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Refinements in Validity Generalization Methods:
Implications for the Situational Specificity Hypothesis

Frank L. Schmidt, Kenneth Law, John E. Hunter, Hannah R. Rothstein,
Kenneth Pearlman, and Michael McDaniel

Using a large database, this study examined three refinements of validity generalization proce-
dures: (a) a more accurate procedure for correcting the residual SD for range restriction to estimate
SDP, (b) use of f instead of study-observed rs in the formula for sampling error variance, and (c)
removal of non-Pearson rs. The first procedure does not affect the amount of variance accounted
for by artifacts. The addition of the second and third procedures increased the mean percentage of
validity variance accounted for by artifacts from 70% to 82%, a 17% increase. The cumulative
addition of all three procedures decreased the mean SDf estimate from .150 to .106, a 29% de-
crease. Six additional variance-producing artifacts were identified that could not be corrected for.
In light of these, we concluded that the obtained estimates of mean SDP and mean validity variance
accounted for were consistent with the hypothesis that the true mean SDP value is close to zero.
These findings provide further evidence against the situational specificity hypothesis.

The first published validity generalization research study
(Schmidt & Hunter, 1977) hypothesized that if all sources of
artifactual variance in cognitive test validities could be con-
trolled methodologically through study design (e.g., construct
validity of tests and criterion measures, computational errors)
or corrected for (e.g., sampling error, measurement error), there
might be no remaining variance in validities across settings.
That is, not only would validity be generalizable based on 90%
credibility values in the estimated true validity distributions,
but all observed variance in validities would be shown to be
artifactual and the situational specificity hypothesis would be
shown to be false even in its limited form. However, subsequent
validity generalization research (e.g., Pearlman, Schmidt, &
Hunter, 1980; Schmidt, Gast-Rosenberg, & Hunter, 1980;
Schmidt, Hunter, Pearlman, & Shane, 1979) was based on data
drawn from the general published and unpublished research
literature, and therefore it was not possible to control or correct
for the sources of artifactual variance that can generally be
controlled for only through study design and execution (e.g.,
computational and typographical errors, study differences in
criterion contamination). Not unexpectedly, many of these
meta-analyses accounted for less than 100% of observed valid-
ity variance, and the average across studies was also less than
100% (e.g., see Pearlman et al., 1980; Schmidt et al., 1979).

The conclusion that the validity of cognitive abilities tests in
employment is generalizable is now widely accepted (e.g., see
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American Educational Research Association, American Psy-
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Industrial and Organizational Psychology, 1987). Even when
less than 100% of observed variance in validities is demon-
strated to be due to artifacts, validity generalization findings
usually show that the remaining variance in validities is small
enough that the test will have some useful degree of validity for
that job in new employment settings. Any of the several meth-
ods of estimating the generalizability of validities can be used
to show this, including the simplest method based on correct-
ing observed validity variance only for sampling error (Pearl-
man et al., 1980; Schmidt, Gast-Rosenberg, & Hunter, 1980).
The stronger hypothesis that all variation in validities for any
given job and ability construct (test type) is artifactual (i.e., the
hypothesis that situational specificity has been disproven) has
been less widely accepted (Sackett et al., 1985). The basis for
reluctance to accept this hypothesis appears to be that most
validity generalization analyses do not account for all the vari-
ance in validities across studies; some would suggest that per-
haps the remaining variation of validities is due to true (but
limited) situational differences.

However, there is evidence from five meta-analyses support-
ing the stronger hypothesis that there is no real situational speci-
ficity at all. In three of these meta-analyses, studies were care-
fully conducted by the same research team in multiple organiza-
tions in different geographical areas using the same tests and
criterion measures in all studies and carefully controlling data
quality and computational, typographical, and other errors
(Dunnette et al., 1982; Dye, 1982; Peterson, 1982). In all three
meta-analyses, it was found that, on average, all variance across
settings was accounted for by artifacts, chiefly sampling error.
These studies indicate that when it is possible to control for
sources of variance that cannot be corrected for statistically, the
findings contraindicate the hypothesis of situational specificity.

The remaining two meta-analyses are based on a different



SCHMIDT, LA\M HUNTER, ROTHSTEIN, PEARLMAN, McDANIEL

approach. The traditional situational specificity hypothesis
makes two predictions, one well-known and obvious and one
that is less well-known and more subtle. The well-known and
obvious prediction is that there are real differences between
jobs that cause validity coefficients to vary from setting to set-
ting. Validity generalization research tests this prediction by
examining the extent to which the variance of observed validi-
ties is due to artifacts.

The second prediction made by the situational specificity
hypothesis is that if the setting (job, test, criterion, organiza-
tion, and applicant pool) remains constant, validity will not
vary. That is, if the factors hypothesized to cause variation in
validity do not vary, validity will not vary. That this prediction
is indeed made can be seen by consideration of the older as-
sumption that local criterion-related validity studies provide a
solution to the problem of situational specificity, that is, the
belief that a local validity study will accurately calibrate the
validity in that setting. This belief indicates that advocates of
situational specificity did not understand the operation of sam-
pling error; that is, they did not realize that sampling error
alone would cause wide variation in observable validities, mak-
ing it impossible to accurately calibrate validities in small sam-
ple situational studies. Furthermore, they appear to have falsely
believed that use of statistical significance tests "controlled" for
any problems that sampling error might create (see Hunter &
Schmidt, 1990b; Schmidt, Hunter, & Pearlman, 1980; Schmidt,
Ocasio, Hillery, & Hunter, 1985). This is clearly not a sophisti-
cated form of situational specificity hypothesis, but it was the
predominant hypothesis in personnel psychology for more
than 50 years and is still held by some. The principles of valid-
ity generalization and meta-analysis, on the other hand, predict
that small sample validities observed in the same setting will
vary substantially, mostly because of sampling error. These op-
posing predictions were tested in two studies (Schmidt &
Hunter, 1984; Schmidt, Ocasio et al., 1985). In both studies,
validities observed within the same setting were found to vary
markedly across studies, both in magnitude and in significance
levels. Of particular significance was the fact that the level of
variation was comparable to that typically observed across stud-
ies conducted in different settings, where the observed variance
would include not only sampling variance and other artifactual
variance, but also variance due to the hypothesized situational
moderators. This finding casts doubt on the existence of such
hypothesized situational moderators. Sampling error was
shown to account for all of the observed variation. These find-
ings strongly undercut the situational specificity hypothesis.

