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Abstract

We study the composition of firms’ innovation portfolios by machine-reading 90 million

patent claims. Process-oriented patents fundamentally differ from other patents in

terms of both motive and specificity: they are cost-savings-oriented, and they are

rooted in firm-specific knowledge. On the former, process-oriented patents are more

likely when the firm recently experienced higher costs relative to sales. To support the

latter we offer several results. Process patents are more likely to cite past patents of

the innovating firm, and they are undertaken by inventors who have more within-firm

patenting experience. They also exploit known technologies rather than explore new

ones. Finally, inventors with a greater fraction of their patents dedicated to process,

are less likely to change firms.

Process patents are also valued differentially in a way that reflects their specificity.

Using the market for corporate control as a setting to assess the external value of in-

novation, we show that firms with a higher share of process patents in their innovation

portfolios are significantly less likely to be acquired. Consistent with the specificity

explanation, this effect reverses when there is a strong textual overlap between process

patent descriptions and the acquirer’s product descriptions, indicating greater rede-

ployability of innovation. When such overlap exists, acquisition announcement returns

are also higher, and post-merger synergies—reflected in lower costs and higher operat-

ing margins—are more likely to materialize. Our study introduces a novel measure of

innovation specificity and demonstrates its construct validity as well as its role in the

market for corporate control.
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1. Introduction

Asset specificity is a crucial aspect of corporate decision making. It matters for valuation as well

as investment decisions, and it influences corporate responses to uncertainty. Numerous economic

theories recognize this,1 and thus thus careful empirical measurement is indicated. Kim and Kung

(2017) as well as Kermani and Ma (2023) provide excellent forays into this arena. But existing work

focuses strictly on hard assets and, as economists have long-recognized, innovation is more difficult

to value or even measure.2 This implicitly calls for the study of innovation specificity. We are the

first to do so for a comprehensive sample of patents, as well as the first to explore implications for

value and investment.

Firms innovate for manifold reasons. It can lead to product development that attracts new

customers, it can create pricing power through exclusivity of characteristics, or it can reduce costs

through enhanced efficiency. These value propositions logically vary with the nature of the in-

novation. This complicates measurement of the specific nature or goal of the innovation, unless

language directly tied to that nature or goal is available and analyzable. We obtain this language

and analyze it through text analysis of 90 million machine-read patent claims (e.g. Kalyani, Bloom,

Carvalho, Hassan, Lerner, and Tahoun (2024), Bena, Ortiz-Molina, and Simintzi (2022)).

We use the descriptions of individual patent applications to bifurcate our sample into two general

categories of innovation: process-oriented vs. non-process-oriented. Process-oriented patents are

generally viewed as more closely tied to the operational competencies of the innovative firm (than

product innovation).3 They also constitute about 30% of total patents granted. Thus, our first-ever

analysis of their specificity is relevant cross-sectionally. It further allows us to address questions

such as the efficacy of our bifurcation and whether different types of patents carry different values,

both internally and externally.

Our analysis of process-oriented patents confirms their specificity. We explore potential firm

motives to process-innovate, their internal nature and development, their valuation, and their

redeployability by potential other users. Our first results highlight that firms’ tendencies to process-

innovate are increasing in recent cost concerns. When a firm’s costs are higher relative to sales over

the latest three to five years, the fraction of their (overall) patent portfolio that is process-oriented is

also higher. A one standard deviation increase in COGS/Sales associates with a 7% increase in the

1A few classic examples are Pindyck (1991), Bertola and Caballero (1994), Abel and Eberly (1996),
Caballero and Hammour (1998), Bloom (2009), and Pablo (2021)

2Bellstam, Bhagat, and Cookson (2021) highlight the difficulty in measuring innovation and present a
technique based on analyzing analyst reports. However, they do not address innovation specificity, and their
sample is limited to S&P500 firms.

3Cohen and Levinthal (1989), Nelson (1989), Nelson (1992)
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share of process patents (to total patents), relative to the mean.4 This aligns with high specificity

to process innovation since cost functions are among the unique facets that firms carefully guard

for competitive reasons, and cost reduction desire is intimated by our result.

We add to our specificity of process-innovation conclusion, by exploring the genus of each

focal patent. First, process-oriented patents are more likely to cite prior patents filed by the focal

firm. Second, the proportion of an inventor’s patents [overall] that were filed for the focal firm,

is increasing in the process innovation indicator. Finally, an inventor is less likely to change firms

when a larger proportion of their overall (set of) patents filed were process oriented. Overall, greater

process-orientation of patents associates with more focal-firm internal-development variables.

Process-oriented patents are also more valuable under standard value-measurement techniques

(Kogan et al., 2017). In both real and nominal terms, their average value is roughly 45% larger

than that of non-process patents. Notably though, these comparisons are of firm-internal averages

of the patents; they are specific to the patenting firm since they are built from that firm’s stock

price reaction. This need not be the same as external value. As we emphasize in the second part of

our paper, different types of patents may have very different values to various firms, even if those

firms share the same industry as the inventing firm. An early indicator of this is our result that

process patents show forward citations nearly 200% larger on average than non-process patents.

The external value of patents is challenging to measure. As Kogan et al. (2017) highlight, a

patent’s value may stem from several factors, including restricting competition. But estimation of

value for an affected (say, competing) firm, using the same technique as in Kogan et al. (2017),

requires assumptions. Key amongst them is that no other event occurs at the affected firm on

the measurement date. Furthermore, even if true, the validation approach of Kogan et al. (2017)

– tying economic value to forward citations – is less tenable for the following reason; the forward

citations on the affecting patent may be driven by patent uses that are unrelated to the affected firm.

Put differently, the overlap between the patent’s characteristics and the affected firm’s operations,

matters. We recognize this with our text analysis, studying the role of patents’ specificities on

takeover market perspectives of external value.

We begin at the extensive margin, asking whether a firm’s patent portfolio specificity influences

the likelihood it is acquired. The short answer is yes; more process-orientation to a firm’s patents

associates with lower likelihood of being acquired. Economically, firms in the top tercile of process

share (of total patents) are 8% less likely to be acquired, compared to firms in the lowest tercile

of process share. Of course this presumes that process-oriented patents are more specific to the

4When using patent economic value as the dependent variable (Kogan, Papanikolaou, Seru, and Stoffman,
2017), effects are quite similar.
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patentor.

We then drill down to more precisely evaluate the role of patent specificity on likelihood of

patentor takeover. First, we show that (Hoberg and Phillips, 2016) simple text-based industry

classification (TNIC) overlap between the potential target and bidder mitigates the deleterious

effect of high process-share of patenting on takeover likelihood. When the potential bidder and

target share the same TNIC, they compete in the same product market. This raises the potential

applicability of a target’s innovation and therefore expected cost savings (given our earlier result).

Second, using the language diectly from patent applications, we construct similarity measures

between the patents of the innovating firm and the product market descriptions of potential ac-

quirers.5 We are essentially measuring redeployability of patents, and assessing its influence on the

likelihood of takeover. We document three important results. First, we maintain the negative rela-

tionship between patentor process-share (tendency of their patent portfolio to be process-oriented)

and likelihood that they are acquired. Second, there is a strong positive influence of redeployability

of patents – regardless of their product vs process orientation – on the likelihood that the patentor

becomes a target. But most importantly, when the patentor is more process-oriented in its portfo-

lio, it is more likely to become a target as the redeployability of its process patents rises, but not

as the redeployability of its product patents does. This emphasizes the view that process patents

tend to be more specific in their value-proposition.

We supplement these extensive margin results with intensive margin analysis of merger economic

performance. We find that combined bidder-target cumulative abnormal returns (CARs) are also

decreasing in process share, but that this effect is offset when there is clear overlap (TNIC) between

the two firms.6 We also show that post-merger operating performance (of the combined firm)

improves with overlap, with cost reduction a key driver.

We subject our tests to a variety of robustness checks. Key among them is the recognition

that patenting is potentially an endogenous decision and so the relationships between patent char-

acteristics and mergers (incidence and outcomes) may be contaminated. To handle the selection

of patenting or not, we run a logit explaining the firm’s decision to patent on an instrument, and

include the logit’s Inverse Mills Ratio in the extensive margin analysis of merger likelihood. Follow-

ing Lerner, Seru, Short, and Sun (2024), our instrument is the relative mention of words suggesting

secrecy, drawn from the firm’s earnings call. This limits our sample significantly (because earnings

call transcripts are not as widely available as patent information), but our results remain robust.

5These potential acquirers come from the same industry as the patentor, but that need not imply similar
overlap measures. In short, we rely on variation in product market descriptions across same-industry firms.

6We lose too many observations (∼90%) if we attempt replacing TNIC with our text-based similarity
between patentor and acquirer in the analysis of CARs.
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Likewise, we obtain consistent results when we include in our analysis patents that exhibit features

of both process and non-process innovation (“hybrid” patents).

Our research is relevant to several extant literatures. Primarily, we contribute to the economic

role of asset specificity by focusing on innovative assets and their varying specificity. This is a

natural counterpoint to the extant work on hard assets’ specificity. By providing baseline measures

of innovative assets’ values, internal nature and external applicability, and confirming their efficacy,

we hope to enable expansion of both the I/O and innovation literatures.

We also have deep connections to the M&A literature and its attention to risk and asset char-

acteristics of the participant firms. Frésard, Hoberg, and Phillips (2020) conclude that vertical

mergers are more likely once a firm patents its research, but less likely before the realization

(patenting) of the innovation. We augment their view by delineating process from product in-

novation, and showing that process innovation discourages merger – opposite their result – but

that horizontal mergers do not show this diminution. Bena and Li (2014) show that overlapping

technologies between potential bidder-target pairs increase merger incidence, synergy, and post-

combination innovation output. We measure innovation differently – as product vs process – and

show the importance of this delineation for overlap’s influence on mergers and outcomes. More

recently and building on our work, Davydova (2024) confirms that for executed deals (her measure

of) process-orientation improves combined firm operating performance through cost reduction. She

does not study overlap between acquirer and target nor utilize text analysis to construct such.

Still in the M&A realm, Celik, Tian, and Wang (2022) recognize innovation is difficult to value

which influences bidder method of payment and likelihood of transaction. We highlight the role

of process-oriented innovation in the valuation difficulty due to varying applicability to buyers’

assets.7 Beaumont, Hebert, and Lyonnet (2025) find that firms are more likely to buy (M&A) than

build when they lack the human capital to operate in a new sector. We support the vice-versa (less

likely to be bought) when the human capital is high in the innovation. Process patents associate

with more self-cites and lower inventor departure, and they are more valuable measured via Kogan

et al. (2017); but they associate with lower likelihood of being a merger target.

Finally, we are adjacent to Bellstam, Bhagat, and Cookson (2021) who study innovation from

another text perspective – analysts’ reports. While they do not distinguish patents and their split

between process oriented or not, they do offer evidence that innovation associates with higher value

and performance. They are also limited to S&P500 firms, while patent based innovation is likely

to have varying valuation and effects among smaller vs larger firms.

7Our varying applicability of different types of patents also speaks to footnote 14 in Phillips and Zhdanov
(2013).
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2. Hypothesis Development

To understand the potentially different motives, specificity and valuation of process patents relative

to other patents, we draw on the R&D composition literature. Theories such as Cohen and Klepper

(1996), Klepper (1996), Boone (2000) all provide justification for this separation. We discuss how

these papers fit into differing motives and specificity first. We then turn to discussion of differing

valuation, but primarily through the lens of the market for corporate control.

We begin with Boone (2000) who assumes different natures to product vs process innovation.

However, it is done in the context of competitive pressures and where the firm’s cost level is relative

to the industry cost level. Besides the non-innovation result when a firm exits, the tendency to

choose process over product innovation rises when competition is higher. The assumption driving

firm responses to competitive pressures that is of most interest to us, is that necessary investment

in process innovation to achieve cost reduction, is convex in the level of costs. We use this to

formulate our first hypothesis:

Hypothesis 1: Process innovation is increasing in a focal firm’s prior cost inefficiency w.r.t sales.

If a firm has recently encountered/experienced higher costs (relative to sales), this should en-

courage innovation designed to lower them.8 Notably, given Boone (2000)’s assumption of different

natures of product vs process innovation, our test results can also be viewed as supporting construct

validity.

But there could be many reasons that high cost firms endogenously choose to do more process

patenting, even if process patents are not more firm specific. We therefore explore further charac-

teristics - this time at the patent and/or inventor level - that help pinpoint specificity of process

patents to a particular firm.

Klepper (1996) assumes process innovation is different from product innovation, within the

context of his model helping to explain entry and exit, along with market structure and innova-

tion for technologically progressive industries. The model argues for reduced appropriability of

process patents as adjustment costs are convex in the industry’s life cycle.9. We view the lower

appropriability of process patents as isomorphic to them being more firm-specific than product in-

novation. But this still requires empirical support that is tied to either adjustment costs or reduced

appropriability.

We therefore examine characteristics of patents, inventors, and firms, and how these correlate

8Given firm-year-level data on costs, we will need our process-innovation measure to also be at the firm-
year-level. We provide measurement details in Section 3.

9See also Cohen and Klepper (1996)
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with whether the focal patent is process-oriented or not. Several characteristics of patents are useful

correlates with internal vs. external focus.10 Specifically, process patenting is expected to associate

with more self-cites by the patent-filing-firm, greater fraction of patents filed by the inventor for the

focal-patent-firm, and reduced likelihood that the patent-inventor departs for another firm. These

are the examples that underpin our second hypothesis:

Hypothesis 2: The knowledge implicit in process innovation is more firm-specific than that in non-

process innovation.

Upon supporting the two hypotheses and therefore the theories, we turn to implications for the

market for corporate control. Nelson (1989) views innovation as having both a private value and

common value component. The common value arises from the generic component of technological

knowledge that is relatively costless to communicate and can be used by others. Nelson (1989)

argues that process innovation has a higher private value component than product innovation

because newly developed industrial methods and procedures that work effectively in the innovating

firm’s establishment are either not applicable to another firm’s production processes or can only

be transferred at considerable cost.11 It is this private-value component of process innovation that

we consider to be relevant for M&A decisions.

Phillips and Zhdanov (2013) recognize that synergies from an acquisition depend on the extent

to which the target firm’s innovation can be applied to the acquirer’s product line (see their footnote

14). We posit that if process innovation has higher specificity than non-process innovation, it

contributes less to the profitability of the merger because it cannot be easily transferred to the

acquiring firm’s product line. Despite numerous references in the M&A literature to the specificity of

process innovation, to our knowledge, there is no large-sample empirical analysis of this conjecture.

Therefore, we formulate our third hypothesis as follows:

Hypothesis 3: If process innovation is more firm-specific than non-process innovation, then firms

emphasizing process innovation are less likely to be targeted in an acquisition.

While the third hypothesis is consistent with a private-value consideration in takeover likelihood,

it doesn’t reflect it directly. Our fourth and final hypothesis confronts this head-on.

Hypothesis 4: The negative relation between process innovation and the likelihood of being acquired

(as outlined in Hypothesis 3) will be mitigated if the target’s processes can be applied more easily to

the acquiring firm’s products or assets.

We proxy the common value or appropriability of a process innovation in two ways, both re-

10Section 4 provides details, but we summarize them here.
11Similar arguments about the specificity of process innovation are found in Rosenberg (1982), Pavitt

(1987), and Levin et al. (1987).
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flecting overlap between the bidder and target. The first is simple text-based industry classification

(TNIC) overlap, while the second relies on language of the process patent and its overlap with the

buyer’s product market descriptions from the 10-K. We describe our measurement of both overlap

concepts in the results section.

3. Data

3.1. Identification of process patents

We employ a machine-read textual analytics algorithm on every claim associated with a patent

to categorize it as a process or non-process patent. Classifying patents into one of the two types

requires an assessment of the technological improvement they seek to achieve. Process patents are

inventions that involve a unique method, process, or technique for producing a specific outcome. On

the other hand, non-process patents are inventions that involve a new and useful device, composition

of matter, or design. We exploit the fact that each patent application is accompanied by a series of

“claims” that detail its specific purported contribution. Using a dictionary of words most commonly

associated with process improvements, we machine-read a total of over 90 million claims linked to

all the patents filed in the US between 1980 and 2020. We source patent-level claims data from the

website of US Patent and Trademark Office (USPTO).

