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LEARNING AND EXPERIMENTS: THE BOOTSTRAP TO THE RESCUE 

 

ABSTRACT 

An important issue in experimental economics is the performance of tests with 
asymptotic critical values when using sample sizes typically available in practice. Using 
asymptotic critical values, Blume et al. (2002) tested the parameters of stimulus-response 
(SR) and belief-based learning (BBL) learning models with experimental data from 
sender-receiver games. With these same models, we carry out a Monte Carlo 
investigation of the true levels of the tests with asymptotic critical values. The results 
show that there are substantial differences between the empirical and nominal levels of 
the tests. The bootstrap often reduces the distortions in the levels of tests that occur when 
asymptotic critical values are used. Our Monte Carlo investigation shows that the 
bootstrap essentially eliminates the differences between the empirical and nominal levels 
of the tests for sample sizes typically found in practice. Because increasing the number of 
subjects in laboratory experiments is often an impractical method of increasing the 
sample size, the bootstrap provides a practical method for controlling the level of tests in 
experimental economics.  

 

 

 

 

 



1. INTRODUCTION 

 

Blume et al. (2002) tested the parameters of stimulus-response (SR) and belief-

based learning (BBL) learning models using data from experiments with sender-receiver 

games. The t-tests for testing hypothesis about the parameters were based on asymptotic 

critical values. The models considered by Blume et al (1998, 2002) completely specify 

the data generating process (DGP) except for the true values of the parameters. Hence, 

these models can be simulated for the available sample sizes.  Using these models, we 

carried out a Monte Carlo investigation of the true levels of the tests when asymptotic 

critical values are used. The Monte Carlo results show that the first-order asymptotic 

theory often gives a poor approximation to the finite-sample distributions of the test 

statistics with the samples available in experiments with sender-receiver games. As a 

consequence, the nominal level of the tests based on asymptotic critical values can be 

very different from the true levels.  

One approach to this problem is to increase the sample size by generating more 

data in the experiments. However, this is not a solution that can be readily implemented 

in practice. As Fisher (1935, p. 61) noted in the context of agriculture experiments: “The 

practical limit to plot subdivision is set, in agricultural experiments, by the necessity of 

discarding a strip at the edge of each plot…as smaller plots are used, a larger proportion 

of the experimental area has to be discarded.”  Analogous considerations apply to 

experimental design in economics. For example, experimental subjects require 

compensation; the coordination and control necessary to conduct an experiment becomes 



more unwieldy as the number of subjects increases; and the size of the laboratory 

constrains the number of subjects.   

In the case of sender-receiver games, the sample is an N by T panel where N is 

the number of pairs of players and T is the number of periods of the game. The size of the 

laboratory and the experimental budget constrain the number of players. The number of 

periods of play can be increased, but beyond a certain point the additional observations 

produced by the additional periods are not informative about learning. This point is the 

number of periods required to reach equilibrium behavior.  In other words, after 

equilibrium is achieved, there is no further learning and hence no further information 

about learning. Blume et al. (2002) discuss the issues that arise in experiments with large 

T under the heading of convergence bias. 

 Hence, the practical problem is how to improve upon first-order asymptotic 

approximations without increasing the sample size.  A potential solution is provided by 

the bootstrap, which is a method for estimating the distribution of a statistic or a feature 

of the distribution, such as a moment or quantile. The bootstrap can be implemented for 

the SR and BBL learning models by generating bootstrap samples from the models using 

estimated parameters instead of the true parameters. We carried out a Monte Carlo 

investigation of the ability of the bootstrap to reduce the distortions in the level of a 

symmetrical, two-tailed t-test that occur when asymptotic critical values are used. The 

results of the investigation show that the bootstrap essentially eliminates the differences 

between the empirical and nominal levels of the tests that occur with asymptotic critical 

values and that it does so with the sample sizes available in laboratory experiments. 
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If the objective is to obtain confidence intervals for the parameters, then the 

bootstrap can be used to reduce the error in the coverage probability. The Monte Carlo 

results show that bootstrap critical values can reduce the distortions in the coverage 

probabilities that occur with asymptotic critical values. However, in the case of the 

confidence intervals, the bootstrap does not completely remove the distortions with 

sample sizes used in the experiments. 

The organization of the paper is the following. Section 2 describes the sender-

receiver game, Section 3 describes the SR model, and Section 4 describes the BBL 

model. The bootstrap is presented in Section 5, and the design of the Monte Carlo 

experiments in Section 6. The results of the Monte Carlo investigation are reported in 

Section 7. Concluding comments are contained in Section 8.   

2. THE GAME 

In experiments using sender-receivers games, players are randomly matched from 

two populations: N senders and N receivers. Each period all players are matched, each 

sender with one receiver, and all pairings are equally likely.  The game played by each 

pair in each period is between an informed sender and an uninformed receiver.  The 

sender is privately informed about his type, θ1 or θ2, and types are equally likely. The 

sender sends a message, “1” or “2”, to the receiver, who responds with an action, a1 or a2.  