These findings led us to reexamine current validity general-
ization methods to determine whether they can be improved as
procedures for testing the situational specificity hypothesis.
These methods are adequate for demonstrating validity general-
izability, as noted earlier. But successfully addressing the ques-
tion of whether the small amount of variance remaining in the
results of current validity generalization studies is attributable
to artifacts or to real but small moderators requires more pre-
cise methods of estimating artifactual variance. We have identi-
fied three correctable imperfections in current validity general-
ization methods: (a) use of an approximation that overestimates
the standard deviation of true validities (i.e., treating the correc-
tion for range restriction as if it were linear); (b) use of observed

rs from individual studies in the formula for sampling error,
rather than the mean observed r for the set of studies (McDaniel
& Hirsh, 1986; Hunter & Schmidt, 1992); and (c) inclusion of
non-Pearson correlations (with their larger sampling error vari-
ances) in validity generalization data sets.

The present article explains each of these imperfections, pre-
sents improved procedures, and illustrates the impact of the
improved procedures by applying them to data from an exist-
ing large validity generalization database and comparing the
original results with the results yielded by the improved proce-
dures.

Nonlinearity in the Range Correction

In artifact distribution-based methods of meta-analysis, the
mean (p) and standard deviation (SDP) of true correlations are
estimated from the mean (rres) and standard deviation (5Z)res) of
the residual distribution. The residual distribution is the distri-
bution of observed correlations expected across studies if N
were always infinite (i.e., no sampling error) and reliability and
range restriction were always constant at their respective mean
values (Law, Schmidt, & Hunter, 1991 b). To correct the residual
distribution for unreliability, we could divide every value in
that distribution by the mean square root of the reliabilities.
But because that value is a constant, we can instead just divide
both fm and SDKS by that constant and get the same result. This
is what our artifact distribution-based meta-analysis proce-
dures do. But these procedures do exactly the same thing in
correcting the residual distribution for the effects of mean
range restriction, and here this approach does not work as accu-
rately.

Current procedures use the mean level of range restriction
(in the form of the ratio of the restricted to the unrestricted
predictor standard deviations) to correct rres. This increases fres

by some factor, say 1.50. Then SDKS is multiplied by this same
factor to estimate the SD of a distribution in which each r has
been corrected for the mean level of range restriction. However,
unlike the reliability correction, the range restriction correc-
tion is not linear in r. The correction is not the same for every
value of r in the residual distribution. Instead, it is larger for
smaller rs and smaller for larger rs. Thus, the approximation
based on the assumption of linearity in artifact distribution-
based meta-analysis procedures leads to overestimates ofSDp.

Simulation studies (Callender & Osburn, 1980; Raju &
Burke, 1983) have demonstrated that the interactive
procedure—theoretically, our most sophisticated method (see
Schmidt, Gast-Rosenberg, & Hunter, 1980)—yields estimates
of SDP that are too large by .02 or more. This overestimation
occurs in simulated data in which sample sizes are infinite (elim-
inating sampling error) and sources of artifactual variance such
as computational errors, outliers, and non-Pearson rs do not
exist. This overestimation stems from failure to take into ac-
count the nonlinearity of range restriction corrections. This
nonlinearity can be taken into account by correcting each value
in the residual distribution separately for the mean level of
range restriction. To take this nonlinearity into account, the
following method can be used (Law et al., 1991b). After deter-
mining the mean and SD of the residual distribution, one spe-
cifies 60 additional values in that distribution by moving out
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from the mean in . 1 SD units to 3 SD above and below the
mean. Then one corrects each of these values individually for
range restriction, using the mean of the s/S ratio. The formula
used to correct each value is

r,(S/s)
{[(S/s)2 - \]r2 + 1 11/2

where r, = the value of the correlation in the residual distribu-
tion, Ri = the corrected value, S = the unrestricted standard
deviation, and s = the mean-restricted standard deviation.

Each range-corrected r is then corrected for the mean effect
of unreliability. The relative frequency of each value of r is in-
dexed by the normal curve ordinate associated with its z score
in the residual distribution. These frequencies are applied to
the corresponding corrected correlations (/>,-). The frequency-
weighted mean of the distribution of the corrected correlations
(p) is then determined, and the following frequency-weighted
variance formula is used to find S2:

S2 =

where ft is the frequency associated with p,. The square root of
this value (i.e., SDP) is a more accurate estimate of the standard
deviation of true validities. This procedure is discussed in more
detail in Law et al. (1991 b). That study used computer simula-
tion to compare the accuracy of this procedure with that of the
older linear procedure and found the new procedure to be con-
siderably more accurate.

