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Abstract 

We examine the potential of a deep learning model to use visualized earnings data to predict post-
earnings announcement drift. After transforming quarterly earnings time series into bar chart images, 
we employ a convolutional neural network (CNN) to detect patterns and features within these 
visualizations that correlate with post-announcement drift. Out-of-sample tests reveal that the CNN-
identified features significantly predict post-announcement returns, outperforming traditional drift 
predictors. This predictive capability remains consistent over time, is not accounted for by existing 
risk controls or known return anomalies and is robust across various model configurations. Our 
findings highlight the promise of applying AI to visualized financial data as a novel approach to 
predicting earnings changes and equity returns. 
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“If I can’t picture it, I can’t understand it.” –Albert Einstein 

 

1  Introduction 

Human brains process visual information more quickly than textual or numerical 

data, often interpreting visual stimuli instantaneously. Tools like graphs, charts, and 

infographics distill complex information into easily digestible formats, revealing 

patterns that may remain hidden in tables or raw numbers. The importance of 

visualization in financial reporting was highlighted by former SEC Chairman 

Christopher Cox, who remarked that “the visual presentation of information is such a 

key element of making disclosure understandable to investors” (SEC, 2007). Reflecting 

this advantage, financial disclosures increasingly incorporate visual elements to 

improve accessibility and engagement for diverse stakeholders, particularly investors. 

Recent research underscores this trend. For example, Christensen et al. [2024] 

document a significant increase in the use of visuals and infographics in 10-K filings, 

signaling a shift toward visual communication in financial reporting. Similarly, 

Nekrasov, Teoh, and Wu [2021] demonstrate that earnings announcements enhanced 

with visuals attract greater investor attention, as evidenced by higher engagement 

metrics such as retweet volumes on platforms like Twitter. 

Simultaneously, advancements in AI and machine learning have introduced 

powerful tools for analyzing and interpreting financial statements. Recent research 

illustrates the usefulness of AI in this regard: Brown et al. (2020) employ a Bayesian 

topic-model algorithm to link specific topics in 10-K filings to financial misreporting 

risks; Bao et al. [2020] develop a machine learning model that predicts fraud using raw 

financial data; Chen et al [2022] apply machine learning to a detailed set of financial 

data to predict one-year ahead earnings changes; and Kim, Muhn, and Nikolaev [2024], 
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demonstrate that a large language model (LLM) can analyze income statements and 

balance sheets without accompanying text and outperform analysts in predicting 

earnings changes. While these studies provide compelling evidence of the usefulness 

of AI at interpreting textual or numerical accounting data, the potential for analyzing 

visualized financial data remains largely unexplored. 

Building on these developments, our study examines whether AI can perform 

financial analysis on visual representations of earnings data. Specifically, we 

investigate whether a trained AI model can use visualized earnings data to predict post-

earnings announcement drift in a manner orthogonal to traditional drift predictors. To 

do so, we transform firms’ historical quarterly earnings into bar charts and employ a 

convolutional neural network (CNN)—a deep learning algorithm inspired by the human 

visual system—to extract predictive features. CNNs excel at hierarchical feature 

extraction, with early layers identifying local patterns and deeper layers integrating 

them into complex, global insights. Our study aims to uncover whether CNNs can learn 

drift-predictive features from visualized earnings data and contribute new insights into 

the use of AI in financial analysis. 

We begin by plotting earnings. For each firm announcing quarterly earnings from 

1974Q1 to 2023Q2, we plot its most recent eight quarterly earnings in a bar chart that 

visualizes the magnitude as well as the sign of the earnings. We plot raw earnings 

figures rather than standardized unexpected earnings, as this approach better reflects 

the types of figures that firms typically showcase during their earnings calls. The plots 

are standardized and scaled so that the actual level of earnings is not discernible across 

different firms (see section 2 for details). Each earnings bar-chart image is paired with 

one of the three labels (“sell”, “hold”, or “buy”) based on the relative performance of 

the firm’s 63-day post-announcement buy-and-hold abnormal returns among the cross-

section of firms in the same quarter. We then train the CNN model with 124,413 
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earnings images in a 20-year in-sample period (1974Q1 to 1993Q4) to autonomously 

learn features that best distinguish between the three assigned labels. 

We apply the CNN stored parameters from the training phase to earnings images 

after 1993 to generate our key independent variable: “CNN buy probability”. This 

variable can be thought of as the CNN-predicted likelihood for an image to be a “buy” 

when “sell” and “hold” options are also available. If features in earnings images are 

strongly associated with post-earnings announcement drift and the CNN is capable of 

detecting them during the training process, then firms with higher CNN buy probability 

should experience higher returns following their earnings announcement. To test this, 

in each quarter we sort firms into decile portfolios based on their CNN buy probability 

and then examine the average 63-day post-announcement buy-and-hold abnormal 

returns for each decile portfolio in the out-of-sample period from 1994Q3 to 2023Q2. 

We find that when moving from the lowest decile to the highest decile of CNN 

buy probability, the average 63-day post-announcement buy-and-hold abnormal returns 

monotonically increase. Firms in the highest CNN buy probability decile outperform 

firms in the lowest CNN buy probability decile by 3.6% (14.4% annualized) using the 

market-adjusted buy-and-hold returns, with the return differential being positive in 99 

out of 116 quarters. The lowest CNN buy decile associates with significantly negative 

BHARs, creating the more typical view of post-earnings announcement drift (positive 

surprises followed by positive drift and negative surprises followed by negative drift). 

This finding provides a clearer connection to the original drift puzzle compared to many 

follow-up studies, which have struggled to document the negative drift component (e.g., 

Garfinkel and Sokobin [2006]). 

Our results are robust to alternative measures of buy-and-hold abnormal returns, 

such as size-adjusted buy-and-hold returns or buy-and-hold returns adjusted by factor 

models including the Fama-French four- and six-factor models (Fama and French 
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[1993], Carhart [1997], Fama and French [2015], Fama and French [2018]), the q5-

model (Hou et al. [2015], Hou et al. [2021]), and the risk-and-behavioral model (Daniel 

et al. [2020]). Hence, the CNN model’s ability to detect drift-predicting features from 

earnings images does not appear attributable to existing risk factors. 

We next compare the drift-predicting power of CNN buy features to fourteen other 

well-known anomalies and potential determinants of post-announcement returns 

including standardized unexpected earnings (Ball and Brown [1968], Bernard and 

Thomas [1989], Foster et al. [1984]), earnings acceleration (He and Narayanamoorthy 

[2020]), trend in gross profitability (Akbas et al. [2017]), market capitalization (Fama 

and French [1992], [1993]), book-to-market ratio (Fama and French [1992], [1993]), 

earnings announcement return (Foster et al. [1984], Chan et al. [1996]), pre-

announcement return (Carhart [1997]), earnings persistence (Francis et al. [2004]), 

earnings volatility (Cao and Narayanamoorthy [2012]), gross profitability (Novy-Marx 

[2013]), operating profitability (Ball et al. [2016]), operating accruals (Sloan [1996], 

Hribar and Collins [2002]), total accruals (Richardson et al. [2005]), and asset growth 

(Cooper et al. [2008]). Using univariate portfolio analysis, we find that the post-

announcement return differentials between the highest and lowest deciles, when sorted 

by each of the 14 firm characteristics, are smaller in magnitude than those sorted by the 

CNN buy probability. 

We further examine whether the drift-predicting power of CNN buy overlaps with 

the aforementioned anomalies or captures unique mispricing characteristics. We 

simultaneously control for these other anomalies by running quarterly weighted Fama 

and MacBeth [1973] regressions of post-earnings announcement drift on the CNN buy 

probability and the 14 other anomaly indicators. The coefficient on the CNN buy 

probability is positive and highly significant, indicating that the CNN buy features 

provides incremental predictability for post-earnings announcement drift over existing 
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well-known anomalies. 

To gain more insight into how the CNN uses the earnings charts, we regress the 

CNN buy probability on the most recent eight quarterly earnings.  We find that non-

linear transformations of the earnings are an important determinant of the CNN buy 

recommendations. A linear association of the eight quarters of historical earnings 

explains only 30% of the variation in CNN buy probability, suggesting that most of the 

variation in CNN buy probability is driven by nonlinear transformations of the 

underlying historical earnings data. 

We then explore the nature of the price relevant information in CNN buy features 

that is apparently missed by the market, leading to the post-earnings announcement 

drift. We hypothesize that the CNN buy probability has implications for future earnings 

growth that is overlooked by investors (e.g. Bernard and Thomas 1989). We find that 

CNN buy probability positively predicts one-quarter-ahead unexpected earnings as well 

as three-day abnormal returns around the next earnings announcement date, controlling 

for past earnings growth and other firm characteristics. We conduct a Mishkin test 

(Mishkin [1983], Abel and Mishkin [1983]), to show that the drift-predicting ability of 

CNN buy features likely manifests because investors underestimate the implications of 

past earnings features for future earnings growth.1 

We perform a battery of additional robustness tests. First, we find that employing 

CNN predictions in a more conservative monthly-rebalancing long-short strategy yields 

a monthly return of around 1%. Second, we show that the out-of-sample performance 

of CNN predictions is insensitive to various model specifications, mitigating the 

concern that certain model hyperparameters are driving the results. We also train a one-

 
1Prior studies employing the Mishkin test framework include Sloan [1996], Dechow and Sloan [1997], 

Rangan and Sloan [1998], Collins and Hribar [2000], Narayanamoorthy [2006], Cao and 
Narayanamoorthy [2012], Chen and Shane [2014], Hui et al. [2016], Ma and Markov [2017], and He and 
Narayanamoorthy [2020]. 
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dimensional CNN model with firms’ time-series of raw earnings data and document 

that the out-of-sample drift-predicting performance is inferior to that of our two-

dimensional CNN model, thus emphasizing the importance of image representation. 

Our study make several contributions to the literature. First, we add to a growing 

literature studying the applications of machine learning techniques in financial 

statement analysis (e.g. Brown et al. [2020], Bao et al. [2020] Chen et al. [2022], Kim 

et al. [2024]) and returns prediction (Rapach et al. [2013], Kelly et al. [2019], Feng et 

al. [2020], Freyberger et al. [2020], Kozak et al. [2020], Gu et al. [2020], Gu et al. 

[2021], Leippold et al. [2022], Cao et al. [2024], Chen et al. [2024], Murray et al. 

[2024]). The key differentiating feature of our approach from the above studies is that 

our input focuses on how machine learning can use visual representations of earnings 

to predict returns and future earnings changes.2 

Second, we contribute to the recent literature examining the information value in 

visualized data. For example, Nekrasov et al. [2022] find that visuals in firms’ Twitter 

earnings announcements are associated with more retweets, representing increased 

attention to the earnings news. Moss [2022] finds that retail investors use their visual 

perception of earnings surprise displayed on Robinhood rather than the unexpected 

earnings scaled by stock price in their investment decisions. Hu and Ma [2023] quantify 

persuasion in visual, vocal, and verbal dimensions in start-up pitch videos, and find that 

passionate and warm pitches significantly increase funding probability. Cao et al. [2024] 

examine the value of visual information provided in corporate executive presentations 

and use AI to categorize the types of charts presented as forward looking or 

summarizing, and examine how market participants respond to such information. 

Christensen et al. [2024] document a significant increase in the disclosure of 

 
2Transforming data from one-dimensional to two-dimensional can potentially create more nuanced 

information, thus adding flexibility in prediction tasks when the input data is scarce. 
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infographics in 10-K filings over time, and investigate the relation between the use of 

infographics and uncertainty in capital markets. Gu et al. [2024] find that a daily firm-

level investor sentiment measure based on graphics interchange format images (GIFs) 

in postings about firms on Stocktwits.com is positively correlated with same-day stock 

returns while predicting stock return reversals in the following two weeks. Our paper, 

on the other hand, proposes a universal approach to visualize a firm’s time-series of 

quarterly earnings into a bar-chart image that accounts for both the sign and magnitude 

of earnings as an input to AI, to examine whether it can use the information to predict 

post-earnings announcement drift.   

Last, we contribute to a burgeoning literature employing CNN to extract relevant 

information from images. For example, Obaid and Pukthuanthong [2022] extract 

information from a large sample of news media images and translate that information 

into a daily investor sentiment index. Jiang et al. [2023] extract return-predicting 

information from stock-level charts depicting daily open, close, high, and low prices, 

as well as trading volume and average prices over a past period, to forecast future 

returns.  

The rest of the paper is structured as follows. Section 2 describes the data and 

variables. Section 3 describes how we generate earnings images, assign labels, and train 

the CNN model. Section 4 presents the out-of-sample drift-predicting performance of 

the CNN model. Section 5 examines the nature of CNN predictions and the source of 

their drift-predicting power. Section 6 performs robustness checks. Finally, Section 7 

concludes the paper. 

 

2.  Data and Variables 

We focus on U.S. common stocks traded on NYSE, AMEX, and NASDAQ, and 
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obtain data from Compustat and CRSP. First, we collect Compustat firm-quarters 

whose earnings announcement date (Compustat item RDQ) is between January 1974 

and June 2023, and delete observations with missing RDQ in the most recent eight 

quarters (quarters 𝑞𝑞 − 7  to 𝑞𝑞 ). Next, we apply filters in He and Narayanamoorthy 

[2020] to eliminate announcements that are potentially subject to data errors. In 

particular, we delete observations if in the most recent eight quarters, a firm has (i) more 

than one earnings announcement on any date (ii) earnings announcement date within 

30 days of a previous earnings announcement date, or (iii) earnings announcement 

either prior to or more than 180 days after the corresponding fiscal period-end. 

We require a firm to have non-missing earnings in the most recent eight quarters 

and a CRSP daily price higher than one dollar at the most recent earnings announcement 

date (quarter q). We use income before extraordinary items (Compustat item IBQ) as 

earnings. Financial and utility firms with SIC codes from 6000 to 6999 and from 4900 

to 4949 are excluded. In addition, firms are required to have non-missing market 

capitalization (SIZE) and non-negative book-to-market ratio (BM), and have at least 90 

non-missing daily return observations in the [−150, −31] window relative to the current 

quarter earnings announcement date. We are left with 404,635 firm-quarter 

observations after applying all the above filters. 

Next, we define the in-sample dataset and the out-of-sample dataset. The in-

sample dataset consists of 124,413 firm-quarter observations between January 1974 to 

December 1993 (4,548 firms; 80 quarters), and is for CNN model training and 

validation. The complement out-of-sample dataset is for predicting and testing the out-

of-sample CNN model performance, and thus serves as the dataset for all empirical 

analyses throughout the paper. It consists of 240,844 firm-quarter observations between 

July 1994 to December 2023 with non-missing firm characteristics (7,527 firms; 116 
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quarters).3 

We summarize the definitions of all the variables used in this study, in the 

Appendix. To mitigate the impact of outliers, we transform most variables into decile 

ranks (numbered 0 to 9, from low to high) following prior research (e.g., Rangan and 

Sloan [1998], Livnat and Mendenhall [2006], Garfinkel and Sokobin [2006]).4 The 

cutoff points for quarterly variables are based on the distribution of these variables in 

the previous quarter, and the cutoff points for annual variables from July in year t to 

June in year t + 1 are based on the distribution of these variables at the end of June in 

year t. Then, we convert all the decile ranks to scaled ranks by dividing by 9 and 

subtracting 0.5. The resulting scaled ranks vary from −0.5 to 0.5 with a mean of zero 

and a range of one. This variable transformation approach is to facilitate comparison of 

the economic magnitudes of firm characteristics. For example, the coefficient on a 

variable of interest (in scaled rank) in a return regression represents the return from a 

zero investment strategy of going long on the highest variable decile and short on the 

lowest variable decile. 

 

3  The CNN Model and research design 

In this section, we introduce the CNN training procedure, which can be thought of 

as an image classification task. First, we transform firms’ times series of quarterly 

earnings into bar charts. Then, we assign labels to each earnings bar-chart image based 

 
3The firm characteristics include SUE, EA, TREND, RET[−1,1], RET[−30,−2], PERSIST, VOL, GP, 

OP, OA, TA, and AG. Along with BM and SIZE, these firm characteristics are used as comparing/control 
variables throughout the paper. See Appendix for variable definitions. In addition, we address the reasons 
to set up a six-month lag between the end of the in-sample dataset and the out-of-sample dataset in 
Section 4.1. In addition, our empirical results are robust to using an in-sample (out-of-sample) period 
consisting of 60 quarters (136 quarters) or 100 quarters (96 quarters). 

4 Variables that are not transformed into decile ranks are the six measure of the 63-day post-
announcement buy-and-hold abnormal return (BHAR), including market-adjusted return (MAR), size-
adjusted return (SAR), and four factor-adjusted returns (FF4, FF6, HMXZ5, and DHS3). 
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on the relative performance of its post-earnings announcement drift among the cross-

section of firms in the same quarter. Finally, we train the CNN model with the 124,413 

earnings images in the in-sample period (1974Q1 to 1993Q4, 80 quarters) to “learn” 

drift-predicting information. 

