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Abstract

One of the key problems in database marketing is the identification and profiling
of households who are most likely to be interested in a particular product or service.
Principal component analysis (PCA) of customer background information followed by
logistic regression analysis of response behavior is commonly used by database mar-
keters. In this paper, we propose a new approach that uses artificial neural networks
(ANN’s) guided by genetic algorithms (GA’s) to target households. We show that the
resulting selection rule is more accurate and more parsimonious than the PCA /logit
rule when the manager has a clear decision criterion. Under vague decision criteria,
the new procedure loses its advantage in interpretability, but is still more accurate than
PCA /logit in targeting households.



1 Introduction

Due to the growing interest in micro marketing, many firms devote considerable resources to
identifying households that may be open to targeted marketing messages. The availability of
data warehouses combining demographic, psychographic and behavioral information further
encourages marketing managers to use database-based approaches to develop and implement
marketing programs.

Database marketers use different tools, depending upon what is known about particu-
lar households. Routine mailings to existing customers are typically based upon the RFM
(recency, frequency, monetary) approach that targets households using knowledge of the cus-
tomer’s purchase history (Schmid and Weber, 1998). Mailings to households with no prior
relationship with the firm are based upon the analysis of the relationship between demo-
graphics and the response to a test mailing of a representative household sample. Given the
large number of potential demographics available, data dimension reduction is an important
factor in building a predictive model that is easy to interpret, cost effective, and general-
izes well to unseen cases. Commonly, principal component analysis (PCA) of demographic
information (Johnson and Wichern, 1992) is used to prepare new variables for this type of
analysis. These new variables are then used as predictors in a logistic regression on the test
mailing responses.

In this study, we propose a new approach to building predictive models for identifying
prospective households. The new methodology combines genetic algorithms (GA’s) for choos-
ing predictive demographic variables with artificial neural networks (ANN’s) for developing
a model of consumer response. ANN’s (Riedmiller, 1994; Sarle, 1994) and GA’s (Goldberg,
1989; Yang and Honavar, 1998; Krishna and Murty, 1999) have been widely used in machine
learning, pattern recognition, image analysis and data mining. In particular, ANN’s have
been recognized as a relatively new approach in finance and marketing applications such as
stock market prediction (Saad et al., 1998; Pan et al., 1997), bankruptcy prediction (Wil-
son and Sharda, 1994), customer clustering (Gath and Geva, 1988; Ahalt et al., 1990) and
market segmentation (Hruschka and Natter, 1999; Balakrishnan et al., 1996). In this work,

we exploit the desirable characteristics of GA’s and ANN’s to achieve two principal goals



of household targeting: model interpretability and predictive accuracy. Our approach is
different from previous studies on direct marketing because of our consideration of multiple
objectives (Ling and Li, 1998) and data reduction (Bhattacharyya, 2000).

Data reduction of demographic information is performed via feature selection in our
approach. Feature selection is defined as the process of choosing a subset of the original pre-
dictive variables by eliminating features that are either redundant or possess little predictive
information. If we extract as much information as possible from a given data set while using
the smallest number of features, we can not only save a great amount of computing time
and cost, but also build a model that generalizes better to households not in the test mail-
ing. Feature selection can also significantly improve the comprehensibility of the resulting
classifier models. Even a complicated model - such as a neural network - can be more easily
understood if constructed only from a few variables. In database marketing applications, it
is important for managers to understand the key drivers of consumer response. A predictive
model that is essentially a “black box” is not useful for developing comprehensive marketing
strategies.

In our work, a specifically designed GA, the Evolutionary Local Search Algorithm (ELSA),
is used to search through the possible combinations of features. Two quality measurements
— hit rate (which is maximized) and complexity (which is minimized) — are used to evaluate
the quality of each feature subset. ELSA performs a local search in the space of feature
subsets by evaluating genetic individuals based on both their quality measurements and on
the number of similar individuals in the neighborhood in objective space. The bias of ELSA
toward diversity makes it ideal for multi-objective optimization, giving the decision maker
a clear picture of Pareto-optimal solutions from which to choose. Previous research has
demonstrated the effectiveness of ELSA for feature selection in both supervised (Menczer
et al., 2000a) and unsupervised (Kim et al., 2000) learning.

The input features selected by ELSA are used to train an artificial neural network that
predicts “buy” or “not buy.” Using information from households with an observed response,
the ANN is able to learn the typical buying patterns of customers in the dataset. The
trained ANN is tested on an evaluation set, and a proposed model is evaluated both on the

hit rate and the complexity (number of features) of the solution. This process is repeated



many times as the algorithm searches for a desirable balance between predictive accuracy and
model complexity. The result is a highly accurate predictive model that uses only a subset of
the original features, thus simplifying the model and reducing the risk of overfitting. Because
the algorithm identifies variables with no predictive value, it also provides useful information
on reducing future data collection costs.