Use of r Instead of r in the Sampling Error Formula

The well-known formula for the sampling error variance of
sample correlation coefficients is

N - 1 '

where N is the sample size and p ,̂ is the population (un-
corrected) correlation. But pxy is unknown, and to use this for-
mula, some method must be found to estimate it. In single
studies, the estimate of pxy typically used—because it is the
only one available—is the observed correlation in the study at
hand. In our early meta-analyses of employment test validities,
we followed this tradition: The value used to estimate the sam-
pling error variance in every study was the observed correlation
in that study. We have since found that this procedure is not
optimal. The mean observed correlation (fobs)—a good esti-
mate of p^—is typically about .20 in this literature. Sample
sizes are usually small, so there are substantial departures in
both directions from p.̂ . When the sampling error is large and
positive (e.g., +.20, so that r = .40), the estimated S2 is substan-
tially reduced (by 23% in this example). But this effect is not
symmetrical. When sampling error is large and negative (e.g.,
—.20, so that r = .00), estimated Se

2 is increased by only a small
amount (by 9% in this example). Thus, on balance, the sam-
pling error in a set of correlations is substantially underesti-
mated. The smaller the sample size in the studies analyzed, the
greater this underestimation will be. Also, the smaller the (at-
tenuated) population correlation, the greater the underestima-

tion will be (because smaller pxy values yield larger sampling
error variances if sample sizes are equal). The result is underes-
timation of the amount of variance accounted for by sampling
error and overestimation of SDf. This distortion can be elimi-
nated by using the r for the set of studies rather than individual
rs in the formula for sampling error. The r contains little sam-
pling error, and extreme values are unlikely. The result should
be more accurate estimates of SDP.

Law, Schmidt, and Hunter (199 la) tested this hypotheses for
realistic data combinations using computer simulation. They
found that for both the homogeneous case (no variation in popu-
lation correlations) and the heterogeneous case (variable popula-
tion correlations), use of r yielded more accurate estimates of
sampling error variance than use of individual study rs.

Millsap (1988), in a Monte Carlo study, used r rather than rin
the formula for sampling error variance. In his study, all p were
equal so S2 was zero, and the variance of the observed rs was
solely sampling error variance, that is, S,2 = S2. However, he
found that his formula-derived estimates of S2 were slightly
smaller than the observed $2 figures, and this discrepancy was
larger for smaller sample sizes. He attributed this finding to
inaccuracy in the formula (the formula is an approximation),
but the phenomenon described here is in large part the explana-
tion for his findings. He also found that the negative bias in his
formula-derived estimates of sampling error variance was
larger when measures had lower reliability. This finding is ex-
plained by the fact that lower reliability leads to lower values of
pxy, the operative population correlation. Lower p, values have
larger sampling error variances for any fixed sample size, thus
intensifying the process described earlier. Thus, it was not
unreliability (measurement error) per se that caused the in-
crease in the underestimation, but rather the reduced value of
the population correlation.

Presence of Non-Pearson rs

It is well-known that commonly used non-Pearson correla-
tion coefficients, such as the biserial and tetrachoric, have
larger standard errors than do Pearson rs. Thus, the formula for
the sampling error variance of the Pearson correlation underes-
timates the amount of sampling error variance in these correla-
tions. When such correlations are included in a meta-analysis,
they are treated as if their standard errors were those of Pearson
rs. This treatment deflates the estimate of variance accounted
for by artifacts and inflates the estimate of SDf in any distribu-
tion of correlations in which biserial, triserial, or tetrachoric
correlations are present. If the standard formula for the sam-
pling error variance of a correlation coefficient is used, then
more accurate results can be obtained if non-Pearson rs are
deleted prior to the meta-analysis. Biserial and tetrachoric
correlation can be included in meta-analysis, but more compli-
cated formulas are required (Hunter & Schmidt, 1990a, 1990b),
and their use requires information that is sometimes not pre-
sented in individual studies.

Other Considerations Related to Accuracy of Estimates

An additional issue that bears on tests of the hypothesis of
situational specificity is that of second-order sampling error.
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This terms refers to the sampling problem created by using
small numbers of studies in a validity generalization analysis.
The outcome of any such analysis depends to some extent on
which studies randomly happen to be available; that is, the
outcome depends in part on study properties that vary ran-
domly across studies. This is true even if all relevant, currently
existing studies are included. It affects estimates of the stan-
dard deviation more than it affects estimates of the mean. (This
is also the case with ordinary sampling error and ordinary sta-
tistics.) This phenomenon has been examined in depth else-
where (Hunter & Schmidt, I990b, chap. 9; Schmidt, Hunter,
Pearlman & Hirsh, 1985). The major point is that whereas the
formula for sampling error variance correctly predicts the
amount of variance sampling error will produce on the average,
in specific sets of studies, sampling error randomly produces
more than the predicted amount of variance sometimes and
randomly less variance other times. The larger the number of
studies (other things equal), the smaller are the deviations ex-
pected from observed variance. However, if the number of stud-
ies is small, these deviations can be quite large on a percentage
basis (although absolute deviations are usually small, even in
such cases).

