, en(3) = Zn+43 — Zn<3) = Up43 + (1 + ¢ - 9)“71—4—2 + [(1 + ¢)2 - (1 + ¢)9 - ¢]an+1
and Vie,(3)] = o {1+ (1 + ¢ —0)* +[(L+ ¢)* — (1 + $)0 — 4]’} .

5.10 (b) (cont'd) There are other quicker ways in which to determine the variance of e, (3).
Thefirst uses Equation 5.64 on page 239 (asin the solution for the previous model) :
Viea(0)] = 0?1+ 93 + 42 +---+972_,) . Then it is a matter of finding ¥; and ¢, for the
ARIMA(1,1,1) model. Thisisdone by solving the equation
1-9¢B)A—-B)1+ 1B+ B> +---)=1—0B. Thisresultsiny; =1+ ¢ — 0,
Yo =14 — ¢ =1A+¢)1+¢—0)—¢,andingenera, o = (1+ ¢)he—1 — Phr—2
Alternatively, note that the forecast error satisfies a similar difference equation to the model and
forecasts: e, (£) = (1 4+ ¢)e (£ — 1) — dpen (€ — 2) + anye — Oanio—1 -
We awayshavee,(0) =0 and e,(1) = a,;1 , and we get
en( ) 1+ ¢)en< ) ¢-(0) + any2 — ani1 = any2 + (1 +é - 9>an+l , and then
en(g) (1 + ¢>)6n( ) ¢>6n( ) + a3 — Oano
=antz + 1+ ¢ —0)ansa +[(1+ @)L+ ¢ —0) — plani -

(4) Thisisan AR|MA(O,2,3) model z; = 22,1 — z4—2 + a; — Bras—1 — O2a4—2 — B3a4_3
Asaways, e,(1) = any1 . The coefficients are found from
1-B?*QA+y1B+y»B>+---)=1-0,B — 6,B>— ;8% , or equivalently,
(l— ZB+BQ)(1+¢1B+1/}QBQ + ) =1-6B — 9232 — 9333 , S0 that
B:i—-2=—-0, - y1=2-01,
B gpy =21 +1= —0; — =24y —1—-0,=3-20, -0,
Then, Ve, (2)] = o?(1+¢3) = o?[1+ (2 - 6)*] and
Viea(3)] = o?(X + ¢} +¢3) = o*[1 + (2 — 0)> + (3 — 20, — 6,)7].
We could have derived in the longer method that was used for the previous model (i.e., find z,,,3
and z,(3) , and then write e,,(3) = z,43 — 2,(3) ).

5.11 (a) Thisisthe ARMA(1,1) model, which can be written in autoregressive form as (page 221 of the text)
2t = M2-1 + Tez—2 + - +a;, where m=¢—6, and m;=(¢p—6)0"t for j>1. Then,
Zi41 = T2 + Toz—1 + -~ + agq SO that
2(1) = E(zeq1 | 205 261, 0) = M2 + Tz 1 + -
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(= O+ 0z 1+ = (6 —0) f‘aeﬂ'zt,j and

Zpy2 = M Zpy1 + T2 + -0+ ago SOthat
2(2) = E(z41 | 20, 2215 +.) = miz(1) + mozp + 321 + -+

— (¢ — ) iefzt_j +(6—0) ieﬂ‘“zt_j —(¢—0) i;qsejzt_j

= (7} + m)z + (mma + m3)zm1 + -+

The 1 coefficients for the ARMA(1,1) model are ¢; = (¢ — 8)¢*~! for k> 1.
Vie( )] = A+ + 45+ +47) = [1+ (¢ =) + (6 =)+ + (¢ — )97

1+ (¢ —0) (1;4’;1)]

As ¢ — 1, theforecast z,,(2) — (1 — 6) >_672_;, whichisthe samelimit as z,,(1) .
=0

:02

As ¢ — 1, thismodel becomesan ARIMA(0,1,1) model.
As ¢ — 1, the variance becomes infinite (division by 0 - see part (b) above).

zn(1) =0 + ¢z, and z,(£) =6y + ¢z, (£ — 1) forL > 2.