This paper is organized as follows. In Section 2, we explain ELSA in detail. In Sec-
tion 3, we describe the structure of the ELSA/ANN model, and review the feature subset
selection procedure. In Section 4, we present experimental results of both the ELSA/ANN
and PCA /logit model algorithms. Using test-mailing responses on insurance policies, we
show that there is a trade-off between model interpretability and predictive accuracy. In
particular, we obtain both high model interpretability and high predictive accuracy only
when the firm is specific about the way model forecasts will be used to select households
in future mailings. In contrast, interpretability must be sacrificed to preserve predictive
accuracy when the firm is vague about its selection rule. Section 5 concludes the paper and

provides suggestions about future research directions.

2 Evolutionary Local Selection Algorithm (ELSA)

2.1 Local Selection and Algorithm Details

ELSA springs from algorithms originally motivated by artificial life models of adaptive agents
in ecological environments (Menczer and Belew, 1996). Modeling reproduction in evolving
populations of realistic organisms requires that selection, like any other agent process, be
locally mediated by the environment in which the agents are situated.

In a standard evolutionary algorithm,! an agent is selected for reproduction based on how
its fitness compares to that of other agents. In ELSA, an agent (candidate solution) may die,
reproduce, or neither based on an endogenous energy level that fluctuates via interactions
with the environment. The energy level is compared against a constant selection threshold

for reproduction. By relying on such local selection, ELSA reduces the communication

'We use the terms genetic algorithms (GAs) and evolutionary algorithms (EAs) interchangeably.



initialize population of agents, each with energy 6/2
while there are alive agents and for 7 iterations
for each energy source c
for each v (0 .. 1)
Egnvt(v) - 2’UE‘tcot
endfor
endfor
for each agent a
a’' — mutate(clone(a))
for each energy source ¢
v « Fitness(a’,c)
AFE < min(v, ES, . (v))

€
Egnvt(v) - E§n1)t (U) —AE
Eq — Eq + AE
endfor
Eq +— Eq — Ecost
if (Eq>0)
insert a’ into population
E, — E./2
Eq — Eq — Eg
else if (E, <0)
remove a from population
endif
endfor
endwhile

Figure 1: ELSA pseudo-code. In each iteration, the environment is replenished and then
each living agent executes the main loop. In sequential implementations, the main loop calls
agents in random order to prevent sampling effects. We stop the algorithm after 7" iterations.

among agents to a minimum. The competition and consequent selective pressure is driven
by the environment (Menczer et al., 2000b). There are no direct comparisons with other
agents and the search is biased directly by the environment. Further, the local selection
scheme naturally enforces the diversity of the population, making ELSA appropriate for
multi-objective optimization problems.

We now briefly describe the ELSA implementation for the feature selection problem.
A more extensive discussion of the algorithm and its application to Pareto optimization
problems can be found elsewhere (Menczer et al., 2000a; Menczer et al., 2000b). Figure 1
outlines the ELSA algorithm at a high level of abstraction.

2.2 Agents, Mutation and Selection

Each agent in the population is first initialized with some random solution and an initial
reservoir of energy. The representation of an agent consists of D bits, with each of the bits
indicating whether the corresponding feature is selected or not (1 if a feature is selected, 0

otherwise).



Mutation is the main operator used to explore the search space. The mutation operator
randomly selects one bit of each agent and mutates it. At each iteration an agent produces
a mutated clone to be evaluated. Each agent competes for a scare resource, energy, based
on its multi-dimensional fitness and the proximity of other agents in the solution space. In
the selection part of the algorithm, each agent compares its current energy level with a fixed
threshold 6. If its energy is higher than 6, the agent reproduces: the mutated clone that
was just evaluated becomes part of the population, with half of its parent’s energy. When
an agent runs out of energy, it is killed.

The population size is maintained dynamically over the iterations and is determined by
the carrying capacity of the environment depending on the costs incurred by any action,
and on the replenishment of resources both described below (Menczer et al., 2000b). The
population size is also independent of the reproduction threshold, #, which only affects the

energy stored by the population at steady-state.

2.3 Energy Allocation and Replenishment

In each iteration of the algorithm, an agent explores a candidate solution (the mutated
clone). The agent collects AFE from the environment and is taxed with a constant cost
Eost (FEeost < 0) for this “action.” The net energy intake of an agent is determined by
its fitness. This is a function of how well the candidate solution performs with respect to
the criteria being optimized. But the energy also depends on the state of the environment.
The environment corresponds to the set of possible values for each of the criteria being
optimized.? We imagine an energy source for each criterion, divided into bins corresponding
to its values. So, for criterion fitness F, and bin value v, the environment keeps track of

the energy E¢, .(v) corresponding to the value F. = v. Further, the environment keeps a

envt

count of the number of agents P.(v) having F. = v. The energy corresponding to an action

(alternative solution) a for criterion F, is given by

Fi(a)
PFua) @

Fitness(a,c) =

2Continuous objective functions are discretized.