We follow Bena et al. (2022) and leverage the use of a standard vocabulary with stilted legalistic

terms that are distinct for process patents. Process patent claims often contain words such as

“method of,” “process for,” “system for”, “apparatus for” or “means for” to describe the steps

or procedures involved in the invention. Non-process patent claims, on the other hand, typically

use words such as “device”, “composition”, “apparatus” or “design” to describe the invention.

We construct a dictionary of words that commonly describe process improvements and pass every

claim of all the patents in our database to check for the presence of these words in those claims.

(Appendix A lists the specific words contained in this dictionary.) Patents where all claims contain

such words are classified as process innovation, while patents whose claims contain no such words

are classified as non-process innovation. We call patents that fall in-between these two types as

“hybrid” patents.

For example, the first claim in patent number 7885035, filed by the Boeing Company in 2007,

states, “A method for charging a pulsed-power system, providing an initial charge to a first high

temperature super-conductor (HTS) ...”. We classify this as a process claim. Contrarily, the

first claim of patent number 4928094, filed by Boeing in 1988, reads, “Photoelectric apparatus

comprising an emitter element for intermittently emitting a beam of electromagnetic radiation...”.
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This claim is classified as non-process.

The USPTO database consists of patents filed by both public and private firms. We focus on

patents filed by public firms because all our tests require controls for firm characteristics. The total

number of such patents between 1980 and 2020 is 2,000,634. In 1,043,480 patents, either all claims

are process claims (i.e., every claim contains the identifying terminology) or none of the claims are

process claims (i..e none of the claims contain the identifying words). In our main analysis, we retain

only these unambiguously classified patents. Doing so enables us to get a sharper contrast between

firms that emphasize process innovation versus firms that do not engage in process innovation. In

robustness tests discussed in Section 7, we include “hybrid” patents that contain a mix of process

and non-process claims and show that our results still hold but with a smaller economic magnitude.

Figure 1 plots the time series of the share of process claims for all innovative public firms in

our sample between 1980 and 2020. Figure 1 shows that over the entire 40-year period, process

innovation comprises a significant portion of total innovative effort ranging from 20% to 33%. The

upward trend in process innovation from the mid-1980s till the late 1990s is comparable to Bena

et al. (2022). We note that the steep decline in process claims after 2010 is partly due to firms

switching toward hybrid patents in recent years, which is not captured in Figure 1. When hybrid

patents are included, shown in Figure A1, process innovation after 2010 continues to account for

over 30% of the total patent claims.

Panel A of Table 1 reports considerable variation in the cross-sectional distribution of process

patents by Fama-French 12 industry groups. The average process innovation across all industries

(shown in the bottom row of Panel A) is 26%. The “Oil, Gas, Coal Extraction” and “Chemicals

and Allied Products” industries devote the highest share of innovation portfolio to process improve-

ments at 56% and 45% respectively, which are about four times higher than the share devoted by

“Consumer Durables” industry. In our analyses, we include fixed effects to appropriately account

for these variations across time and industry. Further, Table A1 shows the distribution of the

share of process claims across the 9 Cooperative Patent Classification (CPC) “technology classes”,

administered by the European Patent Office and the USPTO. We continue to see a large variation

in the type of innovation both within and across these technology classes, which suggests that the

“nature” of innovation that we focus on is distinct from technology class-based knowledge “overlap”

measures studied in the literature.

3.2. Innovation characteristics

In addition to the share of process claims, we construct several variables that could characterize

process patents differently from non-process ones. Most importantly, we assign each patent an
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“Economic Value”, calculated by Kogan et al. (2017) as the stock market-implied dollar value of

a patent to a firm when its application becomes successful and publicly known. Figure 2 plots

the time series of Economic Value per process and non-process patent for all innovative public

firms in our sample between 1980 and 2020. Not surprisingly, this stock-market-based measure is

correlated with overall stock market conditions, evident from the spike in the value of both process

and non-process patents during the dotcom period and again in the pre-COVID-19 period. The

real economic value of process patents (in 1980 $), which averages to about $13 million across

the entire sample, tends to lie slightly above that of non-process patents throughout the sample

period.12 Our main takeaway from Figure 2 is that both process and non-process innovation are

value-enhancing activities from the perspective of shareholders.

Looking cross-sectionally, panel B of Table 1 shows the distribution of Economic Value per

process patent by Fama-French 12 industries. The table reports that shareholders of “Finance”,

“‘Oil, Gas, Coal Extraction”, and “Consumer Nondurables” industries value process innovation

more than other industries, although the effect of firm size in this comparison cannot be ruled out.

We construct four additional variables that are expected to co-move with the composition of

firms’ innovation portfolio. First, we define “Self-citation Share” as the proportion of (backward)

citations attributed to prior patents of the inventing firm out of all the patents cited in an applica-

tion. This variable helps us test whether process patents lead to internal knowledge accumulation

through greater self-citations compared to non-process patents. Second, we define “Inventor-firm

Share” as the proportion of patents filed by the inventor with the same inventing firm, out of all

the patents filed by that inventor to date. This variable is used to test whether process innovation

is more likely to be carried out by individuals whose innovation experience tends to be with the

same firm, compared to individuals who bring knowledge over from other firms.

Third, we define “Technology Class Share” as the proportion of patents filed by the inventing

firm that belongs to the same Cooperative Patent Classification (CPC) sub-section as the focal

patent. We use this variable to test if process patents are more likely to belong to technology

classes that the inventing firm has more experience patenting in. Finally, we create an “inventor-

firm change” variable that captures changes in the firms that inventors patent with, and allows

us to test if inventors of process patents are less likely to switch jobs than those of non-process

patents. Panel B of Table 2 provides descriptive statistics for all four variables.

We source patent-level citation, inventor and technology class data from Michael Woeppel’s

12Economic Value is in dollar terms and can be higher for firms with larger market capitalization. In the
summary statistics and formal regressions that follow, we scale the Economic Value by the inventing firm’s
market capitalization.
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website.13 From the same database, we also construct a running total of patents issued to each

firm or inventor up to the date of filing a new patent, and term it “Cumulative Patents”. We use

this as a control in our patent-level tests for internal knowledge accumulation. Table A2 defines

these variables and Appendix A provides further details on data cleaning procedure.

3.3. Firm characteristics

We collapse patent-level data into a panel of firm-year observations. We match the firm identifier

(“permno”) and filing year in our patent database with the fundamental characteristics acquired

from CRSP/COMPUSTAT database. This creates a merged data set of over 51,000 firm-year

observations for patents filed between 1980-2020. We extend the time series of this data set to

include fundamental information from 1975 onwards in order to create lagged variables, which

leaves us with over 53,000 firm-year observations. Panel A of Table 2 provides a summary of

firm-year variables used in the analysis and constructed as described below.

We calculate the share of process patents (“Process Share”) for each firm year as the number

of process patents filed by the firm divided by all unambiguously classified patents in the firm’s

portfolio. In about 60% of firm-year observations, Process Share takes a binary value of 0 or 1,

implying that a majority of firms do not file both unambiguous process and unambiguous non-

process patents in a given year. Further, we calculate the Economic Value of process (non-process)

patents at a firm-year level as the stock market implied economic value averaged across all process

(non-process) patents filed in that year. When converting the economic value to a firm-year panel,

we use the nominal dollar value and scale it by the previous year’s nominal market capitalization

of the inventing firm. This makes the variable free from biases arising out of inflation, differential

firm size, and heterogeneity in the number of patents filed.

The remaining patent-level innovation variables such as self-citation share, inventor-firm share,

and technology-class share are converted into firm-year observations using simple annual averages.

Following Bena and Li (2014), we construct patent change index (denoted as ∆ Patent Index) that

controls for the firm-level annual change in its innovation output, defined as the share of patents

awarded to a firm within each technology class and summed up across all technology classes. In

addition to the Economic Value, we control for the scientific quality of a firm’s patents using the

average (truncation-adjusted) forward citations received by its patents.

Other fundamental variables used as controls include firms’ age (estimated from the date the

firm first appeared in CRSP database), cost of goods sold (COGS), sales, total assets, book-

to-market ratio, capital expenditure (capex), leverage, market capitalization, property plant and

13mikewoeppel.com/data
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equipment (PP&E), R&D expense, return on assets, and industry classification (using both SIC and

Fama-French 49 industry groups). Cost-related variables are scaled by sales and other variables by

total assets to adjust for size. Finally, the distribution of all scaled variables is winsorized at 2.5%

and 97.5% due to a substantial skewness in the raw data. We describe the remaining M&A-specific

variables in Section 5.

4. Firm-specificity of process innovation

This section offers tests of Hypotheses 1 and 2. We estimate the impact of a firm’s recent cost

structure on the relative importance of process patenting in its portfolio. We follow with analyses of

process-innovation’s correlation with measures of internal knowledge accumulation. Both hypothe-

ses are supported, indicating process patents are associated with more firm-specific information.

4.1. Production costs and process innovation

We take a panel-data approach and examine whether firms with a recent history of cost inefficiency

invest more effort in process innovation. To capture cost-inefficiency, we use cost of goods sold over

sales (COGS/Sales). This analysis is conducted at the firm-year level. Table 2 provides descriptive

statistics of our data at the firm-year level. We estimate the following model:

Process Sharei,t = β0 + β1COGS/Salesi,t + γZi,t + αt + αi + εi,t. (1)

In Equation 1, the dependent variable is the proportion of firm i’s total patents filed in year t that

are classified as process patents. The regressor of interest is the variable COGS/Sales, which is

calculated as the firm’s cost-of-goods-sold scaled by sales averaged over the previous three years

or five years. We expect that cost-inefficient firms have a greater incentive to engage in process

innovation. If our classification of process patents indeed captures innovation directed toward cost

reduction, the coefficient β1 should be positive. Vector Z is a set of firm-level control variables such

as age (log), assets (log), book-to-market, capital expenditure/assets, leverage, market capitaliza-

tion (log), property, plant & equipment/assets, R&D/assets, and return on assets. (All variables

are defined in appendix Table A2.) The specification includes firm- and year-fixed effects. Standard

errors are clustered by the SIC 3-digit industry. Panel A of Table 3 reports the estimation results.

Firms that have experienced higher COGS/Sales in the previous three or five years engage in

significantly more process innovation. In Table 3 columns 1 and 2, we do not include the firm-level

control variables or any fixed effects. In columns 3 and 4, we include control variables but not fixed

effects. In columns 5 and 6, we include control variables as well as firm- and year-fixed effects.
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In all specifications, the coefficient on COGS/Sales is positive and statistically significant at the

99% confidence level. The relationship between Process Share and COGS/Sales is economically

meaningful. A one-standard deviation increase in the COGS/Sales over the previous 3 years is

associated with a 7% increase in Process Share relative to the mean.14

Some firms in the business services sector may conduct process innovation on behalf of customer

firms. That is, process patents may be revenue-generating business for firms in the business services

sector. We address this concern in Table A3 by re-estimating Equation 1 after dropping all firms

with SIC code 737. The coefficient β1 continues to be positive and significant.

Next, we use our Economic Value measure to examine how the stock market views greater

investment in process innovation by cost-inefficient firms. To test this, we estimate the model:

Economic Valuei,t = β0 + β1COGS/Salesi,t + γZi,t + αt + αi + εi,t, (2)

where the dependent variable is the stock market implied value per patent, averaged across all

process patents at a firm-year level and scaled by the market capitalization as of the preceding

year. Note that this measure is not mechanically higher for firms that do more process innovation

and is orthogonal to Process Share, the dependent variable used in Equation 1, because it captures

the average value per process patent in a firm-year. The regressor of interest is the firm’s cost of

goods sold (COGS) scaled by sales and averaged over the preceding three and five years for separate

estimation. Vector Z includes the same controls as in Equation 1 except for market capitalization

because it forms the denominator of the dependent variable. The specification also includes firm

and year-fixed effects. Standard errors are clustered by the SIC 3-digit industry. Panel B of Table 3

reports the estimation results.

We find that the economic value of process patents is significantly higher for firms that experi-

ence relative cost inefficiencies in the preceding three or five years. In Table 3 columns 1 and 2, we

do not include the firm-level control variables or any fixed effects. In columns 3 and 4, we include

control variables but not fixed effects. In columns 5 and 6, control variables as well as firm- and

year-fixed effects are included. In all specifications the coefficient on COGS/Sales is positive and

statistically significant for the 3-year and for the 5-year horizon. This suggests that the market

views investment in process innovation more favorably for firms that have a recent history of high

costs. A one-standard deviation increase in the industry-adjusted COGS/Sales associates with a

14Using the coefficient on 3-year COGS/Sales in column 3 of Table 3 (0.02), the standard deviation of
COGS/Sales in Table 2 (0.90), and the mean of Process Share from Table 2 (0.27), the economic magnitude
is 6.67% (0.02*0.9/0.27).

13



6% higher Economic Value per process patent relative to the mean.15 Table A3 of the appendix

shows that these findings are robust to the exclusion of the business services sector.

In panels A and B of Table A4 shown in the appendix, we explore the link between process

innovation and overhead costs such as SG&A or the number of employees. We do not find evidence of

a positive link between the share or value of process innovation and overhead costs. We also explore

whether the positive coefficient on COGS/Sales in Table 3 is a cost-side or sales-side effect by re-

estimating Equation 1 and Equation 2 using 3-year or 5-year average of asset turnover (Sales/Assets)

as the explanatory variable. Panel C of Table A4 shows that the coefficient on asset turnover is

insignificant, which indicates that the positive relation between Process Share or Economic Value

and COGS/Sales is driven by costs and not sales.

In summary, the results in this sub-section strongly suggest that our measure of process patents

carries information about innovation directed toward reducing production costs. In the next section,

we explore whether innovation in production processes is associated with firm-specific knowledge

accumulation.

4.2. Internal knowledge accumulation

We use four distinct empirical measures to test Hypothesis 2. In the first approach, we conjecture

that if process innovation is more specialized to the operations of the innovating firm, then process

patents are more likely to cite previous innovations by the same firm than non-process patents. We

use USPTO patent citation data to calculate, for each patent, a variable called Self-citation Share.

Self-citation Share is the proportion of prior patents cited by the focal patent that were filed by the

same firm, out of all the patents cited by the focal patent. It takes a value between 0 (all citations

relate to other firms’ patents) and 1 (all citations relate to the same firm’s patents).

Our second approach rests on the notion that the inter-firm flow of technicians and R&D per-

sonnel increases the dissemination of scientific knowledge and technical expertise. We hypothesize

that the private-value component of a firm’s innovation will be higher if a greater share of its in-

ventors’ work has been done while in employment at that firm. Inventors who have innovated at

multiple establishments are more likely to be in possession of knowledge that is common across

firms’ products or production processes. To capture this, we calculate for each patent, a variable

called Inventor-firm share which captures the share of the inventor’s prior patents that have been

filed with the same firm as the assignee. This variable takes a value between 0 (the inventor has

15Using the coefficient on 3-year COGS/Sales in column 3 of Table 3 (0.121), the standard deviation of
COGS/Sales in Table 2 (0.90), and the mean economic value of process patents from Table 2 (1.85), the
economic magnitude is 5.9% (0.121*0.9/1.85).
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never before filed a patent with the focal firm) and 1 (all of the inventor’s prior patents have been

with the focal firm).

Our third measure focuses on inventor mobility. Inventors whose knowledge base is tied to the

firm are less likely to be poached by other firms as compared to inventors with a more general

knowledge base (Ma, Wang, and Wu, 2023). To test whether inventors engaged in process inno-

vation are less likely to move to another firm, we create an indicator variable called Inventor-firm

Change for each patent which equals one if the inventor files their next patent at a different firm

and zero otherwise.

Our fourth empirical measure is designed to test the premise that process innovation is incre-

mental in nature and is based on information the firm generates in-house from its own production

(Bright, 1958, Hollander et al., 1965). If process innovation is indeed internal and incremental, we

expect process innovation to exploit technologies already known to the firm rather than exploring

new technologies. We follow Balsmeier et al. (2017) and calculate for each patent a variable called

Technology-class Share which captures the share of the firm’s prior patents that have been filed in

the same technology class as the focal patent. Technology class share takes a value between 0 (the

patent belongs to a CPC subsection in which the focal firm has never filed a patent) and 1 (all

prior patents of the focal firm belong to the same CPC subsection as the focal patent).