Payoffs depend on the sender's private information, his type, and the receiver's action, but 

not on the sender’s message. We focus on a common interest game in which the 

incentives of the players are fully aligned. If the sender's type is θ 1 (θ 2) and the receiver 

takes action a2 (a1), the payoffs to the sender and receiver are 700,700, respectively; 

otherwise, the payoffs are zero for both the sender and receiver.  
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A strategy for a sender maps types into messages; for a receiver, a strategy maps 

messages to actions.  A strategy pair is a Nash equilibrium if the strategies are mutual 

best replies. More formally let be a finite set of types and π(Θ θ ) the prior distribution of 

types. The sender’s set of pure strategies is the set of mappings, s: Θ →M, from the type 

set to the finite set of messages, M.  The receiver’s set of pure strategies is the set of 

mappings, r: Μ→A, from M to the finite set of actions A. Given type θ ∈ , message m∈ 

M, and action a ∈A, the sender’s payoff is v

Θ

S(θ, a)  and the receiver’s payoff is vR(θ, a). 

Messages do not directly affect payoffs. For any finite set X, let Ψ (X) denote the set of 

probability distributions over X. The payoff from a mixed action α ∈ Ψ  (A) is vi(θ,α ) 

 ( , ) ( ), , .ia A
v a a i S Rθ α

∈
= =∑

We denote mixed behavior strategies for the sender and the receiver by σ and ρ, 

respectively. Let σ(m,θ) denote the probability of type θ sending message m and let 

ρ(a,m) stand for the probability that the receiver will choose action a in response to 

message m. The pair (σ, ρ) is a Nash equilibrium if σ and ρ are mutual best replies: 

and 
'

'

( , ) 0, max ( , ) ( , ')
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  The equilibrium is called separating if each sender type is identified through his 

message.  In a pooling equilibrium, the equilibrium action does not depend on the 

sender's type; such equilibria exist for all sender-receiver games. For example, a 

separating equilibrium is one where the sender sends “2” if she is θ1 and “1” otherwise 

and the receiver takes action a2 after message “2” and a1 otherwise.  An example of a 
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pooling equilibrium is one in which the sender, regardless of type, sends “2” and the 

receiver always takes action a2.   

  In each period, players play a two-stage game.  Prior to the first stage each sender is 

informed about her type.  In the first stage, a sender sends a message to her paired 

receiver.  In the second stage, a receiver takes an action after receiving a message from 

his paired sender.  Each sender and receiver pair then learns the sender type, message 

sent, action taken and payoff received. All players next receive information about all 

sender types and all messages sent by the respective sender types. This information is 

provided for the current and all previous periods of the game played by the particular 

cohort of players. 

In this setting we observe players’ actions, not their strategies. Also, players 

receive information about actions, not strategies. They do not observe which message 

(action) would have been sent (taken) by a sender (receiver) had the sender's type 

(message received) been different. This is important for how the learning rules are 

formulated. 

3. STIMULUS-RESPONSE MODEL 

SR and belief-based models both use propensities to determine choice 

probabilities.   We use the index i to refer to one of the N senders. Each sender is 

randomly assigned a type, θ , each period. We use the index j to refer to receivers. This 

section describes the SR model. 

By SR we mean that the individual play of each sender is affected only by 

rewards obtained from own past play.  Following Alvin E. Roth and Ido Erev (1995), 
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define the propensity, Qiθm(t), of sender i to send message m at time t when her type is θ 

as:  

  Qiθm 0 iθm 1 iθm(t) = Q (t-1)+ X (t-1)ϕ ϕ                        (1) 

where  Xiθm(t-1) is the reward sender i receives from sending message m at time t-1(with 

Xiθm(t-1) = 0 if sender i sent the other message in period t-1 or her type was not θ). There 

is a propensity for each possible message.  We refer to the parameter of Qiθm(t-1) as the 

memory parameter and the parameter of Xiθm(t-1) as the learning parameter. Given this 

specification of propensities, the probability that sender i sends message m is a logit-like 

function 

i m
i m

i m
m

exp(Q (t))P (t)=Pr(Sender i of type sends  m at time t)= .
exp(Q (t))

θ
θ

θ

θ
′

′
∑

  (2) 

To complete the specification of the SR model we require an initial condition for 

the propensities, the values of Qiθm(1).  Values chosen for Qiθm(1) affect Piθm(1) and the 

speed with which rewards change probabilities of making a particular choice. In the spirit 

of Roth and Erev (1995) we set Qiθ1(1) = Qiθ2(1) = 350, which is on the scale of rewards 

received by participants in the experiments analyzed by Blume, et al. (2002).  

The senders, who can be of two types, can send message “1” or “2”. Let y = 

I{message = “2”},  where I{A} is the indicator function that takes the value 1 if event A 

occurs and 0 otherwise. Let  be the probability that sender 

i sends message m in period t.  The log likelihood function for the sender data is  

im i1m i2mP (t)=(2-θ)P (t)+(θ-1)P (t)

N T

0 1 i i2 i i2
i = 1 t = 1

ln L( , ) [y (t)ln(P (t))+(1-y (t))ln(1-P (t))]ϕ ϕ = ∑∑         (3) 

where Pi2 (t) is the probability of sending message “2”.  
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To show how the Piθ2 and hence the likelihood function (3) depends on the 

parameters, it is convenient to rewrite the propensity (2) as a partial sum: 

 .    (4) 
t-1

t-1-jt
i m 0 i m 1 0 i m

j 1
Q (t) Q (1) X ( jθ θϕ ϕ ϕ

=

= + ∑ )θ

Using (4), the probability Pi 2 i(t) 1/[1 exp( Q (t))]θ θ= + ∆  where 

t-1
t 1

i 0 i 1 i 2 1 i 1 i 2
k=1

Q (t) (Q (1) Q (1)) (X (k)-X (k))t k
θ θ θ θ θϕ ϕ ϕ − −∆ = − + ∑ .  (5) 