Candidate solutions receive energy only inasmuch as the environment has sufficient re-
sources; if these are depleted, no benefits are available until the environmental resources are
replenished. Thus an agent is rewarded with energy for its high fitness values, but also has
an interest in finding unpopulated niches in objective space, where more energy is available.
The result is a natural bias toward diverse solutions in the population.

When the environment is replenished with energy, each criterion c is allocated an equal
share of energy:

_ PmazEeost

g = D o ¢l

where C' is the number of criteria considered. This energy is apportioned in linear proportion
to the values of each fitness criterion, so as to bias the population toward more promising
areas in objective space. Note that the total replenishment energy that enters the system at
each iteration iS pras - Feost» Which is independent of the population size p but proportional
to the parameter p,,... This way we can maintain p below p,,.. on average, because in
each iteration the total energy that leaves the system, p - E,.s, cannot be larger than the

replenishment energy.

3 ELSA/ANN Model for Customer Targeting

Our predictive model of household buying behavior is a hybrid of the ELSA and ANN
procedures. In this approach, ELSA identifies relevant consumer descriptors that are used
by the ANN to forecast consumer choice. We focus here on the structure of the approach

and the criteria used to select an appropriate predictive model.

3.1 Structure of ELSA/ANN Model

The model setup is shown in Figure 2. ELSA searches for a set of feature subsets and passes
them to an ANN. The ANN extracts predictive information from each subset and learns
the patterns using a randomly selected 2/3 of the training data. Once an ANN learns the
data patterns, the trained ANN is evaluated on the remaining 1/3 of the training data, and



returns two evaluation metrics, Fyccuracy a0d Frompieaity, to ELSA. It is important to note

that in both the learning and evaluation procedures, the ANN uses only the selected features.

Training data Feature space
Best feature o
Genetic Algorithm (ELSA) subset Training Data
A

Feature Evaluation
Subset ' Metrics Y
Artificial Neural Network (ANN) Artificial Neural

Network (ANN)

|
Evauation Data Y — Estimated
- Prospects Prediction -
Accuracy

Figure 2: The structure of ELSA/ANN model. ELSA searches for a good subset of features
and passes them to an ANN. The ANN calculates the “goodness” of each subset and returns
two evaluation metrics to ELSA.

Based on the returned metric values, ELSA biases its search direction to maximize the
two objectives. This routine continues until the maximum number of iterations is attained.
All evaluated solutions over the generations are saved into an off-line solution set without
comparison to previous solutions. In this way, high-quality solutions are maintained without
affecting the evolutionary process.

Among all the evaluated subsets, we choose for further evaluation the set of candidates
that satisfy a minimum hit rate threshold. With these chosen candidates, we start a more
rigorous selection procedure, 10-fold cross validation. In this procedure, the training data
is divided into 10 non-overlapping groups. We train an ANN using the first nine groups of
training data and test the trained ANN on the remaining group. We repeat this procedure
until each of the 10 groups is used as a test set once. We then take the average of the
accuracy measurements over the 10 folds and call it an intermediate accuracy. We repeat
the 10-fold cross validation procedure five times and average the five intermediate accuracy
estimates. We call this the estimated accuracy through the following sections.

For evaluation purposes, we select a single “best” solution in terms of both estimated

accuracy and complexity. We subjectively decided to pick a solution with the minimal



number of features at the marginal accuracy level.®> Once we decide on the best solution, we
train the ANN using all the training data with the selected features only. The trained model
is then used to rank the potential customers (the records in the evaluation set) in descending
order by the probability of buying RV insurance, as predicted by the ANN. We finally select
the top 2% of the prospects and calculate the actual accuracy of our model using the actual

choices of the evaluation set households.

3.2 Evaluation Metrics

We define two heuristic evaluation criteria, Fyccuraey and Frompieaity, to evaluate selected
feature subsets. Each objective, after being normalized into 25 intervals to allocate energy,

is maximized by ELSA.