We run the following patent-level regression using each of the four measures as a dependent

variable.16

Internal Knowledgep,i,t = β0Processp,i,t + β1Cumulative Patentsi,t + αt + αi + εp,i,t. (3)

In this equation, the dependent variable is one of the four measures of internal knowledge

accumulation for patent p filed by firm i (or inventor i for Inventor-firm Change analysis) in year t:

Self-citation Share, Inventor-firm Share, Technology-class Share, and Inventor-firm Change. For the

first three dependent variables, the explanatory variable of interest is an indicator variable Process

which takes the value 1 for process patents and zero for non-process patents. We control for the

cumulative number of patents (in logs) filed by the focal patent’s firm up to the focal patent’s filing

date. In addition, the regressions include firm- and year-fixed effects.

When the dependent variable is Inventor-firm Change, the explanatory variable of interest is

termed “Inventor Process Share”, the share of process patents in the cumulative count of the

inventor’s prior patents. This specification tests whether inventors who have accumulated firm-

16Our results are qualitatively similar if we average the three patent-level variables to the firm-year level.
See Table A5 in the appendix.
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specific knowledge through prior process inventions are less likely to move to another firm before

their next invention. In this regression, we control for the cumulative number of patents (in logs)

filed by the inventor up to the focal patent’s filing date. In addition, the regression includes year-

fixed effects but firm-fixed effects are excluded because including them would subsume inventors

that stay with the same firm throughout our sample period. Standard errors are clustered by year

in all four specifications.

Table 4 reports the estimation results. In column 1, we see that the coefficient on the Process

indicator variable is positive and statistically significant at the 1% level, implying that process

patents have a higher self-citation share. The coefficient of 0.008 implies that self-citations are

about 1 percentage point higher for process patents than for non-process patents, which translates

into a 6% higher self-citation share over the unconditional average of 13% (shown in Panel B of

Table 2).

In column 2, the coefficient on Process indicator variable is positive and significant at the 1%

level, which indicates that inventors who develop process patents have undertaken a higher share

of their prior innovation at the same firm as compared with inventors who develop non-process

patents. In column 3, where the dependent variable is Technology-class Share, the coefficient on

process is positive and statistically significant at the 10% level. Thus, we find weak evidence that

process patents are more likely to be developed by firms that engage in exploitative innovation (i.e.

in technology classes already known to the firm) rather than exploratory innovation. Finally, in

column 4 the coefficient on Process Share is negative and statistically significant at the 1% level,

indicating that inventors with a higher share of prior process patents are less likely to move to a

new employer before their next patent filing.

Together, these findings provide the first large-sample evidence that process innovation is as-

sociated with more firm-specific knowledge accumulation than non-process innovation. In the next

section, we explore the implications of our findings for merger decisions.

5. Process Innovation and M&A

In this section, we explore the implications of innovation specificity for mergers and acquisitions.

We test Hypothesis 3 outlined in Section 2 about a firm’s likelihood of being acquired.

5.1. Data

We source the list of M&A deals announced between 1980 and 2020 involving US public firms from

SDC Platinum database. Following Bena and Li (2014), we keep all completed deals with a value of

16



at least $1 million and non-missing fields for the announcement date and firm identifiers. Further, we

focus on deals that are coded as mergers, acquisitions of majority interest, or acquisitions of assets

in excess of 50%. Using this list of deals and firm identifiers, we merge fundamental information

from COMPUSTAT database. Then, we construct three data subsets: one where fundamental

information is available for targets, a second for acquirers, and a third for both parties. These are

discussed in turn below.

We start with the list of deals for which the target appears in COMPUSTAT database in the

year before the deal announcement. Our focus is on the impact of the type of innovation on the

M&A market. Therefore, we retain only those deals where the target was “innovative” i.e. filed

for at least one patent in the year or preceding three years of deal announcement. There are 2,830

deals for which innovative target firms’ fundamental data are available. Next, for each deal, we

construct a sample of control firms that were not involved in any M&A transaction three years

around the year of announcement but are similar to the actual target along key dimensions of size

and industry. We match each target i with five firms that are in the same industry and within

50% and 150% of the market capitalization of the actual firm. For industry matching, we begin

by searching for firms that meet the size criterion at the 4-digit SIC level. If we cannot find five

control firms, we proceed to the 3-digit SIC level, and so on. We are able to find five controls each

for 1,759 actual targets, which altogether constitute a sample of 10,554 observations. This is the

primary dataset we use to analyze the likelihood of being a target in an M&A transaction.

We repeat this procedure for the list of deals with acquirer information available. There are

13,675 deals for which acquirer data are available in COMPUSTAT database and that were inno-

vative. These deals are constituted by 3,360 unique acquiring firms. Using the industry and size

matching criteria analogous to target firms, we are able to locate five control firms for each acquirer

in 7,444 deals. These firms together give us a sample of 44,664 observations. Table 6 compares the

features of actual targets, acquirers and their respective control firms. In line with prior evidence,

the descriptive statistics show that firms active in corporate control market are larger and older.

The third subset pertains to deals where both the target and acquirers’ fundamental information

is available. We construct this subset by joining the previous two subsets of targets (actual and

control) and acquirers (actual and control). As before, we retain deals where both parties are

innovative. This leaves us with 611 deals, each with 1 pair of actual and 35 pairs of control acquirers

and targets. In order to be consistent with the previous two subsets, we retain five randomly chosen

control pairs for each deal, which gives us 3,666 observations of actual and control pairs. We use

this dataset to analyze the combined cumulative abnormal returns upon merger announcement,

and the post-acquisition performance of the combined entity.
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We source a number of additional variables for the M&A analysis. First, we define “Horizontal”

as an indicator of whether the acquirer and target firms are product market competitors or not.

We use the text-based industry classification (TNIC) proposed in Hoberg and Phillips (2010, 2016)

to indicate if the deal constitutes a horizontal merger. The list of firms that share a TNIC in

the year before merger is sourced from the Hoberg-Phillips data library.17 Second, we calculate

a cosine similarity measure (detailed below) between a firm’s patent descriptions and potential

acquirer’s 10-K product descriptions. Third, we calculate the acquirer and target stocks’ combined

cumulative abnormal returns (CAR) using individual stock and market returns data from CRSP

database, weighted by the preceding years’ market capitalization. Finally, we source deal-specific

variables from SDC Platinum database: transaction value, payment method (cash or stock), and

an indicator for competing deals.

5.2. Likelihood of being acquired

Now we formally test Hypothesis 3, which states that if process innovation is more firm-specific

than non-process innovation, firms that emphasize process innovation are less likely to be acquired.

We estimate the likelihood that a firm gets acquired based on the industry-adjusted share of process

patents in its portfolio, using a conditional logit regression as well as a linear probability regression.

The model is of the form:

Targetid,t = β0 + β1Process Share (tercile)id,t−1 + γTarget Characteristicsid,t−1 + αd + εid,t. (4)

In this equation, the dependent variable takes a value of 1 if firm i is an actual target in deal

d, and 0 if it is a matched control firm. Our matched hypothetical targets account for M&A

clustering in time and industry. The regressor of interest is the firm’s process-share (tercile), which

takes a value of 3 (1) if the firm’s process share in the previous year was in the top (bottom)

tercile of its industry, and a value of 2 for firms in the middle tercile. We use terciles to control

for cross-sector differences in the level of process innovation. Target Characteristics include all of

the firm-level controls variables described above for previous regressions as well as the following

additional control variables. Bena and Li (2014) show that a firm’s R&D expense and growth in

patents are significant determinants of the likelihood that it will be acquired. We include both

as control variables. We also control for the quality of a firm’s innovation by including forward

citations received by the firm’s patents and the economic value of the firm’s patents. We know

from the results in subsection 4.1 that firms with a recent history of high COGS/Sales engage in

17hobergphillips.tuck.dartmouth.edu
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more process innovation. Since cost-inefficient firms are likely to be less attractive merger targets,

we also include the firm’s COGS/Sales as a control variable. The specification includes deal fixed

effects and standard errors clustered by deal.

It is important to note that both the actual target and the control firms are “innovative”.

Therefore, if a control firm does not file for patents in the year before the deal is announced,

then it drops out of the analysis. Furthermore, if any of the control variables are missing for the

actual target, the entire deal drops out of the conditional logit regression because the remaining

observations relate to only control firms for whom the dependent variable, by construction, always

takes a value of 0.

Panel A of Table 7 reports the estimation results using conditional logit regression. For robust-

ness, we present three specifications that differ on how the process share terciles are created. In

column (1), a firm i’s process share in year t is assigned to a tercile relative to the process share

of all firms in the same Fama-French 49 industry across the entire sample period. In column (2),

the process share tercile is based on all firms in the same 3-digit SIC over the sample period, and

in column (3), relative to all firms in the same 2-digit SIC.

In all specifications shown in Table 7, the coefficient on process share tercile is negative and

statistically significant at the 99% confidence level, indicating that firms with a higher share of

process innovation are less likely to be targets of acquisition. Our findings are not due to industry

effects because our matched control firms are from the same industry. These results hold even after

the inclusion of the COGS/Sales variable, which indicates that relative cost inefficiencies do not

explain away the lower attractiveness of process innovators in the M&A market. (The coefficient on

COGS/Sales is negative but not significant). Forward citations and economic value of patents are

positive and significant indicating that firms with higher quality innovation are more likely to be

acquired. Consistent with Bena and Li (2014), the coefficient on change in patent index is negative

and significant.

In panel B of Table 7, we show that our findings are qualitatively similar if we estimate a

linear probability model instead. We re-estimate Equation 4 using ordinary least squares with deal

fixed-effects and find that if a firm moves from the first to the third tercile of process share in its

industry group, it has an 8% lower likelihood of getting acquired.18 This finding is robust to the

three different ways of adjusting for industry Process Share when creating the target firm’s process

share tercile.

18The coefficient on the process share tercile in panel B of Table 7 is about -0.04 in all specifications,
indicating that moving up one tercile reduces the likelihood of being acquired by 4%. This implies an 8%
decline in acquisition likelihood when moving from the bottom to the top tercile.
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Overall, the results in this sub-section are supportive of the hypothesis that process innovators

are less likely to be merger targets. However, the findings in Table 7 could be affected by unobserved

factors that determine a firm’s investment in process innovation and simultaneously affect its likeli-

hood of being acquired. In the appendix we present two strategies to address potential endogeneity

concerns. In Appendix B, we use potential outcome methods like propensity score matching and

inverse probability weighting to estimate the effect of high process share on acquisition likelihood.

In Appendix C, we use an instrumental variable estimation in which a firm’s self-citation share

serves as an instrument for high process share. While neither approach is perfect, both methods

show that the likelihood of being acquired is lower for firms with higher share of process innovation.

We also consider the possibility of selection into patenting by firms, which might correlate with

their prospects in the M&A market. To do this, first we evaluate whether selection bias exists using

mentions of trade secrets in the quarterly earnings calls (Lerner et al., 2024). The intuition here is

that firms that talk about trade secrets more frequently may exhibit lower tendency to patent their

innovation (whether overall, or a specific type). Table A10 provides estimates from a probit and

linear probability estimations and confirms that selection into patenting is not driven by mentions

of trade secrets. Next, we extract the Inverse Mills Ratio from this first stage regression and use it

as an explicit control in evaluating the likelihood of being a target in Table A11. Since earnings calls

transcripts are available only for sample period starting 2003, we have a smaller observation count.

However, we continue to observe a statistically and economically significant negative coefficient on

process share tercile, which allays concerns of selection bias in our analysis.

6. The Moderating Effect of Product similarity

Our explanation for the negative relation between process share and the likelihood of being acquired

is that process innovation is specialized to the operations of the innovating firm and cannot be easily

exploited by another firm whose production systems and capabilities could be different. A plausible

alternate explanation for why process innovators are less likely to be acquired is that process

innovation is lower quality innovation than non-process innovation. Although we have controlled

for the quality of innovation in our likelihood regressions, we explore this concern further in Table 5.

We compare two measures of the quality of innovation across process and non-process patents

- the Kogan et al. (2017) economic value as well as the scientific value as measured by forward

citations received by a patent. Panel A of Table 5 presents the comparison at the patent level.

We see that the economic value of process patents both in nominal and real terms is larger for

process patents than for non-process patents. Truncation bias adjusted forward citations are also

higher for process patents than for non-process patents. In Panel B of Table 5, we conduct the
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comparison at the firm-level using the sample of all targets and their matched control firms. We

define process (non-process) innovators as firms in the top (bottom) tercile of process share. We see

that when averaged to the firm level, the value of process innovation is not significantly different

from that of non-process innovation. Thus, we find no evidence that process innovation is lower

quality innovation.

In the following sub-sections we seek further support for the specificity explanation by exploiting

product similarity between the acquirer and target. If process innovation is firm-specific, then the

transferability of process-related knowledge is likely to be greater between firms that manufacture

similar products. That is, a firm’s process innovation may be of value to other firms that compete

in similar product markets. This argument forms the basis of Hypothesis 4, which states that the

negative relation between process share and the likelihood of being acquired documented in Table 7

is weaker or dampened in the subset of horizontal mergers. Notably, the alternate explanation does

not predict a differential result for horizontal and non-horizontal acquisitions.

In subsection 6.1 below, we examine the likelihood of a firm being acquired conditional on

the product similarity between the bidder and the target. In subsection 6.2, we use cumulative

abnormal return (CAR) to study how product similarity affects perceived synergistic gains from

buying process innovators. Finally, in subsection 6.3 we study how the post-merger operating

performance varies by the product market similarity when process innovators are acquired.

6.1. Product similarity and acquisition likelihood

To test Hypothesis 4, we examine the likelihood of a firm being acquired conditional on whether

the firm and the potential bidder have similar products. We use the Hoberg and Phillips (2010,

2016) Text-based Network Industry Classification (TNIC) to identify product similarity between

the merging firms. To conduct this test, we compare the actual merger pair with hypothetical

merger pairs. For each actual merger deal, we form hypothetical merger pairs by pairing five of

the target’s control firms with the actual acquirer. The selection of control firms is described

previously in subsection 5.2. For all pairs, actual and hypothetical, we define an indicator variable

called Horizontal that takes the value of 1 if the acquirer and the target (or control target) have

the same TNIC classification and 0 otherwise.

Targetid,t = β0 + β1Process Shareid,t−1 ×Horizontalijd,t−1 + β2Process Shareid,t−1+

β3Horizontalijd,t−1 + γTarget Characteristicsid,t−1 + αd + εid,t,
(5)
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In this equation, the dependent variable takes a value of 1 if firm i is an actual target in deal

d and 0 otherwise. Horizontal is a dummy variable that takes a value of 1 if the acquirer and

target shared the same TNIC (text-based industry classification) in the year prior to the merger

announcement and 0 otherwise. The regressor of interest is the firm’s Process Share (tercile) in the

preceding year, interacted with Horizontal. The hypothesis is that horizontal relatedness should

mitigate the negative effect of process innovation on the likelihood of being acquired. That is, we

expect the coefficient β1 on the interaction of Horizontal and Process Share (tercile) to be positive.

All control variables and details for the regression specification are the same as in Equation 4.

Table 8 reports the estimation result.

As before, the coefficient on the process share tercile is negative and statistically significant in

all three specifications. More importantly, the coefficient on the interaction between process share

and the dummy variable Horizontal is positive and statistically significant in all three specifications.

The coefficient on the interaction term is of similar magnitude as the coefficient on process share

itself, which suggests that in the subset of horizontal mergers, the negative effect of process share

on the likelihood of being acquired is almost entirely reversed.

The positive coefficient on the interaction of Process Share and TNIC is consistent with the

specificity hypothesis. However, it might also be consistent with an alternative explanation in which

process innovators with similar products are acquired for competitive reasons. To more directly test

whether our merger likelihood results are driven by the expected synergies from transferring the

target’s process innovation to the acquirer’s products, we create an alternative measure to capture

the relevance of the potential target’s innovation for the products of the potential acquirer. This

measure, which we label Similarity, is calculated for all possible merger pairs, including the actual

merger pair and the control pairs. It is the text-based cosine similarity between the target’s patents

and the acquirer’s product descriptions calculated as follows.

From USPTO, we obtain patent descriptions (including background of the invention and sum-

mary of the invention) of all patents belonging to actual targets and control targets. For acquirer

product information, we extract business descriptions provided in Section 1 or Section 1A of 10-Ks

of all acquirers and control acquirers. We parse business descriptions and keep only words that

are nouns or proper nouns and appear in no more than 15% of all product descriptions to avoid

commonly occurring words.19 For each patent p belonging to the target in merger pair j, we extract

all the unique words that appear in the description of patent p and in the parsed acquirer’s product

description.

19If we change the cutoff to 20% or 25%, we find qualitatively comparable results but with weaker signifi-
cance as we introduce more noise into the measure by including more commonly occurring words.