 

3.1  Generating earnings images 

We begin by plotting the most recent eight quarterly earnings in bar charts. Our 

intent was to create a simple chart that would be roughly analogous to what might be 

presented in earnings conference call.  For example, Figure 1 panel A provides a slide 

from Meta’s 2024 Q3 earnings call where they display nine quarters of past earnings.  

Rather than have the CNN attempt to classify the variety of earnings images generated 

by firms, we provide a set of standardized charts for the CNN to train on and process.  

Following Jiang et al. [2023], we generate black-and-white rather than colored images 

for simplicity and uniformity. Each black-and-white image is of size 24 × 24 pixels, 

which is recognized by the machine as a 24 × 24 matrix of 0 (black pixel) and 255 

(white pixel). We use black as the background color and white as the color for earnings, 

and the constant image size setup is for better comparison of earnings patterns across 

different firms in different quarters. Figure 1, Panel B provides an example of Meta’s 

2024 Q3 earnings in our standardized format. 

Each quarter occupies 24 × 3 pixels in the image, and quarterly earnings are plotted 

as “white bars” in the middle column of each quarter. In particular, let 𝐸𝐸1, 𝐸𝐸2, … , 𝐸𝐸8 

denote the most recent eight quarterly earnings corresponding to quarter 𝑞𝑞 − 7, 𝑞𝑞 −

6, … , 𝑞𝑞, 𝐸𝐸MAX  and 𝐸𝐸MIN  denote the maximum and minimum of the eight quarterly 

earnings, and 𝑟𝑟( ) denote the function that rounds the input value to the nearest whole 

number. We set the bottom-left vertex of the image as the origin of a two-dimensional 
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coordinate system, so a rectangular area in the image can be represented as 

([𝑥𝑥1, 𝑥𝑥2], [𝑦𝑦1, 𝑦𝑦2]). Next, we classify firms’ most recent eight quarterly earnings into 

one of the three types, determine the values corresponding to the top and bottom of the 

image, and plot each quarterly earnings into bars accordingly. The three types are as 

follows: 

 Type I (𝐸𝐸MIN  ≥ 0; the most recent eight quarterly earnings are all non-

negative): In this case, we set 𝐸𝐸MAX and 0 as the top and bottom of the image, 

respectively. 𝐸𝐸i is plotted as the area of 

�[3𝑖𝑖 − 2,3𝑖𝑖 − 1], �0, 𝑟𝑟 �24 ∗
𝐸𝐸𝑖𝑖

𝐸𝐸MAX
��� , (1) 

for 𝑖𝑖 = 1, ..., 8. Figure 2 displays an example earnings image of this type. The 

maximum earnings is 𝐸𝐸7  and thus it occupies a whole column. All other 

quarterly earnings are plotted upward, and their heights are determined using 

𝐸𝐸7 as the reference point. 

 Type II (𝐸𝐸MAX > 0 and 𝐸𝐸MIN < 0; the maximum quarterly earnings is positive 

while the minimum earnings is negative): In this case, 𝐸𝐸MAX  and 𝐸𝐸MIN 

coincide with the top and bottom of the image, respectively. The implicit “zero-

earnings line” corresponds to 𝑟𝑟 �24 ∗ −𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀
𝐸𝐸MAX−𝐸𝐸MIN

�, and 𝐸𝐸i is plotted above or 

below the zero-earnings line as follows: 

⎩
⎨

⎧ [3𝑖𝑖 − 2,3𝑖𝑖 − 1], �𝑟𝑟 �24 ∗
−𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀

𝐸𝐸MAX − 𝐸𝐸MIN
� , 𝑟𝑟 �24 ∗

−𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀

𝐸𝐸MAX − 𝐸𝐸MIN
� + 𝑟𝑟 �24 ∗

𝐸𝐸𝑖𝑖

𝐸𝐸MAX − 𝐸𝐸MIN
��  𝑖𝑖𝑖𝑖 𝐸𝐸𝑖𝑖 > 0,

[3𝑖𝑖 − 2,3𝑖𝑖 − 1], �𝑟𝑟 �24 ∗
−𝐸𝐸MIN

𝐸𝐸MAX − 𝐸𝐸MIN
� − 𝑟𝑟 �24 ∗

−𝐸𝐸𝑖𝑖

𝐸𝐸MAX − 𝐸𝐸MIN
� , 𝑟𝑟 �24 ∗

−𝐸𝐸MIN

𝐸𝐸MAX − 𝐸𝐸MIN
��  𝑖𝑖𝑖𝑖  𝐸𝐸𝑖𝑖 ≤ 0,

 

               (2) 

for 𝑖𝑖 = 1, ..., 8. Figure 3 displays an example earnings image of this type. Here 
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we see the advantage of using bar charts as opposed to line graphs when 

plotting earnings. Bars can represent positive, zero, or negative earnings 

without further specifying numbers on the vertical axis. Positive earnings are 

plotted upward while negative earnings are plotted downward, and the bar 

lengths (in pixels) are computed as the rounded value of 24 multiplied by the 

absolute values of 𝐸𝐸i scaled by 𝐸𝐸MAX − 𝐸𝐸MIN. 

 Type III (𝐸𝐸MAX  ≤ 0; the most recent eight quarterly earnings are all non-

positive): In this case, 0 and 𝐸𝐸MIN coincide with the top and bottom of the 

image, respectively. 𝐸𝐸i is plotted as the area of 

[3𝑖𝑖 − 2,3𝑖𝑖 − 1], �24 − 𝑟𝑟 �24 ∗
𝐸𝐸𝑖𝑖

𝐸𝐸MIN
� , 24� , (3) 

 

for 𝑖𝑖 = 1, ..., 8. Figure 4 displays an example earnings image of this type. The 

minimum earnings is 𝐸𝐸5 and thus it occupies a whole column. All earnings 

are plotted downward, and their heights are plotted using 𝐸𝐸5 as the reference 

point. 

Note that in all three types, it is possible for 𝐸𝐸i  to be very close to zero after 

scaling and thus does not occupy a full pixel in the image after rounding, i.e., 𝑦𝑦1 = 𝑦𝑦2.5 

In addition, the distance between two neighboring earning of pixel between is greater 

than the distance between the leftmost (or rightmost) earnings and the border of the 

image, which is consistent with the default setup of a bar chart for most statistical 

software. 

 
5One extreme case is that all eight quarterly earnings are very close to each other so that when plotting 

earnings on a bar chart, each earnings bar occupies a whole column. In this case, one cannot tell from 
the image whether all earnings are positive or negative. However, we checked all earnings images and 
did not find this extreme case. 
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3.2  Assigning labels to earnings images 

Next, we assign one of the three labels (“sell”, “hold”, or “buy”) to each firm’s 

earnings image based on the firm’s 63-day post-announcement buy-and-hold abnormal 

return (BHAR). There are different ways to define buy-and-hold abnormal returns, and 

we use market-adjusted buy-and-hold returns (MAR). 6  In particular, MAR𝑖𝑖,𝑞𝑞+1  is 

defined as the difference between the buy-and-hold return of firm 𝑖𝑖 and that of the 

CRSP value-weighted market portfolio over the windows [2, 64] in trading days relative 

to firm 𝑖𝑖’s earnings announcement date 𝑡𝑡 in quarter 𝑞𝑞: 

MAR𝑖𝑖,𝑞𝑞+1 = � �1 + 𝑅𝑅𝑖𝑖,𝑘𝑘�
𝑡𝑡+64

𝑘𝑘=𝑡𝑡+2

− � �1 + 𝑅𝑅𝑀𝑀,𝑘𝑘�
𝑡𝑡+64

𝑘𝑘=𝑡𝑡+2

  , (4) 

where 𝑅𝑅𝑖𝑖  is the delisting-adjusted return of firm 𝑖𝑖 , 𝑅𝑅𝑀𝑀  is the return of the CRSP 

value-weighted market return, and 𝑡𝑡  is quarter 𝑞𝑞 ’s announcement date of firm 𝑖𝑖 .7 

The 63-day holding window corresponds to the total number of trading days in three 

months. We follow previous studies (Vega [2006], Engelberg et al. [2012], Frank and 

Sanati [2018]) to compute MAR from day 2 to mitigate the impact of bid-ask bounce 

and other market microstructure effects, and our results are robust to MAR defined 

using the trading window of [1, 63]. 

    Then, for each quarter in the in-sample period (1974Q1 to 1993Q4, 80 quarters), 

we sort firms announcing earnings into terciles based on their 63-day MAR. The bottom, 

mid, and top terciles are labeled “sell”, “hold”, and “buy”, respectively. Since the 

number of training images for each label is about the same, we mitigate the class 

 
6 In untabulated tests, we find that the final CNN out-of-sample performance is robust to using 

alternative definitions of abnormal returns such as size-adjusted or factor-adjusted returns in the label-
assigning process. 

7We replace missing delisting-adjusted returns with market returns, which is equivalent to reinvesting 
any remaining proceeds in the market portfolio until the end of the holding period. 
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imbalance issue in CNN training that arises with a disproportionate ratio of labels. 

 

3.3  CNN architecture and training 

In this section, we introduce the general algorithm of CNN and describe the 

architecture and training process of our CNN model. 

 

3.3.1  CNN architecture 

A CNN model typically consists of multiple building blocks, with each building 

block consisting of a convolutional layer and a pooling layer.8 In the convolutional 

layer, an input image is first scanned by a set of convolutional filters to generate feature 

maps. Convolutional filters, also known as kernels, are small matrices (usually of size 

3 × 3, 5 × 5, or 7 × 7 pixels) that are applied over the input image’s pixels to detect 

features. The matrix elements in convolutional filters are also known as “weights”, 

which will later be optimized during the training process of the CNN model. 

Then, a filter “scans” an image. It starts at the top-left corner of an image and 

moves one pixel at a time. In CNN terminology, this corresponds to a “stride” of 1, 

which is usually the default option in convolution. In each position, an element-wise 

multiplication is performed between the filter and the corresponding patch of the input 

image. The products are summed to a single value placed in the corresponding position 

of the feature map.9  The process is repeated until the filter slides across the entire 

image, thus generating a complete feature map. Then, the feature map passes through 

 
8A building block may also consist of multiple convolutional layers, working sequentially (as in our 

case) or in parallel (e.g., GoogLeNet (Szegedy et al. [2015])). 
9In CNN terminology, a feature map is the output produced after applying a convolutional filter to an 

input image or the previous layer’s feature map. 
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an activation function to introduce non-linearity.10 Finally, in the pooling layer, pooling 

operations are applied to the feature map produced by the convolutional layer (after 

activation) to retain the most important information. 

Figure 5 illustrates the operation of a CNN building block using a black-and-white 

6 × 6 pixels input image and a 3 × 3 pixels convolutional filter as an example. We first 

apply “padding” to the input image by filling the absent neighbor elements with zeros 

for elements at the image’s border, which helps preserve input dimensions and allow 

better edge feature detection.11 Then, the convolutional layer applies the filter to the 

input image and produces a feature map of size 6 × 6 pixels. In particular, we see that 

the top-left (bottom-right) 3 × 3 pixels patch of the input image, after applying the 3 ×3 

pixels convolutional filter, eventually becomes the top-left (bottom-right) element in 

the output feature map. 

Next, we use “Leaky ReLU” as our activation function, which is a variation of the 

conventional ReLU function.12 In particular, Leaky ReLU function transforms an input 

value 𝑥𝑥 to itself if 𝑥𝑥 > 0 and 0.01𝑥𝑥 otherwise. We see that in Figure 5, Leaky ReLU 

function is applied to every element of the feature map generated by the convolutional 

layer, and a feature map of the same size (6 × 6 pixels) is produced. Finally, we employ 

the most commonly used 2 × 2 pixels max-pooling filter with a stride of 2 as our pooling 

operation function. The max-pooling filter scans the feature map produced by the 

convolutional layer (after activation), selects the maximum element in the 2 × 2 pooling 

window, and eventually shrinks the height and width of the input feature map by half. 

Hence, max-pooling helps preserve the most prominent features and reduce the spatial 

 
10Without activation functions, CNNs would just consist of linear operations (matrix multiplication). 
11 Convolution operations without padding inevitably reduce the spatial dimensions of the output 

feature maps. 
12Compared to ReLU, Leaky ReLU allows a small, non-zero gradient for negative input values, which 

helps to address the “dying ReLU” problem (where some neurons can become permanently inactive 
during training) and thus enables more robust learning in neural networks. Interested readers may refer 
to Maas et al. [2013], which is the first modern deep learning reference to Leaky ReLU. 
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dimensions of the input feature maps. 

Having introduced the components of a CNN building block, we proceed to 

describe the architecture of our CNN model and illustrate the details in Figure 6. In 

particular, we use three building blocks, with the first block consisting of 64 

convolutional filters of 7 × 7 pixels, the second block consisting of 128 convolutional 

filters of 3 × 3 pixels, and the third block consisting of 256 convolutional filters of 3 ×3 

pixels. 13  Since our input images are black-and-white with low resolution (24 ×24 

pixels), we do not resort to an overly complicated CNN model with too many blocks. 

In addition, we employ filters of 7 × 7 pixels in the first block to ensure that pixels of 

neighboring quarterly earnings in the initial input earnings image can always be 

scanned simultaneously by the convolutional filters.14 

After passing an image sequentially through the three building blocks, the CNN 

model “flattens” the elements in the feature maps generated by the last block to a 

vector.15 Then, the fully connected layer linearly transforms the elements in the vector 

to three scores (𝑍𝑍1, 𝑍𝑍2, and 𝑍𝑍3) of the three labels (label 1 = “sell”, label 2 = “hold”, 

label 3 = “buy”). 16  Finally, the Softmax function transforms these scores to three 

probabilities (𝑦𝑦1� , 𝑦𝑦2� , 𝑦𝑦3� ), where 0 ≤ 𝑦𝑦𝚤𝚤�  ≤ 1   and ∑ 𝑦𝑦𝚤𝚤� = 13
𝑖𝑖=1  . 17  Hence, one can 

 
13We follow the literature and increase the number of filters after each convolutional layer by a factor 

of two. Following several well-known CNN architectures (e.g., VGGNet (Simonyan and Zisserman 
[2014]), ResNet (He et al. [2016]), DenseNet (Huang et al. [2017]), we employ 64 filters in the first 
convolution layer. The choice of 64 filters provides a balance between model complexity and 
computational efficiency, making it a popular choice. 

14 This filter size choice is based on the hypothesis that certain patterns in neighboring quarterly 
earnings are helpful in predicting post-earnings announcement drift, although in Table 9 we find that the 
main results are robust to using filters of 3 × 3 or 5 × 5 pixels in the first block. 

15In the second and third building blocks where the input is a “stack” of feature maps instead of a 
single image, the output will be a stack of feature maps as well. In particular, each filter is applied to the 
stack of feature maps to perform convolution and eventually generate one feature map. Hence, the total 
number of feature maps in the output is equal to the number of filters. In CNN terminology, the number 
of stacks is usually referred to as the “depth” of the input. 

16The linear transformation also requires parameters to be estimated and optimized in the training 
process. 

17The Softmax function converts the three scores into a probability distribution of three outcomes, 
i.e.,𝑦𝑦𝚤𝚤� = 𝑒𝑒𝑍𝑍𝑖𝑖

∑ 𝑒𝑒𝑍𝑍𝑘𝑘3
𝑘𝑘=1

 , for 𝑖𝑖 = 1, 2, 3. 
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interpret 𝑦𝑦3�  as the CNN-predicted likelihood of an earnings image to be classified as 

“buy” when the other two labels are available. Throughout the paper, we refer to 𝑦𝑦3� as 

the CNN buy probability (CNNBP). 

 

3.3.2  CNN training 

CNN training is about finding the optimized weights, i.e., parameters in 

convolutional filters and the fully connected layer, to minimize model “loss” to a certain 

extent. We follow the CNN literature to use the cross-entropy loss function as the loss 

function for minimization. In particular, let 𝑦𝑦 = [𝑦𝑦1, 𝑦𝑦2, 𝑦𝑦3]′  denote the label of an 

earnings image, which is either [1,0,0] ′, [0,1,0] ′, or [0,0,1] ′ corresponding to the sell, 

hold, and buy label, respectively. The cross-entropy loss is computed as 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦, 𝑦𝑦�) = − � 𝑦𝑦𝑖𝑖 ∗ log 𝑦𝑦𝚤𝚤�
3

𝑖𝑖=1

(5) 

where loss ∈ [0,∞) and smaller loss represents better CNN performance. 