Fiyccuracy: The purpose of this objective is to favor feature sets with a higher hit rate. Each
ANN takes a selected set of features to learn data patterns and predicts which potential
customers will actually purchase the product. In our application, we define two different
measures, F alcwmcy and F, (z2ccuracy for two different experiments. Experiment 1 assumes
that the managers can specify in advance the rule to be used in select households for
mailings. We select the top 20% of potential customers in descending order of the

probability of purchasing the product and compute the ratio of the number of actual

customers, AC, out of the chosen prospects, TC'. We calculate F,..,,.,., as follows:

1 AC
Fl = =
accuracy Zl TC (3)

accuracy

1 . .o . . . 1
where Z; .40, 18 an empirically derived constant to normalize Fy . ...qc,-

In Experiment 2, we consider a generalization of Experiment 1. We first divide the
range of customer selection percentages into 50 intervals with equal width (2%) and

measure accuracy at the first m intervals only.* At each interval i < m, we select the

3If other objective values are equal, we prefer to choose a solution with small variance.

4This could be justified in terms of costs to handle the chosen prospects and the expected accuracy
gain. As we select more prospects, the expected accuracy gain will go down. If the marginal revenue from
an additional prospect is much greater than the marginal cost, however, we could sacrifice the expected
accuracy gain. Information on mailing cost and customer value was not available in this study.



top (2-4)% of potential customers in descending order of the probability of purchasing
the product and compute the ratio of the number of actual customers, AC;, out of the
total number of actual customers in the evaluation data, Tot. We multiply the width

of interval and sum those values to get the area under the lift curve over m intervals.

Finally we divide it by m to get our final metric, Fy..,,,.,- We formulate it as follows:
1 1 &AC
Fancurac = 7_2 -2 (4)
Y chcuracy mi:l TOt
where T'ot = 238, m = 25 and chcumcy is an empirically derived constant to normalize
2
Faccuracy'

Foomplexity: This objective is aimed at finding parsimonious solutions by minimizing the

4

number of selected features as follows:

d—1

Fcomple:m'ty =1- D—_1 (5)

where d and D represent the dimensionality of the selected feature set and of the full
feature set, respectively. Note that at least one feature must be used. Other things
being equal, we expect that lower complexity will lead to easier interpretability of

solutions as well as better generalization.

Application

The new ELSA/ANN methodology is applied to the prediction of households interested in

purchasing an insurance policy for recreational vehicles. To benchmark the new procedure,

we contrast the performance of the ELSA/ANN methodology to an industry-standard logit

approach that summarizes household background information using principal components

analysis. We evaluate the ELSA/ANN approach using two experiments. In Experiment 1,

we inform the algorithm of the way in which the predictive model will be used by managers

to select households for a direct mail solicitation. In Experiment 2, we leave this information

vague. We show that the new approach provides improvements in forecasting accuracy, but



that model complexity is contingent on the amount of information about the managerial

decision rule.

4.1 Data Description

The data are taken from a solicitation of 9,822 European households to buy insurance for a
recreational vehicle. These data, taken from the ColL 2000 forecasting competition (Kim and
Street, 2000), provide an opportunity to assess the properties of the ELSA/ANN procedure
in a customer prospecting application.® In our analysis, we use two separate datasets: a
training set with 5822 households and an evaluation set with 4000 households. The training
data is used to calibrate the model and to estimate the hit rate expected in the evaluation
set. Of the 5822 prospects in the training dataset, 348 purchased RV insurance, resulting
in a hit rate of 348/5822 = 5.97%. From the manager’s perspective, this is the hit rate
that would be obtained if solicitations were sent out randomly to consumers in the firm’s
database.

The evaluation data is used to validate the predictive models. Our predictive model is
designed to return the top % of customers in the evaluation dataset judged to be most
likely to buy RV insurance. The model’s predictive accuracy is examined by computing the
observed hit rate among the selected households. It is important to understand that only
information in the training dataset is used in developing the model. Data in the evaluation
dataset is used exclusively for forecasting.

In addition to the observed RV insurance policy choices, each household’s record also
contains 93 additional variables, containing information on both socio-demographic char-
acteristics (variables 1-51) and ownership of various types of insurance policies (variables
52-93). Details are provided in Table 1. The socio-demographic data are based upon postal
code information. That is, all customers living in areas with the same postal code have
the same socio-demographic attributes. The insurance firm in this study scales most socio-

demographic variables on a 10-point ordinal scale (indicating the relative likelihood that the

5We use a dataset on consumer responses to a solicitation for “caravan” insurance policies. A “caravan”
is similar to a recreational vehicle in the United States. For more information about the ColL. competition
and the ColL datasets, refer to the Web site http://www.dcs.napier.ac.uk/coil/challenge/.

10



socio-demographic trait is found in a particular postal code area). This 10-point ordinal scal-
ing includes variables denoted as “proportions” in Table 1. For the purposes of this study,
all these variables were regarded as continuous. The psychographic segment assignments
(attributes 4-13), however, are household-specific and are coded into ten binary variables.
In our subsequent discussion, the word feature refers to one of the 93 variables listed
in Table 1. For example, the binary variable that determines whether or not a household
falls into the “successful hedonist” segment is a single feature. Accordingly, in the feature
selection step of the ELSA/ANN model, the algorithm can choose to use any possible subset

of the 93 variables in developing the predictive model.