From (5) we see that the likelihood function depends on the initial difference in the 

propensities, Q (  and on the memory and learning parameters. i 1 i 21)-Q (1),θ θ  

In principle, the differences can be estimated along with ϕi 1 i 2Q (1)-Q (1) θ θ 0 and 

ϕ1.  The drawback of estimating the differences is that the estimates are typically 

imprecise. In the present context, however, the differences do not enter into the 

expression for the Pi2. This is because in the Blume et al. (1998) design, the experiments 

are designed (by privatizing the messages) to make i 1 i 2Q (1)-Q (1) = 0, =1,2θ θ θ , and thus 

eliminate the effect of the initial conditions for the propensities.  Consequently, (5) 

reduces to    

0

t-1
t-1-j

i 1 i 1 i 2
j=1

Q (t) (X (j)-X (j))θ θϕ ϕ∆ = ∑ θ ,      (6) 

which implies that the probabilities Pi2 depend only on the parameters ϕ0 and ϕ1 and 

similarly for the likelihood function (3). 

In an analogous manner, we can derive the characteristics of the DGP for 

receivers.  Recall receivers only observe the message sent. As with senders, the 

individual play of each receiver is affected only by rewards obtained from own past play 
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and consequently can be considered separately from sender play.  We define the 

propensity, Qjma(t), of receiver j to take action a at time t having received message m as:  

  jma 0 jma 1 jmaQ (t) = Q (t-1) X (t-1)γ γ+                        (7) 

where  Xjma(t-1) is the reward receiver j gets from action a at time t-1 having received 

message m (with Xjma(t-1) = 0 if receiver j took the other action in period t-1, or if the 

message was not m). There is a propensity for each action given the message sent. The 

probability of receiver j taking action a is a logit-like function defined analogously to 

equation 2; the log likelihood function for the receiver data is defined analogously to 

equation 3, with y = I{action  = “2”}.  

The likelihood function factors for senders and receivers, and, hence, the 

maximization of the likelihood can be carried out separately for senders and receivers.  

For this reason, we have focused only on the senders. This completes the description of 

the SR model. What remains to be discussed are identification issues. 

Identification of the parameters ϕ0 and ϕ1 depends on the speed of learning. 

Consider the behavior of the difference in rewards, Xiθ1(t) – Xiθ2(t), θ= 1, 2.  If play 

converges to equilibrium in the first round, then the difference in the rewards does not 

change over time. The consequence is that ϕ0 and ϕ1 are not identified. Of course, if the 

reward parameter is zero (ϕ1  = 0), then ϕ0 is not identified.  

More generally, the speed of learning determines the amount of the available 

sample information that is relevant for estimating the parameters. Suppose Xiθ1(t) – 

Xiθ2(t) = c for t > T* then increasing T beyond T*, T >T*, will not increase the precision 

of the estimator. Rapid learning means that T* is small, and hence there is, relatively 

speaking, little information available to estimate the parameters. On the other hand, 
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increasing T beyond T* will appear to improve the fit of the model to the data when in 

fact there is no learning after T*.  We refer to this effect as convergence bias. 

Convergence bias is discussed in more detail in Blume et al. (2002). 

4. BELIEF-BASED LEARNING MODEL 

While the SR and BBL models both use propensities to determine choice 

probabilities, they differ in that senders and receivers in the SR model are affected only 

by rewards obtained from own past play. In the BBL model, we have homogeneous 

senders and homogeneous receivers, and senders and receivers update their beliefs using 

the same set of information, the previous period’s history of sender types and messages 

sent. 

In the BBL model, we define the propensity, Qiθm(t), of the sender to send 

message m at time t  when type is θ as: 

i m 0 i m 1 i mQ (t) β Q (t 1) β X (t 1e
θ θ θ= − + )−

)

           (8) 

where  is the expected reward of the sender from sending message m based on 

data available at time t-1. The expected reward is calculated using the past frequencies of 

play. For senders, 

i mX (t 1e
θ −

η θt m−1( | )  is the frequency of type θ given message m in period t-1, and 

for receivers, ρt−1 a m( | )  is the frequency of action a given message m in period t-1. The 

sender choice probabilities again are logit as in (2) with (8) replacing (1) as the definition 

of Qiθm in the likelihood function (3).  

As in the Blume et al. (1998) laboratory experiments, senders cannot predict 

future behavior of receivers from population information about past behavior of 

receivers. Hence, senders calculate the expected frequency of action a given message m, 

, from data on past sender play. The sender formula for the expected reward is )|(ˆ 1 mat−ρ
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 X (                       (9) 
i m

1ˆt-1) ( , ) ( |e
s

a
v a a m

θ
θ ρ −= ∑ )t

)

η θ

where 

 
' 1

1

' 1

1 arg max ( ', ) ( |

ˆ ( | ) 0 arg max ( ', ) ( | )

0.5

s
a t

t
s

a t

if a v a m

a m if a v a m

otherwise

τ

τ θ
τ

τ θ

θ η θ

ρ θ
≤ −

−

≤ −

 =
 
 = ∉ 
 
  

∑ ∑
∑ ∑  . 

