Psychological Methods
2006, Vol. 11, No. 4, 416-438

Copyright 2006 by the American Psychological Association
1082-989X/06/$12.00 DOI: 10.1037/1082-989X.11.4.416

Correcting for Indirect Range Restriction in Meta-Analysis:

University of Central Florida

Testing a New Meta-Analytic Procedure

Frank L. Schmidt

University of lowa

Huy Le

Using computer simulation, the authors assessed the accuracy of J. E. Hunter, F. L. Schmidt,
and H. Le’s (2006) procedure for correcting for indirect range restriction, the most common
type of range restriction, in comparison with the conventional practice of applying the
Thorndike Case II correction for direct range restriction. Hunter et al.’s procedure produced
more accurate estimates of both the mean and standard deviation in meta-analysis than the
conventional procedure. Even when its key assumption that the effect of selection on a 3rd
variable is fully mediated by the independent variable was violated, Hunter et al.’s procedure
was still relatively more accurate than the conventional procedure. When applied to data from
a previously published meta-analysis, the new procedure yielded results that led to different
substantive conclusions.
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Range restriction is a common phenomenon in research
data of all kinds and is particularly common in personnel
selection and educational research. It occurs when the vari-
ance of a variable in a sample is reduced because of prese-
lection or censoring in some way (Ree, Carretta, Earles, &
Albert, 1994). Statistics estimated in such a sample are
biased estimates of parameters in the unrestricted popula-
tion. To empirical researchers, the problem of range restric-
tion can be conceptualized as any situation in which re-
searchers are interested in estimating the parameters of
variables in one population (unrestricted population; e.g.,
the applicant population in employment or educational se-
lection research) but have access only to a sample from
another population (restricted population; e.g., the incum-
bent population; Elshout & Roe, 1973).1

As early as the beginning of the last century, Pearson
(1903), in developing the Pearson product-moment corre-
lation coefficient, noticed problems due to range restriction
and discussed possible solutions. Since then, a great number
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of studies have examined the biasing effect of range restric-
tion (e.g., Alexander, 1988; Dunbar & Linn, 1991; Lawley,
1943; Linn, Harnisch, & Dunbar, 1981; Ree et al., 1994;
Sackett & Yang, 2000; Schmidt, Hunter, & Urry, 1976;
Thorndike, 1949). It is evident from the literature that range
restriction can create serious inaccuracies in empirical re-
search, especially in the fields of employment and educa-
tional selection. The most well-known solutions for this
problem are the three Thorndike (1949) correction
equations.

Thorndike Case II, by far the most widely used correc-
tion, is appropriate under the condition of direct range
restriction (i.e., selection of subjects is solely based on their
scores or rankings on the independent variable). Using the
Thorndike Case II formula to correct for the effect of range
restriction is relatively simple because it requires only
knowledge of (a) the degree of range restriction in the
independent variable and (b) the correlation between the
variables in the restricted sample. Unfortunately, range re-
striction is almost always indirect; direct range restriction is
rare (Hunter, Schmidt, & Le, 2006; Linn et al., 1981;
Thorndike, 1949). Selection typically occurs on a third
variable (variable Z) that is correlated with both the vari-
ables of interest (X and Y). Thorndike Case III was specif-
ically developed for this situation. The formula for
Thorndike Case III allows the correlation between variables
X and Y in the unrestricted population to be estimated from

! The restricted population can be considered as a subgroup of
the original unrestricted population.
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(a) observed intercorrelations between the three variables
(X, Y, and Z) in the restricted sample and (b) the degree of
direct range restriction on the third variable Z. In practice,
however, information on the third variable Z is not available
because the selection process occurs on a variable or a
combination of variables that is not quantified (e.g., recom-
mendation letters, unquantified subjective judgments, or
self-selection; Gross & McGanney, 1987; Linn, 1968; Linn
et al., 1981; Schmidt, 2002). Consequently, the Thorndike
Case III formula can rarely be applied.”