4.2 Experiment 1

In Experiment 1, we maximize the hit rate when choosing the top 20% potential customers as
in Kim and Street (2000). We select the top 20% of customers in the evaluation dataset using
the model created by the ELSA/ANN procedure. The actual choices of these households
provide a measure of the hit rate. For comparison purposes, we implemented a principal
component analysis (PCA) of the household background characteristics followed by a logistic
regression of the insurance policy choice data. PCA is analogous to our feature selection
procedure to reduce data dimension. The logistic regression is, in fact, an example of a
very simple ANN. The PCA /logit approach is commonly used by industry consultants in
developing household selection rules.

We also implemented an intermediate model, ELSA /logit, for comparison purposes. The
ELSA /logit model is different from ELSA/ANN in the sense that it uses only one hidden
node.® We use the same criterion to select the final solution of ELSA /logit as in ELSA/ANN.
The motivation behind the ELSA /logit model is the decomposition of the accuracy gain of
ELSA/ANN into two sources: feature selection and response function approximation. The
difference in results between PCA /logit and ELSA /logit can be attributed to characteristics
of feature selection, while the difference in results between ELSA /logit and ELSA/ANN’s

can be attributed to the greater flexibility of ANN in approximating the response model.

SELSA/ANN models use v/node;, where node;, represents the number of input nodes. See the appendix
for more details on ANN’s.

11



Feature ID Feature Description

1

2

3
4-13

14-17

18-21

22-23
24-26

27
28-32

33-37
38-39
40-42
43-44
45-50

51
52-72

73-93

Number of houses owned by residents

Average size of households

Average age of residents

Psychographic segment: successful hedonists, driven growers, aver-
age family, career loners, living well, cruising seniors, retired and
religious, family with grown ups, conservative families, or farmers
Proportion of residents with Catholic, Protestant, others and no
religion

Proportion of residents of married, living together, other relation,
and singles

Proportion of households without children and with children
Proportion of residents with high, medium, and lower education
level

Proportion of residents in high status

Proportion of residents who are entrepreneur, farmer, middle man-
agement, skilled laborers, and unskilled laborers

Proportion of residents in social class A, B1, B2, C, and D
Proportion of residents who rented home and owned home
Proportion of residents who have 1, 2, and no car

Proportion of residents with national and private health service
Proportion of residents whose income level is < $30,000, $30,000-
$45,000, $45,000-$75,000, $75,000-$123,000, >$123,000, and aver-
age

Proportion of residents in purchasing power class

Scaled contribution to various types of insurance policies such as
private third party, third party firms, third party agriculture, car,
van, motorcycle/scooter, truck, trailer, tractor, agricultural M/C,
moped, life, private accident, family accidents, disability, fire, surf-
board, boat, bicycle, property, social security

Scaled number of households holding insurance policies for the same
categories as in scaled contribution attributes

Table 1: Household background characteristics

12



Before discussing results, we first briefly summarize our implementation of the PCA /logit
benchmark model in Figure 3. We selected 22 principal components. This is the minimum
required to explain more than 90% of the variance in the training set. In order to get the
estimated hit rate, we implement 10-fold cross validation on the training set as shown in
Figure 4. In the cross validation procedure, the scores of the PC’s are estimated using

different portions of the data each time to get the estimated hit rate.

Apply PCA on training data Dirgin

Determine appropriate number of PCs, n
Reduce the dimensionality of Diyqin using n PCs, creating D/

Y train

Perform logistic regression on D and save (3; and & where i=1,---,n.

train

’
Reduce the dimensionality of evaluation data Dg.,, using n PCs, creating D

) ) X eval
Calculate p(not buy) for each record in D,, . using

eXP(dJrZ:L:l Bi-PCy)

1+e}cp(d-~-z::'=1 Bi-PC;)
Select 20% of records, R, with lowest p
for each selected record r

if r is an actual customer

counter = counter + 1

endif
endfor
Hitrate = counter/R

Figure 3: The implementation procedure of PCA /logit model.

Divide training data Di,qin into 10 equal-sized subsets
for each subsets Diyginli,i =1, --,10
Define Dtrain[i]c = Dirain - Dtra,in[i]
Apply PCA on Dirqinli]®, and select n PCs
Reduce the dimensionality of Diygin[i]¢ using n PCs
Do logistic regression on reduced Di,qin[i|°
Reduce the dimensionality of Diyqin[i] using n PC scores
Calculate p(not buy) using the formula in Figure 3
Pick 20% of records, R[i|, with lowest p
for each selected record r
if r is an actual customer
counter[i] = counter[i] + 1
endif
endfor
endfor

Hitrate = 2;21 counteri|/ 2;21 RJi]

Figure 4: The implementation procedure of cross-validation for PCA /logit model. We used
the same number of PCs, n = 22, as we did in Figure 3.