    We closely follow the regularization procedures in Gu et al. [2020] and Jiang et al. 

[2023] to train our CNN model.18 From the in-sample period (1974Q1 to 1993Q4, 80 

quarters), we randomly select 70% earnings images for training and the other 30% for 

validation, which are labeled training dataset and validation dataset, respectively. First, 

128 earnings images (batch size = 128) are randomly selected from the training dataset 

and are passed through the CNN model as described in Figure 6 to produce the average 

loss. The loss is propagated back through the model to update the weights via stochastic 

gradient descent and the Adam algorithm (Kingma and Ba [2014]) with a learning rate 

 
18 Interested readers may refer to Gu et al. [2020] for detailed explanations on those modeling 

choices. In particular, we use batch normalization (Ioffe and Szegedy [2015]) to mitigate the internal 
covariate shiftproblem, choose Xavier initializers (Glorot and Bengio [2010]) as initial weights for model 
training, and apply a 50% dropout rate (Srivastava et al. [2014]) to the fully connected layer to prevent 
over-fitting. In Table 9, we show that none of these choices affect our main results in Table 2. 



 18 

of 10−5. Next, the model randomly selects 128 images from the remaining images in the 

training dataset to update the weights. The iteration process stops when the model sees 

all earnings images in the training dataset. We then apply those updated weights to the 

earnings images in the validation dataset to compute validation loss. After completing 

the above process, we finish training an “epoch”. 

 Next, we start the training process again using the updated weights of the first 

epoch as the initial weights, and eventually obtain updated weights and validation loss 

of the second epoch. This training iteration process is halted only when the validation 

loss fails to improve for two consecutive epochs, and the updated weights of the third-

to-last epoch are stored as the optimized weights.19  Then, we can then apply these 

optimized weights to a new earnings image to generate CNN-predicted likelihood for a 

label of interest. 

 

4.  Empirical Results  

In this section, we examine the out-of-sample performance of the CNN trained 

model. We begin by applying the CNN-trained weights to the earnings images in 

1994Q2 to 2023Q2 to generate the CNN buy probability.20 Since CNN training can 

result in different outcomes even when using the same architecture and dataset due to 

the stochastic nature of optimization algorithms and the use of dropout rate, we train 

the same CNN model independently ten times (number of ensembles = 10) and then 

average the CNN buy probability, which helps achieve better accuracy and robustness. 

 If the CNN model is capable of extracting features that are indicative of post-

earnings announcement performance (CNN buy features) from earnings images, there 

 
19This technique is called ‘early stopping”, which is to prevent over-fitting to the training data. 
20We start from 1994Q2 as late announcers in 1993Q4 require post-earnings announcement drift 

data in 1994Q1 to form labels. 
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should be a positive relation between the CNN buy probability and post-earnings 

announcement returns. Moreover, if the CNN is able to identify patterns that predict 

post announcement returns, we are also interested in the extent to which this is 

orthogonal to other known anomalies. 

 

4.1 Portfolio analysis: univariate sorts 

4.1.1 CNN buy probability and post-earnings announcement drift 

In each quarter starting from 1994Q3, we assign firms announcing earnings into 

decile portfolios based on their CNN buy probability, where the cutoffs are based on the 

distribution of the previous quarter’s CNN buy probability. This approach prevents 

hindsight bias from classifying firms into portfolios based on information not available 

at the time the strategy is implemented (Foster et al. [1984], Bernard and Thomas 

[1989]). Hence, the out-of-sample period is from 1994Q3 to 2023Q2 (a total of 116 

quarters). Next, we compute the average 63-day MAR for each CNN buy probability 

decile. If the CNN model is competent in detecting the features of images that are 

indicative of future performance, the average 63-day MAR should monotonically 

increase when going from the lowest to the highest CNN buy probability decile. 

Table 2 presents the results. We find that when moving from the lowest decile to 

the highest decile of CNN buy probability, the average CNN buy probability increases 

from 25.5% to 44.4%, and the average 63-day MAR increases monotonically from 

−0.6% to 3.0%.21 The average difference in MAR is 3.6% (t-statistic = 7.213) in a 

quarter, which corresponds to an annualized return exceeding 14%. Figure 7 further 

depicts the return differential for each of the 116 quarters in the out-of-sample period. 

 
21 Note that random assignment would result in a 33.3% buy probability. 
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Specifically, the hedge return is positive in 99 out of the 116 quarters (85.3%, z-

stat=13.26, p < 0.0001), indicating that the CNN out-of-sample performance is highly 

significant and reasonably stable over time. 

We check that the results are robust to alternative risk adjustments by also 

examining size-adjusted (SAR) and factor-adjusted buy-and-hold returns. SAR is 

defined as the difference between the buy-and-hold return of an announcing firm and 

that of a size-matched portfolio over the 63-day window ([2, 64]) following its earnings 

announcement date. We use the monthly NYSE size decile breakpoints at the end of 

June in year 𝑡𝑡  to determine the size-matched portfolio for a firm whose earnings 

announcement date is between July of year 𝑡𝑡  to June of year 𝑡𝑡 + 1 . Monthly size 

breakpoints and daily size portfolio returns are obtained from Kenneth French’s website. 

To compute the 63-day factor-adjusted buy-and-hold returns, we replace 𝑅𝑅𝑀𝑀,𝑘𝑘 in 

equation (4) with daily return 𝑅𝑅𝐹𝐹,𝑘𝑘�  predicted by factor models. To compute 𝑅𝑅𝐹𝐹,𝑘𝑘� , we 

first estimate individual stock factor loadings by regressing returns on the factors on a 

120-day rolling window from 𝑡𝑡 − 150 to 𝑡𝑡 − 31 for each stock:  

 

𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖
′𝐹𝐹𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡, (6) 

 

where 𝑟𝑟𝑖𝑖,𝑡𝑡 is the excess return on stock 𝑖𝑖 and 𝐹𝐹𝑡𝑡 is a vector of factors. The predicted 

return 𝑅𝑅𝐹𝐹,𝑘𝑘�  is then computed as 𝛽𝛽′𝚤𝚤
�𝐹𝐹𝑘𝑘.22 In particular, we consider the factors in the 

Fama-French four- and six-factor models (Fama and French [1993], Carhart [1997], 

Fama and French [2015], Fama and French [2018]), the q5-model (Hou et al. [2015], 

Hou et al. [2021]), and the risk-and-behavioral model (Daniel et al. [2020]). The 63-

day factor-adjusted buy-and-hold returns following an earnings announcement of these 

models are denoted FF4, FF6, HMXZ5, and DHS3, respectively.23  

 
22See, for example, Savor [2012] and Kapadia and Zekhnini [2019]. 
23Fama and French [2015] extends the Fama-French three-factor model (Fama and French [1993]) 
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 Columns 4 to 10 in Table 2 present qualitatively similar results when we compute 

the average 63-day SAR or factor-adjusted buy-and-hold returns (FF4, FF6, HMXZ5, 

and DHS3) for each CNN buy probability decile. The return differential between the 

highest and lowest CNN buy probability deciles range from 3.1% to 3.5%, with t-

statistics all statistically significant at the 1% level. Overall, Table 2 shows a 

significantly positive relation between CNN buy probability and post-announcement 

buy-and hold abnormal returns that are robust to various risk adjustments.24 

 

4.1.2  Comparing to traditional drift indicators and other anomalies  

We next examine whether the CNN buy probability is superior to the other known 

anomalies or determinants of drift. We first consider three earnings attributes: 

standardized unexpected earnings (Ball and Brown [1968], Bernard and Thomas [1989], 

Foster et al. [1984]), earnings acceleration (He and Narayanamoorthy [2020]), and 

trend in gross profitability (Akbas et al. [2017]). Standardized unexpected earnings 

(SUE) is the earnings surprise based on a seasonal random walk model, earnings 

acceleration (EA) captures the change in earnings growth from one quarter to the next, 

and trend in gross profitability (TREND) characterizes the recent path in a firm’s 

profitability in addition to the profit level. 

In addition to the three earnings attributes, we also compare to a host of known 

 
to control for operating profitability (RMW) and investment (CMA). After the inclusion of a momentum 
factor (Carhart [1997]), we have Fama-French four-factor and six-factor models (Fama and French 
[2018]). Hou et al. [2015] propose the q-model to control for market, size (ME), investment (IVA), and 
profitability (return on equity, ROE), and Hou et al. [2021] further includes an expected growth factor 
(EG) into the q5-model. Daniel et al. [2020] propose a 3-factor risk-and-behavioral model that accounts 
for market, long-term financing (FIN), and short-term earnings surprise (PEAD). Fama-French factors 
are obtained from Kenneth French’s website, q5-model factors are obtained from Lu Zhang’s website, 
and DHS3 factors are obtained from Lin Sun’s website. 

24The results are qualitatively the same if we assign earnings images with labels based on firms’ 21-
day or 42-day post-announcement market-adjusted buy-and-hold returns, train the CNN model, and 
examine the 21-day or 42-day post-announcement buy-and-hold abnormal returns for CNN buy 
probability deciles. 
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anomalies: market capitalization (Fama and French [1992], [1993]), book-to-market 

ratio (Fama and French [1992], [1993]), earnings announcement return (Foster et al. 

[1984], Chan et al. [1996]), pre-announcement return (Carhart [1997]), earnings 

persistence (Francis et al. [2004]), earnings volatility (Cao and Narayanamoorthy 

[2012]), gross profitability (Novy-Marx [2013]), operating profitability (Ball et al. 

[2016]), total accruals (Richardson et al. [2005]), operating accruals (Sloan [1996], 

Hribar and Collins [2002]), and asset growth (Cooper et al. [2008]). 

We follow the approach in the previous section to assign firms announcing 

earnings into decile portfolios based on one of the 14 firm characteristics, where the 

cutoffs are based on the distribution of the previous quarter’s firm characteristic. Then, 

we compare the difference in the average 63-day MAR, SAR, and factor-adjusted buy-

and-hold returns (FF4, FF6, HMXZ5, and DHS3) between the highest and lowest 

deciles of each characteristic. If a firm characteristic is more successful in predicting 

post-earnings announcement drift, the difference in the post-announcement buy-and-

hold abnormal returns between the highest and lowest deciles sorted on the 

characteristic should be larger in magnitude. 

Table 3 reports the results. The first row presents the return differential between 

the highest and lowest deciles sorted on CNN buy probability (ranging from 3.1% to 

3.6%), which is the same as the last row in Table 2. In comparison, we find that the 

statistically significant return differential ranges from 2.0% to 2.6% for SUE, from 

2.1% to 2.4% for EA, from 1.4% to 2.0% for TREND, from 3.3% to 3.8% for RET[−1, 

1], from 1.6% to 2.5% for BM, from 1.0% to 2.4% for GP, and from −1.9% to −1.6% 

for AG. For the other firm characteristics, the return differential fails to remain 

statistically significant at the 10% level across all six abnormal return measures. Overall, 

Table 3 suggests that the drift-predicting power of the CNN buy features is superior to 

that of the usual determinants of PEAD, while being roughly on par with that of the 
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earnings announcement return (RET[−1, 1]).  Importantly, however, this test does not 

indicate the amount of overlap among the CNN identified hedge portfolios and the 

existing anomalies, which we investigate next. 

 

4.2  Portfolio analysis: double sorts 

In this section, we examine the extent to which the drift-predicting power of CNN buy 

features is incremental to that of the 14 other drift predictors and anomalies. We 

construct 5 × 5 portfolios sorted independently (Liu et al. [2018], He and 

Narayanamoorthy [2020]) on the CNN buy probability and one of the six firm 

characteristics (SUE, EA, TREND, RET[−1, 1], BM, GP, and AG). Again, to alleviate 

hindsight bias, we use the distribution of each firm characteristic in the previous quarter 

to form the quintile cutoffs. Then, we examine the average 63-day MAR of the 25 

portfolios.25 

 We present the double sorts results in Table 4. Consistent with previous findings 

in the literature, in Panel A we find that firms with high SUE outperform firms with low 

SUE by a quarterly return of 0.9% to 2.5% depending on the CNN buy probability 

quintile. On the other hand, the return differential between the high and low CNN buy 

probability quintiles is significantly positive across medium to high SUE quintile while 

being insignificantly positive in the bottom two quintiles. This finding indicates that the 

CNN buy features exhibit incremental drift-predicting power for medium to high SUE 

firms, while this predictive ability appears to be subsumed by the SUE effect for low 

SUE firms. 

 In Panel B we present the analogous two-way sorting based on firms’ earnings 

acceleration. We find that the average difference in 63-day MAR between the top and 

 
25The results are robust to alternative return measures (SAR, FF4, FF6, HMXZ5, and DHS3). 
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bottom CNN buy probability quintiles ranges from 1.6% to 5.4% (t-statistics between 

2.711 and 5.954) across all EA quintiles. In Panel C, we find similar evidence: the 

positive relation between the CNN buy probability and 63-day MAR is not limited to 

any TREND quintiles. In particular, the hedge return based on the CNN buy probability 

appears to be larger in magnitude in the low and high quintiles of EA and TREND. We 

also find that the CNN buy features subsume some return predictability of EA and 

TREND. Turning to Panels D, E, F, and G we find that the average difference in 63-day 

MAR between the highest and lowest CNN buy probability quintiles remains positive 

and statistically significant at the 1% level across all RET[−1,1], BM, GP, and AG 

quintiles. 

 We report the double sorts results based on the other eight characteristics in Table 

IA1 of the Internet Appendix, and find that the drift-predicting power of CNN buy 

features persists in all the quintiles of the other seven characteristics. The results in 

Table 4 and Table IA1 combined indicate that CNN’s ability to predict post-earnings 

announcement drift is mostly distinct from that of the usual determinants. 

 

4.3  Cross-sectional regression 

We next perform a cross-sectional regression analysis to simultaneously control for the 

firm characteristics that may affect the positive relation between the CNN buy 

probability and post-earnings announcement drift. Following prior literature (Akbas 

[2016]), we estimate quarterly weighted Fama and MacBeth [1973] regressions in 

which the dependent variable is the firm’s 63-day MAR. We begin by first running the 

following cross-sectional regression every quarter: 

MAR𝑖𝑖,𝑞𝑞+1 = 𝛼𝛼𝑞𝑞 + 𝛽𝛽𝑞𝑞CNN buy probability𝑖𝑖,𝑞𝑞 + ∑𝛽𝛽𝑐𝑐,𝑞𝑞Controls𝑖𝑖,𝑞𝑞 + 𝜀𝜀𝑖𝑖,𝑞𝑞+1, (7) 
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where 𝑖𝑖 refers to the stock, 𝑞𝑞 refers to the quarter, and the CNN buy probability and 

control variables are converted into scaled ranks ranging from −0.5 to 0.5 with a mean 

of zero. Then, we average the cross-sectional coefficients across all quarters, where the 

weights correspond to the number of observations in each quarterly cross-sectional 

regression. In addition to using MAR as the dependent variable, we also employ SAR 

and four factor-adjusted buy-and-hold returns (FF4, FF6, HMXZ5, and DHS3). 

 Table 5 presents the regression results. The coefficient on the CNN buy probability 

in Column 1 is 0.014 (t-statistic = 3.529), suggesting that a long-short strategy of going 

long on the highest CNN buy probability decile and short on the lowest decile generates 

an incremental 63-day MAR of around 1.4%, controlling for other anomalies. In 

columns 2 to 5 where we replace MAR with SAR and factor-adjusted buy-and-hold 

returns, the coefficients on the CNN buy probability range from 0.010 to 0.014 and are 

all statistically significant at the 1% level, suggesting that our results are not caused by 

omission of risk factors.  Thus, although the CNN is picking up some of the features 

that relate to existing anomalies, there remains and significant portion of the future 

abnormal returns that are incremental to the set of risk factors and known anomalies. 

 We also find that in all model specifications, the post-earnings announcement drift 

is significantly increasing in earnings announcement return (RET[−1, 1]) and operating 

profitability (OP) while decreasing in market capitalization (SIZE). 26  Overall, the 

results in Table 5 provide strong support for the out-of-sample drift-predicting power 

of the CNN buy features, which is distinct from existing stock return stock anomalies 

and risk factors. 

 

 
26While SUE and RET[−1,1] both proxy for earnings surprises, their coefficients remain positively 

significant, consistent with Kishore et al. [2008]’s findings that trading strategies formed based on SUE 
and RET[−1,1] are largely independent of each other. 
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5  Determining what information the CNN is using 

Having demonstrated that CNN recommendations possess significant drift-

predicting power, in this section we try to better understand what information is being 

used by the CNN.  We first explore the nature of these CNN buy features via linear 

approximation. Then, we examine whether CNN buy features exhibit incremental 

predictive ability for future earnings growth, and whether the drift-predicting power of 

CNN buy features can be attributable to market investors missing such predictive ability. 