The issue of indirect range restriction correction poses a
serious problem not only in individual studies but also in
meta-analysis. Though indirect range restriction is preva-
lent, it is rarely possible for meta-analysts to apply the
Thorndike Case III formula. Current meta-analysis methods
either do not address the problem of range restriction
(Hedges & Olkin, 1985; Rosenthal, 1984) or apply the
correction method for direct range restriction (Callender &
Osborn, 1980; Hunter & Schmidt, 1990; Raju & Burke,
1983). Although it is obvious that the former practice is
likely to yield biased estimates of relationships between
constructs when range restriction exists in the data, the latter
has often been mistakenly believed to satisfactorily solve
the problem. This practice implicitly assumes that effects of
corrections for direct and indirect range restriction are sim-
ilar. This assumption has been proven wrong; using the
direct range restriction formula to correct for indirect range
restriction typically leads to substantial underestimation of
the correlations of interest (Linn et al., 1981; Schmidt, 2002;
Schmidt, Hunter, & Pearlman, 1981). For example, Hunter
et al. (2006) recently showed that this practice results in
serious underestimation of the validities of the General
Aptitude Test Battery (a measure of general mental ability)
in predicting job performance. Thus it is evident that using
the inappropriate model for range restriction in meta-anal-
ysis can result in biased estimates of relationships between
constructs, which may consequently affect substantive re-
search conclusions.

To address this problem, Hunter et al. (2006) derived and
presented a new procedure to correct for the effect of
indirect range restriction. This procedure can be used to
estimate the mean and standard deviation of the true corre-
lations underlying the primary studies included in a meta-
analysis in the context of indirect range restriction. The
present study has three purposes: (a) to examine the robust-
ness of the new range restriction correction procedure when
its key assumption is violated, (b) to use computer simula-
tion to compare the accuracy of the meta-analysis method
based on the new indirect range restriction correction pro-
cedure with the conventional range restriction correction,
and (c) to illustrate the potential implications of using the
new method in empirical research by reanalyzing a pub-
lished meta-analysis.

The New Meta-Analysis Method

The Structural Model of Range Restriction and
Measurement Error

The Hunter et al. (2006) model elaborates on the com-
bined effects of range restriction, measurement error, and
sampling error on the observed correlation obtained from a
sample drawn from a restricted population. Details of the
model and the suggested solution can be found in that study,
so only a summary of the method is provided here.

Figure 1 illustrates the model. In the figure, S (denoted the
suitability construct in Hunter et al., 2006) represents the
third variable that is correlated with both dependent and
independent variables. This variable S thus represents the
explicit selection variable (Z) in the Thorndike Case III
formula. It should be noted that S may be a composite or a
combination of several variables used in selection or deter-
mining self-selection (as may occur when people volunteer
to participate in a study). Hunter et al. (2006) noted that this
model assumes that effects of S on the independent variable
measure X are mediated by the true score T of measure X.
Similarly, it can be seen that the relationship between X and
Y (the observed score of the dependent variable measure) is
mediated by P, the true score of (construct underlying) Y.
As shown in Figure 1, explicit selection on S causes range
restriction on 7, which then leads to range restrictions on X
and on P. Range restriction on P subsequently creates range
restriction on Y. The key assumption of the model is that
there is no arrow directly connecting S and P; that is, there
is no direct effect of S on P. As described later, this
assumption enables estimating the effect of indirect range
restriction on the observed correlation between X and Y in
the absence of any information about S.

The current model in Figure 1 is in fact a special case of
Thorndike Case III in which the path from S to P is assumed

% In practice, selection may occur on more than one variable.
This is the situation in multivariate range restriction (Lawley,
1943), which can be seen as a more general case of indirect range
restriction where Z represents a number of third variables. Proce-
dures for multivariate range restriction correction are available
(Lawley, 1943; Ree et al., 1994). However, applying the multivar-
iate range restriction correction requires information about each of
the added variables (i.e., variance—covariance matrix of the vari-
ables in the unrestricted population), which, just as in the case of
indirect range restriction, is rarely available to meta-analysts. So
the problem due to indirect range restriction mentioned here can be
generalized to cases of multivariate range restriction. As discussed
later, to the extent that its basic assumption (i.e., that the effects
due to selection on the third variables are fully mediated by the
independent variable) is met, the Hunter et al. (2006) procedure
can be applied to correct for the effect of multivariate range
restriction.
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Explicit Selection

The suitability construct where explicit selection occurs.

= The construct (true score) underlying measure X (independent variable).
= The observed independent variable.

Ex= Measurement error in X.

= The construct (true score) underlying measure Y (dependent variable).
= The observed dependent variable.

Ey= Measurement errorin Y.

== Denotes the structural relationship between variables (no causal

relationship is assumed)

C——> Denotes the direction of the effect of range restriction.