We set the values for ELSA parameters in the ELSA/ANN and ELSA /logit models as
follows: Pr(mutation) = 1.0, pmae = 1,000, E. = 0.2, 0 = 0.3, and T = 2,000. We select
the single solution which has the highest expected hit rate among those solutions that have

fewer than 10 features selected in both models. We evaluated each model on the evaluation

set. Our results are summarized in Table 2.
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Training set Evaluation set

Model (# Features) Hit Rate 4+ s.d # Correct ‘ Hit Rate

PCA /logit (22) 12.83% + 0.493% 109 13.63%
ELSA /logit (6) 15.73% =+ 0.203% 115 14.38%
ELSA/ANN (7) 15.92% =+ 0.146% 120 15.00%

Table 2: Results of Experiment 1. The hit rates from the three different models are shown as
percentages with standard deviation. The column marked “# Correct” shows the number of
actual customers who are included in the chosen top 20%. The number in parenthesis rep-
resents the number of selected features except for the PCA /logit model, where it represents
the number of PCs selected.

In terms of the actual hit rate, all three models work very well. Even the model with
lowest actual hit rate (PCA /logit) is 2.3 times better than the hit rate expected by mailing
to these households at random (5.97%). The model generated by the ELSA/ANN procedure
returns the highest actual hit rate. As noted earlier, the difference in actual hit rate between
PCA /logit and ELSA /logit provides an estimate of the accuracy gain that comes from the
ELSA feature selection procedure. The difference in actual hit rate between ELSA /logit and
ELSA/ANN provides an estimate of the accuracy gain that comes from the additional flex-
ibility that ANN provides in approximating the true response function. In this application,
both aspects of the ELSA/ANN procedure contribute equally to the improved accuracy of
the model.

Judging the interpretability of a model is necessarily subjective. An advantage of the
ELSA/ANN approach is that predictive features are clearly highlighted. In contrast, the
PCA /logit model uses all of the features in constructing the principal component scores. We

show the seven features that the ELSA/ANN procedure selected in Table 3.

Feature Type Selected Features

Demographic features “Average Family” psychographic segment
Behavioral features =~ Amount of contribution to third party policy, car policy,
moped policy and fire policy, and number of households
holding third party policies and social security policies

Table 3: Selected features by ELSA/ANN in Experiment 1.

14



With the exception of the “Average Family” psychographic segment, all other features
are reports of the insurance buying behavior of the household’s postal code area. The
feature reporting car insurance makes considerable sense, given the fact that the firm is
soliciting households to buy insurance for recreational vehicles. Further evaluation shows
that prospects with at least two insured autos are the most likely RV purchasers. Moped
policy ownership is justified by the fact that many people carry their mopeds or bicycles on
the back of RVs. Those two features are selected again by the ELSA /logit model.” Using
this type of information, we are able to build a potentially valuable profile of likely customers
(Kim and Street, 2000).

In general, the results are in line with marketing science work on customer segmentation,
which shows that information about current purchase behavior is most predictive of future
choices (Rossi et al., 1996). The fact that the ELSA/ANN model used only seven features
for customer prediction also implies that the firm could reduce data collection and storage
costs considerably. This is possible through reduced storage requirements (86/93 ~ 92.5%),
and the reduced labor and data transmission costs.

We also compare the three models in terms of lift curves.® Figure 5 shows the cumulative
hit rate over the top 2 < z < 100 % prospects. Clearly, our ELSA/ANN model is the best
when the firm selects the top 20% of prospects for a direct mail solicitation. However, the
performance of ELSA/ANN and ELSA /logit over all targeting percentages was worse than
that of PCA/logit. This occurs because our solution is specifically designed to optimize
the hit rate when managers select the top 20% of prospects. In contrast, the PCA /logit
model is estimated without any knowledge of how model forecasts will be used in decision-
making. This observation motivated a second experiment in which we attempt to improve

the performance of ELSA/ANN model over a greater range of decision rules.

"The other four features selected by the ELSA /logit model are: contribution to bicycle and fire policy,
and number of trailer and lorry policies.