 

5.1  Linear approximation of CNN predictions 

We begin by linearly fitting CNN predictions with firm characteristics and 

historical earnings. In Table 6 we estimate quarterly weighted Fama and MacBeth [1973] 

regressions in the out-of-sample period (1994Q3-2023Q2, 116 quarters) using CNN buy 

probability as the dependent variable. The independent variables are the 14 anomalies 

considered before in specification 1 and earnings in the most recent eight quarters in 

specification 2.27 

In specification 1, we find that CNN buy probability is positively correlated with 

standardized unexpected earnings (SUE), earnings acceleration (EA), earnings 

announcement return (RET[−1, 1]), pre-announcement return (RET[−30, −2]), earnings 

volatility (VOL), book-to-market ratio (BM), gross profitability (GP), and asset growth 

(AG), while negatively related to earnings persistence (PERSIST), market 

capitalization (SIZE), operating profitability (OP), and total accruals (TA). The result 

suggests the CNN model is capable of discerning some meaningful return-predicting 

information, such as the earnings surprise effect, the SUE effect, the earnings 

 
27We follow Ball et al. [2009] to use return on assets (ROA) as the earnings measure, where ROA 

is defined as the quarterly earnings scaled by total assets in the previous quarter. 
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acceleration effect, the gross profitability effect, the value effect, and the size effect 

solely from historical earnings represented in the form of images. However, the CNN 

buy probability appears to load negative (positively) on operating profitability (asset 

growth) despite the fact that it has been documented to positively (negatively) predict 

subsequent returns. 

Economically, the coefficient on SUE (= 0.510) is the largest and exceeds the 

second-largest coefficient (= −0.274) on SIZE by around a half. Moving from the lowest 

decile to the highest decile of SUE (SIZE) is associated with a 51.0% (27.4%) 

incremental increase (decrease) in the decile of CNN buy probability. Overall, the 14 

firm characteristics collectively explain 32.8% of the variation in CNN buy probability, 

indicating most of the variation in CNN buy features is left unexplained. 

Turning to specification 2, we find that the CNN buy probability is most associated 

with the current quarter’s ROA and the ROA four quarters prior in terms of economic 

magnitude. Moving from the lowest decile to the highest decile of ROA in the current 

quarter (four quarters prior) leads to a 64.4% (42.8%) incremental increase (decrease) 

in the decile of CNN buy probability. This result to some extent explains why the CNN 

buy features most resemble SUE among all the considered firm characteristics in 

specification 1. The eight historical earnings collectively explain 30% of the variation 

in CNN buy probability, implying that 70% of the variation in CNN buy probability is 

attributable to the nonlinear transformation of the underlying historical earnings.  

In order to provide more insights on the reasoning behind CNN predictions, Figure 

8 displays earnings images whose CNN buy probabilities rank in the top and bottom 15 

among the 240,844 earnings images in the out-of-sample period (1994Q3 to 2023 Q2, 

116 quarters). We find that earnings images with the highest CNN buy probabilities all 

have the current earnings as the maximum earnings and mostly have the earnings four 

quarters prior as the minimum earnings. In addition, there seems to be an increasing 
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trend of quarterly earnings. In contrast, we see that earnings images with the lowest 

CNN buy probabilities mostly have the current earnings as the minimum earnings, and 

their earnings in the previous two to four quarters are relatively high. 

 

5.2  CNN predictions and future earnings growth 

In this section, we examine whether the CNN buy features possess incremental 

predictive ability for future earnings growth and whether the post-announcement 

abnormal return based on CNN buy probability is associated with this predictive ability. 

Since the earnings images in Section 3 are plotted in a way similar to what investors 

would see during earnings call conferences or generate on their own, we conjecture that 

the return-predicting power of CNN is because investors do not fully incorporate the 

implications of past earnings for future earnings growth. 

 First, we run a regression of one-quarter-ahead earnings growth on CNN buy 

probability (CNNBP) in the out-of-sample period (1994Q3-2023Q2, 116 quarters). We 

use the previously defined SUE as the earnings growth measure (Bernard and Thomas 

[1989], Ball and Bartov [1996]). In particular, we have 

 

SUE𝑞𝑞+1 = 𝛼𝛼 + 𝛾𝛾1CNN buy probability𝑞𝑞 + ∑𝛾𝛾𝑐𝑐Controls𝑞𝑞 + 𝛿𝛿𝑞𝑞+1, (8) 

 

where SUE𝑞𝑞+1 represents one-quarter-ahead earnings growth. Control variables are 

the 14 firm characteristics considered before.28  In columns 1 and 2 of Table 7, the 

coefficients on CNNBP are positive and statistically significant at the 1% level, 

suggesting that CNN buy probability is a significant predictor of earnings growth in the 

 
28 In particular, SUE𝑞𝑞   serves as the control for the well-documented earnings autocorrelation 

pattern in prior studies. 
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subsequent quarter. Economically, moving from the lowest decile to the highest decile 

of CNNBP in the current quarter leads to a 13.3% incremental increase in the decile of 

one-quarter-ahead earnings growth, controlling for past earnings growth and other firm 

characteristics. On the other hand, the coefficients on SUE are significantly positive, 

consistent with the previous findings in the literature. 

 We next examine whether the CNN buy probability (CNNBP) helps predict the 

three-day abnormal return around the one-quarter-ahead earnings announcement 

(RET[-1, 1]𝑞𝑞+1).29 If this is the case, then investors do not appear to incorporate fully 

the implications of earnings acceleration for earnings announcement. We find that in 

columns 3 and 4 of Table 7, the coefficients on CNNBP are positive and highly 

significant, indicating a positive relation between CNN buy probability and the three-

day abnormal return around the next earnings announcement date. In terms of economic 

magnitude, moving from the lowest decile to the highest decile of CNNBP in the current 

quarter leads to a 0.4% incremental increase in RET[-1, 1]𝑞𝑞+1. 

 Since CNN buy features have positive implications for both one-quarter-ahead 

earnings growth and for the three-day abnormal return surrounding the next earnings 

announcement date, we use the Mishkin test (Mishkin [1983], Abel and Mishkin [1983]) 

which is widely used in the earnings-based anomaly literature, to test whether the 

market fully understands the implications of the CNN buy features for SUE𝑞𝑞+1.30 This 

involves simultaneously estimating two equations: an earnings forecasting equation and 

a rational pricing equation. In our context, the earnings forecasting equation is equation 

(8) that characterizes the evolution of earnings growth. 

 For the rational pricing equation, we assume a linear abnormal return (AR) model 

 
29Shorter-window returns are typically less susceptible to risk considerations (Bernard and Thomas 

[1990], Sloan [1996], Narayanamoorthy [2006], Cao and Narayanamoorthy [2012]) 
30See, for example, Sloan [1996], Dechow and Sloan [1997], Rangan and Sloan [1998], Collins and 

Hribar [2000], Narayanamoorthy [2006], Cao and Narayanamoorthy [2012], Chen and Shane [2014], 
Hui et al. [2016], Ma and Markov [2017], and He and Narayanamoorthy [2020]. 
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(e.g., Sloan [1996]) that satisfies the efficient-markets condition: 

 

AR𝑞𝑞+1 = 𝛽𝛽(SUE𝑞𝑞+1 − SUE𝑞𝑞+1
𝑒𝑒 ) + 𝜀𝜀𝑞𝑞+1, (9) 

 

where 𝛽𝛽  is a multiple, SUE𝑞𝑞+1
𝑒𝑒 = 𝐸𝐸𝑞𝑞(SUE𝑞𝑞+1)  is the rational forecast of SUE𝑞𝑞+1 

in quarter 𝑞𝑞 , and 𝜀𝜀𝑞𝑞+1  is a noise in quarter 𝑞𝑞 + 1  satisfying 𝐸𝐸𝑞𝑞�𝜀𝜀𝑞𝑞+1� = 0 . In 

equation (9), abnormal returns are zero in expectation, i.e., 𝐸𝐸𝑞𝑞�AR𝑞𝑞+1� = 0 , and 

market efficiency implies that only(SUE𝑞𝑞+1 − SUE𝑞𝑞+1
𝑒𝑒 ), the unanticipated changes in 

SUE, can be correlated with AR𝑞𝑞+1. In other words, if the market correctly understands 

the implications of the CNN buy features for future earnings growth as depicted in 

equation (8), AR𝑞𝑞+1  should only be related to the earnings growth surprise 

(SUE𝑞𝑞+1 − SUE𝑞𝑞+1
𝑒𝑒 = 𝛿𝛿𝑞𝑞+1), but not related to the CNN buy probability in quarter 𝑞𝑞. 

 Combining the earnings growth forecasting model in equation (8) with the rational 

pricing model in equation (9) provides the following system: 

 

Forecasting equation: SUE𝑞𝑞+1 = 𝛼𝛼 + 𝛾𝛾1CNNBP𝑞𝑞 + ∑𝛾𝛾𝑐𝑐Controls𝑞𝑞 + 𝛿𝛿𝑞𝑞+1                  (10) 

Pricing equation: AR𝑞𝑞+1 = 𝛽𝛽(SUE𝑞𝑞+1 − 𝛼𝛼∗ − 𝛾𝛾1
∗CNNBP𝑞𝑞 − ∑𝛾𝛾𝑐𝑐

∗Controls𝑞𝑞) + 𝜀𝜀𝑞𝑞+1. (11) 

 

The two systems are simultaneously estimated using iterative-weighted non-linear least 

squares (Mishkin [1983]), and the coefficients with * represent the coefficients inferred 

from market investors’ expectation of SUE𝑞𝑞+1.31 In particular, we are interested in 

testing whether 𝛾𝛾1 = 𝛾𝛾1
∗  holds or not, i.e., whether the observed relation between 

SUE𝑞𝑞+1 and CNN buy features is the same as the relation between SUE𝑞𝑞+1 and CNN 

 
31Kraft et al. [2007] shows that the exclusion of control variables from the forecasting and pricing 

equations leads to an omitted variables problem. That is, if the variables omitted are not rationally priced 
and are also correlated with the variable of interest in the forecasting equation, then the source of market 
inefficiency cannot be correctly identified. Hence, we include various control variables that may be 
related to CNN buy probability. 
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buy features implicit in AR𝑞𝑞+1. In other words, 𝛾𝛾1 = 𝛾𝛾1
∗ indicates that investors are 

fully aware of the implications of CNN buy features for SUE𝑞𝑞+1, and this restriction 

yields a likelihood ratio test statistic that has a chi-square distribution with one degree 

of freedom.32 If 𝛾𝛾1 = 𝛾𝛾1
∗ is rejected while 0 < 𝛾𝛾1

∗ < 𝛾𝛾1, then investors only partially 

incorporate the implications of CNN buy features for future earnings growth. On the 

other hand, if 𝛾𝛾1 = 𝛾𝛾1
∗ is rejected and 𝛾𝛾1

∗ = 0, then investors appear to completely 

ignore the implications of CNN buy features for future earnings growth. 

 We report the estimated coefficients, t-statistics based on firm and quarter double-

clustered standard errors, and likelihood ratio test statistics of the Mishkin test in Table 

8. In particular, AR𝑞𝑞+1 is either the abnormal return from a three-day window around 

quarter 𝑞𝑞 + 1’s earnings or the quarter-long window starting two days after the quarter 

𝑞𝑞 earnings and ending on the next announcement date. All variables except for the 

abnormal return AR are converted into scaled ranks ranging from −0.5 to 0.5 with a 

mean of 0. 

 Since 𝛾𝛾1 = 𝛾𝛾1
∗ is rejected at the 1% level (likelihood ratio statistic 8.218 for the 

three-day window and 21.444 for the quarter-long window) and since 𝛾𝛾1  > 𝛾𝛾1
∗  , it 

appears that market investors are underestimating the implications of CNN buy features 

for future earnings growth. In particular, the quarter-long window 𝛾𝛾1
∗  (= 0.010) is 

statistically indistinguishable from zero33 while the three-day window 𝛾𝛾1
∗ (= 0.062) is 

highly significant, implying that market investors are completely ignoring the positive 

implications of CNN buy features for future earnings growth at the time of the current 

 
32 The test statistic of the Mishkin test is 2 × 𝑛𝑛 × ln (𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐/𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢)  distributed asymptotically 

𝒳𝒳2(𝑞𝑞) , where 𝑞𝑞  is the number of constraints imposed by market efficiency, 𝑛𝑛  is the number of 
observations in each equation, 𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐   is the sum of squared residuals from the constrained weighted 
system, and 𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢 is the sum of squared residuals from the unconstrained weighted system. 

33 In untabulated tests we use SAR𝑞𝑞+1  and four factor-adjusted buy-and-hold returns (FF4𝑞𝑞+1 , 
FF6𝑞𝑞+1, HMXZ5𝑞𝑞+1, and DHS3𝑞𝑞+1) to measure quarter-long AR𝑞𝑞+1, respectively. We find that in all 
specifications, 𝛾𝛾1 = 𝛾𝛾1

∗  is rejected at the 1% level, and 𝛾𝛾1 is statistically indistinguishable from zero. 
Hence, the fact that market investors are completely unaware of the implications of CNN buy features 
can not be attributed to lack of risk controls. 
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earnings announcement, but partially understands these implications by the time of the 

next earnings announcement. In other words, the market gradually learns more about 

the implications of CNN buy features for future earnings growth from other sources of 

information by the time of the next earnings announcement. 

 Overall, the results in this section provide evidence that the positive relation 

between the CNN buy probability and post-earnings announcement drift is consistent 

with market investors not fully understanding the implications of the CNN buy features 

for one-quarter-ahead earnings growth. 

 

6  Robustness  

6.1  Monthly rebalancing trading strategy 

The out-of-sample tests in Table 2 involves buying and selling stocks two days 

after an earnings announcement, which requires significant attention and thus may be 

difficult to implement in reality. Hence, in this section we examine whether sorting 

stocks based on the CNN buy probability to form a more conservative month-based 

rebalancing trading strategy (Hou et al. [2020], Jensen et al. [2023]) can still generate 

profits. 

In particular, at the end of each month 𝑡𝑡 in the out-of-sample period, we sort firms 

into deciles based on the CNN buy probability computed using the most recent eight 

quarterly earnings. For a firm to enter the portfolio formation at the end of month 𝑡𝑡, 

we require that announcement date of the most recent earnings to be within three 

months prior to portfolio formation to exclude stale earnings information. We then 

examine the average returns in the subsequent month 𝑡𝑡 + 1  for each CNN buy 

probability decile. 
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Table 9 presents the equal-weighted and value-weighted average portfolio returns 

for each CNN buy probability decile. Panel A shows that a hedge portfolio going long 

in the top CNN-based buy probability decile and short in the bottom decile yields an 

average equal-weighted monthly return of 1.0%. The factor-adjusted hedge returns 

range from 0.7% to 0.8% and are all statistically significant at the 1% level. On the 

other hand, the average value-weighted hedge returns are significantly positive but are 

smaller in magnitude (ranging from 0.3% to 0.5%). This is because CNN model is 

treating each input image equally during the training phase, regardless of market 

capitalization. Hence, CNN predictions are unsurprisingly more accurate when we 

employ CNN stored parameters to form out-of-sample portfolios with equal-weights 

rather than value-weights. 

 

6.2  Alternative CNN modeling choices 

We next explore whether the main results in Table 2 are sensitive to model 

specifications. In particular, we re-train the CNN model with alternative modeling 

choices, as listed in the first column of Table 10, and then examine the return differential 

in the 63-day post-announcement BHAR between the highest and lowest CNN buy 

probability deciles in the out-of-sample period. 

In Panel A, we experiment with different combinations of filter size and number 

of convolution layers. The combination of our CNN model can be expressed as (7 × 7, 

3 × 3, 3 × 3), while we consider alternative modeling choices of (5 × 5, 3 × 3, 3 × 3), 

(5 × 5, 3 × 3, 3 × 3), (7 × 3, 3 × 3), (5 × 5, 3 × 3), and (3 × 3, 3 × 3). We find that the 

63-day MAR, SAR, and factor-adjusted returns remain positive and highly significant, 

indicating that CNN model performance is mostly insensitive to those choices. In 

addition, omitting the batch normalization step or Xavier initialization, adjusting the 
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activation function from leaky ReLU to ReLU, or lowering the dropout rate from 0.5 

to 0 does not generate a noticeable loss in performance either. Hence, our main results 

are robust to alternative modeling choices. 

