
SOLUTIONS TO EXERCISES IN CHAPTER 2

2.1 (a) We use the relationship  The vector  is of the form�̂ � (X X) (X Y) X Y� �� � �.  
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 (b) We calculate  [ 1   2   1 ] 130, and  ,
_
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X Y� � � � � � � � � � �� � �
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y y� � � �� �
� 165, so that

SSTO y 165 10(1 ) 155, and  SSE SSTO SSR 35–� � � 
 � � 
 �y y� � 2 �

The ANOVA table is
        degrees           Mean 
    Source   Sum of Squares of freedom         Square         F-Ratio

 Regression SSR  2       MSR        12� � � � ��̂
�

X Y� � ��–2 SSR MSR
MSE�

       120  60 � �

  Residual SSE           MSE� �
 � 
 � �e e� SSE
�����

            35      7                  5� � �



     Total SSTO y 155     9 –     � � �y y� � 2

R , which indicates a fairly strong relationship between  and , .� ���
��� � �� � � 
��� � � �SSR

SSTO

 (c) The standard error of  is   , where  MSE   and   is the -entry in the�� � � � � � � � � � �� �� �� 	
�̂�
� � �

matrix  so that .10 (  is a ( )x( ) matrix, and the rows andC (X X) (X X)� � �� � �� , � � � � � � � ���  
columns are numbered from 0 to ).  Thus,  .7071.� � � � � 
� �

�̂�

� �
In a similar way, we have   .5 , and   .3536.� � � � � � � � � �
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2.1 (c) The -statistics for  ,  and   are  1.414,� � � � �� � �� � �� � �
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4.0   and  2.828 .

The residual degrees of freedom are 7, so that  (7) 2.36 .� �
���

According to the calculated -statistics for  ,  and  , for the hypothesis test with null� � � �� � �� � �

hypothesis  :   and  alternative  : 0 , at significance level .05 , we would� � � � � �� 	 � 	� � �

not reject  in the test of  (since 1.414 (7) 2.36) , but we would reject  in� � � � � � �� � 
��� �� � �
the cases of  (since 4.0 2.36) and  (since 2.828 2.36).� �� �� �

 (d) The F-ratio for the hypothesis test with null hypothesis  :  and alternative   : � � � � �� � � �� � at least
one of  or 0� �� � �   has  -ratio (from the ANOVA table)  .  The critical value for the test with� � � ��
a level of significance of .05 is 4.74.� � � ��� � 
 � 
 �� � � ��� �� �� 
��

Thus,  is rejected at the 5% level of significance (since 12 4.74).� ��

2.2 In this simple linear regression exercise,  , for  .  The normal equations are:� � � � � �� 
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2.3 (a) The -value used to test : 0 vs. 0 is  /s 7.25.� � � � � � � � ��� � � �
�
��

��� �

� �^ ^
� �

With  and , for a test at level .05 , we find from the -tables that� � �� � � � � ��

� �� 
 � 
 �� � � � � � � � � �� 
 � 
 �� �
��� 
��� 
��� �14 2.14.  Since   , we reject  at the 5% level.� �
�̂�

 (b)  The completed ANOVA table is
  Source SS df MS   
  Regression 66 2 33
  Error 34 14 2.429
  Total (corr. for mean) 100 16

The entries in the table are found as follows:  SSR SSTO SSE 100 34 66;� 
 � 
 �
the regression degrees of freedom are 2, the error df are 17 2 1 14� � � 
 � 
 � � 
 
 �
and the total df are  ;  MSR SSR/ 66/2 33,� 
 � � � � � � �
MSE SSE/( 1) 34/14 2.429.� �
 � 
 � �
! � � �� SSR/SSTO 66/100 .66.
To test  : 0  we calculate  13.59.  For a test at the� � � � � � �� � �

��
�
���� � MSR

MSE



� � � ��� � 
 � 
 �� � � ��� ��� � � � � �.05 level, we find  3.74.  Since , we reject  at the� 
�� 
�� �

5% level.

2.4 (a) The design matrix is  
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 (b)   (  is the (1,1)-entry in ), and similarly# � � � � � ��� ��
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2.5 (a) The ANOVA table is
  Source SS df MS   
  Regression 66 2 33
  Error 134 17 7.882
  Total (corr. for mean) 200 19

The entries in the ANOVA table are calculated as follows:
SSE SSTO SSR 200 66 134;  regression df are  ,  error df are 17,� 
 � 
 � � � � � 
 � 
 � �
total df are 19 ;  MSE SSE/ 66/2 33,� 
 � � � � � �
MSR SSR/ 134/17 7.882 .� �� 
 � 
 �� � �

 (b) ! � � � 
$$� ��
���

SSR
SSTO



 (c) The -ratio is  4.187,� � � � �MSR
MSE

��
�
���

and the critical value for .05 is  3.59 , so that  : 0  is rejected at the� � �� � ��� ��� � � � �
�� � � �

.05 significance level, since  .� � � ��� � 
 � 
 ��
��

2.5 (d) We can test whether 0 by using the extra sum of squares approach.  From the original�� �
information, we know that  SSR( 66 , and we are now told that SSR( ) 50 (for the% �% � � % �� � �

simpler one-variable regression model considered in this part of the problem).  The extra
regression  sum of squares is
 SSR SSR( SSR� % �% � 


� % � 


� % � 
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� % ��% � 


� % & % �% � 


� % ���� � � � � � � � � � � �

 SSR( SSR( ) 16� % �% � 
 % �� � �

(here  and ).  Then the  statistic to test : ,� � � ' � � � � � ( � � �� ��� �� �

which in this case is  : 0, is  � � � �� �
�� �


�� �� �� �


�� �������

�� �� �


�� ���������� * SSR
SSE

��� 
 � � �

� � 


so that  2.030.� � �* ����
������

The critical value for the hypothesis test at level .05 is  4.45 , so that  is not� � ��� ��� � �
�� �

rejected at the 5% level of significance, since  2.030 4.45.)

2.6 (a)     SSR (.88)(100) 88 , and then  SSE SSTO SSR 100 88 12.! � � � � � 
 � 
 �� SSR
SSTO

The -ratio to test : 0  is  14.67, and� � � � � � � � �� � � �
�

��������� � �
SSR/

SSE 12/6
88/3

� �$�  � � �
�� �4.76 , so that  is rejected at the 5% level.

 (b) From the information given, we can find   SSR SSR SSR ) 85,�% �% � � �% & % � � �% �� � � � �

SSR SSR SSR ) 41,�% �% � � �% & % � � �% �� � � � �

SSR SSR ) SSR 88 2 86�% �% � � �% �% �% 
 �% & % �% � � 
 �� � � � � � � �

(note that SSR ) is SSR for the full 3-variable regression from part (a)).�% �% �%� � �

The partial test for  (with .05) uses -ratio% � �� �

� � � � �* SSR /1
SSE , / SSE , /6 12/6

SSR , SSR 88 41�� �� �� �
�� � �� � ������� �� � �� �

�� � �� �� �� �� � �� � �

� � � � � �

� � � � � 23.5,

and critical value  , so that  appears to make a significant additional effect on � ���  � � �
** % +
�� �

after  and  have already been included.% %� �

The partial test for  (with .05) uses -ratio% � �� �

� � � � �* SSR /1
SSE , / SSE , /6 12/6

SSR , SSR 88 86�� �� �� �
�� � �� � ������� �� � �� �

�� � �� �� �� �� � �� � �

� � � � � �

� � � � � 1.0,

and critical value , so that  appears to make no significant additional effect on � ���  � � �
** % +
�� �

after  and  have already been included.% %� �

The partial test for  (with .05) uses -ratio% � �� �

� � � � �* SSR /1
SSE , / SSE , /6 12/6

SSR , SSR 88 85�� �� �� �
�� � �� � ������� �� � �� �

�� � �� �� �� �� � �� � �

� � � � � �

� � � � � 1.5,

and critical value , so that  appears to make no significant additional effect on � ���  � � �
** % +
�� �

after  and  have already been included.% %� �

 (c) To test  : 0 , we use the extra sum of squares approach and find� � �� � �� �

� � � � �* SSR( [SSR , SSR ]/2
SSE , /6 12/6

(88 82)/2� �� �� �������
  !�� �� �� ���������� �� � �� �

�� � �� �� �� � �� � �

� � � � � �

� � � � 1.5,

and the critical value is  2,6) 5.14.  Thus, we do not reject  at the .05 level.� � � �
�� �



 (d) These tests clearly point to  as being the most important variable in describing the effect on , with% +�

% %� � and  being of little or no significance.
2.7 (a) There are 3 3 3 3 5 17  data points and  settings of .� � � � � � � , � � %

The ANOVA table is
  Source SS df MS    �
  Regression 73 1 73 36.5
  Error 30 15 2.0 
    Lack of fit 21  3 7.0 
    Pure error  9 12 0.75        
  Total (corr. for mean) 103 16

The entries in the ANOVA table are found as follows:  MSR SSR/1 73,� �
SSE has 17 1 1 15 df and MSE SSE/15 30/15 2.0,� 
 � 
 � � 
 
 � � � �
� � � � � 
 � 
 �MSR/MSE 73/2.0 36.5 ;  SSLF SSE SSPE 30 9 21,
SSLF has 5 1 1 3 df  ,  MSLF SSLF/3 21/3 7.0,, 
 � 
 � � 
 
 � � � �
SSPE has 17 5 12 df , MSPE SSPE/12 9/12 0.75.� 
 , � 
 � � � �
SSTO has 16 df.� 
 � �

 (b) We can test : 0 using the usual -test:    and  4.54,� � � � � $ 
� � ��� ��� �� � 
���

so that  is rejected at the 5% level - there appears to be a significant effect on  by .� + %�

We can perform a lack of fit -test:  9.33,� � � � � �LF
SSLF/

SSPE/ MSPE
MSLF�"�����

���"� �
��
�
�

and since  3.49 , we conclude that lack of fit is indicated in this model.� �$� ��� �
��

 (c) Usually MSR (2.0 in this example) is taken as the estimate of .  Since the model appears to� �� ��

suffer from lack of fit, the appropriate estimate of  is MSPE 0.75.�� �

2.8 (a) The model can be written as   ,  where    and  .� � � � � � - 
 ��� � � �� � � � � � ���� �

We have 9 data points   , . . . ,    (there is no , since this would be ).�� � � � �� � � � � �� � �� �� � �

This is now a simple regression model through the origin, so that
�� � � � � ��

�

� � � � �#�� � � � �#�� �
� � �#�� � �#��

���
������

� � � � �� �� � � � ��

�
� � � � �

� �� � �
.80

(note that ).� �(� � � � �(� � � � 
 �� � � � �� ��
� � � � � �

 (b) (.80)(4) 3.2    100 103.2,� � � � � � � � - � � � �� � �� �
�� ��� �� �� �� �

and  (.80)(3.2) 2.56    102.56.� � � � � � � � - �� � �� ��
� � �� �� ��� �

 (c) The 95% prediction interval for  is  s   .- - . � �� 
 �� � ��� � 
���� �
�
�

� ��
�

�
��

� � � � � � � 
 �
� �

�� *
� ��� � �

� �,  and   , and the df is  because� �

there is no constant term in the regression model.  The interval becomes

- . � � � � � � � � . � � .�� 
����
�

�

�
�

��
���8 1   103.2 (2.31) 1 103.2 2.40 .
 ���

�

�
��

2.9  The wording suggests that (.7) SSTO/( ) , since without the regression, the residual standard� � � 
 ��
deviation is the sample standard deviation of the 's , i.e., SSTO/ , whereas, with the� � 
 ��

�
regression, the residual standard deviation is SSE/ .  But then� � �� 
 � 
 ���
� � �� 
 �� � � � ! � � 
 �� �������� �������

����� �����$(.49)[SSTO/ ]    .49    .51.SSE/ SSE/
SSTO/ SSTO/



2.10 (a) ,  and    so thaty X X(X X) y y X� �� � ��� �� �� � ��

y y X X(X X) y X y  X X(X X) I� � � �� � � � �� � � � � ��� � (since the   ).

 (b) � � � � � �MSR
MSE SSE/ (SSTO SSR)

SSR/ SSR
( )

� �����
������� � � ��% �

������� �������

� �
%

SSR
SST0
SSTO SSR
SSTO SSTO

�

�

2.11  If estimation had been done using the true model   , then in the course of the� � � � �� � � � �� � �

estimation, it is found that   is an unbiased estimate of .  Thus, using 
_ _ _

� � �� �� � 
 � �� � �

as an estimate of  results in a bias of   .
_

� �� �
� �

2.12 (a) Since , it follows that�� �y X X  � �� � � �� �

E( ) E��
�

� [(X X X y] (X X X [X X ] (X X X X� � � � � �
� �� � � �� � � �� �

� � � � � � � � �� � � � � � �� � �

��

 (b) If the is “orthogonal" to  , i.e.,  0  for any  from  and  from  ,X  X X X� � � �
�
�&�

�

�	 �
 	 
� � � � �

then  (a matrix with all entries 0), and the from part (a) will be unbiased.X X 0�
�

� � ��
� 

2.13 (a) ) )  ,  since  and  are# � 
 � # � � # � � � �� � � � � �� � � � � �� � � � � ��� �� � �� �� �
� �

� �
� �
� �

�� � �� �
� �

_ _

 independent (they are found from independent samples).   and  are estimated as� �� �
� �

� � � 
 � 
 �� � ��
�

�SSE /( 21,357/13 1642.85  and
� � � 
 � 
 �� � ��
�

�SSE /( 29,064/13 2235.69 .  The estimated variance is

  ) ) .257 .# � 
 � # � � # � � � � � � �� � �� � � �� � � �� � � �
� �

�� �� � �� �� �
� �
� �

�� � �� �
� �� �

_ _ 1642.85 2235.69
15,240 15,001

To test :  , we calculate the -value  2.72 .� � � � � � � 
� � �
� ��

' � �� � �

�

���

� �
� �

� �

� �

� �
� �

)

2.21 3.59

The critical value for the hypothesis test with .10 is  1.71 (df are 13 13� � � �� � � �
��

from the two samples).  Since   ,  is rejected at the 10% level of significance.� �� � � �� � �
�� �

 (b) ) )  is still true.# � 
 � # � � # � �� � � �� � � �� � � �

2.14 (a) Combining the data results in an x 3 design matrix       � �

� 
 � 
 �
/ / /
� 
 � 
 �
� 
 � �
/ / /
� 
 � �
� � �
/ / /
� �

X

� �� �� �� �� �� �� �� �� �� �� �� �� �
� ��

  .

The model can be written as   ,Y , Z X� �� �
indicating that both  and  are incorporated into the+ 0



model.

2.14 (b) The normal equations are   , which(X X) X y� ��� �
in this case becomes

� �
� �

� �� �
� �

� �� �� �� �� �
� �

� � 
 �1
�
 �1 �

�1�

�

�

�

�

�


 � � �
� �1� �

�1 �


 � � � � �
� 1� �

1 �1

0
0

0 0
 

   

 
�

�

�

�

�

� �

� �

�

�

�

�

� �

� �

V( ) (X X)�� � � �
� �

� �����
�����	� �����	�
����� �

�����	� �����	�
�

��


� �� �  0

0

0 0

� �� �
� �

� �

� �

�

The variance of  (as a prediction) is  [ ] .� # ��� � � �� � �� x (X X) x
�
� � ��

�

In this case, [ 1   1    ]  and   , so that [ 1  ]x
�
� � � � � � # ��� � � �� �� ��( �(

�1
7

The minimum ) occurs at the minimum of  .  Since , and# �� 2�1� � � � � �� 1
7��( �(

�

1 � 1 � $ 1 1 � �(
�  , we must have   (  is an integer).  First,  since division by 0 is not allowed.  By

trial and error, if  , .7 , if , .583 , and if  , 1.17 .  The1 � � 2��� � 1 � � 2��� � 1 � $ 2�$� �
minimum occurs at .1 � �

2.15  The regression model is  .� � � � � � � � � � �� � � �� � �� � �� � �� �� � � � � �

Using a computer solution for the problem, we get
� � � � 
 � � � 
 ��" "� "� "� "�2.483 2.292 .050 13.924 .042  .
With 10 , 6.0 , 1.5  and  20 , the predicted sale value will be� � � � � � � �"� "� "� �

� � � � � �
 � 
 � � �$ � � ��"
�45.09 (thousands).  MSE 17.55 (with  df)   4.19 .

The 95% prediction interval is  23)  , where� . � � � � ��" 
��� � x (X X) x�
�

� ��
�

x�
�
� [ 1   10   6   1.5   20 ] .  This interval is  45.09 (2.07)(4.19) 1.19 45.09 9.46 .. � .�

2.16 (a) False.  Least squares estimation introduces restrictions among residuals.

(b) True.  SSR  , but   so that
_

� ��� �� � �
�

X y (X X) X y� � �� �� �

�� �
�

[(X X) X y] y X [(X X) ] y X (X X)� �� � � � � �� � � � ��� �
( is a symmetric matrix and so is its inverse  , which means thatX X (X X)  � � ��

(X X)  � �� is equal to its own transpose).



 (c) True.  SSE will never increase (and will usually decrease) with the addition of a variable into a
regression model, but MSE SSE/   may increase as the number of variables in� �� 
 � 
 ��
model goes from  to .� � � �

 (d) False.  An -test of a single  is a test of significance of  after all other variables have been included� � �	 	

in the model.  A  may be insignificant because the variable  is strongly correlated with another�	 	%
variable and doesn't provide any “significant" additional description of the behavior of .+

2.16 (e) False.

 (f) False.   .! � �� �� ����
�� ���

SSR
SSTO

_
_�

�
�

�

�
�

 (g) False.  The definition of  is   , and    .� � � � �� � �
� � ��� ��� �� ���

��� ���
� �� �

� �
_ _

�� � 3 � � � ��
�� ����� ��� �� ����� ��� �� ���

�� ��� ) �� ��� ��� ��� �� ���

� �� � � �

� �� �

� � � � �

� � �
� �

� �
� �

�
�

�
_ _ _ _ _

_ __ _   and      � �
(the  's cancel).� 
 �

 (h) False.

 (i) True.  See Example 1 on p. 59 of the text.

 (j) False.  A qualitative variable with  levels is represented by   indicator or “dummy variables., , 
 �

 (k) False.  The model will have to be transformed so that the error term is additive.

 (l) True.  Use the transformation   1 ) .- � 
 4�� 
 � � � � � 4��� � � � �
�
��

� � �

 (m) False.  The procedure allows for a lack-of-fit test for any number  of independent variables.  See p. 57�
of the text.

 (n) False.  As mentioned on p. 47, “... it is quite possible that backward elimination and forward selection
lead to models that include different explanatory variables ...".

 (o) False.  Correlation is not causation.

 (p) False.  Residuals should always be checked for correlation.