We ha\/ezloo =115 ,@0 =50 and ;5: .60 .

Then Z199(1) = 50 + (.6)(115) = 119, Z100(2) = 50 + (.6)(119) = 121.4 and
Z100(3) = 50 + (.6)(121.4) = 122.84.

For the ARIMA(0,1,1) model, z,(¢) = z,(1) foral £ > 1. This Z150(1) =Z100(1) = 26.

We can update the forecasts using Equation 5.85 on page 247 of the text :

2n41(€) = 2, (£ + 1) 4+ ¢¢[zn41 — 2,(1)] . Inthe case of the ARIMA(O,1,1) model,

P =1—0=.4,0tha Z101(1) =Z100(2) + (D[z101 — Z100(1)] = 26 + (.4)(24 — 26) = 25.2.
Sincethisisan ARI MA(O,l,l) model, we have Z1o; (2) = 3101(1) =252.

The 95% prediction interval for the 1-step-ahead forecast from origint = 101 is

Z101(1) £ uges 0 = 25.24+1.96, and the interval for the 2-step ahead forecast is

3101(2) +ugpsoy/ 1+ (1 — 9) =25.2+1.96v/1.16.

The ARIMA(1,1,0) model hastheform z; — z;—1 = ¢(z1-1 — z:-2) + a; , Or equivaently,

2 =L+ P)z-1— bz 0+ ar .

Then fntl = (l + ¢)Zn - ¢Zn—1 + ant1 so that Zn(l) = (1 + ¢)Zn - ¢Zn—1 )

and zpi2 = (1+ @)znt1 — P2n + any2 SOthat

20(2) = (14 P)za(D) — ¢z = [(1 + ¢)* — Pz — (L + $)¢pz,1 ,

since zpiq = (L4 ¢)zpii—1 — @2n4i—2 + anyy, it follows that

z2n(l) = L+ @)z (£ — 1) — dz, (£ —2) for £ > 3.

Then Z50(1) = (1.4)(33.9) — (.4)(33.4) = 34.1, Z50(2) = (1.4)(34.1) — (.4)(33.9) = 34.18,
Z50(3) = (1.4)(34.18) — (.4)(34.1) = 34.212, Z5(4) = (1.4)(34.212) — (.4)(34.18) = 34.2248,,
Z50(5) = (1.4)(34.2248) — (.4)(34.212) = 34.22992 .

The « coefficients for the ARIMA(1,1,0) model are found from

1-¢B)1—-B)A+ 1B+ y»B*>+---)=1,sothat

B:i1—1—¢p=0 — o1 =1+¢

B g =1 —dthr + ¢ =0 — =1+ )1 — ¢,

andingenera ;= (14 ¢)hj1 — Phjo .

Inthiscase, ¢ = .40, sothat ; = 1.4, ¢ = (1.4)(1.4) — .4 = 1.56,

3 = (1.4)(1.56) — (.4)(1.4) = 1.624 and 4 = (1.4)(1.624) — (.4)(1.56) = 1.6496

The 95% prediction interval for the /-step-ahead forecast is
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Ba(0) £ 1.965\/1+ 63+ 43+ + 47, .

(cont'd) For £ =1 theinterval is 34.1+ 1.96(.18) = 34.1 + .3528,

for( =2, 34.18 + 1.96(.18),/1 + (1.4)2 = 34.18 + .6070,

for ¢ = 3, 34.212 + 1.96(.18)/1 + (1.4)% + (1.56)2 = 34.212 -+ .8193,

for £ = 4, 34.2248 + 1.96(.18)\/1 + (1.4)% + (1.56)? + (1.624)% = 34.2248 + .9998,

for £ = 5, 34.2299 + 1.96(.18)1/1 + (1.4)? + (1.56)? + (1.624)% + (1.6496)2 = 34.2299 + 1.1568.