Figure 1.

to be zero. Figure 2 presents the full model of range restric-
tion based on Thorndike Case III. From the tracing rule of
path analysis, it can be seen that the assumption of Hunter
et al.”s (2006) model is met when the correlation between S
and P (psp) is equal to the product of the path coefficients
(correlation coefficients in this case) between S and T and
between T and P, that is, psrprp.

Basic Formulas and Correction Procedures

Symbols

The following symbols are used to present the formulas of
the indirect range restriction model: ug, u;, uy, up, and u,
denote the degree of range restriction (i.e., the ratio of
standard deviation in the restricted population to that in the
unrestricted population) in variables S, 7, X, P, and Y,
respectively. Subscript i denotes parameters or statistics in
the restricted population. Subscript a denotes parameters or
statistics in the unrestricted population.®> The caret symbol
(") is used to indicate estimated statistics, in order to dis-
tinguish them from population parameters.

The Hunter et al. (2006) model of indirect range restriction.

Formulas for the Combined Effects of Range
Restriction and Measurement Error

Although range restriction is sometimes present and
sometimes not, measurement error is always present in
studies because no measures have perfect reliability (Fuller,
1987). Measurement error always acts to create biases in
research results that must be corrected, along with the biases
caused by range restriction (Callender & Osborn, 1980;
Cook et al., 1992; Raju & Burke, 1983; Schmidt & Hunter,
1977). These corrections are needed both in individual
studies and in meta-analyses.

Hunter et al. (2006) showed that the correlation between
X and Y in the restricted population is a function of p;p,
(correlation between T and P in the unrestricted population),
ur (range restriction on 7), pyy, (reliability of the dependent
variable measure in the restricted population), and pyy, (re-

3 For consistency, we adopted the same subscripts used in
Hunter et al. (2006), in which i stands for job incumbents (repre-
senting the common restricted population in personnel selection)
and a stands for job applicants (representing the common unre-
stricted population in personnel selection).
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Explicit Selection
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Note: S = The suitability construct where explicit selection occurs.
T = The construct (true score) underlying measure X (independent variable).
X = The observed independent variable.

Ex = Measurement error in X.

P = The construct (true score) underlying measure Y (dependent variable).
Y = The observed dependent variable.

Ey = Measurement error in Y.

= Denotes the structural relationship between variables (no causal

relationship is assumed)

Denotes the direction of the effect of range restriction.

Figure 2. The general model of indirect range restriction.

liability of the independent variable measure in the re-
stricted population):

UrPrp,

ey

Pxy; = \PxxPry ] .
K \W%p%{, +1— p%"P‘,

The value of u, in Equation 1 can be obtained from the
value of range restriction on X (uy) and independent vari-
able reliability pyy.:

2 .2 2
/ PrxUx / PxxUx

I/t = = N
! \/1 + P%X,-”i - ”)2( V] + pxx,”)z( - ”?{

@)

where pyy, = p7y, is the reliability of the independent vari-
able X in the restricted population.

Correction Procedure

Estimating the mean true correlation (prp,). When in-
formation about the artifacts is available in all primary
studies in a meta-analysis, correcting for the effects of
measurement error and range restriction can be done for
each individual study by working backward from Equation
1. Specifically, the correction procedure involves the fol-
lowing steps:

1. Compute 7, from iy and pyy, using Equation 2 when
information on the reliability of the independent variable in
a restricted sample fyy, is available.

If we instead have information about independent vari-
able reliabilities in the unrestricted population (fyy,), the
reliabilities (pyyx,) in the restricted population can first be
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estimated by the well-known homogeneity formula (Gullik-
sen, 1950; Hunter et al., 2006):

. 1 — pxx,
Pxx, = 1 — PYRE 3)

Uy

2. Estimate pyp, from pyy., pyy, and Pyy, using the disat-
tenuation formula:

Pxy

o7, = o “4)
Prp \/pTY,\/[;X/

3. Apply the Thorndike Case II formula to correct for the
effect of range restriction in 7:

5 o 5)
Pree = 5 — 2 o - o
\/MT — Prplir T Prp

Equation 5 requires basic assumptions similar to those re-
quired by the Thorndike Case II formula: (a) that the re-
gression line of P on T is linear (linearity assumption) and
(b) that the conditional variance of P does not depend on T’
(homoscedasticity assumption). The mean true score corre-
lation (p;p,) can then be estimated by taking the weighted
mean of the true score correlations obtained in Equation 5
across all primary studies.