 (q) False.  The sum of residuals from a linear regression is 0 if the model includes a constant term.

2.17 (a) IND   ,  where  IND 1 if   and is 0 otherwise.  This is a 2-variable� � � � � � � � 5 �� � � � � � �� � � �

model, variable 1 is time, , and variable 2 is the indicator variable, IND  which is 0 or 1 depending� �

upon whether the treatment has not yet been applied ( ) or has been applied ).  The design� ) � �� 5 �
matrix is

X X X X y

1 0
1 0
1 1 0
1 1 1
1 3 1
1

� � �

��
� �
�

� �

� �
� �� �� �� �� �� �
� �

  and    ,   .
6 0 3
0 70 9
3 9 3

� �
� � � �
� � � �

��
**
�*



A computer generated solution results in parameter estimates of 10.708 ,  1.125 ,� �� �� �� �

� �� � � � � � � �$� �� � 
����2.250 .  The -value for the -test of significance of  is  2.192 , and since  3.18��

(  df) , we see that  : 0 is not rejected at the� 
 � 
 � �  
 � 
 � � $ � �� ��

5% level of significance (however : 0 is rejected at the 5% level).  The data indicates that the� �� ��

jump is not significant.
2.17 (b) This situation can be modeled by  IND  , where IND  is the same as in part� � � � � � �� � � � � � �� � � �

(a).  The design matrix is now

X

1 0
1 0
1 1 0
1 1 1
1 3 3
1 5

�

��
� �
�

�

� �
� �� �� �� �� �� �
� �

 .

The computer generated solution results in  12.208 ,  1.539  ,  .250 , but� � �� � �� � � 
� � �

the -test at the 5% level of : 0  is not rejected (it is rejected for ).� � �� � �� �

2.18  As mentioned on p. 51 of the text, “if the usual least squares procedures are employed in the presence
of serially correlated errors, the parameter estimates may appear significantly different from zero when
in fact they are not".  If error terms follow the random walk, a modified model of the type in Equation
2.64 on p. 67 of the text can be used.

2.20 (a) The usual least squares estimator is   , and it is unbiased, since�� � �

�

� �
�
� �

�
�

6� � 6 � � � �� �� � �)    .  The variance of  is	 
� � �

� � � �

� � � �� � � �
� � � �

� !�� � � !� � � �� � � �

� � � �
� � � �

� � � � �

# � � 6 � � � � � � 7"8�� � � ��
� ) 9

� � � ��)    [ 2  ]	 
�

� � �

�� �
� � � � � � �

' � � � �
�
� �

� * � *
� �

� � �
� � �

� �
� �

)

  � ��
� �

���

� �
� �

�

�� � � � � �
�����2

( ) ( )   if   ,  and 0 otherwise, since only7"8�� � � � 7"33�� � � � # � # �� � � � � 9 
 �� * � * � *
�� ��

� �� ��� and  are correlated).

 (b) The standard deviation of  in the denominator of the usual  statistic is    , which� �� � � ��� �
�

will understate or overstate the true standard deviation of  depending upon whether 0 or 0.� � �� � )
This can lead to an incorrect  statistic and an incorrect test result.�

2.21 (a) The usual least squares estimate is   .  As in Exercise 2.20(a) above, it is unbiased.�� � �

�

� �
�
� �

�
�



The variance of  is  )    .� �� �# � � 6 � � � �	 
�

� � � � �

� � � � �� �
� � � � � � � � � � � � �

' � � � � ' �� � � � � �� �

� � � � �
� � � � �

� � �
� � � �

� � �
� � � � �) /

 (b) )     -   unbiased.6� � 6 � � � ��� �
* 	 
� � � � � � �

� � � �

� � � � !�� � � !� � � � � �
� � � � �

� � � �
� � � �� � � � � �
� � 
 
 

� � � � �

 (c) )   # � � # � � � � � � # � �� �� �
*

( ) ( ) ( )
( /	 
� � � � � �

� � � � � �
� �� � � � ' �� � � � � �

� � � � � � � � �

� � � � � 
 �
� � � � �� � �
� � 
 
 
 
 �
� � � � � � �

� � � �

� �

(this is true since  ) .� � � 5 �� �� �
� � �

2.21 (d) The variance stabilizing technique on p. 58-59 of the text can be applied.  In the example mentioned,
the transformation ( ) would be appropriate.2 � � � 4���� �

2.22     and   .
_ _

� � �� � �� � � 
 �� � �
� � � �� � �� � �

� � �� � �
� � �

� �
� � � �

�
�

�
�

Since  and   are known for each  , we can find   ,
_
� � � � �� 


� � � � �
 
 
�

and   and then   .
_ _ _ _

� �� � � � � � � �(� � � � � �� � � � �� � �
�
�

Also,    and  .  Thus, once  is found,  follows.
_

� � � �� � � � � � � �(� � � � � � � �� � � � � � � �
�
� � �

To find  we must still find   and   .� � �� � � �� � � �
�

� � � � �� ��

_
 is the sum of all  values that come from the independent  value of  , and in general,

� � � � �
 



_
 is the sum of all  values that come from the independent  value of  , so that

�� � � � � � � � � � �(� � � �� � � � � � � �� � �

_ _ _
 .

The 's are all known, so that  can be found.   can now be calculated.� � �
 �
�

�� �



SOLUTIONS TO EXERCISES IN CHAPTER 3

3.1  With simple exponential smoothing, 1 2  for all , so that- � � � - � � � ( � - �:� :� � �� � �

- ��� � - ��� � ���
�� ��� �� .  One form of the updating relationship for simple exponential smoothing is
- ��� � - � �� 
 � - ���� ���� ��� �� �   so that
- ��� � �
��- � �
*�- ��� � � �� ��� �� �� (.1)(105) (.9)(102.5) 102.75.

3.2 (a) The prediction of total sales for the next 12 months is  2 12 960.- ��� � - � � �(� - � � �� � ��� �� ��

(  is 60 since 5 years 60 months of past data is available).  As pointed out in the solution to problem� �
3.1, under simple exponential smoothing all  for  are equal.  Thus, , and once- �:� : 5 � - ��� � ;�� �� ��

- � - � � � ( � - � �� ��� �� ��90 is known, we can update to 1 11 , where
- � � � � � ���� 1 (.2)(90) (.8)(80) 82.  The revised sales forecast for the rest of the year is  (82)(11) 902
.

 (b) The method for determining  is described in Section 3.3.2 of the text on pages 87-88.�

 (c) If the trend is slowly moving, simple exponential smoothing may be appropriate.  Ideally, the residuals
should be tested for autocorrelation to if a simple exponential smoothing model is appropriate.

3.3  (1 ) (1 )  ]- ��� � <- � 
 - � 
 - �(�� ��� � ���
�� � �

 [ (1 )  ] (1 )� - � �� 
 � - � 
 - �( � - � 
 - ����� � � � � ���� � ��� ��� �

If we substitute  for  in this expression, it becomes- ��� -�� ���

- ��� � - � � �� 
 �- � -� � � �� � � �� �( ) (1) (1) .
Suppose that  1   and- �,� � - � �� �� �

- �,� � <- �, 
 �� � 
 - �, 
 �� � 
 - �, 
 $� �(� � � �� � � �
�� � �(1 ) (1 )

                ]   for   .� �� 
 � - ��� � �� 
 � - �( � - ��� , � �� �� 


� : 
 �� �� �"�� "�
� � �

1

Then (1 ) (1 )- �:� � <- �: 
 �� � 
 - �: 
 �� � 
 - �: 
 $� �(� � � �� � � �
�� � �

                ]� �� 
 � - ��� � �� 
 � - �(�� �+�� +�
� �

1

   (1 ) [ (1 )� - �: 
 �� � 
 - �: 
 �� � 
 - �: 
 $� �(� � �� � � �� � �

                ]� �� 
 � - ��� � �� 
 � - �(�� �+� +�
� �

3 2

     (1 )� - �: 
 �� � 
 - �: 
 �� � - �: 
 �� � - ���� � � �� �� � � �

3.4  The optimal smoothing constant  (the one that minimizes SSE( )) is 0 (or 1), which gives� � � 	� �
the same minimum SSE( ) as the globally constant mean model.�

3.5  For the smoothed statistic, the updating equation is  .= � - � �� 
 �=� � ���� �

The -observation moving average is  
_

> - � <- � - �(� - ?�
�,� �

, � ��� ��,��

and at time  it is   .
_

� 
 � - � <- � - �(� - ?���
�,� �

, ��� ��� ��,

It follows that   and
_

> - � - � - �(� -�
�,�

� ��� ��,��

> - � - � - �(� - � >- 
 - � -
_ _

 , or equivalently,���
�,� �,�

��� ��� ��, � ��,�

- � - � �- 
 - �
_ _

 .�
�,� �,�

���
�
, � ��,

- � � = =� � ��� ���
 � � and  are uncorrelated since the 's are uncorrelated, and  depends only upon what
has occurred on or before time .  Let us denote the variance of  by � 
 � = #�

(assumed to be the same for all ).  Then (assuming ),� � ��

# = � # @3<- ? � 
 # <= ? � # � � 
 #[ ] (1 )     (1 )� � ���
� � � � �� � � � �

        .� # � �� �
� �

�

�1 (1 ) 2� � �
� �� �



Since  is a sample mean, its variance is  [ ]  .
_ _
- # - �� �
�,� �,�

,
��

In order for the variances of  and  to be equal, we must have   ,
_

= - �� �
�,�

� ,
��

�2

or equivalently,   .� � �
,��

3.6  ]= � <- � �� 
 �- � �� 
 � - �(� �� 
 � - �(� � ��� ��� �
� ���� � � � �

�

6�= � � <6�- � � �� 
 �6�- � � �� 
 � 6�- � �(� �� 
 � 6�- � �(� � ��� ��� �
� ���� � � � �

� ]
6�- � � � � 6�- � � �� � �
 
 �  for all  except  for which  , so that�

6�= � � < � �� 
 � � �� 
 � �(� �� 
 � � �( � � 
�
� ��� ���� 
 � 
 � 
 � 
 � 
 � � �� �( ) ] (1 )

(this is actually a limit assuming  is large and observations go back indefinitely into the past).  If�
0 1 then as  n  ,  (1 ) 0 , so that  .) ) � A 
 � 6�= � �� � 
���

�
�

3.7  ]= � <- � �� 
 �- � �� 
 � - �(� �� 
 � - �(� � ��� ��� �
� ���� � � � �

�

6�= � � < � � �� 
 � � � �� 
 � � �(� �� 
 � ��
� ���� 
 � � 
 � � 
 � � 
 �( ) ( ) ( )�

    ]� �� 
 � � �� 
 � �(� 
 � 
��� �� ��� ��� �

  ] [1 (1 ) ]� � < � �� 
 � � �� 
 � �(� �� 
 � � � 
 

 � � � � � � � � 
 � �� ��� ��� ��� �

which has a limit of    as   .
 
 �� � � � � A

3.8        (shift the index of  by 1),= � �� 
 � - � � �� 
 � - ��
-�.
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	 	 	 	    .� �
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- ��� � = 
 = � = 
 =�� � � � �
-�. -�. -�. -�.��2 ( )	

	

� �� 
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 �� 
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 � � -��
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 ����


	
	

	 	 	 	� �

� 
 � 
 
 � 
 � -�

/�

� �� 
��
����
[ 2(1 ) (1 ) ]	 	 	

(1 ) (1 )	 	

	 	

� �

    [ 2(1 ) (1 ) ]  .� � 
 � 
 
 � 
 �� 	 	 	

� �� 
��(1 ) (1 )	 	

	 	

� �

For .10  ( .90),  (.2111 .0111 )(.9)� 	 �� � � 
 �


��

  
- � � � = 
 = � = 
 =�� � � � �

-�. -�. -�. -�.��2 2 2 ( )	
	

� �� 
 � - 
 �� 
 � � -2   	 	 	 	� �

/� 
/�


�� � 
��
����
 ����


   2 [  2   ]� �� 
 � - 
 �� 
 � � -��


/� 
/�


�� � 
��
����
 ����


	
	

	 	 	 	� �
  [ 2(1 ) (1 ) ]� 
 � 
 
 � 
 � -�


/�

� �� 
��
����
	 	 	2(1 ) 2(1 )	 	

	 	

� �



    [ 2(1 ) (1 ) ]� � 
 � 
 
 � 
 �� 	 	 	
���



� �� 
��2(1 ) 2(1 )	 	

	 	

� �

For .10 ( .90), (.2222 .0122 )(.9) .� 	 �� � � 
 �


��

3.9 (a) 1 .8  and  1 .9 .  Using Equation 3.41 of the text with ,	 � 	 �� � � �� 
 � � 
 � � � ��


 � � �� � � � �� � �
� ��� � ���30 and  2  we get

� 
 
 	 	 
 �� �� � � �� 
 �- � � � � � � � �� � ������ ���� �� �� ��� � .2(28) (.8)(30 2) 31.2 and

� � � 	 
 
 	 �� � � �� � � 
 
 � � 
 � �� ������ ��� �� �� ���� �(1 )( ) (.1)(31.2 30) (.9)(2) 1.92.

The original forecasts were (using Equation 3.38)  32 (the forecast of ),- ��� � � � -� � �� ����� ���� �

- � � � � � - - � � � � � -� �� � � �� �� � ����� ��� ��� ���2 2 34 (the forecast of )  and  3 3 36 (the forecast of ),� � � �

and the updated forecasts are (using Equation 3.42)
- ��� � � � � � -� � ���� ����� ���
 � 31.2 1.92 33.12  (the forecast of ) and
- � � � � � � � -� � ���� ����� ���2 2 31.2 2(1.92) 35.04 (the forecast of ).
 �

Since  ( ) and  ( ) are known, it is possible to repeat the procedure to- � - - � -��� �� ��� ��

get  and  and updated forecasts (1) , etc.
 �� �� -��� ��� ���

3.9 (b) Using Equation 3.40 with , we get updated values� � ��

� � 	 � �� � �� - � 
 � � � � ����� ���� ����
� � �

�� (1 )( ) (.19)(28) (.9) (30 2) 31.24  and

� � � �� � � �� 
 � � 
 � ����� ���� ���� ����
� � 
�
� �� �
� �
�


�1
1

2( )	 	
	 	

( ) (31.24 30) (2) 1.96.

The updated forecasts are then found using   , so that- �:� � � :� � ��� ���� ����� �

- ��� � � � � � -� � ��� ������ ����� � 31.24 1.96 33.20  (the forecast of ) and

- � � � � � � �� � ��� ���� ����2 2 31.24 2(1.96) 35.16.� �

From Equation 3.37 we have  2     2 30,  and� �� �� � = 
 = � = 
 = ���� ���� �� �� �� ��
-�. -�. -�. -�.

� �� �� � = 
 = � = 
 = ���� ����
�� 
�

�� �� �� ��
-�. -�. -�. -�.


�
	

	
( )   ( ) 2.  Solving these two equations for

= = = � = � 
�� �� �� ��
-�. -�. -�. -�. and  results in  12  and  6.

Then from Equation 3.34, (1 ) (.1)(28) (.9)(12) 13.6= � 
 - � = � � ���
-�. -�.

�� ��	 	

= � 
 = � = � � 
 � 
�� ��
-�. -�. -�.

��(1 ) (.1)(13.6) (.9)( 6) 4.04,	 	

= � 
 - � = � � ��� ��
-�. -�.

��(1 ) (.1)(31) (.9)(13.6) 15.34	 	

= � 
 = � = � � 
 � 
�� �� ��
-�. -�. -�.(1 ) (.1)(15.34) (.9)( 4.04) 2.102 , and	 	

= � 
 - � = � � ���
-�. -�.

�� ��(1 ) (.1)(36) (.9)(15.34) 17.406	 	

= � 
 = � = � � 
 � 
�� ��
-�. -�. -�.

��(1 ) (.1)(17.406) (.9)( 2.102) .1512.	 	

3.10  We are given .9 ( .1) and  is known .  Then from Equation 3.62, [  ,	 � � �� � # B �:�? � ��
� �

+

where  1 [ (1 4 5 ) 2 (1 )(1 3 ) 2 (1 ) ] , so that� � � � � � : 
 � � : 
+
� � � ���

��� �
	
	 � 	 	 	 	 	

# B ���? � � � � � � � � �[ [ (1 4 .9) 5(.9) 2(.1)(3.7) 2(.1) ] .2607  ,�
� � � � � �

�

�

� 
��� � �1 �

# B ���? � # B � �? � # B � �? �[ .2828   ,  [ 3 .3061    and  [ 4 .3305  .� � �
� � �� � �

The 95% prediction intervals are:
for 1-step-ahead  1.96 .2607  which becomes  1.00   ,- ��� . - ��� .� �� �� ��
for 2-step-ahead  2 1.042   ,  for 3-step-ahead  3 1.084  ,  and- � � . - � � .� �� �� �

for 4-step-ahead  1.127  .- ��� .�� �

It is assumed that the mean absolute deviation  is known.  The estimate for  is then  1.25� � �� � �C0 0 0

� �� � ��0 ��  .



Equation 3.68 on page 130 of the text gives the prediction interval for a sum of  future observations.D

For the case of double exponential smoothing, the matrix  isF��

    and    
1

F F�� � � �
 �� 
 �

�� 
 �

	 	

	

� �

� ��� �	
	

� * �
� �
� �

1
�� ��� �

�

�
��� � ��� �

��� �

� �

�

�

� �

� �

� � �

�

�

� � � �

� �

(page 129 of the text).

3.10  (cont'd)  With .1 ( .9) these matrices become� 	� �

    and      and
.19 .01 5.2632 22.4377
.01 .00111 22.4377 213.748

F F�� � � � � �* �






F F F�� ��
* � � �.1261 .005394

.005394 .0002916

f f��� � � ��� � � 	 	
	 �
� � � � �
� � � 



� � � � � � � � � � � �	 	     
1
�� 
��

� �

������
�

For 4,      D � 	 �
+&�

4

f F F F f f F F F f� �� �� � �� ����� ��� � ��� ���
 � 
	* *  

��

4

    [ 4   10 ]  2.478 ,
.1261 .005394 4

.005394 .0002916 10
� �� � � �

The 95% prediction interval for the sum of the next four observations is then

�
+&�

�

� 0 0
�
�

���- �:� . �
* � � �� � C ���
�

[ 2.478 ]  .  The same comment that 1.25  applies.� �

The average of the next four observations is       , and has a standard deviation�
�

+&�

�

��- �:��

which is  of that of   , so that the prediction interval for the average is�
�

+&�

�

��- �:��

� �
� � �

+&�

�

�
� ���  [ 2.478 ]�- �:� . �
* � � �� ��
�

3.11    [ ]  ,� �
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1 1 �� ��� � ��� �

� � � ��� �� � � � � �	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	   ,( )
[(1 ) 2 (1 )]

� � �

�

� �

/� 
/�

� 
 � 
1 1
1 1 ��

�� � � �	 	 	 	
	 	 	

	 	 (1 )
( )�

     � �	 	 	 	 	 	

	 	

	 	 	[(1 ) (1 2 ) 3 (1 )(1 ) ] 4� � � � �
��� � ��� �

��� � �� �
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�

� �

/� 
/�
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 � 
1 1
1 1 ��

� �� � � �	 	 	 	
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( )

�
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	 	 	 	[(1 ) (1 8 3 ) 4 (1 4 )(1 ) ] 11 11� � � � � � �
��� � ��� �

��� � � �
 � � �

� �

� �

3.12  The smoothed statistics are calculated from on the relationship

= � �� 
 �= � = ,� �
-". -"��. -".