8Lift is defined as the percentage of all buyers in the database who are in the group selected for a direct
mail solicitation. Under random sampling, the lift curve is a 45-degree line starting at the origin of the
graph.
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Figure 5: Lift curves of three models that maximize the hit rate when targeting the top 20%
of prospects.
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4.3 Experiment 2

In this experiment, we search for the best solution that maximizes the accuracy defined in
a more global sense. The algorithm is designed to maximize the area under the lift curve,
up to the top 50% of potential customers. Logically, the best solution from Experiment 1 is
not necessarily the best solution in the more generalized environment of Experiment 2. In
fact, our results are consistent with this observation. We also implemented the PCA /logit
and the ELSA /logit model again for comparison purposes. We first show the generalized
procedure of PCA /logit to get the estimated accuracy in Figure 6.

Apply PCA on training data Dirgin

Determine appropriate number of PCs, n

’
Reduce the dimensionality of Diyqin using n PCs, creating Dt'rain
’

Perform logistic regression on D and save (3; and & where i=1,---,n.

train
Reduce the dimensionality of evaluation data Dg,, using n PCs, creating D

’
, eval
Calculate p(not buy) for each record in D,,

exp(a+y " 6;-PCy)
1+exp(aty " B;-PCy)
for each i=1 to intnum
T = intyidth "
Select zJ, records with lowest p
for each selected record r
if r is an actual customer
counter = counter + 1
endif
endfor
Hitrate = counter/Tot
Accuracy = Accuracy + Hitrgte * intyiqen
endfor
Accuracy = Accuracy/intnum

,q) UsSing

p=

Figure 6: The generalized implementation of PCA /logit model. We use n = 22 (as in
Experiment 1), int,um = 25, intyan = 2, and Tot = 238.

The ELSA/ANN and ELSA /logit models are adjusted to maximize the overall area under
the lift curve over the same intervals as in PCA/logit. Because this new experiment is
computationally much more expensive, we take a slightly different approach to choose the
final solutions of ELSA/ANN and ELSA /logit. We used 2-fold cross validation estimates
of all solutions and set the values of the ELSA parameters identically with the previous
experiment except pma: = 200 and T = 500. Based on accuracy estimates, we choose a
solution that has the highest estimated accuracy with less than half of original features in

both models. We evaluate three models on the evaluation set and summarize results in

Table 4 and in Figure 7.
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Model (# Features) % of Selected

5 [ 10 | 15 | 20 | 25 | 30 | 35 | 40 [ 45 [ 50
PCA/logit (22) || 20.06 | 20.06 | 16.04 | 13.63 | 12.44 | 11.20 | 10.81 | 10.22 | 9.87 | 9.38
ELSA/logit (46) | 23.04 | 18.09 | 15.56 | 13.79 | 12.13 | 12.04 | 10.97 | 10.54 | 10.03 | 9.53
ELSA/ANN (44) || 19.58 | 17.55 | 16.40 | 14.42 | 13.13 | 11.96 | 10.97 | 10.40 | 9.98 | 9.64

Table 4: Summary of Experiment 2. The hit rates of three different models are shown over
the top 50% of prospects.

Table 4 shows that the ELSA/ANN model has higher hit rates than PCA /logit over the
solicitation range between 15% and 50% of total households. In particular, ELSA/ANN
is best when choosing 15%, 20%, 25% and 50% of the targeting points, and tied for the
best at 30%, 35% and 45%. The overall performance of ELSA /logit is better than that of
PCA/logit. We attribute this to the fact that both models benefit from the ELSA feature
selection methodology.

The lift curves in Figure 7 show that the ELSA/ANN has much improved global char-
acteristics relative to Experiment 1. We, however, note that there are significant costs
associated with this improved performance. First, the hit rate of ELSA/ANN at the 20%
solicitation rate is now lower than in Experiment 1 (14.42% versus 15.00%). Second, it is no
longer clear which aspects of the ELSA/ANN model are responsible for the improved global
performance. Note that the rank order of ELSA /logit and ELSA/ANN shows no consistent
pattern across the various solicitation percentages. Third, the well-established parsimony
and interpretability of the models selected by ELSA/ANN in Experiment 1 is largely lost
in Experiment 2. We attribute this partially to the fact that different selection points may
have related but different optimal subsets of features. Correlation among features seems to
contribute to the loss of parsimony. For instance, a particular variable related to insurance
policy ownership that is part of the optimal subset at a 20% selection rate could easily be
replaced by a different, correlated feature at 30%. It should be noted that the ELSA/ANN
model is superior to PCA/logit model in the sense that ELSA/ANN works with feature
subsets, while PCA /logit always requires the whole feature set to construct PC’s.

These aspects of the solution provide strong evidence that there exists a key trade-off in

building a predictive model. By focusing on a specific decision scenario (as in Experiment
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Figure 7: Lift curves of three models that maximize the area under lift curve when targeting
upto top 50% of prospects. In practice, we optimize over the first 25 intervals which have
the same width, 2%, to approximate the area under the lift curve.
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1), we are able to construct a procedure that is parsimonious and has superior predictive
performance. When the decision scenario is more ambiguous (as in Experiment 2), we can

improve predictive performance over a broad range, but sacrifice model interpretability.