In cases in which the same theoretical considerations apply
to a number of meta-analyses, the problem of second-order
sampling error can be addressed using a meta-analysis of meta-
analyses, also known as a second-order meta-analysis. Validity
generalization research on cognitive ability tests is one exam-
ple. Under the situational specificity hypothesis, the hypothe-
sized situational moderators would be essentially the same for
different abilities. The traditional situational specificity hy-
pothesis is very vague; it states merely that unknown and unob-
servable variables that differ across situations cause observed
validities to vary. What these variables were was never speci-
fied and it was never stated that these factors would be different
for different abilities, other things being equal. Therefore, it
appears appropriate to assume that these vague factors were not
considered to be different for different abilities, considering
that the situational specificity hypothesis was applied in appar-
ently the same manner to all abilities (and, indeed, all predic-
tors). Under the alternate hypothesis, all variance would be
hypothesized to be artifactual for all abilities. The second-order
meta-analysis consists of computing the average percentage of
variance accounted for across the several meta-analyses. It
should be clear that in conducting a second-order meta-analy-
sis, figures greater than 100% should not be rounded down to
100%. Doing so would obviously bias the mean for these figures,
given that those that are randomly lower than 100% are not
rounded upward. Technical considerations in conducting sec-
ond-order meta-analyses are discussed in more detail later. The
key point is that it is the reciprocal of the percentage variance
accounted for that must be averaged across meta-analyses; that
is, the relevant mean is the harmonic mean (for an example, see
Rothstein, Schmidt, Erwin, Owens, & Sparks, 1990; see also
Callender & Osburn, 1988). The methods of second-order
meta-analysis are used later in the present study.

Spector and Levine (1987) conducted a computer simulation
study aimed at evaluating the accuracy of the formula for the
sampling error variance of r. In their study, the value of p was
always zero, so the formula for the sampling error variance of

observed rs was Se
2 = \/(N - 1). They conducted simulation

studies for various values of TV ranging from 30 to 500, and the
number of observed rs per meta-analysis was varied from 6 to
100. For each combination of TV and number of rs, they repli-
cated the meta-analysis 1,000 times and then evaluated the
average value of S^/S2 across 1,000 meta-analyses. That is, they
focused their attention on the average ratio of variance pre-
dicted from the sampling error formula to the average observed
variance of the rs across studies. They did not look at S2 — Se

2,
the difference between predicted and observed variances. They
found that for all numbers of rs less than 100, the ratio S^/S2

averaged greater than 1.00. For example, when there were 10 rs
per meta-analysis and N = 75 in each study, the average ratio
was 1.25. The smaller the number of rs per meta-analysis, the
more the ratio exceeded 1.00. Kemery, Mossholder, and Roth
(1987) obtained similar results in their simulation study. Both
studies interpreted these figures as demonstrating that the for-
mula for ̂ 2 overestimates sampling variance when the number
of correlations in a meta-analysis is less than 100. Their as-
sumption was that if the S2 formula were accurate, the ratio
S^/S2 would average 1.00.

The conclusion that one of the most basic formulas in all of
statistics—a formula that had been accepted by statisticians for
more than 80 years—was erroneous was surprising. The Spec-
tor and Levine (1987) study was critiqued by Callender and
Osburn (1988), who showed that if one assessed accuracy by the
difference S? - Se

2, the sampling error variance formula was
shown to be extremely accurate, as had also been demonstrated
in their previous simulation studies. There was no bias. They
also demonstrated why the average ratio Se

2/S,2 is greater than
1.00 despite the fact that Se

2 accurately estimates sampling vari-
ance. When the number of correlations in a meta-analysis is
small, then by chance the S,2 will sometimes be very small; that
is, by chance all observed rs will be very similar to each other.
Because £2 is the denominator of the ratio, these tiny S? values
lead to very large values for S^/S2, sometimes as large as 30 or
more, and if S2 should by chance be zero, the ratio is infinitely
large. These extreme values pull the mean ratio above 1.00; the
median ratio is very close to 1.00. The analysis by Callender and
Osburn (1988) explains the surprising conclusion of Spector
and Levine (1987) and demonstrates that the fundamental sam-
pling variance formula for the correlation is unbiased.

Spector and Levine (1987) would have reached a correct con-
clusion had they used the reciprocal of their ratio. That is, if
they had used Sf/S2 instead of S2/S,2, they would have found
that the mean ratio was 1.00. With this reversed ratio, the most
extreme possible value is zero (rather than infinity), and the
distribution of ratios is much less skewed. This point has im-
portant implications for second-order meta-analyses. Second-
order meta-analyses may be conducted by averaging the per-
centage of variance accounted for by artifacts over similar
meta-analyses. In any given meta-analysis, this percentage is
the ratio of artifact-predicted variance (sampling variance plus
that due to other artifacts) to the observed variance. One over
this ratio is the reversed ratio, Sf/S2. In second-order meta-ana-
lysis, this reversed ratio should be averaged across studies, and
then the reciprocal of that average should be taken. Another
way to state this is that, in second-order meta-analysis, the har-
monic mean should be computed, not the arithmetic mean.
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This procedure prevents the upward bias that appeared in the
Spector and Levine study and results in an unbiased estimate of
the average percentage of variance in the meta-analyses that is
due to artifacts (for an example, see Rothstein et al., 1990).