���	 	 .  We use proof by induction on .  Suppose that the

statement          is true for  and for all .= � �� � �� - 3 � �� �� 


� , ��
-). ��� �

�)���2

/� 	&�

)��


��


	 � � �� � 	
We wish to show that the statement is true for .3 � , � �

But   (1 )= � �� 
 �= � = � �� 
 �= � 
 = � =� � �
-"��. -". -"��. -". -". -"��.

��� ��� ���
�	 	 	 	 	 	

     (1 ) (1 )� �� 
 �= � 
 = � 
 = �(	 	 	 	 	�
-". -". -".

��� ���
�

    (1 )         � 
 �� � �� -	 	
��� �
�"���2


/� 	&�

"��


��


	 � � �� �

    (1 )         � 
 �� � �� -	 	 	
��� �
�"���2


/� 	&�

"��


����


	 � � �� �

      (1 )             � 
 �� � �� - � (	 	 	� 
��� �
�"���2


/� 	&�

"��
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"��


��


	 ��� � �� � 	
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3.12  (cont'd)  If we can show that            (Equation A)� � �� �
)&� 	&� 	&�


 "� "
�
"

1

�� 
 3 � �� � �� � ��

then the result follows from mathematical induction.
Doing the change of variable  , Equation A becomes� � � 
 3

           .  This equation can be established by induction on .� � �� �
�&� 	&� 	&�


 "� "
�
"

1

�� � �� � �� � �� �

It is true for 0 and for any value of , since for , the left-hand-side is  ( ! , and the right-� � , � � � , 
 ��
hand-side is  !  .   Suppose that the statement is true for all values of �

" , � �, 
 ��E �

from .  We wish to show that it is true for .� � �� �� �� 


� � � � �

             � � � � �� � � �
�&� 	&� �&� 	&� 	&�

��� "� � "� "�1 1 1

�� � �� � �� � �� � �� � � � ��

             1    1� �� � �� � �� � � � �� � �� � � �� � �� � � ��� �
" "

	&� 	&�

" "� "�� "��

	& 	&

� � � �1

0 1

     1      1  , which is the statement for .� �� � � �� � � � �� � � �� � � �� �� �
	& 	&

"� "
��� �
" "

1 1

1

This establishes the validity of Equation A and completes the result.

3.13 (a) True.  As pointed out on page 86 of the text, under simple exponential smoothing, the forecasts from a
fixed forecast origin  are the same for all lead times .� :

 (b) True.  From Equation 3.38 on page 106 of the text, we see that  is a linear function of .- �:� :��

 (c) True.  From Equation 3.60 on page 128 of the text we see that the prediction intervals under simple
exponential smoothing are the same for all .:





SOLUTIONS TO EXERCISES IN CHAPTER 4

4.1 (a) In this case  for the trend component and  for the seasonal component.  The, � � 1 � �

transition matrix  is a 3 x 3 matrix of the form (see pages 153-154 of the text)  L L 0
0 L� ��

�

where   is the 1 x 1 transition matrix for the trend component, [ 1 ] ,L�

and  is the 2 x 2 matrixL�

L L� � �  , so that  
cos sin

sin cos 1 0
0 1

1 0 0
0 0 1
0 1 0

� � � � � �
� �


 



 

� �

� �
 

�




 (b) 1 for the trend component and  for the seasonal component.  The transition matrix, � 1 � �

L LL 0
0 L is the 4 x 4 matrix  where  is the 2 x 2 transition matrix for the trend� ��

�
� , 

component (see p. 97 of the text),  and  is the 2 x 2 matrix as in part (a),
1 0
1 1

L L� �� � �

L L� � �  , so that  
cos sin

sin cos 1 0 0 0 0 1
0 1 1 1 0 0

1 0 0 0

0 0 1 0

� � � �
� �� �� �
� �


 



 

� �

� �
 

�




 (b) 1 for the trend component and 2 for the seasonal component.  The transition matrix, � 1 �

L LL 0
0 L is the 4 x 4 matrix  where  is the 2 x 2 transition matrix as in part (b),� ��

�
� , 

  , and  is the 4 x 4 matrix    , so that
1 0 1 0 0 0
1 1 0 0 0 1

0 1 0 0

0 0 1 0

L L L� � �� �� �
� �� �� �
� �







L �

� �� �� �� �� �� �� �
� �

1 0 0 0
1 1 0 0
0 0 0 1
0 0 1 0

 .

� �
� �
� �


 � �
� � � � � �
� � � � 
 � �



SOLUTIONS TO EXERCISES IN CHAPTER 5

5.1 (a) The slowly decaying sample autocorrelation function of the 's and the more rapidly exponential decay-�
in the SACF of the differenced series indicates that the  series is non-stationary but the series of first-�
differences is stationary.  A possible choice for the model of the differenced series is AR(1) (MA
would require the autocorrelations to be very near 0 after a few lags).

 (b) The SACF seems to be a damped sine wave, which indicates an AR(2) model (or ARMA(2,1) or
ARMA(2,2) model).

5.2  A stationary model requires (among other things)  ( )   for all .  This is not the case for this6 - � �� 


model.  This model is not stationary in the mean.

5.3 (a) The 's are not stationary, but the series of second differences is stationary with an MA(1) model.-�

 (b) The model is invertible since the sum of the 's is finite (they form an infinite geometric progression� ��"
with  - see part (d) following).� �� ) �

 (c) The second differences form a MA(1) model so that for te second difference series,  is   and for��
�
��

�
��

, 5 � � �,  .�"

 (d) The  weights are found from  (1 )(1 ) 1  , or equivalently
 
 
 �� F � F �( 
F � 
 F� �
� �

(1 )(1 2 ) 1  , so that� F � F �( 
 F �F � 
 F
 
 �� �
� �

F 
 � 
 � � 
:  2     2
 � 
 �� �

F 
 � � � � 
 � 
 
 � 
�
� � � �:  2 1 0    2 1 2(2 ) 1 3 2
 
 
 
 � �

F 
 � � � � 
 � 
�
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 � , � � 
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" "�� "�� " "�� "��: 2 0    2
 
 
 
 
 
 �

The  weights are found from   (1 ) (1 )(1 ) , or equivalently,� � � �
F � 
 F � F � F �(� �
� �

1 2 (1 )(1 ) , so that
 F �F � 
 F � F � F �(� �
� �� � �

F 
 � 
 � � 
:  2    2� � � �� �

F 
 � � � � � 
 ��
� � � �:  1    1 ( 2) 1� �� � �� � �

F 
 � � � � 
 �� �
� � � �:  0    ( 2)� �� � �� � � �

F � � � � � 
 �� �" "�� "��
" "�� " "��:       .� �� � �� � � �

 (e) We can use Equation 5.62 on p. 239 to get   , where the 's were- ��� � @ � @ �(� � � � ���
 
 


found in part (d) above.
Alternatively, we can write   so that- � �- 
 - � @ 
 @��� � �� ��� �1 �

- ��� � 6�- & - � - � 


� � - 
 - 
 @ 6�@ & - � - � 


� �� ��� � ��� � ��� � ��� � ���2   (since 0).�

B �� � @� ���
�(  , which has variance  (this is true for the 1-step-ahead forecast for any model).�



5.4 (a)  , but   , so that� � � � - � � � @ � - � � � � -� � � ��� � � ��� ��� ����

� � � 
 - � � � 
 - � � @ � - � � � @ � - 
 -��� ��� ��� � ��� ��� � � ��� � � ���  and  (� � �

Alternatively,  the model  (1 )   becomes   , or equivalently,
 F � � @ �� 
 F��� 
 - � � @� �� � � � �

(1      .
 F�� � @ � �� 
 F�- � � � � � @ � - 
 -� � � �� � � � ��� � � ���

Then,  [� � � � @ � - 
 - ? � @ � - 
 -� ��� ��� ��� ��� � � ���� � � �

            .� � � @ � @ � - 
 -� � �� �
��� � ��� � ���

Continuing in this way, we get
  , so that if  , then� � � � @ � @ �(� @ � - 
 - ) �� ��" � ��� ��"�� � " ��"

" "��� � � � �� �
as  we have   .  Since the 's are uncorrelated with the 's,, � A � � @ � @ �(� - - @� � ��� ��

the variance of  is the same as that for the AR(1) model plus  ,� # �- � �� � 3
��

i.e.,   .  Also, the covariance -steps-apart for  is the same as for the# �� � � � , , 5 �� ��
�
3

�

�

�
�
� �

AR(1) model because the 's and 's are uncorrelated, i.e.,  Cov  , so that- @ �� � � � ���" � ��
� �

�

� �
�
�

� � � �" ��� ��
� "��
3

����� �
� � � �	 
�� �� � �

� �
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�

� � �
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�
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�
�
�
�

  .
�

�

 (b) The ARMA(1,1) model has autocorrelation function   which is the same form as the model� � �" �
"���

in part (a).