Senders have the information necessary to calculate the point estimate. Receivers, on the 

other hand, are assumed to predict future sender behavior directly. Specifically, let Qjma(t) 

be the propensity of the receiver to take action a at time t having received message m:  

                          (10) jma 0 jma 1 jmaQ (t) = Q (t-1) X (t-1)eδ δ+

where the receiver formula for the expected reward is 

           1
jmaX (t-1) ( , ) ( |e t

Rv a m
θ

θ η θ−= )∑ .                     (11) 

To illustrate an individual propensity, consider the propensity to choose action a1 given 

the message sent m = 1,   

  ( )( ) ( )( ){ }1 1j1a 0 j1a 1 1 1Q (t) = Q (t-1) p | 1 0 1 p | 1 700  m mδ δ θ θ + = + − =                        

where  p(θ1|m=1) is the probability that the sender is type θ1 given message “1” was sent. 

This probability is calculated using period t-1’s distribution of sender types and messages 

sent. The receiver’s payoff from choosing action a1 when the sender is type θ1 (θ2) is 0 

(700). There is a propensity for each possible action given the message sent. Thus, 

receiver choice probabilities are again logit, as in (2), and the log likelihood function for 

the receiver is analogously defined, as in (3). This completes the description of the BBL 

model. As with the SR model, we focus on the senders in BBL. 
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5. THE BOOTSTRAP  

In the Monte Carlo experiments with the SR and the BBL models, the null 

hypotheses tested are composite, meaning that they do not completely specify the data 

generation process (DGP).  This section describes how the bootstrap can be used to test a 

composite hypothesis when the test statistic is asymptotically pivotal.  

The problem involved in testing a composite hypothesis is illustrated using the 

memory parameter in the SR model. Consider testing the null hypothesis H0: 0ϕ = 0.8. In 

this example, the data generation process (DGP) is unknown when H0 is true because the 

value of the updating parameter 1ϕ  is unknown. As a result, the exact, finite sample 

distribution of the test statistic for testing H0 is unknown when the null hypothesis is true. 

The approach adopted here is to base the test of H0 on an estimator of the Type I critical 

value. This is the critical value that would be obtained if the exact finite-sample 

distribution of the test statistic were known when the null is true; see Horowitz and Savin 

(2000).  

Let Tn0 be the test statistic for testing H0. In the experiments, the null H0 is tested 

using a symmetrical, two-tailed test. H0 is rejected by such a test if |Tn0| exceeds a 

suitable critical value and is accepted otherwise. The exact, α-level Type I critical value 

is znα  where znα is defined by P(|Tn0 |> znα) = α. A test based on this critical value rejects 

H0 if | Tn0 |> znα.  Such a test makes a Type I error with probability α.  

However, znα cannot be calculated in this application except in a special case. The 

exception is when Tn0 is pivotal. A test statistic is pivotal if its finite-sample distribution 

does not depend on any unknown parameters when the null is true. For example, the t-

statistic for testing a hypothesis about the mean of a normal population or a slope 
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coefficient in a normal linear regression model is pivotal. However, pivotal test statistics 

are not available in most econometric applications unless strong distributional 

assumptions are made. In particular, pivotal test statistics are not available for the 

applications in experimental economics in this paper.  For example, in the SR model, the 

finite-sample distribution of Tn0 depends on the value of updating parameter 1ϕ  when H0 

is true. 

When H0 is composite and the test statistic is not pivotal, it is necessary to replace 

the true Type I critical value with an approximation. First-order asymptotic distribution 

theory provides one approximation. Most test statistics in econometrics are 

asymptotically pivotal. For example, suppose Tn0 is asymptotically N(0,1) when H0 is 

true. Hence, the critical value from the standard normal distribution can be used to 

approximate the Type I critical value. In this case, H0 is rejected if | Tn0 | > 1.96. This test 

makes a Type I error with a probability that is approximately .05; in other words, the 

nominal level of this test is .05.  The main disadvantage of this approach is that first-order 

asymptotic approximations can be very inaccurate with the sample sizes encountered in 

applications. As a result, the true and nominal probabilities that a test rejects a correct 

null hypothesis can be very different when the critical value is obtained from the 

asymptotic distribution of the test statistic. Indeed, this is the finding from our Monte 

Carlo investigation for tests about the parameters of the SR and BBL models. 

The bootstrap provides a way to obtain approximations to the Type I critical value 

of a test and the probability of a Type I error that are more accurate than the 

approximations of first-order asymptotic theory. The bootstrap does this by using the 

information in the sample to estimate the parameters of the DGP and, thereby, the finite-
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sample distribution of the test statistic. The bootstrap estimator of the Type I critical 

value is, in fact, the Type I critical value of the estimated finite-sample distribution of the 

test statistic. This estimated distribution is obtained by carrying out a Monte Carlo 

experiment in which random samples are obtained from the model with estimated 

parameter values instead of the true values. It turns out that if the test statistic is 

asymptotically pivotal and certain technical conditions are satisfied, the bootstrap 

approximations are more accurate than those of first-order asymptotic theory. For details, 

see Hall (1992) and Horowitz (1997, 1999)  

In the present context bootstrap sampling can be carried out in three ways, and 

hence there are three ways to estimate the Type I critical value, that is, to calculate the 

bootstrap critical value. Suppose a sample of size n (= NxT panel) has been generated by 

random sampling from the SR model. Call this the estimation sample. Let 0ˆnϕ  and 1ˆnϕ  be 

the maximum likelihood (ML) estimators of 0ϕ  and 1ϕ . Suppose further that the 

objective is to test H0. Then bootstrap sampling can be carried out in the following ways:  

Boot1. Generate a bootstrap sample of size n by random sampling from the SR 

model but using the maximum likelihood estimates of the parameters from the estimation 

sample instead of the true values, that is, by setting 0ϕ = 0ˆnϕ  and 1ϕ  = 1ˆnϕ .  Using the 

bootstrap sample, re-estimate the parameters of the model and compute the test statistic 

for testing H0. Call its value T 1
0n  Estimate the α -level Type I critical value of the test 

from the empirical distribution of T that is obtained by repeating this procedure many 

times. Let 

1
0n

1
0.nz α  denote the estimated critical value.  