Table 1
Total Sample Sizes and Number of Validity Coefficients
in Original Distributions and After Removal
of Non-Pearson Correlation Coefficients

Method

Database

The large database for validities against measures of performance
on the job in clerical occupations compiled by Pearlman et al. (1980;
see their Tables 4,5, and 7) was used in the present study. Studies in this
database are highly heterogeneous, spanning the time period from the
1920s through the 1970s and including both published and unpub-
lished data (68% unpublished). Studies were conducted in all parts of
the United States and in many different types of organizations, both
public and private. This database included 32 distributions of validi-
ties representing various combinations of 10 test types and five individ-
ual (true) clerical job families, as denned by the Dictionary of Occupa-
tional Titles (U.S. Department of Labor, 1977). These 32 distributions
of validities were the data used in this study. To ensure homogeneity of
criterion measures, only studies in which the criterion measure was
supervisory ratings of overall job performance were used. The number
of validity coefficients in each distribution and their associated total
sample sizes are shown in columns 1 and 2 of Table 1. The 10 test types
in Table 1 can be divided into 5 classic ability constructs (Predictors
1-5: general mental ability, verbal ability, quantitative ability, reason-
ing ability, and perceptual speed) and 5 test types that would generally
be regarded as less homogeneous (Predictors 6-10: memory tests, spa-
tial/mechanical tests, motor tests, performance tests, and clerical apti-
tude tests). In this research, analyses were conducted separately for the
classical ability constructs, in the expectation that validity findings
would prove more homogeneous for these constructs.

Analysis

The published validity generalization analyses by Pearlman et al.
were based on the noninteractive method (Pearlman et al, 1980),
whereas this study used the interactive method (Hunter & Schmidt,
1990b, chap. 4; Schmidt, Gast-Rosenberg, & Hunter, 1980), the method
now typically used in our validity generalization research. A recent
computer simulation study (Law et al. 1991b) indicates that, under
most conditions, the interactive procedure can be expected to be
slightly more accurate than the noninteractive. The artifact distribu-
tions used were the same as those used by Pearlman et al. (1980). These
distributions werecarefully developed based on examination of numer-
ous validity studies and data sets in which predictor and criterion reli-
abilities and range restriction values were either given or could be
computed. They were later checked against figures from large empiri-
cal databases, yielding considerable empirical evidence that these dis-
tributions closely match those found in real data (Alexander, Carson,
Alliger, & Cronshaw, 1989; Rothstein, 1990; Schmidt, Hunter, et al,
1985, question and answer 26; see also Hunter & Schmidt, 1990b, pp.
224-226).

Meta-analysis was applied four times to the clerical data set. The
first analysis (Procedure 1) used the traditional method: the older lin-
ear range correction method was used and the observed study correla-
tions (r,) were used in the sampling error variance formula for r. No
data were removed. In the second meta-analysis (Procedure 2), the
new range correction procedure was introduced; otherwise this analy-
sis was the same as Procedure 1. The third meta-analysis (Procedure 3)
was the same as the second except that the fwas used in the sampling
variance formula instead of the observed study r,. The fourth meta-an-
alysis (Procedure 4) was the same as the third except that non-Pearson

Test type/
job family3

General mental ability
A
B
C

Verbal ability
A
B
C

Quantitative ability
A
B
C
E

Reasoning ability
A
B
C

Perceptual speed
A
B
C
D
E

Memory
A
B
C

Spatial and mechanical ability
A
B
C

Motor ability1"
A
B
C
D
E

Performance tests1

A
Clerical aptitude testsd

A
B

Original
distribution

N

3,683
3,510

289

15,056
5,321
1,303

11,584
6,810
1,259
1,271

2,794
911
739

23,100
11,435
2,775

878
1,665

2,421
1,486

726

2,724
2,694

537

5,081
6,046
1,511

834
1,360

3,748

4,062
1,354

No. of rs

57
32

7

168
71
27

123
84
30
17

34
21
10

285
146
44
10
23

33
27
11

18
26
12

56
50
21
12
21

45

60
21

Non-Pearson r s
removed

N

3,462
3,263

289

13,565
4,101
1,193

10,582
6,003
1,098
1,236

2,794
834
739

20,963
9,581
2,404

556
1,630

2,393
1,486

709

2,724
2,152

405

5,081
5,767
1,511

834
1,325

3,422

3,893
1,303

No. of rs

52
29

7

147
60
25

107
75
25
16

34
20
10

251
127
38
8

22

32
27
10

18
20
11

56
47
21
12
20

40

56
20

* A = stenography, typing, filing, and related occupations (Dictionary
of Occupational Titles [DOT] Occupational Groups 201-209); B =
computing and account-recording occupations (DOT Occupational
Groups210-219);C= production and stock clerks and related occupa-
tions (DOT Occupational Groups 221-229); D = information and
message distribution occupations (DOT Occupational Groups 230-
239); and E = public contact and clerical service occupations (DOT
Occupational Groups 240-248). " Finger, hand, and arm dexterity
tests and motor coordination tests. c Typing, dictation, and similar
clerical performance tests. d Tests consist of verbal, quantitative, and
perceptual speed components.
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correlations were removed prior to the analysis. That is, we removed all
biserial, triserial, and tetrachoric correlations and left the ordinary
Pearson rs, phi coefficients, point-biserial coefficients, and rhos, all of
which are forms of the Pearson correlation coefficient. It was observed
that the non-Pearson rs were frequently unusually large or unusually
small, as would be expected from their larger sampling errors. Al-
though not reported here, the removal of non-Pearson rs had essen-
tially no effect on mean validities. The number of coefficients remain-
ing in each distribution and associated remaining total sample sizes
are presented in columns 3 and 4 of Table 1. Introduction of the im-
proved range correction procedure in Procedure 2 does not change the
figures for percentage variance accounted for, because these figures
are calculated using the residual variance prior to its transformation to
estimate SDf. But the new range correction procedure should affect
(reduce) estimates of SDf. These four meta-analysis procedures were
applied to each of the 32 validity distributions described above for the
clerical job families, for a total of 128 meta-analyses. The methods of
second-order meta-analysis described above were used to summarize
the findings. For each of the four meta-analyses procedures examined,
the harmonic mean of percentage variance accounted for and the arith-
metic mean of the SDe estimates were computed across the 32 validity
distributions for the all-predictor analysis. This same procedure was
followed for the analysis of the five classic constructs; the difference
was that there were only 18 validity distributions for the classic con-
structs. This procedure weights all first-order meta-analyses entering
the second-order meta-analysis equally, as has traditionally been done.
However, we also examined a second weighting method: We computed
the appropriate averages of the means for each construct. (These
means are shown in Table 2.) This method weights each job family
equally in determining the mean for each predictor, and then weights
each predictor equally in determining the overall means. This weight-
ing procedure yielded very similar results and identical conclusions.