In Panel B, we employ a one-dimensional CNN model in training where the inputs 

are 1 × 8 pixels row vectors consisting of the time-series of firms’ most recent eight 

quarterly earnings (in the form of ROA) as inputs, and the convolutional filters sliding 

across the inputs are row vectors as well.34 In other words, the one-dimensional CNN 

model is a special case of the two-dimensional CNN model, with both the inputs and 

the convolutional filters shrinking from matrices to row vectors. In particular, we 

consider the following modeling choices: (1 × 7, 1 × 3, 1 × 3), (1 × 5, 1 × 3, 1 × 3), (1 

× 3, 1 × 3, 1 × 3), (1 × 7, 1 × 3), (1 × 5, 1 × 3), and (1 × 3, 1 × 3), and find that the 63-

day MAR, SAR, and factor-adjusted returns are statistically indistinguishable from zero. 

The only exception is when we consider a modeling choice of (1 × 7, 1 × 3, 1 × 3), but 

the magnitude of the return differences is less than one-third of that in Panel A. The 

results suggest that image representation of historical earnings produces more 

information useful in prediction post-earnings announcement drift. 

 

7  Conclusion 

Our research shows that applying AI to visualized earnings images of an earnings 

time series can predict post-earnings announcement drift in a manner that is orthogonal 

to existing anomalies and not accounted for by risk. In out-of-sample tests, we find that 

firms in the highest CNN buy probability decile significantly outperform firms in the 

lowest CNN buy probability decile by 3.6% in the 63-day post-announcement window. 

 
34The results are robust to using unscaled earnings numbers. 
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In addition, the drift-predicting power of CNN buy features is robust to a battery of 

controls for risk, distinct from that of the previously documented anomalies and 

earnings attributes, and stable over time. 

Although the CNN buy probability overlaps somewhat with existing anomalies, a 

lot of the variation is largely left unexplained. In particular, the CNN buy probability 

appear to be positively associated with one-quarter-ahead earnings growth as well as 

the three-day abnormal return surrounding the next earnings announcement. As a result, 

we employ a direct market efficiency test and find that high abnormal returns following 

high CNN buy probability and the positive implications of CNN buy features for future 

earnings growth are strongly associated. In other words, the drift-predicting power of 

CNN buy features is consistent with investors not incorporating fully the implications 

of CNN buy features for future earnings growth. 

In addition, the drift-predicting ability of CNN buy features persists in a more 

conservative monthly-rebalancing strategy setting, and remains insensitive to various 

model specifications when image representation is used. Overall, our paper highlights 

the usefulness of applying deep learning techniques to visualized data as a way to 

identify future earnings growth and abnormal returns. 
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Appendix. Variable Definitions. This table summarizes variable definitions. 
Compustat quarterly/annual items are colored in blue. 

Variables Descriptions 
MAR Market-adjusted return (MAR) is defined as the difference between the buy-

and-hold return of an announcing firm and that of the CRSP value-weighted 
market portfolio over the 63-day windows [2, 64] following its earnings 
announcement date. 

SAR Size-adjusted return (SAR) is defined as the difference between the buy-and-
hold return of an announcing firm and that of a size-matched portfolio over the 
63-day window ([2, 64]) following its earnings announcement date. We use the 
monthly NYSE size decile breakpoints at the end of June in year 𝑡𝑡 to determine 
the size-matched portfolio for a firm whose earnings announcement date is 
between July of year 𝑡𝑡 to June of year 𝑡𝑡 + 1. 

FF4 Fama-French three-factor and momentum-adjusted buy-and-hold return during 
the 63-day window ([2, 64]) following earnings announcement date, with factor 
loadings estimated using the 120-day window ([-150, -31], 90 days minimum) 
prior to the earnings announcement date. The factors are market, size, value, 
and momentum. 

FF6 Fama-French five-factor and momentum-adjusted buy-and-hold return during 
the 63-day window ([2, 64]) following earnings announcement date, with factor 
loadings estimated using the 120-day window ([-150, -31], 90 days minimum) 
prior to the earnings announcement date. The factors are market, size, value, 
operating profitability, investment, and momentum. 

HMXZ5 q5-factor-adjusted buy-and-hold return during the 63-day window ([2, 64]) 
following earnings announcement date, with factor loadings estimated using the 
120-day window ([-150, -31], 90 days minimum) prior to the earnings 
announcement date. The factors are market, size, investment, return on equity, 
and expected growth. 

DHS3 Behavioral-factor-adjusted buy-and-hold return during the 63-day window ([2, 
64]) following earnings announcement date, with factor loadings estimated 
using the 120-day window ([-150, -31], 90 days minimum) prior to the earnings 
announcement date. The factors are market, financing, and post earnings 
announcement drift. 

SUE Standardized unexpected earnings, defined as the change in split-adjusted 

quarterly earnings per share (EPSPXQ
AJEXQ

) from its value four quarters ago divided 

by the standard deviation of this change over the prior eight quarters (six 
quarters minimum). SUE also serves as the earnings growth proxy. 
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Variables Descriptions 
EA Earnings acceleration. For firm 𝑖𝑖 in quarter 𝑞𝑞, we use 

EPS𝑖𝑖,𝑞𝑞 − EPS𝑖𝑖,𝑞𝑞−4

Stock Price𝑖𝑖,𝑞𝑞−1
−

EPS𝑖𝑖,𝑞𝑞−1 − EPS𝑖𝑖,𝑞𝑞−5

Stock Price𝑖𝑖,𝑞𝑞−2
 , 

where EPS𝑖𝑖,𝑞𝑞  is earnings per share for firm 𝑖𝑖  in quarter 𝑞𝑞 . Shares are 

adjusted for stock splits. 

TREND Trend in quarterly gross profitability. For firm 𝑖𝑖 in quarter 𝑞𝑞, we use β𝑖𝑖,𝑞𝑞 

estimated from the following time-series regression: 

𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖,𝑞𝑞 = 𝛼𝛼𝑖𝑖,𝑞𝑞 + 𝛽𝛽𝑖𝑖,𝑞𝑞𝑡𝑡 + 𝜆𝜆1,𝑖𝑖,𝑞𝑞𝐷𝐷1 + 𝜆𝜆2,𝑖𝑖,𝑞𝑞𝐷𝐷2 + 𝜆𝜆3,𝑖𝑖,𝑞𝑞𝐷𝐷3 + 𝜖𝜖𝑖𝑖,𝑞𝑞 , 

where 𝑡𝑡 = 1, 2, … , 8  and represents a deterministic time trend covering 
quarter 𝑞𝑞 − 7  through 𝑞𝑞 , and D1 to D3 represent quarterly dummy 
variables. GPQ is calculated as sales revenue (SALEQ) minus costs of 
goods sold (COGSQ), divided by total assets (ATQ). If SALEQ is 
unavailable, we use quarterly revenue (REVTQ). If COGSQ is unavailable, 
we use quarterly total operating expenses (XOPRQ) minus quarterly 
selling, general and administrative expenses (XSGAQ, zero if missing). 

RET[−1, 1] Earnings announcement return, defined as the value-weighted market-
adjusted stock return during the [−1, 1] window around earnings 
announcement date. 

RET[−30, -2] Pre-announcement return, defined as the value-weighted market-adjusted 
stock return during the [−30, −2] window prior to earnings announcement 
date. 

PERSIST Earnings persistence. For firm 𝑖𝑖  in quarter 𝑞𝑞 , we use 𝛽𝛽𝑖𝑖,𝑞𝑞  estimated 

from the following time-series regression: 

EARNINGS𝑖𝑖,𝑞𝑞 = 𝛼𝛼𝑖𝑖,𝑞𝑞 + 𝛽𝛽𝑖𝑖,𝑞𝑞EARNINGS𝑖𝑖,𝑞𝑞−1 + 𝜖𝜖𝑖𝑖,𝑞𝑞 , 

with the most recent eight quarters (quarter 𝑞𝑞 − 7  to 𝑞𝑞 ) of earnings 
(IBQ). 

VOL Earnings volatility. We use the standard deviation of earnings (IBQ) in the 
most recent eight quarters (quarter 𝑞𝑞 − 7 to 𝑞𝑞). 

SIZE Firm size for July of year 𝑡𝑡  to June of year 𝑡𝑡 + 1  is defined as June 
market capitalization (from CRSP) of year 𝑡𝑡. 
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Variables Descriptions 
BM Book-to-market ratio for July of year t to June of year 𝑡𝑡 + 1 is defined as 

book equity for the fiscal year ending in calendar year 𝑡𝑡 − 1 divided by the 
market capitalization at the end of December of 𝑡𝑡 − 1 . Book equity is 
computed as stockholders’ book equity (SEQ), plus deferred taxes (TXDB, 
zero if missing) and investment tax credit (ITCB, zero if missing), minus the 
book value of preferred stock (depending on availability, we use redemption 
(PSTKRF), carrying (PSTKL), or par value (PSTK)). 

GP Gross profitability for July of year 𝑡𝑡 to June of year 𝑡𝑡 + 1 is defined as 
sales revenue (SALE) minus cost of goods sold (COGS), divided by total 
assets (AT) for the fiscal year ending in calendar year 𝑡𝑡 − 1 . If SALE is 
unavailable, we use revenue (REVT). If COGS is unavailable, we use total 
operating expenses (XOPR) minus selling, general and administrative 
expenses (XSGA, zero if missing). 

OP Operating profitability for July of year 𝑡𝑡 to June of year 𝑡𝑡 + 1 is defined 
as sales revenue (SALE) minus cost of goods sold (COGS), minus selling, 
general, and administrative expenses (XSGA), and plus research and 
development expenditures (XRD, zero if missing), scaled by total assets (AT) 
for the fiscal year ending in calendar year 𝑡𝑡 − 2. If SALE is unavailable, we 
use revenue (REVT). If COGS is unavailable, we use total operating 
expenses (XOPR) minus selling, general and administrative expenses 
(XSGA, zero if missing). 

TA Total accruals for July of year 𝑡𝑡  to June of year 𝑡𝑡 + 1  is defined as net 
income (NI) minus operating, investing, and financing net cash flows 
(OANCF, IVNCF, and FINCF) plus sales of stocks (SSTK, zero if missing) 
minus stock repurchases and dividends (items PRSTKC and DV, zero if 
missing) for the fiscal year ending in calendar year 𝑡𝑡 − 1, scaled by total 
assets (AT) for the fiscal year ending in 𝑡𝑡 − 2. 

OA Operating accruals for July of year 𝑡𝑡 to June of year 𝑡𝑡 + 1 is defined as net 
income (NI) minus net cash flow from operations (OANCF) for the fiscal 
year ending in calendar year 𝑡𝑡 − 1, scaled by total assets (AT) for the fiscal 
year ending in 𝑡𝑡 − 2. 

AG Asset growth for July of year 𝑡𝑡 to June of year 𝑡𝑡 + 1 is defined as total 
assets (AT) for the fiscal year ending in calendar year 𝑡𝑡 − 1  minus total 
assets for the fiscal year ending in 𝑡𝑡 − 2, scaled by total assets for the fiscal 
year ending in 𝑡𝑡 − 2. 

ROA Return on assets is defined as quarterly earnings (IBQ) divided by total assets 
(ATQ) in the previous quarter. 
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Panel A.  Actual earnings chart from Meta’s Q3 2024 Earnings Presentation 

 

Panel B.  Transformed 24 x 24 pixel image of Meta’s earnings. 

 

Figure 1.  Examples of visualized earnings information.  This figure displays the actual visualized 
earnings provided in Meta’s Q3 2024 Earnings presentation and the transformed image that is given to 
the CNN to predict the buy probability. 
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 𝐸𝐸1 𝐸𝐸2 𝐸𝐸3 𝐸𝐸4 𝐸𝐸5 𝐸𝐸6 𝐸𝐸7 𝐸𝐸8 

Earnings (in millions) 3.163 4.882 5.068 4.472 4.243 5.263 7.348 6.542 

[𝑥𝑥1, 𝑥𝑥2] [1, 2] [4, 5] [7, 8] [10, 11] [13, 14] [16, 17] [19, 20] [22, 23] 

[𝑦𝑦1, 𝑦𝑦2] [0, 10] [0, 16] [0, 17] [0, 15] [0, 14] [0, 17] [0, 24] [0, 21] 

Figure 2.  Type I Earnings Image.  This figure displays a black-and-white 24 × 24 pixels earnings image 
for a firm whose quarterly earnings in the most recent eight quarters (quarters 𝑞𝑞−7 to 𝑞𝑞) are all non-negative. 
𝐸𝐸1 , 𝐸𝐸2, …, and 𝐸𝐸8 represent the quarterly earnings in quarter 𝑞𝑞−7, 𝑞𝑞−6, ..., and 𝑞𝑞, respectively. The bottom-
left vertex of an image is set as the origin of a two-dimensional coordinate system, and a rectangular area in an 
image is represented as ([𝑥𝑥1, 𝑥𝑥2], [𝑦𝑦1, 𝑦𝑦2]). 
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Figure 3.  Type II Earnings Image.  This figure displays a black-and-white 24 × 24 pixels earnings image 
for a firm whose maximum quarterly earnings in the most recent eight quarters (quarters 𝑞𝑞−7 to 𝑞𝑞) is positive, 
and the minimum quarterly earnings in the most recent eight quarters is negative. 𝐸𝐸1 , 𝐸𝐸2, …, and 𝐸𝐸8 represent 
the quarterly earnings in quarter 𝑞𝑞−7, 𝑞𝑞−6, ..., and 𝑞𝑞, respectively. The bottom-left vertex of an image is set 
as the origin of a two-dimensional coordinate system, and a rectangular area in an image is represented as 
([𝑥𝑥1, 𝑥𝑥2], [𝑦𝑦1, 𝑦𝑦2]). 
  

 𝐸𝐸1 𝐸𝐸2 𝐸𝐸3 𝐸𝐸4 𝐸𝐸5 𝐸𝐸6 𝐸𝐸7 𝐸𝐸8 

Earnings (in millions) -0.263 -0.609 -0.110 0.114 0.322 1.122 0.989 0.945 

[𝑥𝑥1, 𝑥𝑥2] [1, 2] [4, 5] [7, 8] [10, 11] [13, 14] [16, 17] [19, 20] [22, 23] 

[𝑦𝑦1, 𝑦𝑦2] [4, 8] [0, 8] [6, 8] [8, 10] [8, 12] [8, 24] [8, 22] [8, 21] 
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Figure 4.  Type III Earnings Image.  This figure displays a black-and-white 24 × 24 pixels earnings image 
for a firm whose quarterly earnings in the most recent eight quarters (quarters 𝑞𝑞−7 to 𝑞𝑞) are all non-positive. 
𝐸𝐸1 , 𝐸𝐸2, …, and 𝐸𝐸8 represent the quarterly earnings in quarter 𝑞𝑞−7, 𝑞𝑞−6, ..., and 𝑞𝑞, respectively. The bottom-
left vertex of an image is set as the origin of a two-dimensional coordinate system, and a rectangular area in an 
image is represented as ([𝑥𝑥1, 𝑥𝑥2], [𝑦𝑦1, 𝑦𝑦2]). 
  