 13



Boot2. Generate a bootstrap sample of size n by random sampling from the SR 

model but using the hypothesized value of the memory parameter and the ML estimate of 

the updating parameter instead of the true value, that is, by setting 0ϕ = 0.8 and 1ϕ  = 1ˆnϕ . 

Using this sample re-estimate the parameters of the model and compute the test statistic 

for testing H0. Call its value T .  Estimate the α-level Type I critical value of the test 

from the empirical distribution of T  that is obtained by repeating this procedure many 

times. Let 

2
0n

2
0n

2
0.nz α  denote the estimated critical value.  In this procedure, H0 has been 

imposed in generating the bootstrap samples via the memory parameter. 

Boot3. Generate a bootstrap sample of size n by random sampling from the SR 

model but using the hypothesized value of the memory parameter and the constrained 

ML estimate of the updating parameter instead of the true values, that is, by setting 0ϕ = 

0.8 and 1ϕ  = 1nϕ  where 1nϕ  is a constrained ML estimate of 1ϕ . The estimate 1nϕ is 

obtained by maximizing the likelihood subject to the constraint that 0ϕ = 0.8.  Using this 

sample re-estimate the parameters of the model and compute the test statistic for testing 

H0. Call its value T .  Estimate the α-level Type I critical value of the test from the 

empirical distribution of T  that is obtained by repeating this procedure many times. Let 

3
0n

3
0n

3
0.nz α  denote the estimated critical value.  In this procedure, H0 has been imposed directly 

in the selection of the value for 0ϕ  and indirectly in the choice of the value for 1ϕ . 

In the Monte Carlo experiments, the null hypothesis H0 is tested using the Wald t-

statistic. The formula for calculating the Wald t-statistic is determined by the choice of 

the bootstrap sampling procedure. Given a bootstrap sample generated by Boot1, let 1
0nϕ  

 14



and 1
1nϕ  be the ML estimators of 0ϕ  and 1ϕ , and let  and  be the square roots of 

the diagonal elements obtained from the inverse Hessian of the log likelihood (3) 

evaluated at 

1
0nS 1

1nS

1
0nϕ  and 1

1nϕ .  The formula for Wald t-statistic is  

1 1
0 0n n /

0ϕ

1ϕ S S

2 2
0 0(n nϕ

3 3
0 0(n nϕ 3

0nS0.8) /

   0ˆ( )nT Sϕ ϕ= − 1
0n

This t-statistic is centered on 0ˆnϕ , not 0.8, because in the population being sampled by the 

bootstrap the true value of the memory parameter is = 0ˆnϕ .   

Given a sample generated by Boot2, let 2
0nϕ  and 2

1nϕ  be the ML estimators of 0ϕ  

and , and let  and  be the square roots of the diagonal elements obtained from 

the inverse Hessian of the log likelihood (3) evaluated at 

2
0n

2
1n

2
n0ϕ  and 2

1nϕ . In this case, the 

formula for Wald t-statistic is  

   0.8) /T S= − 2
0n

This t-statistic is centered on 0.8 because in the population being sampled by the 

bootstrap the true value of the memory parameter is now 0ϕ = 0.8.  For a sample 

generated by Boot3, the analogous t-statistic is T , which again is 

centered on 0.8 and for the same reason as in Boot2. 

= −

 Horowitz (1997, 1999) notes that the results of Monte Carlo experiments have 

shown that the numerical accuracy of the bootstrap tends to be higher the more efficiently 

the DGP is estimated. In particular, gains in efficiency and performance can be obtained 

by imposing the constraints of the H0 when obtaining the estimate of the DGP. 

Accordingly, we expect that Boot3 will have the greatest numerical accuracy and that 

Boot2 will usually have greater numerical accuracy than Boot1.  
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If the objective is to obtain a confidence interval for 0ϕ  rather than to test a 

hypothesis, the bootstrap can be used to reduce the error in the coverage probability. This 

is done using bootstrap critical values instead of asymptotic critical values in constructing 

the confidence interval. However, the bootstrap sampling procedures Boot2 and Boot3 

are not available for confidence intervals. 

6. DESIGN OF MONTE CARLO EXPERIMENTS 

This section describes the design of the Monte Carlo experiments that investigate 

the ability of the bootstrap to provide improved finite-sample critical values for the Wald 

t-tests of the parameters of the SR and BBL models. 

In the Monte Carlo experiment with the SR model the values of the parameters 

are 0ϕ  = 1ϕ  = 0.8, and, similarly, with BBL β0 = β1 = 0.8. The value of 0.8 represents a 

compromise between two difficulties. First, if the updating parameter 1ϕ  (β1 ) is zero, then 

the memory parameter 0ϕ  (β0 ) is not identified. Second, if, 1ϕ  (β1 ) is “too high”, the play 

rapidly converges to equilibrium, which means that the data provide little  information 

about learning; in other words, there is little data for the experimentalist to learn about 

learning behavior. 