22



Next, we vectorize the patent descriptions and the acquirer’s product description as follows.

Designating the number of unique words as N , we create two vectors of length N where each

component represents one of the N unique words. In the first vector Cp, each component represents

the number of occurrences of the corresponding word in the description of patent p. In the second

vector V , each component represents the number of occurrences of the corresponding word in the

acquirer’s product description. Next, we calculate the cosine similarity between the text of patent

p and the acquirer’s product description as the normalized dot product of the two vectors

Cosimp =
Cp.V

∥Cp∥∥V ∥
(6)

Since the target in each merger pair often has more than one patent, we convert this patent-level

measure of similarity into one value per deal pair by taking a simple average of Cosim across all of

the target’s patents.

Next, we estimate the following equation, which closely follows Equation 5 except that we use

the Similarity measure instead of the TNIC-based indicator variable Horizontal:

Targetid,t = β0 + β1Process Shareid,t−1 × Similarityijd,t−1 + β2Process Shareid,t−1+

β3Similarityijd,t−1 + γTarget Characteristicsid,t−1 + αd + εid,t.
(7)

The results are presented in Table 9. In panel A of Table 9, the variable Similarity is the sum

of target’s patent-level cosine similarities with the acquirer’s industry. In panel B, Similarity is the

maximum patent-level cosine similaritiy with the acquirer’s industry. As before, the three columns

in the table vary based on the industry classification used to create the process share terciles. In

both panels we see that while the coefficient on process share tercile is negative and significant, the

interaction between process share and Similarity is positive and statistically significant. The results

in Table 9 provide further confirmation that the negative relation between process share and the

likelihood of being acquirer is mitigated when the target’s process innovation is more transferable

to the acquirer’s assets. Overall, the results in this subsection provide support for Hypothesis 4.

6.2. Product similarity and cumulative abnormal returns

Hypotheses 2 and 3 rest on the premise that process innovation is customized to the innovating

firm’s products and, therefore, contributes less to merger synergies than non-process innovation.

In this subsection, we provide supportive evidence that the synergies from a merger depend on the

specificity of innovation.
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We use the combined cumulative abnormal returns (CAR) of the acquirer and target as a

proxy for merger synergies. The combined CAR is the weighted average of the acquirer and target

firm’s CAR with the pre-announcement market capitalization serving as the weight.20 To calculate

a firm’s CAR, we first calculate daily abnormal returns over the three-day window surrounding

merger announcement by deducting the return on the CRSP value-weighted index from the firm’s

return as ARit = Rit−Rmt, where Rit is firm i’s daily stock return on date t and Rmt is the return

for the value-weighted CRSP index on date t. The CAR for each firm is calculated by cumulating

the abnormal return, AR, over the three-day window.

We estimate the following model:

CARd,(t−1,t+1) = β0 + β1Process Shareid,T−1 + γZid,T + αT + αm + εid,(t−1,t+1), (8)

where the dependent variable is the combined CAR of acquirer j and target i involved in deal

d with announcement date t. The regressor of interest is target i’s Process Share in the year T − 1

(note that we use notation T for year and t for date of deal announcement). Process Share is

mapped to an industry-adjusted tercile measure to capture cross-sector differences in the level of

process innovation. We include the following control variables: an indicator for horizontal merger,

acquirer’s and target’s leverage and book-to-market ratios in year T-1, and an indicator for whether

the deal had a competing bidder, growth in patents of the target and acquirer. The regressions

include acquirer industry- and year-fixed effects. Standard errors are clustered by year.

Estimates are presented in columns 1 to 3 of Table 10, with the columns differing only on how

the process share terciles are created. The coefficient on Process Share (tercile) is negative and

weakly significant in two of the three specifications shown, which suggests that expected synergies

from the merger are lower when the target firm has a high share of process innovation in its patent

portfolio. The statistical significance strengthens once we tease out the role of product similarity.

In columns 4 to 6, we include an interaction of Process Share and Horizontal where Horizontal takes

the value of 1 if the acquirer and target have similar products (i.e., belong to the same TNIC) and

zero otherwise. In columns 4 to 6, the coefficient on Process Share is negative and significant at

the 5% level in all three specifications. The magnitude of the coefficients on Process Share tercile

indicates that, if the acquirer and target do not sell similar products, moving up one tercile of the

target’s process innovation lowers the combined CAR between 1.5 to 2 percentage points These

findings support our premise that expected synergy gains from buying innovative targets are lower

when the target’s innovation is less transferable to the acquirer’s assets.

20We use the average market capitalization over three years preceding the merger announcement to smooth
the impact of outliers.
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The coefficient on the interaction of Process Share and Horizontal in columns 4 to 6 further

highlights the importance of product similarity. The interaction term has a positive and statis-

tically significant coefficient in two of the three specifications. Moreover, the magnitude of the

positive coefficient on the interaction term is similar to the magnitude of the negative coefficient on

Process Share itself, which implies that the negative relation between combined CARs and process

innovation exists in non-horizontal acquisitions only.

Overall, the analysis of combined CARs supports our central premise that process innovation

contributes less to merger synergies unless it is easily transferable to the acquiring firm’s assets.

6.3. Post-merger operating performance

The positive coefficient on the interaction of Process Share and product overlap in Table 10 suggests

that product overlap promotes transfer of the target’s cost-reducing process innovation to the

bidder’s product line. If process innovation is indeed specialized to the target’s products, it should

be more effective in reducing production costs when the acquirer has products similar to those of

the target. To test this conjecture, we focus only on acquisitions in which the target firm has a

high process share and examine the change in production costs and profit margins after the merger

conditional on whether the acquirer and target belong to the same TNIC.

We measure production costs as the cost of goods sold divided by sales (COGS/Sales) and profit

margins as operating income before depreciation and amortization divided by Sales (Operating

Margin). We calculate these variables for each acquirer using data from Compustat for (at most) five

years before the merger completion year till (at most) five years after the merger completion year.

In the years prior to merger completion, both COGS/Sales and Operating Margin are calculated

as market-value weighted averages of the acquirer and target’s respective values. We estimate the

following model:

Yd,t = β0 + β1Postd,t + β2Horizontald + β3Postd,t × Horizontald + γZd,t + εd,t, (9)

This is a panel-data estimation using 205 completed mergers in which the target firm belongs

to the top tercile of process share. The dependent variable Y is either COGS/Sales or Operating

Margin of the acquirer calculated as described above. Post is an indicator variable that takes the

value zero for the years prior to merger completion and the value one for the years after merger

completion. Horizontal is an indicator variable equal to one if the acquirer and target have the

same TNIC and zero otherwise. For robustness, we use the Similarity variable described in Section 6

as an alternate measure of overlap between the acquirer’s products and target’s patent description.
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The coefficient of interest is β3 which captures whether the post-merger change in COGS/Sales

or Operating Margin varies depending on whether the acquirer and target have similar products.

Z represents firm-level and deal-level control variables. These control variables are the acquirer’s

size as measured by its market value of assets (in logs), the acquirer’s leverage calculated as the

acquirer’s total long-term and short-term divided by market value of assets, book-to-market ratio

calculated as book value of common equity divided by market value of assets, relative size of

the target calculated as deal transaction value divided by acquirer’s market value of equity, and

percentage of deal consideration paid in cash. All variables except deal consideration are winsorized

at the 2.5/97.5 level

Estimates of Equation 9 are presented in Table 11, where panel A uses the TNIC-based measure

of horizontal merger and panel B uses the Similarity-based measure. In columns 1 to 5 of both

panels, the dependent variable is COGS/sales. In column 1, we exclude all control variables and

fixed effects. Column 2 includes control variables but not fixed effects. The remaining columns

progressively add fixed effects and clustering. Column 3 adds industry fixed-effects, column 4 adds

standard errors clustered by year, and column 5 adds year fixed effects.

In all the specifications from columns (1) through (5) and across both panels, we see that the

interaction of Horizontal and Post has a negative and statistically significant coefficient. These

findings provide an explanation for why product overlap has a positive relation with merger CARs

when the target has a high share of process innovation (see the interaction term in Table 10).

Buying a firm with a high process share is associated with lower post-merger production costs

when the acquirer and target have similar products.

In columns (6) to (10), where the dependent variable is Operating Margin, results are largely

consistent with the COGS pattern. The coefficient on the interaction term is positive and sta-

tistically significant in four of the five specifications. Buying a firm with a high process share is

associated with higher post-merger operating profits when the acquirer and target have similar

products. Overall, our results suggest that the specificity of process innovation is understood and

priced in the market for corporate control.

7. Robustness to Inclusion of Hybrid Patents

In this section, we describe the robustness of our main results to the inclusion of hybrid patents

– i.e., patents that contain claims that are classified as process claims and those classified as non-

process claims. In our main analysis, we ignore hybrid patents and construct all variables using

only patents that are unambiguously classified as process patents (patents in which all claims are
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process claims) or non-process patents (patents in which none of the claims are process claims).

The reason for this choice is to obtain a sharper contrast between patents that are likely to generate

firm-specific knowledge (due to heavy emphasis on process innovation) and patents that are less

likely to generate firm-specific knowledge (due to the absence of any reference to methods and

procedures). Since almost half of the initial sample of patents awarded to publicly traded firms

are hybrid patents, our choice might lead to concerns about the generalizability and robustness of

our findings. To address such concerns, we rerun our key tests using all patents, including hybrid

patents. Figure A1 shows the share of process claims over time from 1980 through 2020 based on

the approximately 2 million patents including hybrid patents. We see that the share of process

claims is higher than in our main sample, ranging from just under 25% to just over 35%.

Next, we create a firm-level measure of process innovation using all claims across all patents of

the firm, including hybrid patents. That is, Process Share is now defined as the number of process

claims across all the firm’s patents divided by the total number of claims. Then, we estimate

Equation 1 again using this new definition of Process Share. The results are presented in columns

(1) and (2) of Table A6 of the appendix. We see that the coefficient on COGS/Sales continues to be

positive and statistically significant, indicating that firms with a recent history of high costs engage

in more process innovation. We note, however, that the magnitude of the coefficients is smaller

than in our main results. Next, we estimate Equation 2 using the new definition of Process Share

and present the results columns columns (3) and (4) of Table A6 of the appendix. We find that

the coefficient on COGS/Sales is positive and statistically significant, indicating that the economic

value of process innovation is significantly higher for firms that experience cost inefficiencies in the

preceding three or five years.

We also check the robustness of our merger likelihood analysis by estimating the conditional

logit model shown in Equation 4. Results are presented in Table A7 in the appendix. We see that

the coefficient on Process Share Tercile is negative and statistically significant in all specifications,

but again the magnitude of the coefficient is smaller than in our main specification. Overall, we find

that our main results are robust to the inclusion of hybrid patents. However, the smaller economic

magnitude is likely because hybrid patents create noise in identifying the firm-specific component

of process innovation.

8. Conclusion

We explore how specificity of innovation affects a firm’s attractiveness in the market for corporate

control. We identify specificity through process innovation, i.e., innovation relating to methods

and techniques that improve internal efficiencies, using machine-read textual analysis of over a
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million patents. We confirm that our measure captures innovation targeted towards the reduction

of production costs; firms with a recent history of high costs relative to industry rivals engage in

more process innovation, and shareholders assign higher value to such patents. Next, we show that

process innovation is associated with greater firm-specific knowledge accumulation than non-process

innovation, creating capabilities that are internal to the innovating firm.

We argue that the internal specialization of process innovation makes firms less attractive merger

targets. Our tests confirm that process innovators are significantly less likely to be targets of a

merger as compared to firms that emphasize non-process innovation. However, consistent with the

specificity argument, we show that the likelihood of a firm being acquired depends on the cross-firm

fungibility of innovation. We provide support for the hypothesis that the knowledge generated by

process innovation is more adaptable to the production process of competing firms that produce

similar products. We show that the negative impact of process innovation on merger likelihood is

significantly dampened if the acquirer’s products are similar to the target’s products. Our results

provide novel evidence that the composition of a firm’s innovation portfolio affects its prospects in

the M&A market.
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Figure 1: Share of Process Claims from 1980 to 2020

Notes : This figure plots the average share of process claims in our data over the years
1980 through 2020. We identify process claims using a machine-read textual classification
algorithm applied to all the claims in support of a patent application. This figure includes
only those patents where all claims are unambiguously identified as “process” or otherwise.
Figure A1 shows the corresponding plot for all patents in our sample.

31



Figure 2: Economic Value of Patents from 1980 to 2020

Notes : This figure plots the average real economic value per patent (in millions of dollars)
over the years 1980 through 2020 using 1980 prices. Economic value per patent is measured
as the stock-market implied dollar valuation assigned to each patent, averaged over all the
patents granted in a year for that type.
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Table 1: Descriptive Statistics of Process Patents by Fama-French 12 Industry Groups

Panel A: Share of process patents Mean SD p10 p25 p50 p75 p90 N

Consumer Nondurables 0.24 0.43 0 0 0 0 1 11,354

Consumer Durables 0.12 0.33 0 0 0 0 1 100,182

Machinery/Truck Manufacturing 0.17 0.38 0 0 0 0 1 204,601

Oil, Gas, Coal Extraction 0.56 0.50 0 0 1 1 1 34,419

Chemicals and Allied Products 0.45 0.50 0 0 0 1 1 58,209

Business Equipment 0.27 0.44 0 0 0 1 1 378,606

Telephone, Television Transmission 0.28 0.45 0 0 0 1 1 19,581

Utilities 0.23 0.42 0 0 0 0 1 1,568

Wholesale, Retail, Some Services 0.29 0.45 0 0 0 1 1 6,223

Healthcare, Medical Equipment, Drugs 0.34 0.47 0 0 0 1 1 90,111

Finance 0.26 0.44 0 0 0 1 1 5,812

Other (Mines, Construction, Hotels) 0.22 0.42 0 0 0 0 1 132,814

Full sample 0.26 0.44 0 0 0 1 1 1,043,480

Panel B: Real economic value per process patent ($ million)

Consumer Nondurables 37.75 75.17 1.08 4.10 14.97 36.59 86.46 2,776

Consumer Durables 6.49 12.98 0.14 0.36 2.38 7.24 16.63 12,150

Machinery/Truck Manufacturing 7.69 13.71 0.05 0.23 3.69 9.68 18.60 35,170

Oil, Gas, Coal Extraction 40.99 65.75 4.30 8.51 18.46 45.31 99.46 19,303

Chemicals and Allied Products 10.92 17.53 0.67 2.42 5.52 11.77 27.04 25,917

Business Equipment 7.37 23.56 0.06 0.99 2.71 7.05 15.53 102,289

Telephone, Television Transmission 23.23 48.84 1.60 4.35 10.62 23.64 49.64 5,494

Utilities 8.41 11.81 0.10 1.57 4.96 10.17 17.93 363

Wholesale, Retail, Some Services 8.60 35.06 0.01 0.02 0.06 2.13 24.32 1,794

Healthcare, Medical Equipment, Drugs 26.86 52.33 0.81 2.53 8.99 28.32 67.77 30,679

Finance 48.64 120.06 0.25 0.74 2.87 43.38 142.62 1,540

Other (Mines, Construction, Hotels) 8.92 23.33 0.06 0.17 1.56 7.93 22.00 29,860

Full sample 13.44 35.71 0.10 1.03 4.09 11.62 30.27 267,335

Notes: This table presents descriptive statistics by Fama-French 12 industry groups for process patents
filed between 1980-2020. Panel A shows the share of process patents and Panel B shows the real economic
value (in 1980 $ million) per process patent.
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Table 2: Descriptive Statistics

Panel A: Firm-year level variables Mean SD p25 p50 p75 N

Process Share 0.27 0.35 0.00 0.07 0.50 51,387

Process Patents (count) 5.53 26.44 0.00 1.00 2.00 51,819

Non-process Patents (count) 16.41 73.99 1.00 2.00 7.00 51,819

Economic Value (per process patent) 1.85 38.01 0.26 0.59 1.26 22,259

Economic Value (per non-process patent) 1.80 24.66 0.38 0.73 1.41 34,750

∆ Patent Index 0.02 23.63 -1.50 0.00 1.52 48,868

Self-citation Share 0.08 0.12 0.00 0.03 0.11 51,387

Inventor-firm Share 0.26 0.24 0.00 0.25 0.43 51,387

Technology Class Share 0.32 0.26 0.11 0.25 0.49 51,387

COGS/Sales (3-year average) 0.80 0.90 0.48 0.64 0.76 45,481

COGS/Sales (5-year average) 0.81 0.89 0.49 0.65 0.76 46,473

Age (in years) 19.15 18.49 6.00 13.00 26.00 53,203

Assets ($, million) 10,525.78 77,403.62 74.14 362.17 2,382.37 54,015

Book-to-market 1.04 0.92 0.40 0.75 1.34 53,460

Capital Expenditure/Assets 0.06 0.04 0.02 0.04 0.07 53,331

Leverage 0.20 0.17 0.04 0.18 0.30 53,829

Market Capitalization ($, million) 7,143.30 31,442.44 83.78 426.45 2,432.79 53,673