The major difference between the new meta-analytic ap-
proach and conventional approaches is that the former uses
range restriction in the true score (u;) instead of range
restriction in the observed score (u) to correct for the effect
of range restriction. Because u; is always smaller than uy
(equality occurs only when the predictor measure is per-
fectly reliable), the new approach always yields larger es-
timates for pyp, than those provided by the existing ap-
proaches. On the basis of these analytic results, Hunter et al.
(2006) suggested that existing meta-analysis methods al-
most always underestimate the mean true correlation.

Estimating the standard deviation of the true correlation
(SD,). When information about range restriction and mea-
sure reliabilities is available in all primary studies, the
standard deviation of the true correlation (SD,) can be
estimated by first correcting each correlation individually
and then following relatively simple procedures (Hunter &
Schmidt, 2004). When such information is unavailable,
artifact distribution meta-analysis must be used, and in that
procedure direct estimation of the standard deviation is
more complex. Hunter et al. (2006) suggested two alterna-
tive approaches based on Equation 1: (a) using the modified
interactive approach (cf. Law, Schmidt, & Hunter, 1994)
and (b) using a Taylor series approximation approach (cf.
Raju & Burke, 1983; Raju, Burke, Normand, & Langlois,
1991). Details of these approaches can be found in Hunter
et al. (2000).

Availability of Information About the Artifacts

As evident from the procedure detailed above, the new
Hunter et al. (2006) method requires information about the
artifacts that affect observed correlations in primary studies.
Specifically, to apply the method, one needs information
about range restriction on observed scores of the indepen-
dent variable (uy), reliabilities of the dependent variable in
the restricted population (pyy,), and reliabilities of the inde-
pendent variables, either in the restricted or unrestricted
population (pyy, Or pyx,, respectively). As noted earlier, if all
primary studies in a meta-analysis report estimates for the
artifacts in question, corrections can be performed individ-
ually. When information about the artifacts is unavailable or
only partially available—a more common situation— cor-
rections can still be made by using artifact distributions
constructed from either (a) information about the artifacts
derived from similar studies in the literature (cf. Alexander,
Carson, Alliger, & Cronshaw, 1989; Pearlman, Schmidt, &
Hunter, 1980; Schmidt & Hunter, 1977) or (b) estimates
available from the primary studies in the current meta-
analysis (Hunter & Schmidt, 1990, 2004). Past simulation
studies have shown that meta-analysis methods (based on
direct range restriction correction) using artifact distribu-
tions provide reasonably accurate estimates of the true cor-
relation distribution as long as the artifact distributions are
appropriate (Burke, Raju, & Pearlman, 1986; Callender,
Osburn, Greener, & Ashworth, 1982; Law, Schmidt, &
Hunter, 1994; Mendoza & Reinhardt, 1991; Raju & Burke,
1983).

Unresolved Issues

As mentioned earlier, several issues should be resolved
before the new method can be widely adopted. Below we
discuss the issues and explain how they were addressed in
this study.

Examining Effects of Violating the Assumption of the
Model

The model for indirect range restriction suggested by
Hunter et al. (2006) relies on the assumption that the effect
of S on the dependent variable P is fully mediated by the
independent variable construct T (see Figure 1). Arguably,
this assumption is met in selection situations in which a new
selection procedure (X as a measure of 7) is comprehensive
in a sense that it captures the constructs that determine the
criterion-related validity (i.e., correlation with P) of the
suitability construct (S) on which direct selection has oc-
curred earlier. The assumption, however, may not hold in
other situations. Thus, the new procedure may yield biased
estimates of the true correlation in such situations. It is even
possible that these estimates will be less accurate than those
produced by the conventional direct range restriction pro-



RANGE RESTRICTION CORRECTION IN META-ANALYSIS 421

cedure. In this study, we estimated the bias resulting from
using the new procedure when its assumption is violated
and compared the bias with that from the conventional
correction procedure based on the direct range restriction
model. The results from this comparison are relevant to data
analysis in both individual studies and in meta-analysis.