The experiments for SR and BBL were played with a population of N senders and 

N receivers, where N= 6, 12, 24, 400. The first three values of N were chosen because of 

physical limitations of laboratory size for conducting experiments. Our experience and 

that of other experimenters has been that laboratory experiments with more than 30 

participants are very difficult to run, and most university experimental laboratories are 

configured to handle a maximum of 30-40 players. The value N = 400 was selected to 

illustrate the speed with which the Central Limit Theorem works.  

 16



Each replication consisted of a game played for T  = 20 periods. The value 20 was 

chosen because it is the value used in Blume et al. (1998). Another reason involves 

convergence bias issues. As noted in the introduction and section 3, additional 

observations produced by additional periods do not provide information about learning 

once equilibrium is reached. For the SR model, equilibrium is usually not reached by T = 

20 when N = 6. However, equilibrium play occurs often before 20 periods in the case of 

BBL. 

To simplify exposition, the Monte Carlo experiment is only described in detail for 

testing the memory parameter of the SR model at the nominal .05 level. There were 1,000 

Monte Carlo replications in the experiment. Each replication consisted of the following 

steps: 

1. Generate an estimation sample of size n (=NxT) by random sampling from the 
SR model. Estimate the unknown parameters by ML and compute the test 
statistic for testing H0. Call its value Tn0. 

 
2. Generate 200 bootstrap samples of size n using Boot1, Boot2 and Boot3. 

Estimate the .05-level Type I critical values, denoted by , , and . 1
0.05nz 2

0.05nz 2
0.05nz

 
3.  Reject H0 at the nominal .05 level based on the Boot1 critical value if |T  | > 

, on the Boot2 critical value if |T  | > , and on the Boot3 critical 

value if |T |>  . Reject H

1
0n

1
0.05nz 2

0n
2
0.05nz

3
0n

2
0.05nz 0 at the nominal .05 level based on the 

asymptotic critical value if | Tn0 | > 1.96, which is the asymptotic .05-level 
critical value for the symmetrical, two-tailed t-test.  

 
In Step 2, the 10%-level Type I critical values were also estimated using the 

Boot1, Boot2 and Boot3 procedures and the asymptotic distribution. These critical values 

were then used in Step 3 to test H0. We also calculated nominal 95 and 90 percent 

confidence intervals for the memory parameter and the updating parameter using Boot1 

critical values and asymptotic critical values. 
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The program used to generate the estimation samples and also the bootstrap 

samples was written in GAUSS. For the SR model, it took approximately 17.55 seconds 

on a Gateway Opti Plex GX 4000 with an Intel Pentium 4 processor operating at 1.7 

gigaherz running under Windows NT 4.0 to generate 1,100 estimation samples of an 

experiment with T = 20 and N = 6. The same program took 407.86 seconds with the same 

configuration to generate 1,100 replications with T = 20 and N = 400. 

For each replication of the SR model, the likelihood function, for example, 

equation (3), was maximized using the OPTIMUM procedure in GAUSS for a variety of 

laboratory computers running Windows NT 4.0. The typical time in seconds to maximize 

all 1,100 likelihood functions was 182.51 when N = 6.  OPTIMUM was called using a 

first-derivative quasi-Newton algorithm, BFGS (Broyden (1970), Fletcher (1970), 

Goldfarb (1970) and Shanno (1970)). For the SR bootstrap with N=6, Boot1 took about 

8.5 hours;  Boot1, Boot2 and Boot3 combined took a total of about 42.5 hours. 

The possibility of experimental failure is the reason that 1,100 estimation samples 

were generated to ensure that we had 1,000 samples for the Monte Carlo. We define an 

experimental failure as a situation where the ML estimates do not exist; in other words, 

the estimation sample provides no information about the parameter of interest. 

Experimental failure occurs frequently when examination is made of low frequency 

events. In the cases we consider, uninformative experiments do occur, but rarely. Table I 

shows the number of estimation samples where the ML estimates failed to exist. ML 

estimates do not exist in these cases because no rewards were generated in the sample. 

This occurs with low, but not negligible, probability in games with few participants. This 

is analogous to the situation in logit or probit models where the probability of success is 
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low and there are few observations. If experimental failure occurs, we follow the 

conventional procedure of dropping the sample and replacing it with a new sample, that 

is, dropping the estimation sample for which the ML estimates do not exist and 

generating a new estimation sample.  

Given an estimation sample, the likelihood function was maximized starting from 

the true values of the parameters, namely, 0ϕ  = 1ϕ  = 0.8 for the SR model and β0 = β1 = 

0.8 for the BBL model. The true values are used as the starting point for two reasons. One 

is that whatever the starting values, the likelihood function can be maximized in cases 

where the data is informative about the learning process. The other is that the likelihood 

function is not globally concave, but it is concave in expectation (Blume et al. (2002)). 

Experiments using simulated annealing as the optimization method have convinced us 

that starting at the true values led to convergence of the ML estimates in those cases 

where the data were informative about the learning process. 