Results

Complete results for each individual distribution of validities
are presented in Table 2. Results are presented as averages in
Tables 3 and 4. Table 3 presents the mean percentage of the
variance of observed validities accounted for by artifacts, aver-
aged across job families. These figures were computed using
reciprocals, as described earlier. Looking first at the results for
all predictor types, the mean percentage is 70% using the origi-
nal interactive meta-analysis procedure with no refinements
(Procedure 1). As expected, introduction of the new range cor-
rection procedure (Procedure 2) does not affect this percentage.
In Procedure 3, when r instead of r, from the individual studies
is used in the formula for sampling error variance, the mean
percentage variance accounted for rises to 74%. When, in addi-
tion, non-Pearson rs are removed (Procedure 4), the mean per-
centage rises to 82%. The change from 70% to 82% is a 17%
increase. These figures are consistently larger for the five classic
constructs. In Procedures 1 and 2, an average of 75% of the
observed validity variance is accounted for by the classic con-
structs. Use of r in the sampling error variance formula in-
creases this figure to 79% (Procedure 3). Finally, when non-
Pearson rs are removed (Procedure 4), the mean percentage
variance accounted for rises to 87%. The change from 75% to
87% is a 16% increase. Thus, on average, only 13% of the ob-
served variance is unaccounted for and therefore could possibly
be due to moderators. However, as discussed below, some of
this remaining variance is artifactual.

Table 4 presents the mean values for the standard deviations

of true validity (SDf). For the entire data set (all 10 predictors),
the mean SDP estimate declines from .150 to .106 (a 29% de-
crease) as successive refinements are added to the meta-analysis
procedures. These figures are all slightly lower when only the
five classic ability constructs are included. When all refine-
ments are included, the mean SDP estimate for the five classic
constructs is only .097. Introducing successive data-analytic re-
finements causes the mean SDP estimate to decline from .142
to .097, a 32% reduction. Thus the prediction that these proce-
dural refinements would decrease estimates of SDP is con-
firmed.

Discussion

In summary, the most accurate available estimates of the
average percentage variance accounted for are 82% for all 10
predictor types and 87% for the five classic constructs. The
corresponding most accurate available estimates for mean SDP

are .106 and .097, respectively. As predicted, improvements in
the accuracy of data-analytic methods substantially increased
the validity variance accounted for and substantially reduced
SDP estimates. However, it might appear that if there were in-
deed no situational true validity variance at all, the mean per-
centage variance accounted for would be 100% and the mean
SDP estimate would be zero. Yet this is logically not the case,
because there remain a number of variance-producing artifacts
that the refined procedures examined in this study cannot
correct for. First, there are likely to be numerically erroneous
validity coefficients (bad data), due to errors in the original
data, computational errors, and transcription and other clerical
errors. Some, but not all, of these data errors would be expected
to be outliers. The use of least squares statistical methods to
estimate the mean and variance of the distribution of correla-
tions (or any distribution) is based on the assumption that the
data contain no aberrant values (i.e., outliers). When this as-
sumption does not hold, the statistically optimal properties
(efficiency and unbiasedness) of least squares estimates do not
hold. Under these circumstances, least squares estimates be-
come inaccurate because of their extreme sensitivity to outliers
(Huber, 1980; Tukey, 1960; see also Barnett & Lewis, 1978;
Grubbs, 1969). The presence of even a single outlier can pro-
duce a substantial increase in the observed standard deviation
and a somewhat smaller distortion (in either direction) of the
mean. Data sets in any research area are likely to contain data
points that are erroneous due to computational, transcrip-
tional, and other errors (Gulliksen, 1986; Wolins, 1962).

On the basis of his extensive experience with data sets of all
kinds, Tukey (1960) judged that virtually all data sets contain
outliers and other errors. A well-known psychometrician re-
cently expressed the following statement:

I believe that it is essential to check the data for errors before
running my computations. I always wrote an error-checking pro-
gram and ran the data through it before computing. I find it very
interesting that in every set of data I have run, either for myself or
someone else, there have always been errors, necessitating going
back to the questionnaires and repunching some cards, or perhaps
discarding some subjects. (Gulliksen, 1986, p. 4)

Unfortunately, the failure to conduct such checks when con-
ducting primary studies is very widespread. In the physical
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Table 2
Results for Individual Validity Distributions: Percentage of Variance Accounted for by Artifacts
and SDP Estimates Produced by Different Validity Generalization Estimation Procedures

% variance
accounted for SDa

Test type/job family* Proc. 1 Proc. 2 Proc. 3 Proc. 4 Proc. 1 Proc. 2 Proc. 3 Proc. 4