5.5 (a) If the model is represented as   , then the partial- � - � - �(� - � @� "� ��� "� ��� "" ��" �� � �

autocorrelation for lag  for is  ., �""

 (b) (i)  This is an AR(2) model with 1.2 and .8 .  Using the representations for the� �� �� � 


partial autocorrelations as given on p. 210 of the text we have   .� �� �� � �
�� � ��

�
�

�1

Also,  0 , so that  .8 .� � �� � �� �
�
�

� � � � � 
� � �

� �
� �
� �

�

�
�
�1 1

For the AR(2) model,  for  .�"" � � , 5 $

  (ii)  This is an AR(1) model with .7 .  Then  .7  and  for  .� � � � �� � � � � � , 5 �� � ""�

  (iii)  This is an ARMA(1,1) model with .7 and .5 .  From p. 222 of the text we have� �� �

that .2364 , and  for  is as for the MA(1) model (as� � �� � ""�
��� �� � �
�� ��� � � , 5 ��� � �

� ���

found n page 218 of the text) so that  .1905  and���
� �

�� � 
� �

�

� �

�
(1 )

1

���
� �

�� � 
� �

�

� �

�
(1 )

1 .0941 .

(iv)  This is an MA(1) model with .5 .  The PACF for the MA(1) is found on page 218 of� �

the text.  .4 , and .1905 , .0941 are the same as in part (iii)� � �� � �� � �
� �

�� � 
 � 
 � 
� �

�

(1 )
1

�




above.

5.6    so that�
�&�

�

� � � � � � � � � ��� � �- � - � - �(� - � @ 
 @ � @ 
 @ �(� @ 
 @ � @ 
 @



the sample mean is      and�
� �

�&�

�

�
$ �$�- � � �

# - � # � # @ � @ � � � � �	 
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� � �
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� � �

�

� � 2�

Since the form of the model has 's canceling out when successive 's are added, the total random@ -
component remains small in the sum.

5.7  - 
 - � @� ��� �

� G � - 
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 - � � �- 
 - � �(�- 
 - �  � ( � ��( � ��� ��� ��� ��(�� ��(

         � @ � @ �(� @ � # � G � � � �(� � 1� ��� ��(�� � (
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�
(G � - 
 - � � �- 
 - � �(� �- 
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 �@ �(� �@ � @ ?� ��� ��(�� ��(��

Then,  ) [ 2 3# � G � � � �(� �1
 ��� (
�
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� � � � � � �*
� � � � �

                                     2 ]�1 � �1
 �� �(� �� � � � � � �� � � �

    ) [2(1) 2(2 ) 2(3 ) 2 ]� # � G � � � �(� �1
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� � � �* ��

�

           [ 2   ] [ 2 ] [ ] .� � 
1 � 
1 �� � �� � � �

� � �( ( � ( �
	&�

(
� � �(�(�����(��� ( �(� �� 2

Then ) ) [ ] , which has a limit of  as # � G # � G � 1 � � 1 � A� � (( ( � � ( �
( �( � � ��* 2� ��� �

� ��

5.9  The Portmanteau test for model adequacy gives a value of  ofH*

H � 
 � � � 
 � 
 �* 99[( .32) (.20) (.05) ( .06) ( .08) ] 15.34 .� � � � �

The chi-square distribution has  5 1 4 (assuming a mean wasn't estimated).D 
 � 
 ' � 
 �
At the 5% level, we have  9.49 .  The large value of  indicates that the model is not��
����� � H*

adequate.

5.10 (a) (1)  AR(1) model which has forecast equation (Equation 5.66 on page 241 of the text)
- �:� � � <- �: 
 �� 
 ? � � �- 
 �� � �

+
 � 
 
 � 
  .
(2)  AR(2) model which has forecast equation (Equation 5.72, p.
243)    (assuming 0) .- �:� � - �: 
 �� � - �: 
 �� �� � � � �� � 


(3)  ARIMA(1,1,1) model which has (Equation 5.78 on p.245)
- �:� � � � - �: 
 �� 
 - �: 
 ��� � � �� � �(1 )  .
(4)  ARIMA(0,2,3) model with  - � �- 
 - � @ 
 @ 
 @ 
 @� ��� ��� � � ��� � ��� � ���� � �

so that  - ��� � �- 
 - 
 @ 
 @ 
 @� � ��� � � � ��� � ���� � �

- � � � �- 
 - 
 @ 
 @� � � � � � ���2 (1) � �

- � � � �- 
 - 
 @ - �:� � �- �: 
 �� 
 - �: 
 �� : 5� � � � � � � �3 (2) (1)   and    for 4 .�

5.10 (b) (1) The derivations for  and 2 for the AR(1) model are given on page 241 of the text.: � �
B �$� � - 
 - �$� � � �- 
 � � @ 
 < � �- 
 �?� ��� � ��� ��� �

�
 � 
 
 � 


  [ ( ]� �- 
 � � @ 
 �- 
 � � - 
 � � @ � @ 
 �- 
 �� 
 � 
 � � 
 � 
��� ��� � ��� ��� ��� �
� �

   ( )� - 
 � @ � @ 
 �- 
 �� 
 � � 
� �
��� ��� ��� �

   [ ( )� - 
 � @ ? � @ � @ 
 �- 
 � � @ � @ � @� � 
 � � 
 � �� � �
� ��� ��� ��� � ��� ��� ��1

Then, [1 ]  (as in Equation 5.68 on page 241).# <B �$�? � � � ��
� � � � �

�� � � � 1
1

�

�

�

�

  (2) For any model, (1 ).  For the AR(2) model, we have# <B �:�? � � � �(��
� � � �

� � +��� 
 
 



 � 
 � � � � �� � � � � �� �
� � � �� � � # <B ��� � # <B ���? � �  and   .  Thus,  ]  ,  (1 )  and

# <B �$�? � � � �� �
� � � �

� �� � � �[ 1 ( ) ] .



  (3) For any model,   so that  .  For simplicity we assume .B ��� � @ # <B ���? � � �� ��� � �
�� �

For the ARIMA(1,1,1) model,  (1 )   so that- � � - 
 - � @ 
 @��� ��� � ��� ���� � �

B ��� � - 
 - ��� � � - 
 - � @ 
 @ 
 � - ��� 
 - ?� ��� � ��� � ��� ��� � �(1 ) [(1 )� � � � �

(this uses the formulation for  for the ARIMA(1,1,1) model on page 245) , then using the- ����

formulation for  and  on page 245, we have- - ������ �

 (1 )[(1+ ) ]� � - 
 - � @ 
 @ � @ 
 @B ���� � ��� ��� � ��� ���� � � � �

             (1 )[(1 ) ]
 � � - 
 - 
 @� � � �� ��� �

 (1 )   and  [1 (1 ) ] .� @ � � 
 @ # <B ���? � � � 
��� ��� �
� �� � � � �

For  we have  (  .: � $ B �$� � - 
 - $�� ��� �

We first write  (1 )  , and then using the model form for- � � - 
 - � @ 
 @��� ��� ��� ��� ���� � �

- - - � � - 
 - � @ 
 @��� ��� ��� ��� � ��� ��� and , we have  (1 )� � �

and  (1 )   so that- � � - 
 - � @ 
 @��� � ��� ��� �� � �

 (1 )[(1 ) ]� � � - 
 - � @ 
 @-��� ��� � ��� ���� � � �

              [(1 ) ]
 � - 
 - � @ 
 @ � @ 
 @� � � � �� ��� ��� � ��� ���

 (1 2(1 )� � � - 
 � - � -� � � �� �
��� � ���

  (1 ) [(1 ) ]� @ � � 
 @ 
 � � @ � @��� ��� ��� �� � � � � ��

 (1 [(1 ) ] 2(1 )� � � � - 
 - � @ 
 @ 
 � -� � � � � ��
� ��� ��� � �

          (1 ) [(1 ) ]� - � @ � � 
 @ 
 � � @ � @� � � � � � ���
��� ��� ��� ��� �

  [(1 ) 2 (1 )] [ (1 ) ] (1 )� � 
 � - � 
 � - � @ � � 
 @� � � � � � � �� � � �
� ��� ��� ���

            [(1 ) (1 ) ]� � 
 � 
 @ � @� � � � ���
��� �

In a similar way,
 � �� � �- ��� 
 - ���- �$�� � �� �

 ]� �� � �<�� � �- ��� 
 - ? 
 <�� � �- 
 - 
 @� � � � � � �� � � ��� �

 [(1 ) ] 2 (1 )  .� �� � � � - 
 - 
 � - � - � @� � � � � � � �� �
� ��� � ��� �

Then, ( (1 ) [(1 ) (1 ) ]B $� � - 
 - �$� � @ � � 
 @ � � 
 � 
 @� ��� � ��� ��� ���
�� � � � � �

and {1 (1 ) [(1 ) (1 ) ] } .# <B �$�? � � � 
 � � 
 � 
�
� � � �� � � � � � �

5.10 (b) (cont'd)  There are other quicker ways in which to determine the variance of .B �$��

The first uses Equation 5.64 on page 239 (as in the solution for the previous model) :
# <B �:�? � � � �(�� � �

� � � �
� � +��� 
 
 
 
 
(1 ) .  Then it is a matter of finding  and  for the

ARIMA(1,1,1) model.  This is done by solving the equation
(1 )(1 )(1 ) 1  .  This results in 1  ,
 F 
F � F � F �( � 
 F � � 
� 
 