Property, Plant & Equipment/Assets 0.24 0.18 0.10 0.21 0.34 53,916

R&D/Assets 0.10 0.12 0.02 0.05 0.12 44,897

Return on Assets 0.06 0.21 0.04 0.12 0.18 53,856

Panel B: Patent and inventor-level variables

Self-citation Share 0.13 0.22 0.00 0.00 0.19 1,043,480

Inventor-firm Share 0.37 0.36 0.00 0.38 0.70 1,043,480

Technology Class Share 0.24 0.25 0.04 0.15 0.37 1,043,480

Inventor-firm Change 0.16 0.37 0.00 0.00 0.00 1,316,919

Notes: This table presents descriptive statistics for firm-year innovation and fundamental variables in
panel A, and patent and inventor-level innovation variables in panel B. In panel A, “Economic Value” is
the stock-market implied value of patents, averaged over all patents of that type (process or non-process)
filed by a firm in a year and scaled by the previous year’s market capitalization. It is expressed as a
percentage. Table A2 defines the variables.
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Table 3: Determinants of Process Innovation

Process Share

Panel A (1) (2) (3) (4) (5) (6)

COGS/Sales (3-year average) 0.060∗∗∗ 0.020∗∗ 0.010∗∗∗

(0.010) (0.009) (0.003)

COGS/Sales (5-year average) 0.064∗∗∗ 0.024∗∗ 0.012∗∗∗

(0.010) (0.009) (0.003)

Age (log) -0.022∗∗∗ -0.022∗∗∗ 0.003 0.003

(0.005) (0.005) (0.009) (0.009)

Assets (log, t-1) -0.038∗∗ -0.038∗∗ -0.023∗ -0.023∗

(0.015) (0.015) (0.013) (0.013)

Book-to-market (t-1) 0.010 0.010 0.015∗∗ 0.015∗∗

(0.008) (0.008) (0.006) (0.006)

Capital Expenditure/Assets (t-1) -0.675∗∗∗ -0.675∗∗∗ -0.035 -0.033

(0.121) (0.120) (0.059) (0.060)

Leverage (t-1) -0.035 -0.036 0.023 0.023

(0.039) (0.038) (0.025) (0.025)

Market Capitalization (log, t-1) 0.064∗∗∗ 0.064∗∗∗ 0.017∗∗ 0.017∗∗

(0.014) (0.014) (0.008) (0.008)

Property, Plant & Equipment/Assets (t-1) 0.379∗∗∗ 0.378∗∗∗ 0.040 0.041

(0.088) (0.087) (0.042) (0.042)

R&D/Assets (t-1) 0.308∗∗∗ 0.301∗∗∗ -0.042 -0.039

(0.064) (0.066) (0.039) (0.039)

Return on Assets (t-1) -0.210∗∗∗ -0.200∗∗∗ -0.001 -0.000

(0.028) (0.027) (0.016) (0.017)

Observations 38,924 39,613 30,000 30,024 29,370 29,395

Adj. R2 0.02 0.03 0.10 0.10 0.45 0.45

Firm, Year FE N N N N Y Y

Continued on next page
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Table 3: Determinants of Process Innovation – continued from previous page

Economic Value

Panel B (1) (2) (3) (4) (5) (6)

COGS/Sales (3-year average) 0.605∗∗∗ 0.121∗ 0.253∗∗

(0.219) (0.065) (0.108)

COGS/Sales (5-year average) 0.650∗∗∗ 0.132∗∗ 0.315∗∗∗

(0.200) (0.065) (0.107)

Age (log) -0.094∗ -0.096∗ -0.153 -0.152

(0.053) (0.053) (0.096) (0.097)

Assets (log, t-1) -0.400∗∗∗ -0.400∗∗∗ -1.566∗∗∗ -1.556∗∗∗

(0.052) (0.051) (0.247) (0.243)

Book-to-market (t-1) 0.462∗∗∗ 0.464∗∗∗ 1.118∗∗∗ 1.121∗∗∗

(0.137) (0.137) (0.279) (0.280)

Capital Expenditure/Assets (t-1) 0.196 0.190 -2.138 -2.228

(1.360) (1.364) (1.635) (1.695)

Leverage (t-1) 0.876∗∗∗ 0.874∗∗∗ 1.345∗∗∗ 1.343∗∗∗

(0.254) (0.256) (0.385) (0.384)

Property, Plant & Equipment/Assets (t-1) -0.066 -0.071 0.913∗ 0.946∗

(0.350) (0.354) (0.528) (0.536)

R&D/Assets (t-1) 4.883∗∗∗ 4.817∗∗∗ 3.761∗∗∗ 3.769∗∗∗

(0.770) (0.777) (1.312) (1.310)

Return on Assets (t-1) -0.350 -0.295 -0.229 -0.188

(0.593) (0.582) (0.643) (0.623)

Observations 22,056 22,081 18,558 18,577 17,920 17,938

Adj. R2 0.00 0.00 0.11 0.11 0.31 0.31

Firm, Year FE N N N N Y Y

Notes: This table reports estimates from a fixed effects panel regression of the form in Equation 1 at a firm-
year level. In panel A, the dependent variable is Process Share, the proportion of patents filed by a firm in
a given year that we classify as process innovation. In panel B, the dependent variable is Economic Value
of process innovation, measured as the firm-year average of stock-market implied patent value and scaled
by the firm’s preceding year market capitalization. The regressor of interest is COGS/Sales averaged over
prior 3 years (in columns (1), (3) and (5)) or prior 5 years (in columns (2), (4) and (6)). Columns (1) and
(2) do not include controls and fixed effects, columns (3) and (4) include controls, and columns (5) and
(6) additionally include firm and year fixed effects. Standard errors clustered by industry (SIC 3 digit)
and year are reported in parentheses. ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01.
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Table 4: Internal Knowledge Accumulation

Self-citation
Share

Inventor-firm
Share

Technology
Class Share

Inventor-firm
Change

(1) (2) (3) (4)

Process (0/1) 0.008∗∗∗ 0.006∗∗∗ 0.003∗

(0.001) (0.001) (0.002)

Inventor Process Share -0.018∗∗∗

(0.003)

Cumulative Patents (log) 0.021∗∗∗ 0.048∗∗∗ -0.014∗∗∗ -0.017∗∗∗

(0.001) (0.001) (0.000) (0.003)

Observations 1,043,480 1,043,480 1,043,480 1,316,919

Adj. R2 0.15 0.15 0.44 0.01

Year FE Y Y Y Y

Firm FE Y Y Y N

Notes: This table reports estimates from a fixed effects regression of the form in Equation 3. The
dependent variables are one of the four measures of internal knowledge accumulation: self-citation
share in column (1), inventor-firm share in column (2), technology class share in column (3), and
inventor-firm change in column (4). Table A2 defines these variables. The regressor of interest
is “Process” in columns (1) through (3), which takes a value of 1 when the patent is classified as
“process” and 0 otherwise. In column (4), the regressor of interest is “Inventor Process Share”,
which is the proportion of cumulative patents filed by an inventor that are classified as “process”.
All columns control for the (log) cumulative number of patents filed by the firm or the inventor
until the focal patent’s filing date. Standard errors clustered by year are reported in parentheses.
∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01.
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Table 5: Comparative Statistics for Process and Non-process Innovation

Patent-level Process patent Non-process patent

Mean SD Median Mean SD Median Diff. in means

Economic value (real $ mln) 13.444 35.711 4.090 9.176 26.347 2.466 4.267∗∗∗

Economic value (nominal $ mln) 25.409 69.384 7.232 17.418 50.938 4.263 7.991∗∗∗

Forward citations (trunc. adj.) 0.015 0.079 0.004 0.005 0.086 0.002 0.010∗∗∗

Firm-level (actual and control targets) Process innovator Non-process innovator

Economic value (real, scaled) 1.887 22.430 0.602 1.533 5.321 0.775 0.354

Economic value (nominal, scaled) 3.293 39.069 1.004 2.347 9.628 1.122 0.946

Forward citations (trunc, process) 0.031 0.453 0.009 0.019 0.025 0.010 0.012∗

Patent (count) 9.814 31.353 3.000 3.241 6.175 2.000 6.573∗∗∗

COGS/Sales 0.854 1.126 0.586 0.734 0.775 0.626 0.120∗∗∗

Book-to-market 0.833 0.744 0.624 0.985 0.794 0.766 -0.152∗∗∗

Notes: This table compares process and non-process patents, and process and non-process innovators. A firm
is called process innovator in year t if its process share lies in the highest tercile of the process shares in the
Fama-French 49 industry group to which it belongs. Likewise, it is called non-process innovator if it lies in
the lowest tercile. The rightmost column reports the difference in means with statistical significance conducted
using a t-test with unequal sample variances. ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01.
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Table 6: Descriptive Statistics of Acquirer and Target Firms

Mean SD Median Mean SD Median

Acquirers Industry-Size Matched Acquirers

Process Share 0.30 0.32 0.22 0.32∗ 0.33 0.22

Economic Value (per process patent) 0.89 3.36 0.30 0.78 2.67 0.298∗∗∗

Patents (count) 29.99 65.24 7.00 41.11∗∗∗ 141.80 6.00

Process Patents (count) 9.33 25.07 1.00 10.88∗ 36.45 2.00

Non-process Patents (count) 20.67 43.52 5.00 30.24∗∗∗ 113.90 4.00

Age (in years) 21.78 19.12 16.00 19.54∗∗∗ 19.15 13.00∗∗∗

Assets ($, million) 7,350 18,000 1,636 6,943 19,000 1206∗∗∗

Book-to-market 0.71 0.59 0.57 0.69 0.62 0.51∗∗∗

Capital Expenditure/Assets 0.05 0.04 0.04 0.06∗∗∗ 0.05 0.05∗∗∗

Leverage 0.19 0.16 0.18 0.17∗∗∗ 0.18 0.15∗∗∗

Market Capitalization ($, million) 10,000 23,000 2,094 9004∗∗ 21,000 1925∗

Property, Plant & Equipment/Assets 0.21 0.16 0.16 0.23∗∗∗ 0.17 0.18∗∗∗

R&D/Assets 0.09 0.12 0.06 0.10∗∗∗ 0.12 0.07∗∗∗

Return on Assets 0.11 0.19 0.14 0.10∗∗∗ 0.22 0.14

Targets Industry-Size Matched Targets

Process Share 0.29 0.40 0.00 0.30 0.37 0.12∗∗∗

Economic Value (per process patent) 1.19 2.91 0.65 3.51∗ 60.36 0.57

Patents (count) 3.36 9.17 1.00 9.81∗∗∗ 35.59 3.00∗∗∗

Process Patents (count) 1.02 3.75 0.00 2.76∗∗∗ 9.15 1.00∗∗∗

Non-process Patents (count) 2.34 6.55 1.00 7.04∗∗∗ 28.82 2.00∗∗∗

Age (in years) 15.28 16.03 10.00 13.83∗∗∗ 14.53 10.00∗∗

Assets ($, million) 1,755 6,003 198 1,844 8,435 177∗∗∗

Book-to-market 0.79 0.66 0.62 0.74∗∗∗ 0.65 0.56∗∗∗

Capital Expenditure/Assets 0.05 0.05 0.04 0.05 0.05 0.04

Leverage 0.17 0.17 0.13 0.16∗∗ 0.20 0.10∗∗

Market Capitalization ($, million) 2,114 6,597 292 2,016 6,486 286

Property, Plant & Equipment/Assets 0.20 0.16 0.16 0.20 0.16 0.15

R&D/Assets 0.13 0.13 0.09 0.14∗∗∗ 0.13 0.10∗∗∗

Return on Assets 0.04 0.22 0.10 0.01∗∗∗ 0.24 0.10∗∗

Notes: This table compares innovation and fundamental features of actual and control acquirers and
target firms. For each deal, we obtain five control firms using an industry and size matched sample of
actual firms engaged in M&A transactions between 1980 and 2020.
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Table 7: Likelihood of Being a Target

Target (1/0)

Panel A (conditional logit) (1) (2) (3)

Process Share (tercile) -0.290∗∗∗ -0.300∗∗∗ -0.327∗∗∗

(0.053) (0.053) (0.053)

∆ Patent Index -0.023∗∗∗ -0.023∗∗∗ -0.023∗∗∗

(0.005) (0.005) (0.005)

Forward citations 0.002∗∗ 0.002∗∗ 0.002∗∗

(0.001) (0.001) (0.001)

Economic value (1980 $) 0.014∗∗∗ 0.014∗∗∗ 0.014∗∗∗

(0.004) (0.004) (0.004)

COGS/Sales (3-year average) -0.058 -0.056 -0.058

(0.068) (0.068) (0.068)

Age (log) 0.121∗∗ 0.123∗∗ 0.116∗∗

(0.052) (0.052) (0.052)

Assets (log, t-1) 0.160 0.161 0.165

(0.126) (0.126) (0.126)

Book-to-market (t-1) 0.173 0.175 0.176

(0.133) (0.133) (0.133)

Leverage (t-1) 0.808∗∗ 0.796∗∗ 0.786∗∗

(0.338) (0.338) (0.338)

Market Capitalization (log, t-1) 0.437∗∗∗ 0.436∗∗∗ 0.441∗∗∗

(0.147) (0.146) (0.147)

R&D/Assets (t-1) -0.154 -0.140 -0.119

(0.635) (0.635) (0.637)

Return on Assets (t-1) -0.100 -0.087 -0.109

(0.382) (0.383) (0.384)

Observations 3,429 3,429 3,429

Pseudo R2 0.08 0.08 0.08

Deal FE Y Y Y

Continued on next page
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Table 7: Likelihood of Being a Target – (continued)

Panel B (linear probability) (1) (2) (3)

Process Share (tercile) -0.040∗∗∗ -0.041∗∗∗ -0.044∗∗∗

(0.007) (0.007) (0.007)

∆ Patent Index -0.003∗∗∗ -0.003∗∗∗ -0.003∗∗∗

(0.001) (0.001) (0.001)

Forward citations 0.000 0.000 0.000

(0.000) (0.000) (0.000)

Economic value (1980 $) 0.001∗∗ 0.001∗∗ 0.001∗∗

(0.000) (0.000) (0.000)

COGS/Sales (3-year average) -0.004 -0.004 -0.004

(0.008) (0.008) (0.008)

Age (log) 0.016∗∗ 0.016∗∗ 0.015∗∗

(0.007) (0.007) (0.007)

Assets (log, t-1) 0.016 0.016 0.017

(0.015) (0.015) (0.015)

Book-to-market (t-1) 0.031∗ 0.030∗ 0.031∗

(0.018) (0.018) (0.018)

Leverage (t-1) 0.129∗∗∗ 0.127∗∗∗ 0.126∗∗∗

(0.043) (0.043) (0.043)

Market Capitalization (log, t-1) 0.059∗∗∗ 0.059∗∗∗ 0.060∗∗∗

(0.018) (0.018) (0.018)

R&D/Assets (t-1) -0.023 -0.023 -0.018

(0.073) (0.073) (0.073)

Return on Assets (t-1) -0.023 -0.023 -0.025

(0.046) (0.046) (0.046)

Observations 5,587 5,587 5,587

Adj. R2 0.17 0.17 0.17

Deal FE Y Y Y

Notes: This table reports estimates for a model of the form in Equation 4 at a deal level. Panel A uses
conditional logit while panel B uses a linear probability model. The dependent variable takes a value of 1 when
the firm is a target and 0 if it is a control. The regressor of interest is Process Share (tercile), which takes a
value of 3 when the firm falls under the top one-third of process innovators in its industry, 1 when it falls in the
bottom one-third, and 2 when it falls in the middle. Terciles are constructed using: Fama-French 49-industry
in column (1), SIC 3 digit-industry in column (2), and SIC 2 digit-industry in column (3). Standard errors
clustered by deal are reported in parentheses. ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01.
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Table 8: Likelihood of Being a Target (Interaction with Product Market Competition)