 𝐸𝐸1 𝐸𝐸2 𝐸𝐸3 𝐸𝐸4 𝐸𝐸5 𝐸𝐸6 𝐸𝐸7 𝐸𝐸8 

Earnings (in millions) -0.364 -1.214 -1.763 -0.920 -10.361 -1.985 -3.551 -4.016 

[𝑥𝑥1, 𝑥𝑥2] [1, 2] [4, 5] [7, 8] [10, 11] [13, 14] [16, 17] [19, 20] [22, 23] 

[𝑦𝑦1, 𝑦𝑦2] [23, 24] [21, 24] [20, 24] [22, 24] [0, 24] [19, 24] [16, 24] [15, 24] 
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Figure 5.  CNN Building Block: Padding, Convolution, Activation, and Max-Pooling.  This 
figure displays how padding, convolution, activation, and max-pooling work in a CNN building block. 
The example input image is black-and-white and of size 6 × 6 pixels. The convolutional filter is of size 
3 × 3 pixels. By using padding, the output after convolution has the same size of 6 × 6 pixels. The 
activation function is Leaky ReLU, which transforms an input value 𝑥𝑥 to itself if 𝑥𝑥 > 0 and 0.01𝑥𝑥 
otherwise. The max-pooling (2 × 2 pixels) operation shrinks the input width and height to half by 
extracting the maximum element within a 2 × 2 pixels area and sliding through the image with a stride 
of 2. 
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Figure 6.  CNN Architecture Diagram.  This figure displays the architecture of the CNN model. 
The notation 𝐷𝐷 × 𝑊𝑊 × 𝐻𝐻 represents the size of an image/feature map, where 𝐷𝐷 is the depth, 𝑊𝑊 is 
the width, and 𝐻𝐻 is the height. The input black-and-white image is of size 24 × 24 pixels. There are 
three “blocks” in the model, with each block consisting of a convolutional layer and a max-pooling 
layer. The first convolutional layer has 64 filters of size 7 × 7 pixels, the second convolutional layer 
has 128 filters of size 3 × 3 pixels, and the third convolutional layer has 256 filters of size 3 × 3 pixels. 
After convolution, the output has the same width and height as those of the input due to padding, while 
its depth increases to the number of filters in the convolutional layer. After max-pooling, the output 
has half the width and height of the input, while its depth is the same as that of the input. Flattening 
refers to the process of converting the elements in a series of matrices into a vector. The fully connected 
layer linearly transforms the values in the vector to produce three “scores” of the three labels (label 1 
= “sell”, label 2 = “hold”, label 3 = “buy”). Finally, the Softmax function transforms the three scores 
to three probabilities (𝑦𝑦1� , 𝑦𝑦2� , 𝑦𝑦3�) that sum to one, and 𝑦𝑦3� is the CNN buy probability. 
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Difference in buy-and-hold MAR between high and low CNNBP deciles 

 

Figure 7.  Time Stability of CNN Out-Of-Sample Drift-Predicting Performance.  This figure 
depicts the difference in the average 63-day buy-and-hold market-adjusted returns (MAR) between 
high and low CNN buy probability (CNNBP) deciles in each quarter during the out-of-sample period 
(1994Q3 to 2023Q2, 116 quarters). The decile cutoffs are based on the distribution of the previous 
quarter’s CNN buy probability. 
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Figure 8.  Earnings Images of the Lowest and Highest CNN Buy Probabilities.  Panels A and B 
present earnings images whose CNN buy probabilities rank in the top 15 and bottom 15 among those 
of all earnings images in the out-of-sample period (1994Q3 to 2023Q2, 116 quarters), respectively. 
The corresponding CNN buy probabilities are also reported in each earnings image. 
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Table 1.  
Sample Selection 

All Compustat firm-quarters with matched CRSP Permno (SHRCD = 10 or 11; EXCHCD = 1, 2 or 3) whose earnings announcement 
date (Compustat item RDQ) is between 1974/01/01 and 2023/06/30 815,907 

Drop observations with missing RDQ in the most recent eight quarters (86,724) 

Drop observations with earnings announcements on the same date for the same firm in the most recent eight quarters (3,349) 

Drop observations with RDQ less than 30 days away from the previous quarter RDQ in the most recent eight quarters (17,028) 

Drop observations with RDQ before or more than 180 days after the quarter fiscal period end date in the most recent eight quarters (2,971) 

Drop observations with missing earnings (Compustat item IBQ) in the most recent eight quarters (74,655) 

Drop observations whose CRSP daily price at the current quarter RDQ is missing or ≤$1 (102,680) 

Drop financial firms (SIC codes between 6000 and 6999) and utility firms (SIC codes between 4900 and 4949) (109,418) 

Drop observations with non-positive BM or missing SIZE (14,423) 

Drop observations with more than 30 missing CRSP daily returns in the 120-day window ([-150, -31]) prior to the current quarter 
RDQ (24) 

Total observations 404,635 

In-sample dataset: observations whose current quarter RDQ is between 1974/01/01 and 1993/12/31 124,413 

Out-of-sample dataset: observations whose current quarter RDQ is between 1994/07/01 and 2023/06/30 and have non-missing SUE, 
EA, TREND, RET[−1, 1], RET[−30, −2], PERSIST, VOL, GP, OP, OA, TA, and AG 240,844 

This table reports the sample selection procedures. The in-sample dataset is for CNN model training and validation. The out-of-sample 
dataset is for testing the out-of-sample CNN model performance, and thus serves as the dataset for all empirical analyses throughout the 
paper. See Appendix for variable definitions.
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Table 2. 
CNN Buy Probability and Post-Earnings Announcement Drift: Univariate Portfolio Analysis. 

 
 The 63-day post-announcement buy-and-hold abnormal return 
CNNBP deciles MAR SAR FF4 FF6 HMXZ5 DHS3 
Low [25.5%] −0.006 −0.015*** −0.007*** −0.008*** −0.007** 0.001 
 (−1.137) (−5.210) (−3.364) (−3.622) (−2.458) (0.293) 
2 [28.8%] −0.003 −0.012*** −0.003 −0.002 −0.001 0.004 
 (−0.624) (−4.714) (−1.385) (−1.201) (−0.584) (0.919) 
3 [30.6%] 0.004 −0.006** 0.001 0.002 0.006* 0.012** 
 (0.651) (−2.610) (0.270) (0.512) (1.979) (2.150) 
4 [31.9%] 0.003 −0.006* −0.001 0.001 0.004 0.013* 
 (0.449) (−1.689) (−0.215) (0.116) (1.104) (1.833) 
5 [33.1%] 0.006 −0.004 0.002 0.003 0.007* 0.015** 
 (0.820) (−1.359) (0.518) (0.680) (1.929) (2.123) 
6 [34.3%] 0.011 0.001 0.007 0.007* 0.010*** 0.019*** 
 (1.408) (0.232) (1.560) (1.714) (2.823) (2.667) 
7 [35.5%] 0.014* 0.004 0.009* 0.009** 0.013*** 0.021*** 
 (1.729) (1.204) (1.946) (2.085) (3.407) (2.792) 
8 [37.1%] 0.015** 0.005 0.011*** 0.011*** 0.015*** 0.022*** 
 (2.117) (1.624) (2.901) (2.813) (3.754) (3.238) 
9 [39.4%] 0.024*** 0.014*** 0.017*** 0.016*** 0.021*** 0.029*** 
 (3.850) (5.323) (5.371) (5.226) (6.388) (4.909) 
High [44.4%] 0.030*** 0.020*** 0.024*** 0.024*** 0.027*** 0.036*** 
 (4.994) (5.093) (6.555) (6.830) (7.375) (6.039) 
High-Low [18.9%] 0.036*** 0.035*** 0.031*** 0.032*** 0.034*** 0.034*** 
 (7.213) (7.111) (8.092) (9.035) (8.378) (8.192) 

 
This table reports the average 63-day buy-and-hold abnormal return (BHAR) after earnings 
announcements, including market-adjusted return (MAR), size-adjusted return (SAR), and factor-
adjusted returns (FF4, FF6, HMXZ5, andDHS3) for portfolios formed based on CNN buy probability 
(CNNBP) deciles in the out-of-sample period (1994Q3-2023Q2, 116 quarters). The CNNBP decile 
cutoffs are based on the distribution of the previous quarter’s CNNBP. The average CNNBP for each 
CNNBP decile is reported in brackets. See Appendix for variable definitions. Newey and West [1987] 
t-statistics with three lags are reported in parentheses, and ***, **, and * indicate significance at the 
1%, 5%, and 10% level, respectively. 
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Table 3. 
Firm Characteristics and Post-Earnings Announcement Drift: Univariate Portfolio Analysis 

 
 The 63-day post-announcement buy-and-hold abnormal return difference 

between the highest and lowest variable deciles 

Variable MAR SAR FF4 FF6 HMXZ5 DHS3 
CNNBP 0.036*** 0.035** 0.031*** 0.032*** 0.034*** 0.034*** 
 (7.213) (7.111) (8.092) (9.035) (8.378) (8.192) 
SUE 0.026*** 0.026*** 0.021*** 0.021*** 0.021*** 0.020*** 
 (5.025) (5.142) (5.558) (6.161) (5.559) (4.691) 
EA 0.024*** 0.024*** 0.022*** 0.023*** 0.021*** 0.024*** 
 (6.969) (6.839) (6.877) (6.827) (6.044) (7.489) 
TREND 0.020*** 0.018*** 0.014*** 0.014*** 0.016*** 0.015*** 
 (3.353) (3.154) (2.974) (3.073) (3.188) (2.789) 
RET[-1, 1] 0.035*** 0.035*** 0.038*** 0.037*** 0.035*** 0.033*** 
 (5.551) (5.967) (7.711) (7.813) (6.499) (5.660) 
RET[-30, -2] −0.003 0.002 0.005 0.006 0.002 −0.004 
 (−0.291) (0.268) (0.812) (1.056) (0.217) (−0.572) 
PERSIST −0.003 −0.003 −0.004 −0.002 −0.007* −0.002 
 (−0.983) (−0.876) (−1.127) (−0.536) (−1.792) (−0.459) 
VOL −0.006 −0.003 −0.018** −0.021*** −0.022*** −0.021*** 
 (−0.769) (−0.413) (−2.406) (−2.898) (−2.770) (−2.740) 
SIZE −0.017 −0.012* −0.026** −0.027** −0.032*** −0.034** 
 (−1.376) (−1.956) (−2.041) (−2.293) (−2.828) (−2.517) 
BM 0.019* 0.016* 0.022*** 0.017** 0.025*** 0.020** 
 (1.692) (1.685) (2.625) (2.177) (2.899) (2.073) 
GP 0.020*** 0.020*** 0.024*** 0.019*** 0.010* 0.016*** 
 (2.910) (3.222) (4.011) (3.091) (1.677) (2.842) 
OP 0.017 0.018** 0.017 0.015 0.001 0.010 
 (1.518) (2.352) (1.615) (1.528) (0.100) (0.895) 
OA −0.005 −0.005 0.000 −0.002 −0.003 −0.004 
 (−0.770) (−0.763) (−0.064) (−0.441) (−0.762) (−0.743) 
TA −0.012 −0.010 −0.006 −0.007 −0.014** −0.011 
 (−1.406) (−1.502) (−0.734) (−1.013) (−2.140) (−1.307) 
AG −0.019** −0.017** −0.018** −0.016** −0.018** −0.017* 
 (−2.108) (−2.236) (−2.166) (−2.047) (−2.532) (−1.936) 

This table reports the average 63-day post-announcement buy-and-hold abnormal return (BHAR) difference 
between the highest and lowest variable deciles in the out-of-sample period (1994Q3-2023Q2, 116 quarters). 
We use market-adjusted return (MAR), size-adjusted return (SAR), and factor-adjusted returns (FF4, FF6, 
HMXZ5, and DHS3) as BHAR measures. The variables include the CNN buy probability (CNNBP), 
standardized unexpected earnings (SUE), earnings acceleration (EA), trend in gross profitability (TREND), 
market capitalization (SIZE), book-to-market ratio (BM), earnings announcement return (RET[−1, 1]), pre-
announcement return (RET[−30, −2]), earnings persistence (PERSIST), earnings volatility (VOL), gross 
profitability (GP), operating profitability (OP), total accruals (TA), operating accruals (OA), and asset growth 
(AG). The quintile cutoffs for quarterly variables are based on the distribution of these variables in the previous 
quarter, and the quintile cutoffs for annual variables from July in year t to June in year t+1 are based on the 
distribution of these variables at the end of June in year t. Newey and West [1987] t-statistics with three lags are 
reported in parentheses, and ***, **, and * indicate significance at the 1%, 5%, and 10% level, respectively. 
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Table 4.  
CNN Buy Probability and Post-Earnings Announcement Drift: Double Sorts 

 

Panel A: Two-way sorting, controlling for standardized unexpected earnings (SUE) 

 CNN buy probability quintiles 
SUE quintiles Low 2 3 4 High High-Low 
Low  −0.007 0.000 −0.008 −0.004 0.007 0.013 
 (−1.295) (0.025) (−0.920) (−0.385) (0.541) (1.208) 
2  −0.005     −0.003 0.006 0.001 0.007 0.012 
 (−0.967) (−0.565) (0.612) (0.088) (0.587) (1.265) 
3  −0.005 0.005 0.010 0.016** 0.021*** 0.025*** 
 (−0.836) (0.567) (1.325) (2.147) (3.040) (4.088) 
4  0.002 0.011 0.015* 0.024*** 0.028*** 0.027*** 
 (0.291) (1.336) (1.936) (3.137) (4.368) (4.044) 
High  0.009 0.009 0.017** 0.021*** 0.029*** 0.019*** 
 (1.425) (1.217) (2.377) (3.087) (5.399) (3.311) 
High-Low  0.016*** 0.009 0.025*** 0.024*** 0.021*  
 (3.972) (1.280) (4.269) (3.478) (1.748)  

 Panel B: Two-way sorting, controlling for earnings acceleration (EA) 

 CNN buy probability quintiles 
EA quintiles Low 2 3 4 High High-Low 
Low  −0.006 0.002 0.008 0.007 0.029*** 0.035*** 
 (−0.634) (0.176) (0.726) (0.594) (2.921) (5.031) 
2  −0.006     0.000 0.001 0.009 0.021*** 0.027*** 
 (−1.121) (0.044) (0.220) (1.406) (3.465) (5.954) 
3  0.000 0.000 0.007 0.009** 0.016*** 0.016*** 
 (0.028) (0.014) (1.574) (1.992) (3.158) (2.711) 
4  0.001 0.000 0.008 0.014** 0.020*** 0.019*** 
 (0.175) (−0.019) (1.440) (2.397) (3.998) (3.746) 
High  −0.013 0.017 0.016 0.027*** 0.041*** 0.054*** 
 (−1.072) (1.179) (1.450) (2.684) (5.286) (5.505) 
High-Low  −0.007 0.015** 0.008* 0.020*** 0.012**  
 (−0.744) (2.025) (1.709) (4.476) (2.021)  

 Panel C: Two-way sorting, controlling for trend in gross profitability (TREND) 

 CNN buy probability quintiles 
TREND quintiles Low 2 3 4 High High-Low 
Low  −0.009 −0.002 0.004 0.012 0.023*** 0.032*** 
 (−1.470) (−0.197) (0.480) (1.300) (3.193) (6.792) 
2  −0.002     0.001 0.001 0.008 0.024*** 0.025*** 
 (−0.332) (0.136) (0.089) (1.157) (4.092) (5.332) 
3  −0.005 −0.001 0.005 0.016** 0.021*** 0.026*** 
 (−0.924) (−0.262) (0.963) (2.017) (3.389) (5.801) 
4  −0.001 0.007 0.011 0.016** 0.025*** 0.027*** 
 (−0.272) (1.125) (1.534) (2.392) (3.910) (5.750) 
High  −0.002 0.014 0.018* 0.018* 0.037*** 0.039*** 
 (−0.352) (1.157) (1.684) (1.940) (4.740) (6.632) 
High-Low  0.007 0.016** 0.014** 0.005 0.013**  
 (1.424) (2.206) (2.357) (0.963) (2.037)  

This table reports the average 63-day buy-and-hold market-adjusted returns (MAR) after earnings announcements for 
portfolios formed based on the CNN buy probability quintiles and one of the seven firm characteristics including 
standardized unexpected earnings (SUE), earnings acceleration (EA), trend in gross profitability (TREND), earnings 
announcement return (RET[-1, 1]), book-to-market ratio (BM), gross profitability (GP), and asset growth (AG) using 
independent two-way sorting in the out-of-sample period (1994Q3-2023Q2, 116 quarters). The quintile cutoffs for quarterly 
variables are based on the distribution of these variables in the previous quarter, and the quintile cutoffs for annual variables 
from July in year t to June in year t+1 are based on the distribution of these variables at the end of June in year t. See 
Appendix for variable definitions. Newey and West [1987] t-statistics with three lags are reported in parentheses, and ***, 
**, and * indicate significance at the 1%, 5%, and 10% level, respectively. 
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Table 4.  