 � 
 � �� � �

�


 � 
 � � � � � 
 � 
 �
� � " "�� "��� � 
 � � � 
 
 � � 
(1 ) (1 )(1 )  , and in general,  (1 )
Alternatively, note that the forecast error satisfies a similar difference equation to the model and
forecasts:   .B �:� � �� � �B �: 
 �� 
 B �: 
 �� � @ 
 @� � � ��+ ��+��� � �

We always have   and  , and we getB ��� � � B ��� � @� � ���

B ��� � � B ��� 
 � � @ 
 @ � @ � �� � 
 �@� � ��� ��� ��� ���(1 ) (0)  , and then� � � � �

B �$� � �� � �B ��� 
 B ��� � @ 
 @� � � ��� ���� � �

     (1 ) [(1 )(1 ) ]  .� @ � � 
 @ � � � 
 
 @��� ��� ���� � � � � �

  (4) This is an ARIMA(0,2,3) model  2- � - 
 - � @ 
 @ 
 @ 
 @� ��� ��� � � ��� � ��� � ���� � �

As always,  .  The  coefficients are found fromB ��� � @� ��� 


(1 ) (1 ) 1   , or equivalently,
F � F � F �( � 
 F 
 F 
 F� � � �
� � � � �
 
 � � �

(1 2 )(1 ) 1   , so that
 F �F � F � F �( � 
 F 
 F 
 F� � � �
� � � � �
 
 � � �

F 
 � 
 � � 
:  2     2  ,
 � 
 �� � � �

F 
 � � 
 � � 
 
 � 
 
�
� � � � � � � �:  2 1     2 1 3 2
 
 � 
 
 � � �

Then,  (1 ) [1 (2 ) ]  and# <B ���? � � � � 
�
� � � �

�� 
 � �

# <B �$�? � � � � � 
 � 
 
� � �
� � � � � �

� �� 
 
 � � � �(1 ) [1 (2 ) (3 2 ) ].
We could have derived in the longer method that was used for the previous model (i.e., find -���
and  , and then write  ).- �$� B �$� � - 
 - �$�� � ��� �

5.11 (a) This is the ARMA(1,1) model, which can be written in autoregressive form as (page 221 of the text)
- � - � - �(� @ � 
 � � 
 � � 5 �� � ��� � ��� � � 



��� � � � � � � � �, where  , and  for .  Then,
- � - � - �(� @��� � � � ��� ���� �   so that
- ��� � 6�- & - � - � 


 � - � - �(� ��� � ��� � � � ���) � �



� 
 - � - �( � 
 -( )[ ] ( )  and� � � � � �� ��� ��


&�
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�

- � - � - �(� @��� � ��� � � ���� �   so that
- � � � 6�- & - � - � 


 � - ��� � - � - �(� ��� � ��� � � � � � ���2 ) � � �
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 - � 
 -( ) ( ) ( ) � � � � � � � � ��� 
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 ��
 ��
� � �
    ( ) ( )� � - � � - �(� � � � ��

�
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 (b) The  coefficients for the ARMA(1,1) model are    for   .
 
 � � �

"��� � 
 � , 5 �

# <B �:�? � � � �(� � � � 
 � � � 
 � �(� � 
 ��
� � � � � +��

� � +��� 
 
 
 � � � � � � � � �(1 ) [ 1 ]

   1  � � � 
 �� � �� ��
��� �� ��

�

�	�

5.11 (c) As 1, the forecast (1 )  , which is the same limit as  .� � �� - ��� � 
 - - ���� ��
 �

&�

4

�

As 1, this model becomes an  ARIMA(0,1,1) model.� �
As 1, the variance becomes infinite (division by 0 - see part (b) above).� �

5.12    and    for  .- ��� � � - - �:� � � - �: 
 �� : 5 �� � � � � �� � � �

We have  , 50  and  .60 .- � ��� � �� ���� �� �

Then  50 (.6)(115) 119, 2 50 (.6)(119) 121.4  and- ��� � � � - � � � � �� ���� ���

- � � � � ����� 3 50 (.6)(121.4) 122.84.

5.13  For the ARIMA(0,1,1) model,  for all .  This  26 .- �:� � - ��� : 5 � - ��� � - ��� �� �� � ��� ���

We can update the forecasts using Equation 5.85 on page 247 of the text :
- �:� � - �: � �� � <- 
 - ���?��� � + ��� �
  .  In the case of the ARIMA(0,1,1) model,

 �� ��� ��� ��� ���� 
 � - ��� � - � - 
 - ��� � � 
 �� � �1 .4, so that  (2) (.4)[ ] 26 (.4)(24 26) 25.2.
Since this is an ARIMA(0,1,1) model, we have  2 25.2 .- � � � - ��� �� ���� ���

The 95% prediction interval for the 1-step-ahead forecast from origin t 101 is�
- ��� . 9 � .���� 
��� � 25.2 1.96 , and the interval for the 2-step ahead forecast is
- � � . 9 � � �� 
 � � . �
���� 
���

�2 25.2 1.96 16.� �� �

5.14 (a) The ARIMA(1,1,0) model has the form  (  , or equivalently,- 
 - � - 
 - � � @� ��� ��� ��� ��

- � � - 
 - � @� ��� ��� �(1 )  .� �

Then  (1 )   so that  ( (1 )  ,- � � - 
 - � @ - �� � � - 
 -��� � ��� ��� � � ���� � � �

and  (1 )   so that- � � - 
 - � @�� ��� � ���2 � �

- � � � - 
 - � � 
 - 
 � -� � � � ���
�(2 (1 ) (1) [(1 ) ] (1 )  , and� � � � � �

since  (1 )  , it follows that- � � - 
 - � @��+ ��+�� ��+�� ��+� �

- :� � � - �: 
 �� 
 - �: 
 �� : 5 $� � �( (1 )   for  .� �

Then  (1.4)(33.9) (.4)(33.4) 34.1 ,  (1.4)(34.1) (.4)(33.9) 34.18 ,- ��� � 
 � - ��� � 
 �� ��� ��

 3 (1.4)(34.18) (.4)(34.1) 34.212 ,  4 (1.4)(34.212) (.4)(34.18) 34.2248 ,- � � � 
 � - � � � 
 �� ��� ��

 5 (1.4)(34.2248) (.4)(34.212) 34.22992 .- � � � 
 ����
The  coefficients for the ARIMA(1,1,0) model are found from


(1 )(1 )(1 ) 1 , so that
 F 
F � F � F �( �� 
 
� �
�
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 � � � �:  1 0    1
 � 
 �� �

F 
 
 � � � � � 
�
� � � � �:  0  (1 )  ,
 
 �
 � 
 � 
 �

and in general   .
 � 
 �

 
�� 
��� �� � � 

In this case, .40, so that  1.4 , (1.4)(1.4) .4 1.56,� 
 
� � � 
 �� �


 
� �� 
 � � 
 �(1.4)(1.56) (.4)(1.4) 1.624  and  (1.4)(1.624) (.4)(1.56) 1.6496
The 95% prediction interval for the -step-ahead forecast is:



- �:� . �
* � � �(�� �� � �
� � �

+��� 
 
 
�1   .

5.14 (a) (cont'd)  For  the interval is  34.1 1.96(.18) 34.1 .3528,: � � . � .

for  ,  34.18 1.96(.18) 1 (1.4) 34.18 .6070,: � � . � � .� �

for 3 ,  34.212 1.96(.18) 1 (1.4) (1.56) 34.212 .8193,: � . � � � .� � �

for 4 ,  34.2248 1.96(.18) 1 (1.4) (1.56) (1.624) 34.2248 .9998,: � . � � � � .� � � �

for 5,  34.2299 1.96(.18) 1 (1.4) (1.56) (1.624) (1.6496) 34.2299 1.1568.: � . � � � � � .� � � � �

 (b) The updating formula is  [ (1)] . With 34.2,- �:� � - �: � �� � - 
 - - �� ���� � + ��� � ��


- ��� � - ��� � - 
 - ��� � � 
 �� � ��� �� � �� ��
 [ ] 34.18 (1.4)[34.2 34.1] 34.32,
- � � � - � � � - 
 - ��� � � 
 �� � ��� �� � �� ��2 3 [ ] 34.212 (1.56)[34.2 34.1] 34.368,


- � � � - � � � - 
 - ��� � � 
 �� � ��� �� � �� ��3 4 [ ] 34.2248 (1.624)[34.2 34.1] 34.3904,


- � � � - � � � - 
 - ��� � � 
 �� � ��� �� � �� ��4 5 [ ] 34.2299 (1.6496)[34.2 34.1] 34.3949.