Target (1/0)

(1) (2) (3)

Process Share (tercile) -0.404∗∗∗ -0.398∗∗∗ -0.430∗∗∗

(0.128) (0.130) (0.129)

Horizontal (1/0) 1.769∗∗∗ 1.804∗∗∗ 1.693∗∗∗

(0.455) (0.462) (0.455)

Process Share (tercile) × Horizontal 0.383∗∗ 0.362∗ 0.414∗∗

(0.193) (0.196) (0.192)

∆ Patent Index -0.040∗∗∗ -0.041∗∗∗ -0.040∗∗∗

(0.010) (0.010) (0.010)

Forward citations 0.005∗∗ 0.005∗∗ 0.005∗∗

(0.002) (0.002) (0.002)

Economic value (1980 $) 0.005 0.005 0.005

(0.006) (0.006) (0.006)

Observations 1,309 1,309 1,309

Pseudo R2 0.25 0.25 0.25

Firm controls Y Y Y

Deal FE Y Y Y

Notes: This table reports estimates from a conditional logit regression
of the form in Equation 5 at a deal level. The dependent variable takes
a value of 1 when the firm is a target and 0 if it is a control. The re-
gressors of interest are Process Share (tercile) and its interaction with
Horizontal that captures product market similarity between firms. Ter-
ciles are constructed using: Fama-French 49-industry in column (1), SIC
3 digit-industry in column (2), and SIC 2 digit-industry in column (3).
Each actual target is industry and size matched with five controls. All
columns include firm-level controls analogous to Table 7 but are eclipsed
for brevity. Standard errors clustered by deal are reported in parenthe-
ses. ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01.
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Table 9: Likelihood of Being a Target (Interaction with Cosine Similarity)

Panel A: Process patents Target (1/0)

(1) (2) (3)

Process Share (tercile) -0.388∗∗ -0.395∗∗ -0.441∗∗∗

(0.156) (0.156) (0.156)

Similarity 18.575∗ 18.862∗ 17.742∗

(10.284) (10.221) (10.367)

Process Share (tercile) × Similarity 9.568∗∗ 9.373∗∗ 10.031∗∗

(4.495) (4.490) (4.518)

Observations 657 657 657

Controls Y Y Y

Deal FE Y Y Y

Panel B: Non-process patents Target (1/0)

(1) (2) (3)

Process Share (tercile) -0.377∗∗∗ -0.376∗∗∗ -0.406∗∗∗

(0.145) (0.145) (0.145)

Similarity 48.441∗∗∗ 48.758∗∗∗ 47.891∗∗∗

(10.939) (10.918) (10.896)

Process Share (tercile) × Similarity -2.459 -2.734 -2.237

(3.919) (3.918) (3.900)

Observations 872 872 872

Controls Y Y Y

Deal FE Y Y Y

Notes: This table reports estimates from a conditional logit regression
of the form in Equation 7 at a deal level. The dependent variable takes a
value of 1 when the firm is a target and 0 if it is a control. The regressors
of interest are Process Share (tercile) and its interaction with Similarity
that captures the cosine similarity between the target firm’s patents and
the acquirer 10-K business descriptions. Panel A uses Similarity con-
structed only process patents, and panel B uses Similarity constructed
only non-process patents. Terciles are constructed using: Fama-French
49-industry in column (1), SIC 3 digit-industry in column (2), and SIC
2 digit-industry in column (3). Each actual target is industry and size
matched with five controls. All columns include firm-level controls anal-
ogous to Table 7 but are eclipsed for brevity. Standard errors clustered
by deal are reported in parentheses. ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01.
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Table 10: Combined Cumulative Abnormal Returns for Acquirer and Target

Combined 3-day CAR

(1) (2) (3) (4) (5) (6)

Process Share (tercile) -0.008 -0.010∗ -0.009∗ -0.016∗∗ -0.019∗∗ -0.017∗∗

(0.005) (0.005) (0.005) (0.007) (0.007) (0.007)

Horizontal (1/0) 0.005 0.005 0.005 -0.022 -0.029 -0.025

(0.007) (0.007) (0.007) (0.019) (0.019) (0.019)

Process Share (tercile) × Horizontal 0.015 0.019∗∗ 0.017∗

(0.009) (0.009) (0.009)

Competing Deal (1/0) -0.030∗ -0.029∗ -0.029∗ -0.032∗ -0.032∗ -0.031∗

(0.016) (0.016) (0.016) (0.016) (0.016) (0.016)

∆ Patent Index (acquirer) -0.000 -0.000 -0.000 0.000 0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

∆ Patent Index (target) -0.001∗ -0.001∗ -0.001 -0.001∗ -0.001∗ -0.001∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Leverage (t-1, acquirer) 0.017 0.017 0.016 0.017 0.017 0.017

(0.033) (0.033) (0.033) (0.033) (0.033) (0.033)

Leverage (t-1, target) 0.023 0.024 0.024 0.025 0.026 0.026

(0.030) (0.030) (0.030) (0.029) (0.029) (0.029)

Book-to-market (t-1, acquirer) 0.000 0.000 0.000 0.000 0.000 -0.000

(0.014) (0.014) (0.014) (0.014) (0.014) (0.014)

Book-to-market (t-1, target) 0.025∗∗∗ 0.025∗∗∗ 0.025∗∗∗ 0.025∗∗∗ 0.026∗∗∗ 0.025∗∗∗

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

Observations 461 461 461 461 461 461

Adj. R2 0.10 0.10 0.10 0.11 0.11 0.11

Industry (SIC-3, acquirer), Year FE Y Y Y Y Y Y

Notes : This table reports estimates for a model of the form in Equation 8 at a deal level. The
dependent variable is the combined three-day cumulative abnormal returns (CAR) of the acquirer
and target firms’ stocks, centered on the deal announcement date. CARs are obtained by sub-
tracting the value-weighted CRSP index return from the firm’s stock returns over this period. The
regressors of interest are the target firm’s “Process Share (tercile)” and its interaction with “Hor-
izontal” that captures product market similarity between the two firms. Terciles are constructed
using: Fama-French 49-industry in columns (1) and (4), SIC 3 digit-industry in columns (2) and
(5), and SIC 2 digit-industry in columns (3) and (6). Standard errors clustered by year are reported
in parentheses. ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01.
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Table 11: Post Acquisition Performance

Panel A COGS/Sales Operating Margin

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Horizontal -0.022 0.031 0.012 0.012 -0.028 -0.115∗∗∗ -0.132∗∗∗ -0.126∗∗∗ -0.126∗∗ -0.034

(0.026) (0.027) (0.026) (0.041) (0.033) (0.036) (0.037) (0.036) (0.063) (0.054)

Post -0.041∗ -0.014 -0.017 -0.017 -0.060∗∗∗ 0.062∗ 0.000 -0.005 -0.005 0.088∗∗∗

(0.024) (0.025) (0.024) (0.021) (0.018) (0.032) (0.034) (0.033) (0.029) (0.026)

Horizontal x Post -0.084∗∗ -0.105∗∗∗ -0.105∗∗∗ -0.105∗∗ -0.087∗∗ 0.108∗∗ 0.120∗∗ 0.118∗∗ 0.118∗∗ 0.077

(0.038) (0.038) (0.036) (0.041) (0.039) (0.051) (0.052) (0.050) (0.057) (0.051)

Leverage 0.358∗∗∗ 0.352∗∗∗ 0.352∗∗∗ 0.374∗∗∗ 0.033 0.041 0.041 -0.021

(0.091) (0.090) (0.068) (0.074) (0.123) (0.125) (0.101) (0.115)

Book-to-market 0.023 0.011 0.011 0.055∗∗ 0.117∗∗ 0.111∗∗ 0.111∗∗∗ 0.061*

(0.034) (0.033) (0.024) (0.025) (0.046) (0.045) (0.030) (0.033)

Assets (log) -0.038∗∗∗ -0.041∗∗∗ -0.041∗∗∗ -0.049∗∗∗ 0.067∗∗∗ 0.078∗∗∗ 0.078∗∗∗ 0.095∗∗∗

(0.006) (0.006) (0.010) (0.011) (0.008) (0.008) (0.012) (0.014)

Relative size 0.007 -0.014 -0.014 -0.030 -0.012 -0.003 -0.003 0.026

(0.021) (0.020) (0.024) (0.024) (0.029) (0.028) (0.031) (0.030)

Percentage cash 0.004 0.024 0.024 0.020 0.014 -0.017 -0.017 0.018

(0.021) (0.021) (0.019) (0.018) (0.029) (0.029) (0.024) (0.023)

Observations 1,742 1,669 1,669 1,669 1,668 1,740 1,668 1,668 1,668 1,667

Adj. R2 0.018 0.069 0.182 0.182 0.208 0.016 0.069 0.152 0.152 0.187

Industry FE N N Y Y Y N N Y Y Y

Year FE N N N N Y N N N N Y

Clustered SE N N N Year Year N N N Year Year

Notes: This table reports estimates for a model of the form in Equation 9. The sample is restricted to deals in which the target is in the
top process-share tercile. In columns (1) through (5), the dependent variable is COGS/Sales for acquirers in year t, where t ranges from (at
most) five years before merger completion year to (at most) five years after completion. In columns (6) through (10), the dependent variable
is the operating income before depreciation scaled by sales. For the pre-merger years, the dependent variable is a market-value weighted
average of the acquirer and target’s respective values. Horizontal is an indicator variable equal to 1 if the process innovator being targeted
has the same TNIC as the acquirer and zero otherwise. Standard errors are reported in parentheses. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Table 11: Post Acquisition Performance (continued)

Panel B COGS/Sales Operating Margin

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Similar 0.234∗∗∗ 0.218∗∗∗ 0.164∗∗ 0.164∗∗ 0.166∗∗ -0.417∗∗∗ -0.298∗∗∗ -0.241∗∗ -0.241∗∗ -0.213∗

(0.078) (0.079) (0.072) (0.070) (0.076) (0.108) (0.109) (0.103) (0.112) (0.124)

Post -0.108 -0.102 -0.138∗ -0.138∗∗∗ -0.132∗∗ 0.109 0.081 0.134 0.134∗∗∗ 0.189∗∗∗

(0.088) (0.087) (0.075) (0.042) (0.054) (0.121) (0.119) (0.107) (0.042) (0.059)

Similar x Post -0.213∗ -0.260∗∗ -0.191∗∗ -0.191∗∗∗ -0.210∗∗∗ 0.334∗∗ 0.300∗ 0.227 0.227∗∗ 0.214∗

(0.113) (0.112) (0.097) (0.069) (0.069) (0.155) (0.154) (0.139) (0.104) (0.116)

Leverage 1.109∗∗∗ 1.086∗∗∗ 1.086∗∗ 1.174∗∗ -0.688 -1.056∗∗ -1.056∗ -1.101∗

(0.335) (0.308) (0.404) (0.460) (0.462) (0.442) (0.523) (0.583)

Book-to-market 0.079 0.063 0.063 0.037 0.242 0.078 0.078 0.141

(0.120) (0.112) (0.119) (0.126) (0.164) (0.161) (0.180) (0.191)

Assets (log) -0.109∗∗∗ -0.100∗∗∗ -0.100∗∗∗ -0.100∗∗∗ 0.153∗∗∗ 0.154∗∗∗ 0.154∗∗∗ 0.154∗∗∗

(0.016) (0.016) (0.022) (0.022) (0.021) (0.022) (0.026) (0.026)

Relative size -0.185∗∗ -0.139∗∗ -0.139 -0.142 0.074 0.022 0.022 0.018

(0.076) (0.069) (0.103) (0.110) (0.105) (0.099) (0.147) (0.154)

Percentage cash -0.162** -0.004 -0.004 -0.001 0.159∗ 0.063 0.063 0.091

(0.063) (0.065) (0.057) (0.054) (0.087) (0.093) (0.085) (0.080)

Observations 519 509 509 509 509 518 508 508 508 508

Adj. R2 0.050 0.159 0.386 0.386 0.411 0.059 0.166 0.343 0.343 0.367

Industry FE N N Y Y Y N N Y Y Y

Year FE N N N N Y N N N N Y

Clustered SE N N N Year Year N N N Year Year

Notes: This table reports estimates for a model of the form in Equation 9. The sample is restricted to deals in which the target is in the
top process-share tercile. In columns (1) through (5), the dependent variable is COGS/Sales for acquirers in year t, where t ranges from (at
most) five years before merger completion year to (at most) five years after completion. In columns (6) through (10), the dependent variable
is the operating income before depreciation scaled by sales. For the pre-merger years, the dependent variable is a market-value weighted
average of the acquirer and target’s respective values. Similar is an indicator variable equal to 1 if the process innovator being targeted has
above median similarity of patents with the acquirer firm’s 10-K business description and zero otherwise. Standard errors are reported in
parentheses. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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A. Data Appendix

A.1. Classification of patents

We construct a dictionary of words commonly found in the legalistic language that describes operational

efficiency, and pass every claim text through an algorithm that checks for the presence of the following words.

“a process of, a process for, a method of, a method for, the method of, the method for, a method such

that, the method such that, a method according to which,the method according to which, a process such that,

the process such that, a process according to which, the process according to which, method of, method for,

method that, method to, method by, method as, method according, method such, method using, process of,

process for, process that, process to, process by, process as, process according, process such, process using.”

Our text analytics algorithm returns a true (false) value for each claim that contains (does not contain)

any of these words. We aggregate this classification at a patent level and retain those patents where all claims

are either true or false. The former are tagged as process patents and the latter as non-process patents. In

robustness analysis, we also include patents with both kinds of claims, and represent “Process Share” as the

fraction of claims classified as process innovation.

A.2. Data sources and merging procedure

Our raw data come from the following sources.

1. Patent-claims text data: USPTO website. We download all the claims for patents filed between 1980 and

2020. We retain two columns, patent number and claims text, and collapse the data into a patent-level

classified file after tagging them as process or non-process.

2. Economic Value of patents data: Noah Stoffman’s website. We download the stock-market implied dollar

value of all patents filed by public firms and retain patent number, firm identifier, and the real and

nominal values of these patents. These are merged into the patent-level classified file.

3. Patent-level citations, inventors, and technology class data: Michael Woeppel’s website. We download

the full set of patent-level citations, inventors, and technology class files and construct the three internal
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knowledge variables (self-citation share, inventor-firm share, and technology-class share). Then, we use

the patent numbers to merge the file into the patent-level classified file.

4. Firm fundamentals and stock returns: annual COMPUSTAT/CRSP files. We download fundamental

characteristics for public firms and merge them into the patent-level classified file using firm identifier

(“permno”) and filing year as matching variables. We collapse the data into firm-year averages.

5. M&A data: SDC platinum database. We filter all deals tagged as mergers, acquisition of majority interest

or assets in excess of 50%, that were announced between 1980 and 2020 (and subsequently completed),

with a value of over $1 million between US public firms. We retain columns on announcement date, firm

identifiers, premium paid, and a flag for competing deal.

6. Horizontal acquisitions: Text-based Industry Classification (TNIC) from Hoberg-Phillips library. We

match the firms in our data with GVKEYs in this library to ascertain whether the acquiring and target

(actual or control) firms operated in similar product market in the year before deal announcement.

B. Potential outcome methods

Table 7 shows that firms with high process share are less likely to be acquired. It is difficult to make a causal

statement based on Table 7 because firms are not randomly assigned a high process share. Firms endogenously

choose how much emphasis to place on process innovation and the decision to emphasize process innovation

may be influenced by firm characteristics that also affect the likelihood of being acquired. Panel A of Table A8

shows that characteristics of firms that emphasize process innovation (top tercile of process share using FF48

industries) are systematically different from those that emphasize non-process innovation (bottom tercile of

process share). If we think of high process share in a firm’s innovation portfolio as the treatment (which we

will call D) and the firm being acquired or not as the outcome (which we call Target), it is clear from Panel A

of Table A8 that covariates that affect the potential outcomes are related to treatment.

Treatment effects are difficult to estimate in observational studies like ours because the treatment is not

randomized and, therefore, the outcome and treatment are not necessarily independent. When covariates that

affect the potential outcomes are related to treatment, we cannot use a difference in sample means, because

the missing data are informative. Thus, observational studies suffer from a missing data problem - we only

observe a firm getting one treatment or the other. For example, if a firm that emphasizes process innovation

is acquired, we do not get to observe whether it would also have been acquired had it not emphasized process

innovation. In this section, we use three different potential outcome methods – (i) Inverse probability weighting

estimator (IPW), (ii) Regression adjustment estimator (RA), (iii) Propensity score matching estimator (PSM).