Evaluating the Accuracy of the New Method in
Meta-Analysis

The new meta-analysis procedure presented in Hunter et
al. (2006) is more complicated than previous methods. The
basic attenuation formula of the method (Equation 1) is
complex and nonlinear, which renders estimating the stan-
dard deviation of true correlations (SD,) difficult. Another
complicating factor is that the elements in the right side of
Equation 1 are not independent of one another. Because
both the nonlinear interactive and Taylor series approxima-
tion approaches suggest that to estimate SD,,, one should
assume the elements in the equation are independent, their
accuracy may be affected when this assumption is violated.
In this study, we simulated data to examine the accuracy of
the new meta-analysis method when its basic assumption
examined in the previous section is met (i.e., on that basis of
the model in Figure 1) across a wide range of conditions for
the true parameters (i.e., distributions of true score correla-
tions, reliabilities, and range restriction) and compared the
results with those provided by the conventional method
based on the direct range restriction correction. The meta-
analysis methods examined are based on artifact distribution
methods (cf. Hunter & Schmidt, 2004; Hunter et al., 2006;
Law et al., 1994), which assume that values of the artifacts
(range restriction, reliabilities) are not provided in all the
individual studies and only information about their distri-
butions across studies is available. Accuracy in conditions
in which different amounts of information about the arti-
facts are available to researchers was examined.

Hllustrating Implications of Using the New Method
in Research

The ultimate goal for development of a new analytic
method is to apply it to answer substantive research ques-
tions. It is therefore important to test the new method on real
data to examine its implications, that is, to see if using the
new method can lead to conclusions that are substantively
different from those reached by the existing meta-analysis
methods. Such meaningful differences provide evidence
that the new procedure has practical implications for re-
searchers. In this study, we examined this question by
reanalyzing a published meta-analysis on the validity of
employment interviews (McDaniel, Whetzel, Schmidt, &
Maurer, 1994). We selected this study because (a) it ad-
dresses an important topic in personnel selection and (b) the

studies it is based on are characterized by indirect range
restriction.

Method

Examining Effects of Violating the Assumption

Conditions Examined

We examined the potential inaccuracies resulting from
violating the assumption of the model by directly calculat-
ing the differences between the known true correlation pgp,
and those estimated by the new procedure and the earlier
correction procedure based on the direct range restriction
model under different values of the key parameters involved
(i-e., Psr,» Prr,» Psp,» Pxx.» Prr, and ug). This analysis focused
on the correction procedures per se, not on their use in
meta-analysis. In this analysis, sample size is infinite, so
there is no sampling error, and any differences in results are
solely due to the violations of the model assumption. The
values of these parameters were chosen to (a) reflect those
likely to hold in practice and (b) cover a wide range of all
possible values. Specifically, we examined three values of
psr, (.10, .50, and .80, which range from very low to very
high correlations between the independent variable and the
third variable),* three values of prp, (.20, .40, and 60,
typifying small, medium, and large values of the predictor-
criterion relationships in personnel selection research), two
values of pyy, (.70, which is generally considered acceptable
for self-report measures for research purposes, and .90,
which is commonly regarded as good for making individual
decisions; Nunnally, 1978), two values of pyy, (.50, which is
typical for supervisor ratings, and .80, which is typical for
work samples), and three values of ug (411, .603, and .844,
which correspond to the selection ratios of .10, .50, and .90,
respectively). For pgp,, we systematically varied its values to
manipulate the degree of violation of the assumption. Spe-
cifically, the value of pgp, was determined by the following
formula:

Pse, = Pst.pre(1 + kE), (6)

where € was set at .10 and k was varied from O to 5 (in units
of 1). As discussed in the previous section, when there is no
direct path from S to P (i.e., when the assumption of the
model is met), on the basis of the tracing rule of path
analysis, the correlation between S and P (pgp,) is equal to
the product of the paths (correlation coefficients in this case)

“In Le (2003), a slightly different set of pyp, values (i.e., .10,
.50, and .90) was examined. Because it was realized that the value
of .90 might be unrealistically high (i.e., the two constructs S and
T would be essentially the same in this case), we decided to change
it to .80 in the current study.
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between S and 7 and between 7T and P, that is, psr,prp,.
Hence the values of pgp, varied from perfectly meeting the
assumption (when k = 0) up to 150% over that initial value
(k = 5). We believe that this range of potential violations
(i.e., from 0% to 150%) is realistic and covers most situa-
tions in practice.