The updating formulais z,1(¢) =

~—
N

D0+ 1) + el 2ni1 —Za(D)] . With 25, = 34.2,
34.18 + (1.4)[34.2 — 34.1] = 34.32,

(1]
251(2) = Z50(3) + 9olzs51 — Zs0(1)] = 34.212 + (1.56)[34.2 — 34.1] = 34.368,
%51(3) = Z50(4) + b3l z51 — Zs0(1)] = 34.2248 + (1.624)[34.2 — 34.1] = 34.3904,
Z51(4) = Z50(5) + talzs1 — Zs50(1)] = 34.2299 + (1.6496)[34.2 — 34.1] = 34.3949.

For thlSARlMA(O,Z,Z) model we have 2 = 2241 — Z1—9 + ay — .82a4_1 + .38a;_9
Then, z,(1) = 2z, — 2,1 — .81a, + .38ap_1,

2n(2) = 22,(1) — 2, + 38a,, and z,(¢) = 22,(/ — 1) — z,(¢{ — 2) for £ > 3.
Following the suggestion given for this problem, we assume that ayg; = ag> = 0 and find
292<1) = 2292 — 291 — .81@92 + .38&91 = 16.5.

Then, ag3 = 293 — 2’92(1) =159-165= — .6.

Continui ng, we get Zgg(l) = 2293 — 292 — .8lagg + .38ag, = 16.486, and

ags = 294 — z93(1) = 15.2 — 16.486 = — 1.286 . Successively, we find

ag; — .586 , Ao — .863 , Ag7 — A76 , gy — — 742 , dgg — — .182 , 4100 — .635.
Then, 2’10()(1) = 22100 — 299 — .810100 + .382’99 = 2(182) - 173 - (81)(635) + (38)( — 182)
= 18.516.

2100(2) == 22100(1) — 2100 + ,38@100 = 19.073 y 2100(3) == 22100(2) - 2100(1) = 19.63
2100(4> = 22’100(3) — 2100(2) = 20.187 ’ 2’10()(5) = 20.744 y 2100(6> = 21301,

2100(7) = 21.858 y 2100(8) = 22.415 y 2100(9) = 22972 y 2100(10) = 23.529
(subsequent forecasts from z10(1) on increase by .557 over the previous forecast, i.e.,
2100(6) = 2100(6 — 1) + .557 inthis example)

The model can be written in terms of 7 coefficientsin the form
2t = M 2—1 + Tazi—2 + --- + a; by solving

(1 - B) == (1 - 8B)(1 - 7T1B - 7T2B2 - )

B: —m—-8=-1 > m=.2

B> —m+.8m =0 — m=.8m =(8)(2

In general, T = .871']‘_1 — ;= (2)(8)]_1

Then z = 5°(2)(8) 'z + ar.
=1

o0

The sum of the coefficients (infinite geometric series) is Y~ (.2)(.8) ! = ;% = 1.

j=1

2(1) =E(zin | 2t, 221, ..) = E(mz + mz1+ 4 a1) = 2 (2(8Y 'z
j=1

2(2) = Ezepa | 20,0261, -+ ) = E(mizen + moz + -0+ agy2)

=mz(1) + il(-z)(-s)jztfﬁrl
=

= (D 2D s + L D(B g
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= _21(.2)(.8)%1%% = zlwg-”zt,jﬂ,
J= J=

so that 7r](-2) =7j.

Thus z:(2) = z(1) , which is consistent with an ARIMA(0,1,1) model in which
z21(€) = z(1) for £ > 1 (Equation 5.73 on page 244).

ei(1) = au41 for any ARIMA time seriesmodel. For the ARIMA(0,1,1) model,
en(2) = apra + (1 — a1 - ThenVie,(1)] = o2, V]e,(2)] = o?[1+ (1 — 6)?]
and
Covlen(1), en(2)] = Elen(1) en(2)]
= Blagyi(ari2 + (1 — 0)ag1)]
= Elaar2] + B[(1 = 0)a ;)] = 0+ (1 0)o>.
The covariance matrix is

o2 (1 - 9)o?
1-9)* [1+(1-6)*0?