For this ARIMA(0,2,2) model we have  5.15  - � �- 
 - � @ 
 
;�@ � 
$;@� ��� ��� � ��� ���

Then, ,- ��� � �- 
 - 
 
;�@ � 
$;@� � ��� � ���

- � � � �- 
 - � 
$;@ - �:� � �- : 
 � 
 - �: 
 �� : 5 $� � � � � � �2 (1)    and   ( )   for .
Following the suggestion given for this problem, we assume that  and find@ � @ � ��� ��

- ��� � �- 
 - 
 @ � @ ��� �� �� �� ��.81 .38 16.5.
Then,  15.9 16.5 .6.@ � - 
 - ��� � 
 � 
�� �� ��

Continuing, we get  .81 .38 16.486, and- ��� � �- 
 - 
 @ � @ ��� �� �� �� ��

@ � - 
 - ��� � 
 � 
�� �� �� 15.2 16.486 1.286 .  Successively, we find
@ � @ � @ � @ � 
 @ � 
 @ ��� �� �� �� �� ���.586 , .863 , .476 , .742 , .182 , .635.
Then, 2(18.2) 17.3 (.81)(.635) (.38)( .182)- ��� � �- 
 - 
 
;�@ � 
$;- � 
 
 � 
��� ��� �� ��� ��

                   18.516 .�
- ��� � �- ��� 
 - � 
$;@ � - � � � �- � � 
 - ���� ��� ��� ��� ��� ��� ���19.073 ,  3 2 (1) 19.63
- � � � �- � � 
 - � - � � � - � � ���� ��� ��� ��� ���4 3 (2) 20.187 , 5 20.744 , 6 21.301,
- � � � - � � � - � � � - � � ���� ��� ��� ���7 21.858 ,  8 22.415 ,  9 22.972 ,  10 23.529
(subsequent forecasts from  on increase by .557 over the previous forecast, i.e.,- ������

- �:� � - �: 
 �� � 
������ ���  in this example).

5.16 (a) The model can be written in terms of  coefficients in the form�

- � - � - �(� @� � ��� � ��� �� �   by solving
�� 
 F� � �� 
 
;F��� 
 F 
 F 
(� �� �

� ).
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 � 
 � �:  .8 1    .2� �� �

F 
 � � � � ��
� � � �:  .8 0    .8 (.8)(.2)� � � �

In general,     (.2)(.8) .� � �
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Then  (.2)(.8)  .- � - � @� ��
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The sum of the coefficients (infinite geometric series) is  (.2)(.8) .�
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 (b) , ) )  (.2)(.8)- ��� � 6�- & - - � 
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so that   .� �

���


�

Thus   , which is consistent with an ARIMA(0,1,1) model in which- ��� � - ���� �

- �:� � - ��� : 5 �� �  for  (Equation 5.73 on page 244).

 (c)  for any ARIMA time series model.  For the ARIMA(0,1,1) model,B ��� � @� ���

B ��� � @ � �� 
 �@ # <B ���? � # <B � �? � � 
� ��� ��� � �
� � �� � � � .  Then  ,  2 [1 (1 ) ]

and
 Cov[ , 2 2� 6<B ��� B � �?B ��� B � �?� � � �

 � 6<@ �@ � �� 
 �@ �?��� ��� ����

 ] 0 (1 ) .� 6<@ @ � 6<�� 
 �@ �? � � 
��� ���
� �
���� � �

The covariance matrix is

� �� � �

� � � �

� �

� � �

(1 )
(1 ) [1 (1 ) ]
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5.17  Assume that  .  Then there will be overlapping 's in  and  .: � � @ B �:� B �:�� ��
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Since 's at different time points are uncorrelated, the covariance is  multiplied by the sum of the@ ��

pairwise products of the coefficients of the overlapping 's. The overlapping 's are@ @
@ B �:� B �:���+�
 
 � ��
 which has coefficient  in   and coefficient 1 in  ,


@ B �:� B �:���+�
�� 
�� � � ��
 which has coefficient  in   and coefficient  in 
 


@ B �:� B �:���+�
�� 
�� � � ��
 which has coefficient  in   and coefficient  in  , . . . ,
 


@ B �:� B �:���� +�� � +�
�� ��
 which has coefficient  in   and coefficient  in 
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If  there are no overlapping 's and  and  are uncorrelated .: 5 � @ B �:� B �:�� ��


5.18  B �:� � @ � @ � @ �(� @� ��+ � ��+�� � ��+�� +�� ���
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The over lapping pairs of 's are@
@ B �:� B �: � ����+ � 
 � which has coefficient 1 in  and coefficient  in 
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�� � which has coefficient  in  and coefficient  in  ,
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�+�� � which has coefficient  in  and coefficient  in  .
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5.19        Cov# < B �:�? � # <B �:�? � � <B �:�� B �1�?
� � : ) 1 � �

� � ��
+&� +&�

� �

� � � �

For ,� � �

# < B �:�? � # <B �:�? � <B � �� B � �? � <B � �� B � �?  2[ Cov 1 2 2Cov 1 3� �
+&� +&�

� � � � � �

4 4



� <B � �� B � �? � <B � �� B � �? � <B � �� B � �? � <B � �� B � �?2Cov 1 4 2Cov 2 3 2Cov 2 4 2Cov 3 4� � � � � � � �

For the ARIMA(0,1,1) model,  , and   for al  .
 
 �� 
� � � � 
 � 5 �
Thus,  1  , 2 [1 1 ) ] , 3 [1 2(1 ) ]# <B � �? � # <B � �? � � � 
 # <B � �? � � 
� � �

� � � � �� � � � �

# <B � �? � � 
�
�4 [1 3(1 ) ].  From Exercise 5.18,� �

for Cov 1 2 ,  and , so that Cov 1 2 [ ] (1 ),<B � �� B � �? : � � � � � <B � �� B � �? � � 
� � � � �
� �� 
 � �

for Cov 1 3 ,  and 2, so that  Cov 1 3 [ ] (1 ),<B � �� B � �? : � � � � <B � �� B � �? � � 
� � � � �
� �� 
 � �

Cov 1 4 [ ] (1 ),<B � �� B � �? � � 
� � �
� �� 
 � �

Cov 2 3 [ ] [(1 ) (1 ) ],<B � �� B � �? � � � 
 � 
� � � � �
� � �� 
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Cov 2 4 [ ] [(1 ) (1 ) ],<B � �� B � �? � � � 
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� � �� 
 
 
 � � �

Cov 3 4 [ ] [(1 ) 2(1 ) ].<B � �� B � �? � � � � 
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� � � � � � �
� � �� 
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5.20 (a) ARIMA(0,1,2) .  The model is of the form  .- � - � @ 
 @ 
 @� ��� � � ��� � ���� �

The forecast function with forecast origin  is�
6�- & - � 


� � - ��� � - 
 @ 
 @��� � � � � � � ���� � ,
- � � � - 
 @ - �:� � - �: 
 �� : 5 $� � � � � �2 (1) ,  and    for  .�

Value of  and  are needed, which in turn requires values  and  to start this forecasting.- ��� - ��� @ @� � � ���

In practice it often is assumed that  and  are both 0, then  can be@ @ - ���� � �

found, and then  - this process eventually results in values for  and .@ � - 
 - ��� @ @� � � ��� �

 (b) ARIMA(1,3,1) .  The model is of the form
- 
 �- � - � �- 
 �- � - � @ 
 @� ��� ��� ��� ��� ��� � ���� �) .
The forecast function with origin  is�
- ��� � �� � �- 
 �� � � �- � - 
 @� � ��� ��� �� � � � ,
- � � � �� � �- 
 �� � � �- � -� � � ���2 (1) ,� � �

- � � � �� � �- 
 �� � � �- � -� � � �3 (2) (1) ,  and� � �

- �:� � �� � �- : 
 � 
 �� � � �- : 
 � � - �: 
 $� : 5 �� � � �� � �( ) ( )   for  .
Forecasting requires the value of  to get  from which all other forecasts follow@ - ���� �

(assuming that  and  are known).- -� ���

5.21 (a) This process is not stationary in the mean, since   - the 's do not have a common mean.6�- � � � -� �

 (b) .I � - 
 - � 
 � @ 
 @ � � @ 
 @� � ��� � ��� � ��� � � ���
 
 �

# �I � � � I �I � � � @ 
 @ � @ 
 @� � ��� � � ��� ��� ��� ���
� �� � � �� 2  .  Cov( Cov( , ).

Since the the 's and the 's are uncorrelated, this covariance is  (only  in @ 
 
 @ I� �� ��� �

and  in  are correlated).  The autocorrelation of the 's at lag 1 is@ I I��� ���

  .  Since  and  have no 's or 's in common, theCov(
2

5 �5 �
' �5 � �

�
� ���

� �	�

�

�

� �� I I @�
� ��

�

covariance and correlation is 0 at lag 2, and the same is true for lag 3 (any lag 2).5

 (c) The autocorrelation at lag 1 is non-zero, but the autocorrelation at lag 2 or higher is 0.  This suggests an
MA(1) model for the 's or equivalently, an ARIMA(0,1,1) model for the 's.I -

 (d) As mentioned on page 244 of the text, forecasting with the ARIMA(0,1,1) model is equivalent to
exponential smoothing.  These would be MMSE forecasts.

5.22 (a) This is like the model in 5.21 with 0.  It is an ARIMA(0,1,1) model with 1.� �� �
Then,  � 6<- & - � 
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 ] .� 6< & - � 


? � 6< � & - 
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 � 
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Since 100.5 and  , we have .- � @ � B ��� � � - ��� � **
�� � ��� �

For the ARIMA(0,1,1) model, 99.5.- �$� � - ��� � - ��� �� � �

 (b)  , which has varianceB ��� � - 
 - ��� � � @ 
 � � @� ��� � ��� ��� � ��� ���
 
 �

# � � @ � � � @� ���� ���) .05 1  1.05 (the 's and the 's are uncorrelated).
B ��� � - 
 - ��� � � @ 
 � � � @� ��� � ��� ��� � ��� ��� ���    , and
 
 � �

# � � � @ � � � �� ���� ��� ���)  .05 .05 1  1.10,
B � � � - 
 - � � � � @ 
 � � � � @� ��� � ��� ��� � ��� ��� ��� ���3   3     , and
 
 � � �

# � � � � @ � � � � �� � ���� ��� ��� ���) .05 .05 .05 1 1.15.