5 Conclusion

In this paper, we presented a novel approach for customer targeting in database marketing.
We used an evolutionary algorithm, ELSA, to search for possible combinations of features
and an artificial neural network (ANN) to score customers. When the decision rule was pre-
cise, the overall performance of ELSA /ANN was superior to the industry standard PCA /logit
model both in terms of accuracy and in terms of interpretability. However, this superiority
in interpretability is confined to specific decision conditions defined during model develop-
ment and calibration. Under a more general decision scenario, ELSA/ANN yielded a more
accurate model over a broad selection percentage range at the cost of increasing the number
of predictive features in the specification.

One of the clear strengths of the ELSA/ANN approach is its ability to construct predic-
tive models that reflect the direct marketer’s decision process. Unlike a standard statistical
approach like PC/logit, the ELSA/ANN procedure can be easily modified to take into ac-
count different objectives. With information of campaign costs and profit per additional
actual customer, a direct marketer could use ELSA/ANN to choose the best selection point
where expected total revenue is maximized. In this way, it would be possible to determine
the type of decision rule that the marketer should adopt, both in terms of solicitation per-
centage as well as predictive rule. Because all mailing lists do not all have the same potential
for the marketer, this approach would allow a predictive model and solicitation-mailing rule
to be customized as the firm’s database changes.

Our work provides additional evidence that there exists strong dependencies between
model specification and managerial decision-making. When managers are clear about how
a model will be used, the analyst can construct a highly specialized model that does better
than general approaches (such as PC/logit). When managers are vague, a less parsimonious

model can be constructed which does better under some region of the decision space. The
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ELSA/ANN approach provides a new tool in which these trade-offs can be understood in

the context of direct mail marketing applications.
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Appendix

In this appendix, we briefly explain our neural network model and describe the learning
procedure. Our neural network model is a multi-layer neural network consisting of a number
of neurons (nodes) which are connected by weighted links. We specifically build it with
three layers, an input layer, a hidden layer, and an output layer. We also note that the time
complexity grows geometrically with the number of hidden nodes. We empirically set the
number of hidden nodes as \/node;, where node;, represents the number of input nodes. We
represent our neural network model as follows:

9 Output
Layer

Hidden
Layer

I nput
Layer
Figure 8: The structure of neural network model. It consists of three layers; input layer,

hidden layer, and output layer. There is only one output node for concept learning and
vnode;, nodes in the hidden layer.

As shown in Figure 8, each node in the input layer receives a corresponding feature from
the input data, and passes it via weighted connections to neurons in the hidden layer. Each
neuron ¢ computes its activation level o; using an activation function, the sigmoid logistic

function

1

0; = f(net,) = m (A—l)
where net; is defined as follows:
neti = Z 0;Wyj. (A—Q)
jEpred(s)

In the above equation, pred(i) and w;; denotes the set of predecessors of unit 7 and the

24



connection weight from unit j to unit ¢ respectively.

Learning in neural network is done by adjusting network weights in order to map input
to output through examples in the training data set, N. Each example n consists of feature
valuess, T, and its corresponding class label t,. When an example with Z,, is presented to
the network, the distance between the target ¢,, and the actual output vector o4 is measured

as follows:

E= % Z (td - Od)2. (A—3)

neN

Fulfilling the learning goal now is equivalent to finding a minimum of £. The weights in
the network are changed along a search direction §(t), driving the weights in the direction

of the estimated minimum:

Wt +1) = w(t) + 1% (t) (A-4)

where the learning rate 17 determines the step size of weight changes and the negative gradient

—g—g is used for the search direction §(t).

By propagating the error back from the output layer towards the input layer and applying

the chain rule repeatedly, the backpropagation algorithm computes ;TE for each weight in

Ji

the network as follows:

oF OF 0o,

owj; do; wj;
0F 0do; Onet;
do; Onet; Owj;
oF

= aoi f’(neti)oj. (A—5)

Based on whether 7 is an output unit or not, the value of % is computed as follows:
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e Case 1: 7 is an output unit:

— 22" W (t.— ). A
doi 2 Do, (i = o) (A-6)
e Case 2: 7 is not an output unit:
oE a_ank
aoi k€eupper() aok aoi
— OFE Qo Onety,
k€upper(i) aok anetkz aOZ‘
o

keupper(i)

where upper(i) denotes the set of all units & in upper layers and the gradient information is
passed down from the output layer to input layer successively. Once the gradient information

is known, the weight update is computed as follows:

Dugi(t) = =% (1) (A-8)

(9wﬂ
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