Assumethat ¢ > j. Then therewill be overlapping a'sine;(¢) and e;—;(¢) .
ei(0) = apre + Praspe 1+ aage o+ Praa
= Qppf + V1Gipr—1 - F Yi0g0— F Y1 Gep—j—1 - F Yem1ai
er—j(€) = apyi—j + Y1agpo—jo1 + Poapi—jo + - + Yro1ai-j41

= Qpyi—j + P10p0—jo1 o F P10y o+ Pei1aijp
Since a's at different time points are uncorrelated, the covariance is o> multiplied by the sum of the
pairwise products of the coefficients of the overlapping a's. The overlapping a's are
a¢4¢—; Which has coefficient 4 ine;(¢) and coefficient 1ine;,_;(¢) ,
att¢—j—1 Which has coefficient ;11 ine;(¢) and coefficient ¢y ine;_;(¢)
a0 j—2 Which has coefficient ;15 ine;(£) and coefficient ¢y ine,_;(¢) , ...,
a¢+1 Which has coefficient ;_; ine;(¢) and coefficient ¢,_;_; ine;._;(¢)

Covles(£) , er-j(£)] = Eler(£)er—j(£)]
-1
= o[ + i1 + ipatha 4 o A Yem1thejo1] = o §_¢i¢i—j-

If ¢ > j there are no overlapping a'sand e;(¢) and e;_;(¢) are uncorrelated .

ei(£) = apre + ragre—1 + Poag—o + -+ Yo1a41

et(f+J) = aprerj + Pr1@eerj o+ i+ Yiane o e aa.

The over lapping pairs of a's are

at+¢ Which has coefficient 1 in e, (¢) and coefficient ; in e; (¢ + j)

at1¢—1 Which has coefficient ¢; in e;(¢) and coefficient ¢;,1 in e, (¢ + j) ,

at4¢—2 Which has coefficient ¢, in e;(¢) and coefficient ;2 ine; (¢ + j) ,

a1 Which has coefficient ¢, in e;(¢) and coefficient 1,1 ine; (¢ + j) .
Covle(€) (€ + j)] = Eled(£)er(C + j)]

-1
= 2[5 + Yjthr + Yjpaths 4 -+ Yjp1te] = o? giﬁﬂﬁiﬂ' :

4 Z (0] = ZV[et( N+2 325 Covle(l), er(m)]

=1 1<l<m<s

~

For s =4,

4 24: (0] = ZV[et( )]+ 2[ Covle;(1), e:(2)] + 2Cov[es(1), e:(3)]

o~
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+ 2Cov[e; (1), e, (4)] + 2Cov[e(2), e,(3)] + 2Cov[es(2), e4(4)] + 2Cov]es(3), e:(4)]
For the ARIMA(0,1,1) model, ¢o = 1 ,and¢; =1 — 0 foral j > 1.
Thus, Ve, (1)] = o2, Ve (2)] = o [1+ (1 — 6)?], V]er(3)] = o2[1 + 2(1 — 9)?]
Vie:(4)] = o[1+ 3(1 — 6)?]. From Exercise5.18,
for Covle;(1),e;(2)], ¢ = 1 and j = 1, so that Cov[e;(1), e;(2)] = o?[¢1] = o*(1 — 0),
for Cov[e;(1),€;(3)], £ =1 and j = 2, sothat Cov[e;(1), e;(3)] = o2[¢a] = 02(1 — 6),

Covles(1), e1(4)] = o*[4)3] = o*(1 - 0),

Covles(2), e:(3)] = o?[¢1 + athn] = o*[(1 = 0) + (1 — 6)*],
Covlei(2), e(4)] = o?[hs + 3tin] = *[(L—0) + (1 — 6)*],
Covle;(3), e/(4)] = o[¢h1 + tharhr + P3apa] = o2[(1 — 6) + 2(1 — 0)?].