There were a total of 648 sets of comparisons (3 values of
psr, X 3 values of pyp, X 2 values of pyy, X 2 values of pyy,
X 3 values of ug X 6 values of k). Our analyses involved
four steps: (a) calculating the observed values of the corre-
lation pyy, and other statistical artifacts (uy, pxx,,» pyy,) from
the simulation parameters, (b) applying the new approach to
estimate the correlation of interest p;p, (c) applying the
conventional approach based on the direct range restriction
correction, and (d) comparing results provided by the two
methods with the true correlation.

Calculating the Observed Values

For each combination of the simulated parameters, we
calculated the values of uy, pxy, pyy. and pyy,. These are the
values that are likely to be observed in a primary study in
which the two procedures would be used to estimate the true
correlation pyp,. (For the conventional approach based on
the direct range restriction correction, pyy, and pyy, were
assumed to be known because the approach requires such
information.) As mentioned earlier, Hunter et al.’s (2006)
model is a special case of Thorndike Case III when the path
between S and P is zero. So in order to calculate the
observed values in general, we made use of the general
model underlying Thorndike Case III in which the direct
path between S and P exists (see Figure 2). Details of all the
calculation steps are described next in the order they were
performed.

Calculating u;.  As shown in Figure 2, range restriction
on T can be caused by direct range restriction on S. We used
Equation 18 from Hunter et al. (2006) to calculate u, from
the available parameters:

Ur= \/Pgrf,ug —pg, + L (7

Calculating uy. Range restriction on X is directly
caused by range restriction on 7. Hunter et al.’s (2006)
Equation 19 was used here to calculate uy:

Uy = \/PxX‘,”% —pxx, T 1. (8)

Calculating up. Range restriction on P is caused by
direct range restriction on S. The formula for u#, can be
inferred from Equations 7 and 8 by replacing appropri-
ate parameters:

up = \p3ptt — p3p, + 1. 9)

Calculating u,. Range restriction on Y is directly
caused by range restriction on P. We used Hunter et al.’s
(2006) Equation 21 to calculate u,:

-/ _
iy \ePYYu”%’ Py, + 1. (10)

Calculating pxy..

Pxx; from pyy,:

Here, Equation 3 was used to compute

I = pxx,

pxy, = 1 — 2 (11

Calculating pyy. As in the case of pyy, above, pyy, was
also calculated using Equation 3:

1- Pyy,

iy

Py, =1— . (12)

Calculating pyp. From the Thorndike Case III formula,
Le and Schmidt (2003) derived a formula that shows pyp, as
a function of pyp_, psr,. Psp,. and uz:

P (1— M%)V
MT\//l - (1 - u%)VZ,

Prp; (13)

where V = pgp /psr,. Equation 13 was used to compute pyp..

Calculating pyy. Finally, the values of pyy, and pyy,
obtained in previous steps were used to attenuate ppp, in
order to compute pyy;:

Pxy; = P1ri\PxxPry: (14)

Applying the New Procedure to Estimate prp,

The procedure detailed in the previous section was used
to estimate pgyp, from uy, pyx, pyy, and pyy. Specifically,
Equations 4 and 5 were used.

Applying the Conventional Correction Procedure
Based on Direct Range Restriction

Reliabilities of X and Y in the unrestricted population
(pxx, and pyy) were used together with uy and pyy, to
estimate p;p, by the following equation (Callender & Os-
burn, 1980):

Pxy,

\/ Pxx.P m(ui - ”%(Pgry, + P?(Y,).

5)

Prr, =

Comparisons

Results obtained by the two methods were compared with
the true correlation pyp,. Biases are presented as a percent-
age of the difference between estimated correlation p;p, and
the true value pgp,:
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Pre, — Prr,
B% = 100" (16)

Prp,

Evaluating Accuracy of the New Method Via Monte
Carlo Simulation

Conditions Simulated

True score correlation distributions prp,. Following
Law et al. (1994), we examined three different cases of the
true correlation distributions. Under each case, there were
three different distributions. Case 1 follows the fixed-effects
model; that is, there is no variation in the true correlation in
the population (SD, = 0). Three values of psp, were exam-
ined: .30, .50, and .70 (Distributions 1, 2, and 3, respec-
tively). Case 2 was based on the distributions that Law et al.
(1994) deemed realistic in personnel selection research
(Distributions 4, 5, and 6). Finally, Case 3 includes the three
distributions of true correlations that were originally exam-
ined in the Callender and Osburn (1980) Monte Carlo
simulation (Distributions 7, 8, and 9). Figure 3 shows the
distributions in Cases 2 and 3.