These methods use different strategies to specify the potential outcomes each firm would obtain under each

treatment level. The common theme across potential outcome methods is that they utilize covariates to make

treatment and outcome independent once we condition on those covariates.

The first strategy we use is inverse probability of treatment weighting proposed by Rosenbaum (1987). This

method uses weights based on the propensity score to correct the treated and untreated group means for the

missing potential outcomes, i.e., for the couterfactuals. The weight for each firm is equal to the inverse of the

probability of receiving the treatment that the firm actually received. Outcomes of firms that receive a likely

treatment get a weight close to one. Outcomes of firms that receive unlikely treatment get a weight larger than

48



one. The weighting creates a synthetic sample in which the distribution of baseline covariates is independent

of treatment assignment.

To obtain the propensity score, we estimate the following logit model using all target firms and their matched

control firms:

Di = α+ βXi + εi. (10)

Here Di is a treatment variable that takes the value 1 if firm i has process share in the top tercile (referred

to as process innovators) and 0 if the firm has process share in the bottom tercile (non-process innovators).

Xi is a vector of covariates that affect the likelihood of a firm being acquired. We include all covariates used

in Table 6. The propensity score, π̂i, is the predicted probability that a firm i will be classified as a process

innovator given the set of baseline covariates.

Next, the inverse of the propensity score is used to weight the outcome variable Targeti which takes the

value 1 if firm i is acquired and value 0 if firm i is not acquired. Recall that the weight for each firm is equal to

the inverse of the probability of receiving the treatment that the subject actually received. That is, a treated

firm (i.e. firms with Di=1 or process innovators) receives the weight 1/π̂i where as an untreated firm (i.e. firms

with Di=0 or non-process innovators) receives the weight 1/(1− π̂i).

The weighted mean of the treated group (i.e., process innovators) is:

µ̂1 =

∑N
i=1TargetiDiπ̂(Xi)∑N

i=1Diπ̂(Xi)
(11)

The weighted mean of the untreated group (i.e., non-process innovators) is:

µ̂0 =

∑N
i=1Targeti(1−Di)(1− π̂(Xi))∑N

i=1(1−Di)(1− π̂(Xi))
(12)

The average treatment effect on the likelihood of being acquired is:

ATEIPW = µ̂1 − µ̂0 (13)

This average treatment effect using the IPW estimator is provided in Panel B of Table A8. The average

treatment effect of -0.455 is statistically significant at the 1% level and indicates that process innovators are

significantly less likely to be acquired than non-process innovators after selecting on all observables. Notably,

Panel C, shows that after inverse probability weighting, the covariates are balanced across the sample of process

innovators (the treated group) and non-process innovators (the untreated group)

In Panel D of Table A8, we present estimates of the average treatment effect using other potential outcome

estimators. We present propensity score matching estimators that compare outcomes of firms that are as similar

as possible (along covariates) with the sole exception of their treatment status. We match each treated firm, i.e.

each process innovator, to non-process innovators with the nearest propensity score π̂i, the two nearest scores,

or three nearest scores. Regardless of the number of nearest neighbors used, we find that process-innovators

have significantly lower likelihood of being acquired as compared to the propensity score matched non-process
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innovators with the average treatment effect varying from -0.0515 to -0.0601.

In Panel D, we also present a regression adjustment estimator which uses a regression model to predict

potential outcomes adjusted for covariates. This method involves regressing the outcome variable Target on all

covariates X in the subsample of process innovators and separately in the subsample of non-process innovators.

The former subsample regression is used to predict each firm’s outcome assuming the firm was a process

innovator. The latter subsample regression is used to predict each firm’s outcome assuming the firm was not a

process innovator. This process results in two values for each firm – respectively, the prediction η1 that the firm

is acquired if it is a process innovator, and the prediction η0 that it is acquired if it is a non-process innovator.

The average treatment effect is the sample mean of the difference η1 − η0. Panel D shows that the average

treatment effect using the regression adjustment estimator is -0.0454 and statistically significant at the 1%

level. Note that the regression adjustment estimator is similar to running a regression of the outcome variable

on the treated indicator variable, but including interaction terms of the treated indicator with demeaned values

of all covariates.

C. Instrumental variables estimation

We also use an instrumental variable (IV) approach to address unobserved sources of variability that might

affect both process innovation and merger likelihood. To this end, we seek a variable that is positively correlated

with the share of a firm’s process innovation but does not affect the likelihood of the firm being acquired through

any avenue other than the composition of the firm’s innovative effort. Our choice of instrument is based on the

argument presented in subsection 4.2 that process innovation builds on prior knowledge generated within the

firm.

We use a firm’s propensity to cite its own prior patents as an instrument. We know from the results in

Table A5 that firms with higher self-citation ratio engage in more process innovation. We believe the self-citation

ratio satisfies the exclusion restriction because a firm’s proclivity to cite its own patents is unlikely to affect

acquisition likelihood through channels other than the information it carries about the nature of innovation.

Having said this, a lingering concern with our choice of instrument is that a higher self-citation share could

indicate lower quality of innovation and thus predict lower acquisition likelihood independent of the specificity

of innovation. Nevertheless, the average internal value of patents argues against this possibility. We find that

both measures of innovation quality - forward citations and economic value of patents, are comparable for firms

with high (above-median) and low (below-median) self-citation shares. Finally, we also explicitly control for

these two measures of innovation quality, and other firm characteristics to account for firm fundamentals that

might simultaneously impact self-citation share and likelihood of being acquired.

In the first stage of our IV approach, we estimate the following model using ordinary least squares,

Process Share (tercile)i,t = β0 + β1Self-citation Share (tercile)i,t + γZi,t + αt + αi + εi,t. (14)

In this equation, the dependent variable is the process share of firm i in year t, mapped to an industry-

adjusted tercile. The instrument is self-citation share of firm i in year t, also industry-adjusted by mapping

to a tercile. Other control variables and fixed effects are the same as previously described in Equation 4.
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Specifically, we control for the quality of patents by including the patent’s forward citations and economic value

as control variables. We control for industry effects in the process share measure and self-citation share measure

by mapping both variables to terciles within the industry. Standard errors are clustered by year. Panel B of

Table A9 reports the estimation result and the instrument F-statistics. As in subsection 5.2, we present three

different specifications, which differ on how the process share terciles are created.

Consistent with Table A5, the self-citation share strongly correlates with process share. The first-stage

F-statistic is in the range of 26 to 41 depending on the industry group used for creating terciles, indicating

that this variable serves as a relevant instrument. We use the predicted value of Process Share (tercile) from

Equation 14 to explore the likelihood that a firm is acquired. In this second-stage regression, we estimate the

following model using ordinary least squares,

Targetid,t = β0 + β1 ̂Process Share (tercile)id,t−1 + γZid,t−1 + αd + εid,t, (15)

where the dependent variable takes a value of 1 if firm i is an actual target in deal d and 0 otherwise. The

regressor of interest is the predicted process share (tercile). The control variables are the same as described

for Equation 4. Panel A of Table A9 reports estimates of Equation 15. As before, we present three different

specifications, which differ on how the process share terciles are created. In all specifications, the coefficient

on predicted process share is negative and statistically significant at the 99% confidence level. The IV analysis

indicates that a greater emphasis on process innovation reduces a firm’s likelihood of being acquired.
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Figure A1: Share of Process Claims from 1980 to 2020 (Including Hybrid Patents)

Notes : This figure plots the average share of process claims in our data over the years 1980 through
2020. We identify process claims using a machine-read textual classification algorithm applied to all the
claims in support of a patent application. This figure includes all patents filed by public firms. Each
patent takes a value between 0 and 1 depending on the fraction of claims classified as process innovation.
Figure 1 shows the corresponding plot for patents unambiguously classified as process or otherwise.
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Table A1: Descriptive Statistics at Technology Class Level

CPC Section Definition Mean SD p25 p50 p75 N

A Human Necessities 0.29 0.38 0.00 0.03 0.52 149,030

B Performing Operations; Transporting 0.26 0.38 0.00 0.00 0.45 233,328

C Chemistry; Metallurgy 0.45 0.43 0.00 0.31 1.00 238,327

D Textiles; Paper 0.36 0.43 0.00 0.06 0.94 16,269

E Fixed Constructions 0.28 0.36 0.00 0.08 0.48 32,793

F Mechanical Engineering 0.16 0.30 0.00 0.00 0.20 128,449

G Physics 0.34 0.33 0.00 0.30 0.52 664,054

H Electricity 0.34 0.35 0.00 0.25 0.55 674,708

Y General 0.27 0.40 0.00 0.00 0.50 52

Notes: This table reports the distribution of the share of process patents within each of the nine
Cooperative Patent Classification (CPC) sections. A process patent takes a value of 1 while a non-
process patent takes a value of 0. We include all patents (process, non-process, and hybrid) filed
between 1980 and 2020 to construct this table.
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Table A2: Variable Definitions

Innovation measures

Cumulative Patents (log) Logarithm of the total number of patents granted as on date.

Economic Value The stock market implied nominal value of a patent, estimated using

the data provided in Kogan et al. (2017). It is calculated at a patent

level and scaled by the firm’s market-capitalization (in the year before

filing) to adjust for firm-size.

Forward citations Average number of citations received by all patents of a firm in the year

before acquisition.

Inventor-firm Change An indicator variable that takes a value of 1 when an inventor changes

the firm that they file their next patent with, and 0 if they remain with

the same firm.

Inventor-firm Share Proportion of patents that a patent’s inventor has filed with the invent-

ing firm out of all the patents filed by that inventor up to the filing date.

It takes a value between 0 (innovator has never before patented for the

focal firm) and 1 (innovator has patented only for the focal firm).

Inventor Process Share Cumulative share of process patents filed by an inventor.

Process Share Proportion of patents classified as “process” out of all patents filed by

a firm in a given year. It takes a value between 0 (no patent is process)

and 1 (all patents are process). This continuous variable is also mapped

to an industry-adjusted tercile measure.

Self-citation share Proportion of patents cited by the focal patent that were filed by the

same firm, out of all the patents cited by the focal patent. It takes a

value between 0 (all citations relate to other firms’ patents) and 1 (all

citations relate to the same firm’s patents).

Technology Class Share Proportion of patents filed by the firm that belong to the same CPC

sub-section as the focal patent. It takes a value between 0 (the patent

belongs to a new CPC sub-section) and 1 (all prior patents belong to

the same CPC-subsection).

Continued on next page
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Table A2: Variable definitions – continued from previous page

∆ Patent Index Annual growth rate of Patent Index, which is the ratio of number of

patents granted to a firm in a technology class, scaled by the median

number of patents granted to any firm in that class and year. This is

summed across all technology classes that a firm files patents in.

M&A variables

Combined CAR Market-capitalization weighted cumulative abnormal returns of the ac-

quiring and target firm, measured from one day before to one day after

the announcement of an M&A deal. Abnormal returns are calculated

by subtracting the value-weighted CRSP returns from each firm’s stock

returns, and market-capitalizations are the averages of the three years

prior to the deal announcement year.

Common Knowledge The number of patents in the common knowledge base of the acquirer

and target. To obtain the common knowledge base, we first determine

the set of patents that received at least one citation from any of the ac-

quirer’s patents awarded in the three years preceding merger announce-

ment year (“the acquirer’s knowledge base”). Next, we determine the

set of patents that received at least one citation from any of the target’s

patents awarded in the three years preceding merger announcement year

(“the target firm’s knowledge base”). Common Knowledge is the inter-

section of these two sets and captures the set of patents cited by both

the acquirer and the target firm.

Competing Deal (1/0) An indicator for competing deal in the SDC Platinum database.

Horizontal A binary variable that takes a value of 1 when the acquirer and target

firm share the Text-based Industry Classification as defined in Hoberg

and Phillips (2016), and 0 otherwise. Horizontal = 1 indicates that the

acquirer and target firms may have been product market competitors in

the year before merger announcement.

Premium (over 1-day price) The percentage premium paid by acquirer compared to the 1-day ago

stock price of the target.

Process Share Tercile Distance Signed difference between the acquirer and target firm’s Process Share

(tercile). A positive value suggests that the acquirer conducts more

industry-adjusted process innovation than the target.

Continued on next page
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Table A2: Variable definitions – continued from previous page

Firm characteristics

Age (log) Logarithm of age, calculated using the earliest year when a firm appears

in the CRSP/Compustat database.

Assets (log) Logarithm of total assets.

Book-to-market Book value of common equity scaled by its market value; winsorized at

top/bottom 2.5% of the distribution.

Capital Expenditure/Assets Capital expenditure scaled by total assets; winsorized at top/bottom

2.5% of the distribution.

COGS/Sales Cost-of-goods-sold scaled by total sales; winsorized at top/bottom 2.5%

of the distribution and industry-adjusted by subtracting the SIC 3-digit

industry median.

Leverage Total debt scaled by total assets; winsorized at top/bottom 2.5% of the

distribution.

Market Capitalization (log) Logarithm of market capitalization.

Property, Plant & Equip-

ment/Assets

Expenditure on property, plant and equipment scaled by total assets;

winsorized at top/bottom 2.5% of the distribution.

R&D/Assets Research and development expenses scaled by total assets; winsorized

at top/bottom 2.5% of the distribution.

Return on Assets Operating income before depreciation scaled by total assets; winsorized

at top/bottom 2.5% of the distribution.
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Table A3: Determinants of Process Innovation (Excluding SIC 737)

Process Share Economic Value

(1) (2) (3) (4)

COGS/Sales (3-year average) 0.009∗∗∗ 0.158∗∗∗

(0.003) (0.050)

COGS/Sales (5-year average) 0.011∗∗∗ 0.198∗∗∗

(0.003) (0.045)

Age (log) 0.007 0.007 -0.202∗∗∗ -0.201∗∗∗

(0.008) (0.008) (0.070) (0.070)

Assets (log, t-1) -0.013 -0.013 -0.893∗∗∗ -0.886∗∗∗

(0.010) (0.010) (0.141) (0.137)

Book-to-market (t-1) 0.011∗ 0.011∗ 0.636∗∗∗ 0.638∗∗∗

(0.006) (0.006) (0.143) (0.144)

Capital Expenditure/Assets (t-1) -0.039 -0.037 -1.209 -1.257

(0.061) (0.061) (0.918) (0.943)

Leverage (t-1) 0.014 0.015 0.811∗∗∗ 0.809∗∗∗

(0.025) (0.025) (0.283) (0.285)

Market Capitalization (log, t-1) 0.012 0.012 0.460 0.478

(0.008) (0.008) (0.326) (0.332)

Property, Plant & Equipment/Assets (t-1) 0.050 0.050 1.798∗∗ 1.799∗∗

(0.044) (0.044) (0.734) (0.731)

R&D/Assets (t-1) -0.033 -0.030 0.123 0.147

(0.036) (0.037) (0.352) (0.337)

Observations 28,061 28,086 17,035 17,053

Adj. R2 0.45 0.45 0.31 0.31

Firm, Year FE Y Y Y Y

Notes: This table reports estimates from a fixed effects panel regression of the form
in Equation 1 in columns (1) and (2), and Equation 2 in columns (3) and (4), at
firm-year level for firms not belonging to the business services industry (SIC 737).
The dependent variable is Process Share in columns (1) and (2), and Economic Value
of process patents in columns (3) and (4). The regressor of interest is COGS/Sales
averaged over prior 3 years (in columns (1) and (3)) or prior 5 years (in columns
(2) and (4)). All columns include firm-level controls, and firm and year fixed effects.
Standard errors clustered by industry (SIC 3 digit) and year are reported in parentheses.
∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01.
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Table A4: Other Determinants of Share and Economic Value of Process Innovation

Process Share Economic Value

Panel A (1) (2) (3) (4)

SG&A/Sales (3-year average) -0.004 -1.141∗∗

(0.024) (0.496)

SG&A/Sales (5-year average) 0.003 -0.794∗

(0.028) (0.459)

Observations 23,751 23,865 14,477 14,560

Adj. R2 0.44 0.44 0.33 0.33

Panel B (1) (2) (3) (4)

Employees/Sales (3-year average) -0.516 -11.804

(0.647) (11.651)

Employees/Sales (5-year average) -0.842 -8.501

(0.570) (10.683)

Observations 29,174 29,232 18,016 18,016

Adj. R2 0.45 0.45 0.30 0.30

Panel C (1) (2) (3) (4)