Then V| iet(é)] = o2[4+ 12(1 — 0) + 14(1 — 0)?]
(=1

AR|MA(O,1,2) . Themodel isof theform z; = z,_1 + a; — O1a4—1 — B2a4—2.

The forecast function with forecast origin n is

E(zpi1 | 2ny o) = 20(1) = 2 — 105 — O2a-1,

2n(2) = 2,(1) — O2a,, and z,(¢) = z,(£ — 1) for £ > 3.

Vaueof z,(1) and z,(2) are needed, which in turn requires values a,, and a,,_; to start this forecasting.
In practiceit often is assumed that ¢; and a, are both O, then 2z5(1) can be

found, and then a; = 23 — z2(1) - this process eventually resultsin valuesfor a,,—; and a,,.

ARIMA(1,3,1) . The model isof the form

2 =221+ 20 = P21 — 220 + 2-3) + ay — Oagy.

The forecast function with originn is

Zﬂ(1> = (2 + ¢)Zn - (1 + 2¢>Zn—1 + ¢zp_2 — Bay,

2n(2) = (2 + ¢)zn(D) — (1 + 20)2n + dzp-1,

2n(3) = (24 $)2n(2) — (1 +2¢)20(1) + $2,, ad

z2n(6) = (24 d)zn(0 — 1) — (1 + 2¢) 2, (€ — 2) + ¢z, (L — 3) for £ > 4.

Forecasting requires the value of a,, to get z,(1) from which all other forecasts follow
(assuming that z,, and z,,_, are known).

This processis not stationary in the mean, since E(z;) = 5t - the z's do not have a common mean.

Wy = 2 — Z4—1 = Mt — Ug—1 T Q¢ — Q-1 = € + Q¢ — Qy—1.

V(w;) = 0 + 207 . Cov(w, wi—1) = Cov(e; + a;y — a1, €-1 + a1 — az2).
Since the the a's and the €'s are uncorrel ated, this covarianceis — 2 (only — a;_1 inwy;
and a;—; inw;—; arecorrelated). The autocorrelation of thew'sat lag 1is

Cov(ws,we_1)

2 - .
V) = 2 5y - Since wy and w;_» have no e'sor a'sin common, the

covariance and correlation is 0 at lag 2, and the same istrue for lag 3 (any lag > 2).

The autocorrelation at lag 1 is non-zero, but the autocorrelation at lag 2 or higher is 0. This suggests an
MA(1) model for the w's or equivalently, an ARIMA(0,1,1) model for the z's.

As mentioned on page 244 of the text, forecasting with the ARIMA(0,1,1) model is equivalent to
exponential smoothing. These would be MM SE forecasts.

Thisislikethe model in 5.21 with 3 = 0. Itisan ARIMA(0O,1,1) model with 8 = 1.
Then, z,(1) = Elzni1 | 2ny -]



(b)

- E[Mn-H + Gn1 | Zn; ]

= Elptni1 | 2ny -] = Elpin + €nt1 | 2n-.-] = pin = 20 — an.
Sincez, = 100.5and a, = e,—1(1) = 1, wehave z,,(1) = 99.5.
For the ARIMA(0,1,1) model, z,,(3) = 2,(2) = 2z,(1) = 99.5.

)

2(1) = zni1 — 20(1) = png1 + @n1 — P = €n41 + @ny1 , Which has variance
(€n41 4 ani1) = .05+ 1 = 1.05 (the e'sand the a's are uncorrelated).
(
(
(

S =<

€
2) = Zn+2 — Zn(2> = Wnt2 T Ani2 — P = €py2 + €qy1 + A2, and
€nt2 + €nt1 +anp1) = .05+.054+1 = 1.10,

3) = “n+3 — Zn(3> = fnt3 T AQni3 — P = €43 + €ny2 + €q41 + Apys, and
(€én+3 + €nto + €np1 + an1) = .05+ .05+ .05+ 1 =1.15.
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