Reliability distributions. The distributions of reliabili-
ties for independent variable and dependent variable mea-
sures in the unrestricted population originally suggested by
Pearlman et al. (1980) were used in the study. The distri-
butions are shown in Figure 4. These distributions were
used in many previous meta-analyses (e.g., Gaugler,
Rosenthal, Thornton, & Bentson, 1987; Schmidt, Gast-
Rosenberg, & Hunter, 1980; Vinchur, Schippmann, Swit-
zer, & Roth, 1998) as well as simulation studies (e.g.,
Callender & Osburn, 1980; Law et al., 1994; Raju &
Burke, 1983).

Here, it is important to caution about the common use of
the generalized artifact distribution of unrestricted depen-
dent variable reliabilities pyy, in past research. This distri-
bution for dependent variable reliabilities was empirically
constructed on the basis of information available in many
validation studies (Pearlman et al., 1980; Schmidt &
Hunter, 1977). Because measures of the dependent variable,
job performance ratings, could be obtained only from in-
cumbents, reliabilities reported in the literature are re-
stricted dependent variable reliabilities (gyy,). Accordingly,
the generalized artifact distribution of pyy (Pearlman et al.,
1980; Schmidt & Hunter, 1977) should have been consid-
ered to represent the reliabilities of dependent variables in
the restricted population pyy, not in the unrestricted popu-
lation as commonly assumed in past research. This consid-
eration may have some implications for accuracies of effect
sizes estimated in past research (Sackett, Laczo, & Arvey,
2002). However, in the present study, to ensure that results
are comparable to those of past studies (e.g., Callender &
Osburn, 1980; Law et al., 1994), we used the generalized
artifact distribution for dependent variable reliabilities sug-

gested by Pearlman et al. (1980) as the unrestricted pyy,
distribution to simulate data.

Range restriction distribution. To make our study com-
parable to previous simulations, we chose to use the well-
known distribution of uy originally suggested by Pearlman
et al. (1980). This requirement added an additional level of
complexity to the study because we needed the distribution
of u; underlying the distribution of uy in order to generate
data for our simulations. From Equation 8, a formula can be
derived to estimate i, from #y and pyy,:

n 123( + Pxx, — 1
dr= Q2 )

Py
Pxx,

Although Equation 17 can easily be applied if one has the
values of 7y and fxy, for every primary study in the meta-
analysis, creating a distribution of u, from the distributions
of uy and pyy, is less straightforward. We cannot simply
combine all the values of uy and pyy, in their respective
distributions because uy and pyy, are actually not indepen-
dent, as shown in Equation 8.

Thus, a special iterative procedure was developed to
construct the u; distribution from the original uy and pyy,
distributions. Appendix A provides details of the procedure.
The resulting distribution of u; used in the study is illus-
trated in Figure 5.

Simulation Procedure

For each simulation condition, data for 500 meta-analyses
(replications) were simulated. As in Law et al. (1994), each
meta-analysis included k primary studies, with k being a
number randomly selected from 30 to 100. Each study has
N “subjects,” with N being a number randomly selected
from 70 to 150. For each meta-analysis in a simulation
condition, parameters of a primary study (i, prp,. pxx,, and
pyy,) were randomly drawn from the respective distributions
of the condition. Data were then simulated for each subject
in the primary study on the basis of the parameters. A
program in SAS language was written that enabled such
simulation.”

Availability of Information in the Primary Studies

For each simulation condition, we varied the extent to
which information about the artifacts was available in the
primary studies in order to thoroughly examine performance
of the new method under different conditions that empirical
researchers are likely to encounter in practice. Four condi-
tions of information availability were examined. In all the
conditions, it was assumed that the primary studies provide
reliability estimates of the dependent variable (pyy,) to be

5 This program is available from Huy Le upon request.
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Figure 4. Distributions of reliabilities used to simulate data (pyy, and pyy,).

used in the meta-analysis. As such, information regarding
dependent variable reliabilities was sample based (i.e.,
based on samples of the primary studies included in each
specific meta-analysis). This assumption is based on the fact
that it is practically impossible to observe the unrestricted
dependent variable reliabilities (pyy,). Compared with pre-
vious simulations that unrealistically assumed the unre-
stricted dependent variable reliabilities were known (e.g.,
Law et al., 1994; Raju & Burke, 1983), the current study
arguably reflects situations that researchers are more likely
to encounter in practice. The proportion of the primary
studies in a meta-analysis providing the information of
dependent variable reliabilities is different across the con-
ditions. Further, the conditions differ in the extent to which
information about range restriction and independent vari-
able reliabilities is available to researchers. Details of the
conditions are described below.