The guidelines used for the Monte Carlo estimation samples also apply to the 

bootstrap samples. If the ML estimates do not exist for the estimation sample, then this 

sample cannot be used as the basis for the bootstrap sampling. The converse is not true, 

however. If the ML estimates exist for the estimation sample, these ML estimates can be 

used to generate bootstrap samples from the SR model or the BBL model. However, the 

ML estimates need not exist for all bootstrap samples. If they do not exist for a bootstrap 

sample, that bootstrap sample is discarded and another one is generated in its place.  

 

 

7. MONTE CARLO RESULTS 
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 This section reports the results of a Monte Carlo investigation of the ability of the 

bootstrap to reduce the distortions in the level of a symmetrical, two-tailed t- test that 

occur when asymptotic critical values are used and to provide improved coverage 

probabilities for confidence intervals.  

 The test statistics employed in the experiments are asymptotically distributed as 

standard normal when the null hypotheses are true. Figure 1 presents the kernel estimates 

of the finite-sample distributions of the t-statistics for testing the parameters of the SR 

model. The estimated finite-sample distributions are noticeably nonnormal when N = 6 

and N = 12. In these cases, the estimated distributions of the t-statistic for testing the 

memory parameter are skewed to the right and those for testing the updating parameter 

are skewed to the left. The distributions are nearly symmetric when N = 400.  

The kernel estimates of the finite-sample distributions of the t-statistics for testing 

the parameters of the BBL model are presented Figure 2. Again, when N = 6 and N = 12, 

the estimated finite-sample distributions of the t-statistic for testing the memory 

parameter are skewed to the right and those for testing the updating parameter are skewed 

to the left.  The main difference between the estimated distributions of the t-statistics in 

Figure 1 and Figure 2 when N = 6 and N = 12 is that those in Figure 2 are much more 

skewed. This means that the asymptotic distribution is a poorer approximation to the true, 

finite-sample distributions of the t-statistics in the BBL model than the SR model.  

Another consequence is that estimates of the Type I critical value based on the standard 

normal distribution will be less accurate in the case of BBL.  
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Table II reports the empirical rejection probabilities or levels of the nominal .05 

and .10 level symmetrical, two-tailed tests when N = 6 and N = 12. The upper panel gives 

the empirical levels for the SR model. When asymptotic critical values are used, the 

empirical levels are too large, especially for the memory parameter when N = 6. Using 

the Boot1 and Boot2 critical values reduce the differences between the empirical and 

nominal levels for 30 of the 32 critical values, with the differences being smaller with 

Boot2. With Boot3 critical values, the differences between the empirical and nominal 

levels are very small, even for N = 6. In these experiments, the Boot3 version of the 

bootstrap essentially remove the distortions in the levels that occur with asymptotic 

critical values, and it does so at N = 6.  

 The lower panel of Table II presents the empirical levels for the BBL model. 

When asymptotic critical values are used, the empirical levels are again too large. Now 

the greatest differences between the empirical and nominal levels occur for the updating 

parameter when N = 6. The Boot1 and Boot2 critical values reduce the differences 

between the empirical and nominal levels for the updating parameter, but not for the 

memory parameter. In the case of the memory parameter, these differences are actually 

larger for Boot2 critical values than for Boot1 critical values. With Boot3 critical values, 

the differences between the empirical and nominal levels are small when N = 6, except 

for the nominal .10 test of the memory parameter, and very small when N = 12. Thus, the 

Boot3 critical values essentially eliminate the level distortions that occur with asymptotic 

critical values, in particular when N= 12. 

 Because the tests are symmetric, two-tailed tests, the percent of rejections 

corresponding to the lower- and upper-tail bootstrap critical values are of interest. These 

 21



percentages were calculated although they are not shown in Table II.  It turns out that 

these percentages are roughly equal and of the right magnitude when Boot3 critical 

values are used. For example, in the case of the nominal .05 tests for the SR model when 

N= 6, the empirical lower-and upper-percentages are 2.9 and 2.1 for the memory 

parameter and 2.8 and 2.8 for the updating parameter.  For BBL, the empirical 

percentages are 2.1 and 2.7 for the memory parameter and 2.3 and 2.5 for the updating 

parameter when N = 12. 

In these experiments, the numerical accuracy of the bootstrap is greater for the SR 

model than for the BBL model. The Boot3 critical values essentially remove the level 

distortions when N = 6 for the SR model, but only when N = 12 for the BBL model. This 

is not surprising. There is typically more information on learning in estimation samples 

generated by the SR model than those generated by the BBL model. As noted earlier, this 

is because convergence to equilibrium play often takes place more rapidly in the BBL 

model; convergence typically occurs in less than 20 periods in the case of BBL, which is 

not the case in the SR model.  

Table III reports the empirical coverage probabilities of nominal 95 and 90 

percent confidence intervals for the SR and BBL models for N = 6, 12, 24 and 400.  In 

these experiments, the empirical coverage probabilities for confidence intervals that use 

asymptotic critical values are too low when N = 6.  Further, in this case, the differences 

between empirical and nominal coverage probabilities are large, especially for the 

memory parameter in the SR model and the updating parameter in the BBL model. The 

differences between the empirical and nominal coverage probabilities based on 
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asymptotic critical values are reduced when N = 12. There is little or no distortion in the 

coverage probabilities of the asymptotic confidence intervals when N = 24. 