General mental ability
A
B
C
M

Verbal ability
A
B
C
M

Quantitative ability
A
B
C
E
M

Reasoning ability
A
B
C
M

Perceptual speed
A
B
C
D
E
M

Memory
A
B
C
M

Spatial and mechanical ability
A
B
C
M

Motor ability1"
A
B
C
D
E
M

Performance tests0

A
Clerical aptitude tests'1

A
B
M

65
52

377
81

49
49

119
61

86
83
83

233
100

94
74
62
75

53
80

110
51
77
69

81
130
71
88

83
49
89
69

62
78

109
55

116
77

23

64
58
61

65
52

377
81

49
49

119
61

86
83
83

233
100

94
74
62
75

53
80

110
51
77
69

81
130
71
88

83
49
89
69

62
78

109
55

116
77

23

64
58
61

71
54

377
85

51
52

123
64

88
85
86

233
102

98
78
68
80

56
83

117
52
80
71

87
136
77
94

83
52
96
72

63
82

115
58

120
80

26

69
61
65

76
58

377
91

49
61

131
68

89
111
80

220
107

98
91
68
84

56
120
157
84
86
89

91
136
73
94

83
71

263
101

63
80

115
58

119
79

33

79
59
67

.20

.22

.00

.14

.24

.26

.00

.17

.10

.12

.16

.00

.09

.07

.20

.22

.16

.23

.13

.00

.26

.15

.15

.13

.00

.19

.11

.10

.23

.15

.16

.19

.11

.00

.26

.00

.11

.43

.20

.24

.22

.18

.19

.00

.12

.22

.23

.00

.15

.08

.10

.14

.00

.08

.07

.18

.20

.15

.21

.11

.00

.23

.14

.14

.12

.00

.17

.10

.09

.21

.13

.14

.17

.11

.00

.24

.00

.10

.37

.18

.20

.19

.16

.19

.00

.12

.21

.23

.00

.15

.08

.10

.12

.00

.07

.04

.16

.19

.13

.20

.10

.00

.23

.13

.13

.10

.00

.16

.09

.09

.20

.10

.13

.17

.10

.00

.24

.00

.10

.36

.16

.20

.18

.14

.17

.00

.10

.22

.20

.00

.14

.07

.00

.15

.00

.05

.04

.11

.19

.11

.20

.00

.00

.15

.11

.09

.08

.00

.17

.08

.09

.14

.00

.08

.17

.10

.00

.24

.00

.10

.32

.13

.21

.17

Note. Proc. = procedure; Proc. 1 = r-, used in sampling variance formula and no data removed; Proc. 2 =
new range correction procedure used, otherwise same as Proc. 1; Proc. 3 = fused in sampling variance
formula and new range correction procedure used; Proc. 4 = non-Pearson correlations removed, other-
wise same as Proc. 3.
a A = stenography, typing, filing, and related occupations (Dictionary of Occupational Titles [DOT] Occu-
pational Groups 201-209); B = computing and account-recording occupations (DOT Occupational
Groups 210-219); C = production and stock clerks and related occupations (DOT Occupational Groups
221 -229); D = information and message distribution occupations (DOT Occupational Groups 230-239);
and E = public contact and clerical service occupations (DOT Occupational Groups 240-248).
b Finger, hand, and arm dexterity tests and motor coordination tests.
c Typing, dictation, and similar clerical performance tests.
d Tests consisting of verbal, quantitative, and perceptual speed components.
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Table 3
Mean Values of Percentage of Variance Accounted
for (Averaged Across Job Families) for Different
Validity Generalization Estimation Procedures

Procedure

Mean %
variance

accounted for

All 10 predictor types

1: No data removed and rt used in Se
2 formula

2: New range correction procedure used
3: Same as in Procedure 2, but rused in Se

2 formula
4: Same as in Procedure 3, but non-Pearson

correlations removed

Five classic constructs only

No data removed and r( used in Se
2 formula

New range correction procedure used
Same as in Procedure 2, but f used in Se

2 formula
Same as in Procedure 3, but non-Pearson
correlations removed

70
70
74

82

75
75
79

87

sciences (e.g., physics and chemistry) extreme values are rou-
tinely eliminated. For example, Hedges (1987) found that in the
area of particle physics, roughly 40% of the available studies are
omitted from meta-analysis for one reason or another. In the
social sciences, it is rare for even the 10% of studies with the
most extreme findings to be discarded. The psychological and
social sciences have recently begun to recognize the need for
such "trimming" prior to data analysis. Tukey (1960) and
Huber (1980) recommended deletion of the most extreme 10%
of data points—the largest 5% and the smallest 5% of values.
Because most validity generalization analyses have been con-
ducted using studies of imperfect methodological quality, the
presence of outliers is highly probable. Deletion of outliers does
not remove all numerically erroneous coefficients; outlier pro-
cedures detect and remove only data errors that are large
enough to produce extremely deviant values. Thus data errors
not detected remain to produce validity variance above that
predicted by the sampling variance formula and other artifact
corrections. Identification of true outliers is a somewhat com-
plicated process, because when sample sizes are small, extreme
values can occur simply because of large sampling errors. Such
values are not true outliers. We are currently developing proce-
dures for identifying outliers in meta-analytic and validity gen-
eralization data.