CNN Buy Probability and Post-Earnings Announcement Drift: Double Sorts (continued) 
 

Panel D: Two-way sorting, controlling for earnings announcement return (RET[−1, 1]) 

 CNN buy probability quintiles 

RET[−1, 1] quintiles Low 2 3 4 High High-Low 
Low  −0.011 −0.003 −0.005 0.003 0.017** 0.028*** 
 (−1.555) (−0.292) (−0.493) (0.275) (2.008) (5.094) 
2  −0.004     0.001 0.005 0.005 0.019*** 0.023*** 
 (−0.852) (0.090) (0.677) (0.814) (3.083) (4.832) 
3  −0.002 0.003 0.003 0.014** 0.019*** 0.021*** 
 (−0.487) (0.511) (0.542) (2.156) (3.681) (5.625) 
4  −0.003 0.011 0.012* 0.016** 0.025*** 0.028*** 
 (−0.574) (1.510) (1.757) (2.374) (4.220) (6.207) 
High  0.001 0.010 0.029*** 0.030*** 0.044*** 0.044*** 
 (0.088) (1.123) (2.966) (3.038) (5.706) (5.913) 
High-Low  0.011** 0.012* 0.035*** 0.027*** 0.027***  
 (2.033) (1.861) (6.177) (3.847) (4.030)  
Panel E: Two-way sorting, controlling for book-to-market ratio (BM) 

 CNN buy probability quintiles 

BM quintiles Low 2 3 4 High High-Low 
Low  −0.003 −0.004 0.000 0.007 0.017*** 0.020*** 
 (−0.660) (−0.575) (0.045) (1.146) (2.876) (3.111) 
2  0.000     0.002 0.005 0.012** 0.019*** 0.019*** 
 (0.036) (0.373) (0.687) (2.083) (3.578) (4.478) 
3  −0.003 0.007 0.008 0.013* 0.025*** 0.027*** 
 (−0.477) (0.869) (1.333) (1.841) (3.884) (6.189) 
4  −0.004 0.006 0.011 0.014 0.029*** 0.033*** 
 (−0.639) (0.679) (1.323) (1.548) (4.276) (7.875) 
High  −0.013* 0.010 0.017 0.020* 0.044*** 0.057*** 
 (−1.787) (0.863) (1.468) (1.796) (4.274) (7.456) 
High-Low  −0.010 0.014 0.017 0.013 0.027**  
 (−1.407) (1.326) (1.632) (1.322) (2.532)  

 Panel F: Two-way sorting, controlling for gross profitability (GP) 

 CNN buy probability quintiles 

GP quintiles Low 2 3 4 High High-Low 
Low  −0.016** −0.006 −0.005 0.002 0.018*** 0.034*** 
 (−2.215) (−0.504) (−0.555) (0.185) (2.184) (4.747) 
2  −0.007     0.007 0.012* 0.010 0.025*** 0.032*** 
 (−1.238) (0.944) (1.722) (1.476) (3.790) (7.520) 
3  −0.004 0.003 0.015* 0.014** 0.030*** 0.035*** 
 (−0.853) (0.462) (1.931) (2.007) (4.698) (6.854) 
4  0.005 0.006 0.014* 0.019*** 0.028*** 0.024*** 
 (0.921) (0.985) (1.947) (2.699) (4.563) (4.837) 
High  −0.002 0.009 0.010 0.026*** 0.036*** 0.038*** 
 (−0.299) (1.219) (1.387) (2.765) (5.585) (8.569) 
High-Low  0.015** 0.014* 0.016*** 0.024*** 0.019**  
 (2.490) (1.751) (2.725) (3.718) (2.340)  
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Table 4.  
CNN Buy Probability and Post-Earnings Announcement Drift: Double Sorts (continued) 

 
 

Panel G: Two-way sorting, controlling for asset growth (AG) 

 CNN buy probability quintiles 
AG quintiles Low 2 3 4 High High-Low 
Low  −0.006 0.009 0.014 0.018 0.037*** 0.042*** 
 (−0.689) (0.830) (1.316) (1.633) (4.198) (8.064) 
2  −0.003     0.003 0.013* 0.017** 0.033*** 0.036*** 
 (−0.599) (0.429) (1.696) (2.204) (4.643) (7.288) 
3  −0.002 0.006 0.008 0.016** 0.026*** 0.028*** 
 (−0.491) (1.089) (1.305) (2.566) (3.877) (6.338) 
4  0.000 0.002 0.011 0.013* 0.023*** 0.024*** 
 (−0.092) (0.324) (1.588) (1.855) (4.508) (5.149) 
High  −0.010 −0.003 −0.005 0.005 0.019*** 0.029*** 
 (−1.478) (−0.323) (−0.644) (0.670) (3.295) (5.409) 
High-Low  −0.004 −0.012 −0.019*** −0.013* −0.018***  
 (−0.690) (−1.600) (−2.878) (−1.796) (−2.773)  
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Table 5.  
CNN Buy Probability and Post-Earnings Announcement Drift: Regression Analysis 

 
 (1) 

MAR 
    (2) 

SAR 
 (3) 

FF4 
 (4) 

FF6 
   (5) 

HMXZ5 
(6) 

DHS3 
Intercept 0.011* 0.000 0.007** 0.007** 0.010*** 0.019*** 
 (1.707) (0.216) (2.098) (2.308) (3.677) (3.068) 
CNNBP 0.014*** 0.014*** 0.010*** 0.011*** 0.012*** 0.014*** 
 (3.529) (3.535) (3.507) (3.652) (3.971) (4.344) 
SUE 0.011*** 0.012*** 0.011*** 0.010*** 0.010*** 0.009** 
 (2.951) (3.009) (3.406) (3.146) (2.840) (2.389) 
EA 0.013*** 0.013*** 0.012*** 0.013*** 0.013*** 0.014*** 
 (4.892) (4.713) (4.681) (5.133) (4.833) (5.417) 
TREND 0.016*** 0.016*** 0.012*** 0.013*** 0.012*** 0.013*** 
 (4.769) (4.717) (3.797) (3.679) (3.961) (4.291) 
RET[-1, 1] 0.021*** 0.023*** 0.024*** 0.024*** 0.023*** 0.021*** 
 (5.734) (6.520) (7.126) (6.861) (7.008) (5.788) 
RET[-30, -2] −0.011** −0.006 −0.003 −0.003 −0.006 −0.010** 
 (−2.113) (−1.207) (−0.745) (−0.685) (−1.106) (−2.094) 
PERSIST 0.000 0.000 −0.001 −0.001 −0.003 0.001 
 (−0.155) (−0.117) (−0.594) (−0.281) (−1.409) (0.385) 
VOL 0.014 0.014 0.009 0.005 0.009 0.010 
 (1.281) (1.356) (1.217) (0.824) (1.207) (1.212) 
SIZE −0.028* −0.023** −0.035** −0.035** −0.040*** −0.042** 
 (−1.697) (−2.298) (−2.216) (−2.283) (−2.789) (−2.562) 
BM 0.014 0.014 0.017*** 0.011** 0.011*** 0.008 
 (1.359) (1.356) (2.755) (2.089) (1.267) (1.388) 
GP 0.009 0.010 0.012* 0.008 0.006 0.008 
 (1.552) (1.612) (1.838) (1.237) (1.086) (1.319) 
OP 0.030*** 0.030*** 0.033*** 0.031*** 0.022*** 0.027*** 
 (3.925) (3.975) (3.896) (3.452) (3.522) (3.700) 
OA 0.001 0.001 0.001 0.001 0.000 0.000 
 (0.322) (0.431) (0.388) (0.224) (0.002) (−0.089) 
TA −0.008** −0.008** −0.004 −0.005 −0.005 −0.006 
 (−2.218) (−2.184) (−0.906) (−1.388) (−1.407) (−1.388) 
AG −0.011** −0.011** −0.012*** −0.010** −0.008** −0.007* 
 (−2.373) (−2.439) (−2.633) (−2.248) (−2.026) (−1.667) 
       
Adj. 𝑅𝑅2 0.045 0.038 0.032 0.028 0.030 0.036 
obs. 240,844 240,844 240,844 240,844 240,844 240,844 

The table presents results of quarterly weighted Fama and MacBeth [1973] regressions in the out-of-sample period 
(1994Q3-2023Q2, 116 quarters) using the 63-day buy-and-hold abnormal return (BHAR) after earnings announcements, 
including market-adjusted return (MAR), size-adjusted return (SAR), and factor-adjusted returns (FF4, FF6, HMXZ5, and 
DHS3), as the dependent variables. The weights correspond to the number of observations used in each quarterly cross-
sectional regression. The independent variables include the CNN buy probability (CNNBP), standardized unexpected 
earnings (SUE), earnings acceleration (EA), trend in gross profitability (TREND), market capitalization (SIZE), book-to-
market ratio (BM), earnings announcement return (RET[−1, 1]), pre-announcement return (RET[−30, −2]), earnings 
persistence (PERSIST), earnings volatility (VOL), gross profitability (GP), operating profitability (OP), total accruals (TA), 
operating accruals (OA), and asset growth (AG). All variables except for six measures of BHAR (MAR, SAR, FF4, FF6, 
HMXZ5, and DHS3) are converted into scaled ranks ranging from −0.5 to 0.5 with a mean of zero. See Appendix for 
variable definitions. Newey and West [1987] t-statistics with three lags are reported in parentheses, and ***, **, and * 
indicate significance at the 1%, 5%, and 10% level, respectively. 
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Table 6.  
CNN Buy Probability, Firm Characteristics, and Historical Earnings 

 
 (1) 

CNNBP 
     (2) 

CNNBP 
Intercept −0.002 Intercept −0.004*** 
 (−1.598)  (−3.040) 
SUE 0.510*** ROAq 0.644*** 
 (77.045)  (41.254) 
EA 0.040*** ROAq-1 0.038*** 
 (6.851)  (6.965) 
TREND 0.004 ROAq-2 −0.073*** 
 (0.792)  (−14.535) 
RET[-1, 1] 0.050*** ROAq-3 −0.333*** 
 (20.524)  (−62.953) 
RET[-30, -2] 0.024** ROAq-4 −0.428 
 (7.350)  (−48.276) 
PERSIST −0.044*** ROAq-5 0.079*** 
 (−8.605)  (16.625) 
VOL 0.246*** ROAq-6 0.044*** 
 (21.668)  (12.322) 
SIZE −0.274*** ROAq-7 −0.021*** 
 (−18.569)  (−4.567) 
BM 0.037***   
 (5.876)   
GP 0.010**   
 (2.155)   
OP −0.023***   
 (−3.938)   
OA 0.001   
 (0.186)   
TA −0.019***   
 (−8.196)   
AG 0.047***   
 (9.380)   
    
Adj. 𝑅𝑅2 0.328 Adj. 𝑅𝑅2 0.300 
obs. 240,844 obs. 240,043 

The table presents results of quarterly weighted Fama and MacBeth [1973] regressions in the out-of-sample period 
(1994Q3-2023Q2, 116 quarters) using the CNN buy probability (CNNBP) as the dependent variable. The weights 
correspond to the number of observations used in each quarterly cross-sectional regression. The independent variables in 
specification 1 are standardized unexpected earnings (SUE), earnings acceleration (EA), trend in gross profitability 
(TREND), market capitalization (SIZE), book-to-market ratio (BM), earnings announcement return (RET[−1, 1]), pre-
announcement return (RET[−30, −2]), earnings persistence (PERSIST), earnings volatility (VOL), gross profitability (GP), 
operating profitability (OP), total accruals (TA), operating accruals (OA), and asset growth (AG). The independent 
variables in specification 2 are the return on assets (ROA) in the most recent eight quarters (quarters q−7 to q). All variables 
are converted into scaled ranks ranging from −0.5 to 0.5 with a mean of zero. See Appendix for variable definitions. Newey 
and West [1987] t-statistics with three lags are reported in parentheses, and ***, **, and * indicate significance at the 1%, 
5%, and 10% level, respectively. 
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Table 7.  
CNN Buy Probability, Future Earnings Growth, and Future Three-Day Abnormal Returns 

around Earnings Announcements 
 

 (1) 
   SUE𝑞𝑞+1 

    (2) 
    SUE𝑞𝑞+1 

 (3) 
RET[−1, 1]𝑞𝑞+1 

 (4) 
RET[−1, 1]𝑞𝑞+1 

Intercept 0.002 0.002 0.002*** 0.002*** 
 (0.779) (0.802) (3.564) (3.586) 
CNNBP 0.113*** 0.133*** 0.004*** 0.004*** 
 (13.731) (20.601) (4.282) (5.185) 
SUE 0.377*** 0.346*** −0.002 −0.002 
 (30.493) (31.877) (−1.319) (−1.531) 
EA −0.090*** −0.086*** 0.001 0.001 
 (−24.490) (−24.216) (0.866) (1.088) 
TREND 0.021*** 0.024*** 0.000 0.001 
 (4.331) (6.614) (0.165) (1.470) 
RET[-1, 1] 0.078*** 0.077*** 0.004*** 0.004*** 
 (37.487) (37.871) (4.348) (3.899) 
RET[-30, -2] 0.067*** 0.066*** 0.001 0.000 
 (16.162) (16.506) (0.548) (−0.110) 
PERSIST 0.001 −0.002 −0.002*** −0.001** 
 (0.138) (−0.510) (−3.011) (−2.029) 
VOL 0.009** −0.076*** −0.001 −0.002 
 (2.237) (−8.943) (−0.904) (−1.283) 
SIZE  0.119***  0.003 
  (10.848)  (1.253) 
BM  −0.018***  0.007*** 
  (−3.278)  (5.733) 
GP  0.012**  0.006*** 
  (2.107)  (4.640) 
OP  −0.022***  0.005*** 
  (−3.443)  (4.847) 
OA  −0.016***  0.000 
  (−5.093)  (0.521) 
TA  −0.002  −0.001 
  (−0.728)  (−1.326) 
AG  −0.015***  −0.002** 
  (−3.934)  (−2.187) 
     
Adj. 𝑅𝑅2 0.214 0.228 0.003 0.007 
obs. 237,118 237,118 236,239 236,239 

The table presents results of quarterly weighted Fama and MacBeth [1973] regressions in the out-of-sample period 
(1994Q3-2023Q2, 116 quarters) using one-quarter-ahead standardized unexpected earnings (SUEq+1) or the three-day 
abnormal return around the next earnings announcement date (RET[−1, 1]q+1) as the dependent variable. The weights 
correspond to the number of observations used in each quarterly cross-sectional regression. The independent variables 
include CNN buy probability (CNNBP), standardized unexpected earnings (SUE), earnings acceleration (EA), trend in 
gross profitability (TREND), market capitalization (SIZE), book-to-market ratio (BM), earnings announcement return 
(RET[−1, 1]), pre-announcement return (RET[−30, −2]), earnings persistence (PERSIST), earnings volatility (VOL), gross 
profitability (GP), operating profitability (OP), total accruals (TA), operating accruals (OA), and asset growth (AG). All 
variables are converted into scaled ranks ranging from −0.5 to 0.5 with a mean of zero. See Appendix for variable 
definitions. Newey and West [1987] t-statistics with three lags are reported in parentheses, and ***, **, and * indicate 
significance at the 1%, 5%, and 10% level, respectively 
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Table 8.  
Test of Market Efficiency for the CNN Buy Features Effect 

 
Parameter 3-day Quarter-Long 
𝛾𝛾1 0.136*** 0.136*** 
 (19.783) (19.816) 
𝛾𝛾1

∗ 0.062*** 0.010 
 (3.814) (0.233) 
𝛽𝛽 0.062*** 0.010*** 
 (38.571) (18.547) 
   
Market efficiency test (𝛾𝛾1 = 𝛾𝛾1

∗) 3-day Quarter-long 
Likelihood ratio statistic 8.218*** 21.444*** 

This table reports the regression results from nonlinear generalized least squares estimation of the 
following two equations in the out-of-sample period (1994Q3-2023Q2, 116 quarters) 

Forecasting equation: SUE𝑞𝑞+1 = 𝛼𝛼 + 𝛾𝛾1CNNBP𝑞𝑞 + ∑𝛾𝛾𝑐𝑐Controls𝑞𝑞 + 𝛿𝛿𝑞𝑞+1
Pricing equation: AR𝑞𝑞+1 = 𝛽𝛽(SUE𝑞𝑞+1 − 𝛼𝛼∗ − 𝛾𝛾1

∗CNNBP𝑞𝑞 − ∑𝛾𝛾𝑐𝑐
∗Controls𝑞𝑞) + 𝜀𝜀𝑞𝑞+1. 