Turnover (Sales/Assets, 3-year average) 0.012 0.037

(0.014) (0.501)

Turnover (Sales/Assets, 5-year average) 0.013 -0.101

(0.017) (0.343)

Observations 29,560 29,560 18,056 18,056

Adj. R2 0.45 0.45 0.31 0.31

Controls Y Y Y Y

Firm, Year FE Y Y Y Y

Notes: This table reports coefficient estimates from a fixed effects panel regression
of the form in Equation 1 in columns (1) and (2), and Equation 2 in columns (3)
and (4), at firm-year level using three alternative cost regressors: SG&A/Sales in
Panel A, Employees/Sales in Panel B and Turnover in Panel C. All three predictor
variables are averaged over prior 3 years (in columns (1) and (3)) or prior 5 years
(in columns (2) and (4)). All columns include controls, and firm and year fixed
effects. Control variables are analogous to Table 3. Standard errors are clustered
by industry (SIC 3 digit) and year, and reported in parentheses. ∗p < 0.1;∗∗ p <
0.05;∗∗∗ p < 0.01.
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Table A5: Internal Knowledge Accumulation (Firm-year level)

Self-citation Share Inventor-firm Share Technology Class Share

(1) (2) (3) (4) (5) (6)

Process Share 0.043∗∗∗ 0.016∗∗∗ 0.030∗∗∗ 0.016∗∗ 0.010∗ 0.009∗

(0.004) (0.004) (0.006) (0.007) (0.005) (0.005)

Cumulative Patents (log) 0.024∗∗∗ 0.029∗∗∗ 0.057∗∗∗ 0.072∗∗∗ -0.011∗∗∗ 0.007∗∗

(0.001) (0.002) (0.002) (0.002) (0.002) (0.003)

Age (log,t-1) 0.015∗∗∗ 0.004 0.014∗∗∗ 0.007∗ 0.010∗∗ -0.009∗∗

(0.002) (0.004) (0.003) (0.004) (0.005) (0.004)

Assets (log,t-1) -0.026∗∗∗ -0.010∗∗∗ -0.043∗∗∗ -0.018∗∗∗ -0.065∗∗∗ -0.007∗∗∗

(0.001) (0.002) (0.002) (0.003) (0.003) (0.003)

Capital Expenditure/Assets (t-1) -0.129∗∗∗ -0.02 -0.086∗∗ 0.03 -0.346∗∗∗ 0.036

(0.024) (0.020) (0.036) (0.040) (0.041) (0.030)

Leverage (t-1) 0.024∗∗∗ 0.024∗∗∗ -0.003 0.012 0.019∗∗ 0.016∗∗

(0.005) (0.006) (0.008) (0.011) (0.009) (0.006)

Market Capitalization (log, t-1) 0.016∗∗∗ 0.002 0.014∗∗∗ 0.001 0.060∗∗∗ 0.002

(0.002) (0.002) (0.002) (0.002) (0.003) (0.002)

R&D/Assets (t-1) 0.083∗∗∗ 0.065∗∗∗ -0.026∗∗ -0.023 -0.018 0.008

(0.012) (0.011) (0.014) (0.015) (0.014) (0.011)

Observations 31,076 30,397 31,076 30,397 31,076 30,397

Adj. R2 0.16 0.39 0.16 0.34 0.10 0.65

Firm, Year FE N Y N Y N Y

Notes: This table reports estimates from a fixed effects panel regression of the form in Equation 3 at
firm-year level. The dependent variable is one of the three measures of internal knowledge accumulation:
self-citation share in columns (1) and (2), inventor-firm share in columns (3) and (4), and technology
class share in columns (5) and (6). The regressor of interest is “Process Share”, the proportion of
patents filed by a firm in a given year that we classify as process innovation. Columns (2), (4) and
(6) include firm and year fixed effects. Standard errors clustered by year are reported in parentheses.
∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01.
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Table A6: Determinants of Process Innovation (Including Hybrid Patents)

Process Share Economic Value

(1) (2) (3) (4)

COGS/Sales (3-year average) 0.009∗∗∗ 0.165∗∗∗

(0.003) (0.061)

COGS/Sales (5-year average) 0.010∗∗∗ 0.194∗∗∗

(0.002) (0.064)

Age (log) 0.008 0.008 -0.103∗∗ -0.105∗∗

(0.005) (0.006) (0.044) (0.045)

Assets (log, t-1) -0.012 -0.012 -1.026∗∗∗ -1.021∗∗∗

(0.011) (0.011) (0.179) (0.177)

Book-to-market (t-1) 0.008 0.008 0.784∗∗∗ 0.785∗∗∗

(0.005) (0.005) (0.169) (0.169)

Capital Expenditure/Assets (t-1) 0.002 0.001 -0.966 -1.026

(0.043) (0.043) (1.118) (1.148)

Leverage (t-1) 0.004 0.005 1.038∗∗∗ 1.035∗∗∗

(0.019) (0.019) (0.202) (0.202)

Market Capitalization (log, t-1) 0.007 0.007

(0.007) (0.007)

Property, Plant & Equipment/Assets (t-1) 0.005 0.006 0.755∗∗ 0.788∗∗

(0.032) (0.032) (0.368) (0.380)

R&D/Assets (t-1) -0.028 -0.026 2.242∗∗ 2.260∗∗

(0.033) (0.033) (1.001) (0.993)

Return on Assets (t-1) -0.001 -0.002 -0.036 -0.029

(0.016) (0.016) (0.330) (0.330)

Observations 32,891 32,920 27,776 27,804

Adj. R2 0.46 0.46 0.30 0.30

Firm, Year FE Y Y Y Y

Notes: This table reports estimates from a fixed effects panel regression of the form in
Equation 1 at firm-year level. The sample includes all patents in our database. The
dependent variable is Process Share, the proportion of patents filed by a firm in a given
year that we classify as process innovation. The regressor of interest is COGS/Sales
averaged over prior 3 years (in columns (1) and (3)) or prior 5 years (in columns (2) and
(4)). All columns include firm-level controls, and firm and year fixed effects. Standard
errors clustered by industry (SIC 3 digit) and year are reported in parentheses. ∗p <
0.1;∗∗ p < 0.05;∗∗∗ p < 0.01.
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Table A7: Likelihood of Being a Target (Including Hybrid Patents)

Target (1/0)

(1) (2) (3)

Process Share (tercile) -0.193∗∗∗ -0.206∗∗∗ -0.254∗∗∗

(0.048) (0.047) (0.048)

∆ Patent Index -0.023∗∗∗ -0.023∗∗∗ -0.023∗∗∗

(0.004) (0.004) (0.004)

Forward citations 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.001) (0.001) (0.001)

Economic value (1980 $) 0.014∗∗∗ 0.014∗∗∗ 0.014∗∗∗

(0.003) (0.003) (0.003)

COGS/Sales (3-year average) -0.068 -0.068 -0.071

(0.057) (0.057) (0.057)

Age (log) 0.084∗ 0.086∗ 0.081∗

(0.045) (0.045) (0.045)

Assets (log, t-1) 0.235∗∗ 0.239∗∗ 0.237∗∗

(0.105) (0.105) (0.106)

Book-to-market (t-1) 0.033 0.027 0.030

(0.115) (0.115) (0.115)

Leverage (t-1) 0.553∗∗ 0.537∗ 0.527∗

(0.282) (0.282) (0.282)

Market Capitalization (log, t-1) 0.296∗∗ 0.290∗∗ 0.300∗∗

(0.121) (0.121) (0.121)

R&D/Assets (t-1) -0.324 -0.334 -0.238

(0.518) (0.519) (0.520)

Return on Assets (t-1) -0.059 -0.063 -0.058

(0.314) (0.314) (0.315)

Observations 4,819 4,819 4,819

Pseudo R2 0.06 0.06 0.06

Deal FE Y Y Y

Notes: This table reports estimates from a conditional logit regression of the form in
Equation 4 at a deal level. The dependent variable takes a value of 1 when the firm is a
target and 0 if it is a control. The regressor of interest is Process Share (tercile), which takes
a value of 3 when the firm falls under the top one-third of process innovators in its industry,
1 when it falls in the bottom one-third, and 2 when it falls in the middle. Terciles are
constructed using: Fama-French 49-industry in column (1), SIC 3 digit-industry in column
(2), and SIC 2 digit-industry in column (3). Each actual target is industry and size matched
with five controls. All columns include firm controls and deal fixed effects. Standard errors
clustered by deal are reported in parentheses. ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01.
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Table A8: Potential Outcome Methods and Balance Test

Panel A: All targets Process Innovator Non-process Innovator Difference

Target (1 for targets, 0 for control) 0.1358 0.1782 -0.0425∗∗∗

COGS/Sales (3-year average) 0.8483 0.7959 0.0524∗

Age (log) 2.2605 2.2619 -0.0014

Assets (log, t-1) 5.6962 5.1697 0.5265∗∗∗

Book-to-market (t-1) 0.8368 0.9315 -0.0947∗∗∗

Leverage (t-1) 0.1637 0.1691 -0.0054

Market Capitalization (log, t-1) 6.0167 5.3471 0.6696∗∗∗

R&D/Assets (t-1) 0.1247 0.1043 0.0204∗∗∗

Return on Assets (t-1) 0.0343 0.0600 -0.0257∗∗∗

∆ Patent Index -0.2361 -0.5106 0.2745

Forward citations 27.8107 28.8406 -1.0299

Economic value (1980 $) 5.5242 4.1953 1.3289∗∗

Panel B: ATE using IPW Process Innovator Non-process Innovator ATE

Target (1 for targets, 0 for control) 0.1252 0.1707 -0.0455∗∗∗

Panel C: Balance test after IPW Process Innovator Non-process Innovator Difference

COGS/Sales (3-year average) 0.8211 0.8171 0.0039

Age (log) 2.3267 2.3347 -0.008

Assets (log, t-1) 5.3201 5.3253 -0.0052

Book-to-market (t-1) 0.8487 0.8631 -0.0144

Leverage (t-1) 0.1567 0.1589 -0.0022

Market Capitalization (log, t-1) 5.6117 5.5921 0.0196

R&D/Assets (t-1) 0.1115 0.1104 0.0011

Return on Assets (t-1) 0.0455 0.0466 -0.001

∆ Patent Index -0.5799 -0.6167 0.0368

Forward citations 27.8348 27.4598 0.375

Economic value (1980 $) 5.465 4.7911 0.6739

Panel D: Other methods ATE

Regression adjustment (RA) -0.0454∗∗∗

Propensity score matching (nearest) -0.0601∗∗∗

Propensity score matching (2 nearest) -0.0525∗∗∗

Propensity score matching (3 nearest) -0.0515∗∗∗

Notes: This table reports the difference in the likelihood of getting acquired after matching
firms using the propensity score method. Panel A shows that process innovators (firms in the
top tercile of process share) can have fundamentally different characteristics than non-process
innovators (firms in the bottom tercile of process share). Panel B confirms that process innova-
tors are less likely to be acquired even after firms are matched on fundamental characteristics,
and Panel C validates the matching by reporting no significant difference in the fundamental
attributes. Panel D reports the likelihood test results using four other matching methods.
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Table A9: Likelihood of Being a Target (Instrumental Variables Estimation)

Panel A: Second-stage Target (1/0)

(1) (2) (3)

̂Process share (tercile) -0.283∗∗∗ -0.309∗∗∗ -0.341∗∗∗

(0.092) (0.103) (0.107)

∆ Patent Index -0.003∗∗∗ -0.003∗∗∗ -0.003∗∗∗

(0.001) (0.001) (0.001)

Forward citations 0.000 0.000 0.000

(0.000) (0.000) (0.000)

Economic value (1980 $) 0.001∗∗ 0.001∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000)

Panel B: First-stage Process share (tercile)

(1) (2) (3)

Self-citation Share (tercile) 0.097∗∗∗ 0.087∗∗∗ 0.087∗∗∗

(0.016) (0.017) (0.017)

∆ Patent Index 0.001 0.001 0.001

(0.001) (0.001) (0.001)

Forward citations -0.001∗∗ -0.001∗ -0.001∗

(0.000) (0.000) (0.000)

Economic value (1980 $) -0.000 -0.001 -0.000

(0.001) (0.001) (0.001)

Observations 5,547 5,547 5,547

Instrument F-statistic 33.27 41.06 26.75

Firm controls Y Y Y

Deal FE Y Y Y

Notes: This table reports estimates from a linear probability
instruments variables regression of the form in Equation 14
(Panel B) and Equation 15 (Panel A) at firm-year level. Panel
A reports the second-stage where the dependent variable takes
a value of 1 when the firm is a target and 0 if it is a con-
trol, with the instrumented process share tercile as the regres-
sor of interest. Panel B reports the corresponding first stage
with self-citation share (tercile) as the instrument. Both the
stages use a common set of controls and deal fixed effects.
Terciles are constructed using: Fama-French 49-industry in
column (1), SIC 3 digit-industry in column (2), and SIC 2
digit-industry in column (3). Each actual target is industry
and size matched with five controls. All columns include firm-
level controls analogous to Table 7 but are eclipsed for brevity.
Standard errors clustered by deal are reported in parentheses.
∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01.
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Table A10: Likelihood of Being a Target (Selection using Secret Words)

Panel A: contemporaneous (probit) (1) (2) (3)

Secret 4.504 3.028 2.419

(3.496) (4.002) (3.805)

Observations 56,485 56,485 56,485

Panel B: lagged (probit) (1) (2) (3)

Secret (t-1) 1.462 3.145 0.966

(4.103) (4.215) (4.308)

Observations 49,392 49,392 49,392

Panel C: contemporaneous (linear probability) (1) (2) (3)

Secret -0.526 -0.527 -1.077

(0.751) (0.682) (0.731)

Observations 56,103 56,103 56,103

Firm, Year FE Y Y Y

Panel D: lagged (linear probability) (1) (2) (3)

Secret (t-1) -0.747 -0.227 -0.706

(0.820) (0.747) (0.799)

Observations 48,870 48,870 48,870

Firm, Year FE Y Y Y

Notes: This table reports estimates of a model of the form:

Patent (0/1)i,t = βSecreti,t + εi,t. (16)

The dependent variable in column (1) equals 1 if the firm files any patent
in a year, and 0 otherwise. In column (2), it equals 1 if the firm files any
process patent in a year, and 0 otherwise. In column (3), it equals 1 if the
firm files any non-process patent in a year, and 0 otherwise. The regressor
of interest is ”Secret”, which refers to the fraction of words referencing trade
secrets in firm i’s earnings calls. Panels A and C use earning calls in the same
year as the patent filing year, while panels B and D lag the regressor by one
year. Panels A and B use a probit estimation, while panels C and D use a
linear probability model with firm and year fixed effects. Standard errors are
reported in parentheses. ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01.
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Table A11: Likelihood of Being a Target (Selection-bias Corrected)

Panel A (conditional logit) Target (1/0)

(1) (2) (3)

Process Share (tercile) -0.326∗ -0.363∗∗ -0.296∗

(0.178) (0.183) (0.177)

IMR 13.209 24.142 11.030

(115.767) (115.536) (115.033)

Observations 265 265 265

Pseudo R2 0.07 0.07 0.06

Deal FE Y Y Y

Controls Y Y Y

Panel B (linear probability) Target (1/0)

(1) (2) (3)

Process Share (tercile) -0.051∗∗ -0.054∗∗ -0.045∗

(0.025) (0.025) (0.025)

IMR -1.463 -1.352 -1.335

(6.036) (6.029) (6.044)

Observations 491 491 491

Adj. R2 0.23 0.23 0.22

Deal FE Y Y Y

Controls Y Y Y

Notes: This table reports estimates for a model of the form in Equation 4 at a deal level.
Relative to the baseline specification, this table corrects for selection bias where firms may
choose to not file process patents when, for example, they worry about revealing trade secrets.
This table additionally controls for the inverse mills ratio (IMR) generated in column (2) of
Table A10. Panel A uses conditional logit while panel B uses a linear probability model. The
dependent variable takes a value of 1 when the firm is a target and 0 if it is a control. The
regressor of interest is Process Share (tercile), which takes a value of 3 when the firm falls under
the top one-third of process innovators in its industry, 1 when it falls in the bottom one-third,
and 2 when it falls in the middle. Terciles are constructed using: Fama-French 49-industry
in column (1), SIC 3 digit-industry in column (2), and SIC 2 digit-industry in column (3).
Standard errors clustered by deal are reported in parentheses. ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01.
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