The second reason for not expecting all observed validity
variance to be accounted for in validity generalization studies
is the fact that the correction for sampling error variance is an
undercorrection if there is range restriction. The formula for
sampling error variance assumes that the independent and de-
pendent variables are at least approximately normally distrib-
uted. Where there is direct range restriction (truncation) on one
or both variables, this assumption is violated. In personnel se-
lection, there may be direct restriction on the test (the indepen-
dent variable). For example, job offers may be made only to
those applicants above the mean test score. Millsap (1989), us-
ing computer simulation studies, found that under such condi-

tions the sample (or study) correlations have larger sampling
error variances than indicated by the sampling error variance
formula. That is, the formula underestimates the true amount
of sampling error variance, leading to undercorrection for sam-
pling variance and, therefore, overestimation of the residual
variance and SD^. The undercorrection is largest when sample
sizes are 60 or less. As an example, if N = 60 and p = .40 in all
studies, and all variance is in fact due only to sampling error,
then the estimated residual SD (SDKS) will on average be .046
across the levels of range restriction studied by Millsap (1989).
The estimated SDp value will typically be about .09, close to the
mean value of .097 obtained here for the five classical con-
structs. The correct value for both SDTK and SDP is, of course,
zero. Thus, many nonzero estimates of SDP in the published
literature could be due in large part to this effect. In many
studies, range restriction is indirect rather than direct. For ex-
ample, employees may be selected based on a different test that
might correlate, for example, .60 to .70 with the independent
variable test. Studies are needed to determine what the effect of
such indirect range restriction is on the accuracy of the formula
for sampling error variance. This question was not addressed
by Millsap (1989).

Third, observed validities may vary depending on the nature
of the job performance ratings. Some studies used ratings of
job performance that had earlier been made for administrative
purposes (e.g., pay raises, promotions), whereas other studies
were based on special ratings that were used solely for research
purposes in that study. Administrative ratings are known to be
strongly influenced by nonperformance considerations and to
yield smaller observed correlations with selection procedures
than research ratings (Whetzel, McDaniel, & Schmidt, 1985).
This difference is a source of artifactual variance in the ob-
served correlations that could not be corrected for, causing SDP

to be an overestimate.
Fourth, the inclusion of phi coefficients and point-biseral

coefficients contributes to artifactual variance (Hunter &
Schmidt, 1990a). As noted earlier, such validity coefficients
were retained in the present meta-analyses because they are
forms of the Pearson correlation coefficient (and also because

Table 4
Mean Values of Estimates of the Standard Deviation
of True Validities for Different Validity Generalization
Estimation Procedures (Averaged Across Job Families)

Procedure SDP

All 10 predictor types

1: No data removed and r{ used in Se
2 formula . 150

2: New range correction procedure used .133
3: Same as in Procedure 2, but f used in Se

2 formula .126
4: Same as in Procedure 3, but non-Pearson

correlations removed . 106

Five classic constructs only

1: No data removed and r{ used in Se
2 formula . 142

2: New range correction procedure used .127
3: Same as in Procedure 2, but r used in S,2 formula .119
4: Same as in Procedure 3, but non-Pearson

correlations removed .097
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their removal would have caused substantial data loss). As
forms of the Pearson r, their sampling error variances are accu-
rately estimated by the standard formula. However, these coeffi-
cients are produced by dichotomizing continuous measures of
either job performance or test score or both. The point-biserial
results when only one of these measures is dichotomized; the
phi coefficients results when both are dichotomized. Dichoto-
mization reduces correlations in comparison to what they
would have been in the absence of dichotomization. The corre-
lations that are artificially reduced thus differ from those that
are not. The effect of this is to create variation in correlations
beyond that attributable to sampling error or any of the other
artifacts that are corrected for (Hunter & Schmidt, 1990a). As a
result, the final effect is an artifactual reduction in the percent-
age variance accounted for and an artifactual inflation of esti-
mates of SDf.

The fifth factor causing SDf to be overestimated is inclusion
of two or more correlations from the same studies whenever the
study contained two different tests measuring the same ability
in the same sample (e.g., two different tests measuring spatial
ability). These correlations are not independent, and the result
is inflation of both the observed SD (SDr) and SDP (Hunter &
Schmidt, 1990b, chap. 10).

Sixth, it has been shown that differences between employees
in amount of job experience reduce the observed validities of
employment tests (McDaniel, Schmidt, & Hunter, 1988;
Schmidt, Hunter, Outerbridge, & Trattner, 1986). Thus, studies
in which employees vary widely in job experience can be ex-
pected to report smaller correlations on average than studies in
which employees vary little in time on the job. The result is
additional variation in correlations across studies that is not
corrected for. Again, the effect is inflate the estimate of SDP.

The six considerations discussed here make it clear that it is
important to always bear in mind that all estimates ofSDp, in
this study and in all others, are likely to be overestimates. Even
after a meta-analysis is completed, there is still less real varia-
tion across studies than there appears to be.

In view of the fact that these six sources of uncorrected arti-
factual variance exist in the present data (as in many other data
sets), our obtained results appear to be fully consistent with the
hypothesis that there is no real (i.e., nonartifactual) variance in
true validities. Thus, the findings of this study are further evi-
dence against the situational specificity hypothesis. Of course,
the findings in this study are also consistent with the conclu-
sion that some situational variance in true validities does exist
but that the amount is extremely small. We regard this as sub-
stantively the same hypothesis, given that both hypothesis have
essentially identical theoretical and practical implications.
Even with large data sets, it is very difficult to distinguish defini-
tively between these two very similar hypotheses. However, the
cumulative pattern of findings from the present meta-analyses,
taken together with the five previous meta-analyses discussed
earlier, provides strong support for the hypothesis that there is
essentially no situational variance in true validities for classic
ability constructs used for selection on similar jobs.
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