The control variables include standardized unexpected earnings (SUE), earnings acceleration (EA), 
trend in gross profitability (TREND), market capitalization (SIZE), book-to-market ratio (BM), 
earnings announcement return (RET[−1, 1]), pre-announcement return (RET[−30, −2]), earnings 
persistence (PERSIST), earnings volatility (VOL), gross profitability (GP), operating profitability 
(OP), total accruals (TA), operating accruals (OA), and asset growth (AG). AR is the abnormal return 
from a 3-day window around quarter 𝑞𝑞 + 1’s earnings or the quarter-long window starting two days 
after the quarter 𝑞𝑞 earnings and ending on the next announcement date. All variables except for the 
abnormal return AR are converted into scaled ranks ranging from −0.5 to 0.5 with a mean of zero. t-
statistics based on firm and quarter double-clustered standard errors are reported in parentheses. The 
likelihood ratio statistic for testing 𝛾𝛾1 = 𝛾𝛾1

∗ is distributed asymptotically as 𝒳𝒳2(1). ***, **, and * 
indicate significance at the 1%, 5%, and 10% level, respectively. 
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Table 9.  
Month-Based Rebalancing Strategy 

 
 Equal-weighted returns Value-weighted returns 
CNNBP Excess FF4 FF6 HMXZ5 DHS3 Excess FF4 FF6 HMXZ5 DHS3 
deciles return alpha alpha alpha alpha return alpha alpha alpha alpha 
Low  0.006* −0.001 −0.002*** −0.002 0.000 0.006** 0.000 −0.001 −0.001 −0.001 
 (1.955) (−0.868) (−2.681) (−1.289) (0 041) (2.412) (−0.189) (−1.445) (−0.765) (−0.725) 
2  0.007** 0.000 −0.001 0.000 0 001 0.007*** 0.001 0.000 0.000 0.000 
 (2.289) (0.045) (−0.827) (0.166) (0 914) (3.003) (1.018) (−0.268) (−0.025) (0.253) 
3  0.009** 0.002* 0.002* 0.003** 0 004** 0.007*** 0.001 0.000 0.001 0.000 
 (2.546) (1.881) (1.667) (2.056) (2 121) (3.093) (0.591) (−0.285) (0.501) (0.058) 
4  0.009** 0.002 0.002* 0.004** 0 005** 0.007*** 0.000 0.000 0.000 −0.001 
 (2.336) (1.331) (1.728) (2.105) (2 019) (2.693) (0.118) (−0.195) (−0.286) (−0.462) 
5 0.011*** 0.003** 0.003*** 0.005*** 0 006** 0.008*** 0.001 0.001 0.000 0.001 
 (2.811) (2.560) (2.674) (3.248) (2.586) (3.344) (1.263) (0.681) (0.111) (1.052) 
6 0.011*** 0.004*** 0.004*** 0.005*** 0.006** 0.009*** 0.002 0.002 0.002 0.003** 
 (2.872) (2.958) (3.148) (2.789) (2.531) (3.183) (1.549) (1.251) (1.337) (2.058) 
7 0.012*** 0.004*** 0.003*** 0.005*** 0.006*** 0.007*** 0.000 −0.001 −0.002 0.001 
 (3.223) (3.615) (3.182) (3.285) (3.025) (2.826) (0.162) (−0.491) (−1.191) (0.771) 
8 0.013*** 0.005*** 0.004*** 0.005*** 0.006*** 0.008*** 0.000 0.000 0.001 0.000 
 (3.335) (3.897) (3.788) (3.867) (2 948) (2.699) (0.175) (0.364) (0.721) (0.096) 
9 0.015*** 0.006*** 0.005*** 0.006*** 0 008*** 0.011*** 0.003** 0.004*** 0.003** 0.005*** 
 (4.081) (5.032) (4.604) (5.165) (4 082) (3.793) (2.198) (2.798) (2.268) (3.077) 
High  0.016*** 0.006*** 0.006*** 0.007*** 0 009*** 0.012*** 0.003** 0.003** 0.004** 0.004*** 
 (4.518) (4.689) (4.620) (4.458) (4.461) (3.758) (2.070) (2.467) (2.373) (3.417) 
High-Low  0.010*** 0.007*** 0.008*** 0.008*** 0.009*** 0.006*** 0.003* 0.005*** 0.004** 0.005*** 
 (6.055) (5.284) (6.237) (5.274) (6.298) (3.115) (1.852) (2.911) (2.294) (3.155) 

At the end of each month t in the out-of-sample period (1994Q3-2023Q2, 116 quarters), we sort firms into deciles based on their most recent CNN 
buy probability (computed using firms’ most recent eight quarterly earnings). For a firm to enter the portfolio formation at the end of month t, we 
require that announcement date of its most recent earnings to be within three months prior to portfolio formation. This table reports the average 
equal-weighted and value-weighted excess returns, as well as factor-adjusted returns (FF4 alpha, FF6 alpha, HMXZ5 alpha, and DHS3 alpha) in 
the subsequent month t + 1 for each CNN buy probability decile. Newey and West [1987] t-statistics with three lags are reported in parentheses, 
and ***, **, and * indicate significance at the 1%, 5%, and 10% level, respectively. 
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Table 10.  
Alternative Modeling Choices in Training 

Panel A: Two-dimensional CNN model 
 Difference in the 63-day BHAR between the highest and lowest CNNBP deciles 
Alternative modeling choices MAR SAR FF4 FF6 HMXZ5 DHS3 
3 blocks; filter size = (5 × 5, 3 × 3, 3 × 3) 0.034*** 0.034*** 0.029*** 0.031*** 0.034*** 0.033*** 
 (6.537) (6.456) (7.255) (7.677) (7.582) (7.528) 
3 blocks; filter size = (3 × 3, 3 × 3, 3 × 3) 0.035*** 0.035*** 0.031*** 0.031*** 0.035*** 0.034*** 
 (7.414) (7.367) (8.516) (9.154) (8.932) (8.678) 
2 blocks; filter size = (7 × 7, 3 × 3) 0.033*** 0.032*** 0.027*** 0.029*** 0.030*** 0.031*** 
 (7.532) (7.425) (7.300) (7.971) (8.371) (7.859) 
2 blocks; filter size = (5 × 5, 3 × 3) 0.035*** 0.034*** 0.029*** 0.030*** 0.032*** 0.033*** 
 (7.910) (7.802) (7.752) (8.560) (8.879) (9.057) 
2 blocks; filter size = (3 × 3, 3 × 3) 0.034*** 0.033*** 0.029*** 0.030*** 0.032*** 0.032*** 
 (7.715) (7.506) (8.312) (8.871) (8.687) (9.005) 
Dropout rate = 0 0.032*** 0.031*** 0.027*** 0.027*** 0.030*** 0.031*** 
 (6.215) (6.182) (6.600) (7.050) (6.446) (6.967) 
Batch normalization = no 0.034*** 0.033*** 0.029*** 0.030*** 0.032*** 0.032*** 
 (7.425) (7.205) (8.400) (9.328) (8.491) (8.723) 
Xavier initialization = no 0.035*** 0.034*** 0.030*** 0.031*** 0.034*** 0.033*** 
 (6.433) (6.372) (7.476) (7.917) (7.539) (7.394) 
Activation = ReLU 0.035*** 0.034*** 0.031*** 0.032*** 0.033*** 0.033*** 
 (7.343) (7.162) (8.594) (9.466) (8.164) (8.050) 

 Panel B: One-dimensional CNN model 
 Difference in the 63-day BHAR between the highest and lowest CNNBP deciles 
Alternative modeling choices MAR SAR FF4 FF6 HMXZ5 DHS3 
3 blocks; filter size = (1 × 7, 1 × 3, 1 × 3) 0.007* 0.007* 0.009** 0.009** 0.010*** 0.010*** 
 (1.905) (1.926) (2.305) (2.454) (2.663) (2.751) 
3 blocks; filter size = (1 × 5, 1 × 3, 1 × 3) 0.006 0.005 0.005 0.006* 0.006* 0.007** 
 (1.504) (1.475) (1.420) (1.660) (1.676) (2.012) 
3 blocks; filter size = (1 × 3, 1 × 3, 1 × 3) 0.002 0.001 0.003 0.003 0.001 0.003 
 (0.773) (0.567) (1.268) (1.140) (0.359) (0.972) 
2 blocks; filter size = (1 × 7, 1 × 3) 0.001 0.000 0.001 0.001 0.002 0.002 
 (0.430) (0.013) (0.210) (0.230) (0.549) (0.839) 
2 blocks; filter size = (1 × 5, 1 × 3) 0.001 0.001 −0.001 −0.002 0.001 0.000 
 (0.311) (0.234) (−0.508) (−0.574) (0.329) (0.041) 
2 blocks; filter size = (1 × 3, 1 × 3) 0.004 0.005 0.005 0.004 0.008* 0.007 
 (0.901) (1.049) (1.084) (0.937) (1.738) (1.571) 

This table reports the last row of Table 2 under different modeling choices in training. The baseline modeling choices in Table 2 are: two-dimensional CNN 
model; 3 blocks; filter size = (7 × 7, 3 × 3, 3 × 3); dropout rate = 0.5; batch normalization = Yes; Xavier initialization = Yes; activation = Leaky ReLU. See 
Table 2 and Section 6.2 for more details. Newey and West [1987] t-statistics with three lags are reported in parentheses, and ***, **, and * indicate significance 
at the 1%, 5%, and 10% level, respectively.
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Table IA1.  
CNN Buy Probability and Post-Earnings Announcement Drift: Double Sorts 

 
Panel A: Two-way sorting, controlling for pre-announcement return (RET[−30, −2]) 

 CNN buy probability quintiles 
RET[−30, −2] quintiles Low 2 3 4 High High-Low 
Low  0.006 0.009 0.013 0.016 0.036*** 0.030*** 
 (0.628) (0.849) (1.057) (1.393) (3.880) (5.139) 
2  0.000 0.004 0.009 0.016** 0.020*** 0.020*** 
 (−0.030) (0.676) (1.332) (2.385) (3.404) (5.544) 
3  −0.004 0.004 0.004 0.012* 0.022*** 0.026*** 
 (−0.811) (0.813) (0.691) (1.677) (4.187) (6.515) 
4  −0.009* 0.003 0.008 0.014** 0.023*** 0.031*** 
 (−1.750) (0.413) (1.115) (2.189) (3.979) (6.877) 
High  −0.016** −0.005 0.011 0.014 0.036*** 0.052*** 
 (−2.203) (−0.551) (1.145) (1.536) (4.102) (8.324) 
High-Low  −0.022*** −0.015* −0.002 −0.002 0.000  
 (−2.659) (−1.781) (−0.216) (−0.313) (−0.047)  

 Panel B: Two-way sorting, controlling for earnings persistence (PERSIST) 

 CNN buy probability quintiles 
PERSIST quintiles Low 2 3 4 High High-Low 
Low  −0.005 0.001 0.005 0.012 0.029*** 0.034*** 
 (−1.033) (0.204) (0.636) (1.574) (4.461) (5.995) 
2  0.000 0.008 0.015* 0.015* 0.026*** 0.026*** 
 (−0.025) (1.067) (1.946) (1.902) (4.749) (5.770) 
3  −0.005 0.009 0.009 0.017** 0.029*** 0.034*** 
 (−0.970) (1.205) (1.128) (2.091) (4.515) (7.839) 
4  −0.006 0.003 0.008 0.015** 0.025*** 0.031*** 
 (−1.052) (0.277) (1.038) (2.081) (3.918) (5.331) 
High  −0.004 0.000 0.006 0.009 0.023*** 0.027*** 
 (−0.738) (−0.065) (0.661) (1.190) (3.239) (4.647) 
High-Low  0.001 −0.002 0.001 −0.003 −0.006  
 (0.360) (−0.424) (0.309) (−0.586) (−0.983)  

 Panel C: Two-way sorting, controlling for earnings volatility (VOL) 

 CNN buy probability quintiles 
VOL quintiles Low 2 3 4 High High-Low 
Low  −0.005 0.001 0.005 0.012 0.029*** 0.034*** 
 (−1.033) (0.204) (0.636) (1.574) (4.461) (5.995) 
2  0.000 0.008 0.015* 0.015* 0.026*** 0.026*** 
 (−0.025) (1.067) (1.946) (1.902) (4.749) (5.770) 
3  −0.005 0.009 0.009 0.017** 0.029*** 0.034*** 
 (−0.970) (1.205) (1.128) (2.091) (4.515) (7.839) 
4  −0.006 0.003 0.008 0.015** 0.025*** 0.031*** 
 (−1.052) (0.277) (1.038) (2.081) (3.918) (5.331) 
High  −0.004 0.000 0.006 0.009 0.023*** 0.027*** 
 (−0.738) (−0.065) (0.661) (1.190) (3.239) (4.647) 
High-Low  0.001 −0.002 0.001 −0.003 −0.006  
 (0.360) (−0.424) (0.309) (−0.586) (−0.983)  

This table reports the average 63-day buy-and-hold market-adjusted return (MAR) after earnings announcements for 
portfolios formed based on the CNN buy probability quintiles and one of the seven firm characteristics including pre-
announcement return (RET[−30, −2]), earnings persistence (PERSIST), earnings volatility (VOL), market capitalization 
(SIZE), operating profitability (OP), total accruals (TA), and operating accruals (OA) using independent two-way sorting 
in the out-of-sample period (1994Q3-2023Q2, 116 quarters). The quintile cutoffs for quarterly variables are based on the 
distribution of these variables in the previous quarter, and the quintile cutoffs for annual variables from July in year t to 
June in year t+1 are based on the distribution of these variables at the end of June in year t. See Appendix for variable 
definitions. Newey and West [1987] t-statistics with three lags are reported in parentheses, and ***, **, and * indicate 
significance at the 1%, 5%, and 10% level, respectively. 
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Table IA1.  
CNN Buy Probability and Post-Earnings Announcement Drift: Double Sorts (continued) 

 
Panel D: Two-way sorting, controlling for market capitalization (SIZE) 

 CNN buy probability quintiles 
SIZE quintiles Low 2 3 4 High High-Low 
Low  −0.018* 0.009 0.012 0.020* 0.056*** 0.074*** 
 (−1.945) (0.613) (0.998) (1.837) (5.679) (13.846) 
2  −0.006 0.005 0.012 0.018* 0.043*** 0.049*** 
 (−0.939) (0.518) (1.179) (1.698) (4.934) (8.833) 
3  −0.002 0.006 0.013 0.017* 0.022*** 0.024*** 
 (−0.320) (0.828) (1.598) (1.910) (3.338) (5.235) 
4  0.001 0.003 0.003 0.006 0.011** 0.010** 
 (0.100) (0.575) (0.685) (1.201) (2.338) (2.508) 
High  0.000 −0.001 0.002 0.004 0.009** 0.009* 
 (−0.103) (−0.258) (0.696) (1.365) (2.203) (1.840) 
High-Low  0.017** −0.010 −0.010 −0.016* −0.047***  
 (2.110) (−0.691) (−0.887) (−1.682) (−4.815)  

 Panel E: Two-way sorting, controlling for operating profitability (OP) 

 CNN buy probability quintiles 
OP quintiles Low 2 3 4 High High-Low 
Low  −0.017 −0.001 0.002 0.001 0.032*** 0.049*** 
 (−1.474) (−0.111) (0.167) (0.102) (3.234) (6.128) 
2  −0.008 0.007 0.009 0.015* 0.030*** 0.037*** 
 (−1.268) (0.886) (1.199) (1.677) (3.628) (6.455) 
3  −0.005 −0.003 0.016* 0.019** 0.028*** 0.033*** 
 (−0.887) (−0.492) (1.952) (2.503) (4.795) (8.142) 
4  −0.004 0.007 0.008 0.016** 0.024*** 0.028*** 
 (−0.787) (1.220) (1.218) (2.552) (3.784) (5.145) 
High  0.004 0.010* 0.012* 0.021*** 0.023*** 0.019*** 
 (0.810) (1.762) (1.887) (3.406) (3.486) (3.438) 
High-Low  0.021** 0.012 0.010 0.020** −0.008  
 (2.017) (1.082) (1.288) (2.468) (−0.963)  

 Panel F: Two-way sorting, controlling for operating accruals (OA) 

 CNN buy probability quintiles 
OA quintiles Low 2 3 4 High High-Low 
Low  −0.008 0.004 0.009 0.014 0.033*** 0.041*** 
 (−1.071) (0.363) (0.910) (1.376) (4.291) (7.451) 
2  0.001 0.006 0.010 0.014* 0.027*** 0.026*** 
 (0.237) (0.846) (1.325) (1.909) (4.200) (4.839) 
3  −0.004 0.004 0.015* 0.018** 0.025*** 0.029*** 
 (−0.735) (0.752) (1.896) (2.195) (3.969) (7.300) 
4  −0.004 0.007 0.006 0.015** 0.027*** 0.031*** 
 (−0.820) (0.975) (1.055) (2.560) (4.901) (7.319) 
High  −0.007 −0.003 0.004 0.009 0.027*** 0.034*** 
 (−1.184) (−0.362) (0.452) (1.235) (4.195) (7.041) 
High-Low  0.001 −0.007 −0.006 −0.006 −0.006  
 (0.176) (−0.848) (−1.038) (−0.813) (−1.217)  
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Table IA1.  
CNN Buy Probability and Post-Earnings Announcement Drift: Double Sorts (continued) 

 
Panel G: Two-way sorting, controlling for total accruals (TA) 

 CNN buy probability quintiles 
TA quintiles Low 2 3 4 High High-Low 
Low  −0.008 0.012 0.009 0.009 0.037*** 0.045*** 
 (−0.894) (0.910) (0.828) (0.831) (4.012) (6.271) 
2  −0.003 −0.001 0.011 0.017** 0.031*** 0.033*** 
 (−0.415) (−0.073) (1.299) (2.207) (4.606) (7.087) 
3  −0.002 0.002 0.009 0.015** 0.027*** 0.029*** 
 (−0.335) (0.333) (1.448) (2.073) (3.879) (6.916) 
4  −0.003 0.004 0.011* 0.021*** 0.027*** 0.030*** 
 (−0.656) (0.902) (1.781) (3.112) (4.469) (6.644) 
High  −0.005 −0.002 0.004 0.008 0.017*** 0.022*** 
 (−0.956) (−0.348) (0.538) (1.282) (2.833) (4.321) 
High-Low  0.003 −0.014 −0.005 −0.001 −0.021***  
 (0.375) (−1.449) (−0.811) (−0.169) (−3.186)  

 
 