With Boot1 critical values, the differences between the empirical and nominal 

coverage probabilities are reduced for the memory parameter in the SR model and the 

updating parameter in the BBL model when N = 6. While the differences between the 

coverage probabilities are reduced, Boot1 critical values do not eliminate the distortions 

that occur with asymptotic critical values. What is disappointing is that when N = 12, the 

Boot1 critical values do not remove the distortions in the coverage probabilities for the 

nominal 95 percent confidence intervals, except in the case of the updating parameter for 

the BBL model.  The good news is that with Boot1 critical values, the distortions are 

eliminated for the nominal 90 percent confidence intervals.  

8. CONCLUDING COMMENTS 

 Experimental economics is rich in its ability to generate data under laboratory 

conditions.  Like other experimental sciences it too is constrained in the experiments that 

can be performed because of physical limitations.  Our Monte Carlo investigation shows 

that the bootstrap provides improved finite-sample critical values for the tests of the 

parameters of the SR and the BBL models using data from experiments with sender-

receiver games. With bootstrap critical values, the differences between the empirical and 

nominal levels of the tests can be made very small with sample sizes available in 

laboratory experiments. Thus, the bootstrap provides a practical method for controlling 

the probability of making a Type I error in the experiments considered here.  

 The ability of the bootstrap to reduce the distortions in the level of tests that occur 

with asymptotic critical values can be investigated in other settings in experimental 
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economics. This paper has focused on only one of the sender-receiver games examined in 

Blume et al. (1998, 2002), Game1. The approach in this paper can be easily extended to 

investigate the performance of the bootstrap in the other games in Blume et al. (1998, 

2002). Moreover, other dynamic games can be considered, for example, those proposed 

by Crawford (1995) and Feltovich (2000).  In the game used in this paper, all players 

followed the same learning rule. The approach can also to be extended to situations 

where different players use different learning rules. In this situation, a test of the 

proportion of players playing a given rule is of interest. Finally, another potential 

application is the type of hybrid models that have been proposed by Cramer and Ho 

(1999).  
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Figure 1.−Kernel estimates of the finite-sample distributions of the t-statistics for the SR 
model based on 1,000 Monte Carlo replications. 
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Figure 2.−Kernel estimates of the finite-sample distributions of the t-statistics for the 
BBL model based on 1,000 Monte Carlo replications. 
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TABLE I 
Experimental Failures by Number of Players and Model 

 
N SR BBL 
6 48 41 
12 14 12 
24 0 1 
400 0 0 

Note: The table reports the number of estimation samples out of 1,100 for which the ML 
estimates do not exist.  
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TABLE II 
Empirical Rejection Probabilities (Percent) of Nominal .05 and .10 Level Symmetrical, 

Two-tailed Tests for SR and BBL Models 
 
 Nominal .05 Level Tests Nominal .10 Level Tests 
 Critical Values 

N Asymp Boot1 Boot2 Boot3 Asymp Boot1 Boot2 Boot3 
  
 SR Model 
  
  Memory Parameter H0: ϕ0 = 0.8  

6 11.0 8.7 5.2 4.8 15.1 12.3 10.8 9.9 
12 9.1 6.5 5.6 5.4 12.1 10.6 9.8 10.7 
  Updating Parameter H0: ϕ1 = 0.8  

6 7.2 9.0 6.4 5.1 12.2 13.5 12.0 9.7 
12 7.7 7.4 6.7 5.9 11.9 10.9 10.2 10.3 
  
 BBL Model 
  
  Memory Parameter H0: β0 = 0.8  

6 8.8 11.9 13.6 6.4 14.3 16.4 18.4 12.2 
12 6.7 6.9 8.2 4.6 10.6 10.9 13.3 8.7 
  Updating Parameter H0: β1 = 0.8  

6 12.6 11.2 5.8 5.4 17.1 14.4 11.0 11.2 
12 9.4 5.3 4.4 4.7 12.5 9.1 9.9 10.4 

Notes: The empirical rejection probabilities are computed using 1,000 Monte Carlo 
estimation samples, each of which was used to generate 200 bootstrap samples. The 95 
percent confidence intervals for the .05 and .10 levels are (3.6, 6.4) and (8.1, 11.9), 
respectively. 
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TABLE III 
Empirical Coverage Probabilities (Percent) of Nominal 95 and  

90 Percent Confidence Intervals for SR and BBL Models 
 

 95 Percent Intervals 90 Percent Intervals 

 Critical Values
N Asymp Boot1 Asymp Boot1 
 
 SR Model 
  Memory Parameter ϕ0  
   
6 89.0 91.3 84.9 87.7 
12 90.9 93.5 87.9 89.4 
24 93.1  88.0  
400 95.6  91.1  
  Updating Parameter ϕ1  
   
6 92.8 91.0 87.8 86.5 
12 92.3 92.6 88.1 89.1 
24 95.4  90.8  
400 96.4  90.7  
  
 BBL Model 
  Memory Parameter β0  
   
6 91.2 88.1 85.7 83.6 
12 93.3 93.1 89.4 89.1 
24 95.6  91.6  
400 94.2  88.1  
  Updating Parameter β1  
   
6 87.4 88.8 82.9 85.6 
12 90.6 94.7 86.8 90.9 
24 94.9  91.0  
400 94.8  89.8  

Notes: The empirical rejection probabilities are computed using 1,000 Monte Carlo 
estimation samples, each of which was used to generate 200 bootstrap samples. The 95 
percent confidence intervals for the 95 and 90 percent coverage probabilities are (93.6, 
96.4) and (88.1, 91.9), respectively. 
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