Condition 1. Here, it was assumed that the true artifact
distributions underlying the data (i.e., the distributions of
independent variable reliabilities in the unrestricted popu-
lation pyy, and range restriction on 7 [u;] used to simulate
the data) are known by researchers. In addition, we assumed
that the restricted dependent variable reliabilities (pyy,) can
be estimated in all the primary studies. This condition is
similar to those used in most previous simulation studies
(e.g., Callender & Osburn, 1980; Law et al., 1994; Raju &
Burke, 1983) in which the generalized artifact distributions
(uy» pxx,» and pyy,) were assumed known.®

Condition 2. In this condition, we assumed that 50% of
the primary studies included in a meta-analysis provide
information on independent variable reliability (pyx,) and
range restriction on X (7iy). Further it was assumed that such

information comes from the same set of primary studies
(matched condition), so that range restriction on the true
score T (i) can be estimated from Equation 17 in 50% of
the individual primary studies. In contrast to Condition 1,
here information about dependent variable reliabilities (pyy,)
was assumed to be available in only 18 primary studies.
That means between 18% (for k = 100) to 60% (for k = 30)
of the primary studies in a meta-analysis provide informa-
tion needed to construct the distribution of the dependent
variable reliabilities. This condition reflects situations that
researchers often encounter in practice, where information
about the artifact distributions is not always available in
every primary study.

Condition 3. Under this condition, information about
range restriction (dy) and restricted independent variable
reliability pyy, is available in 50% of the primary studies, but
this information does not come from the same studies (i.e.,
one group of studies provides information about range re-
striction #iy, and the other group provides information about
Pxx). As in Condition 2, dependent variable reliabilities
(pyy,) are available in only 18 primary studies in a meta-
analysis. Arguably, this unmatched condition is the most
common one in practice.

¢ However, in contrast to previous simulation studies, in the
present study we assumed that information about dependent vari-
able reliabilities is sample based; that is, they were obtained from
the range restricted samples of the primary studies. As noted
earlier, this condition is more realistic than those assumed in the
previous studies.
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Figure 5. Distributions of range restriction on independent variable observed score (i) and true

score (u;) used to simulate data.

Condition 4. This condition was included to examine
performance of the direct range restriction method when it
is inappropriately applied to indirectly restricted data. The
information available for use in the correction for direct
range restriction is equivalent to that in Condition 1. That is,
in Condition 4, it was assumed that information about the
generalized artifact distributions for unrestricted indepen-
dent variable reliability (pxy,) and range restriction on X (uy)
underlying the data are available. Further, all the primary
studies in a meta-analysis provide information on dependent
variable reliabilities (pyy,). Up to now, such information has
been sufficient to apply existing meta-analysis methods
based on direct range restriction. The interactive range
restriction method based on the direct range restriction
correction, the currently most accurate meta-analysis
method under conditions of direct range restriction (Law et
al., 1994), was used to analyze data in this condition. Thus,
comparing results obtained in Condition 1 (based on the
new method) with those in Condition 4, in which the con-
ventional direct range restriction method was applied, pro-
vides a direct test for the accuracy of the new method
vis-a-vis current meta-analysis methods and sheds light on
the extent of inaccuracies due to inappropriate use of meth-
ods based on direct range restriction when range restriction
is actually indirect.

Analysis

For Conditions 1-3, the new meta-analysis method for
indirect range restriction was applied to analyze data. We
used two alternative approaches of the new method: the

modified interactive approach and the Taylor series approx-
imation approach (Hunter et al., 2006). For Condition 4,
only the interactive nonlinear meta-analysis method based
on direct range restriction (Law et al., 1994) was used.
Details of the methods are provided in Hunter et al. (2006)
and Hunter and Schmidt (2004). We describe only the major
steps for each method below.

Indirect range restriction method—Interactive approach.
The approach is similar to the existing interactive meta-
analysis method (Hunter & Schmidt, 2004). Basically, there
are two stages to correct for the effects of artifacts in this
meta-analysis approach (Law et al., 1994; Schmidt et al.,
1980). The first stage estimates a hypothetical distribution
of the observed correlations that would obtain if (a) all the
artifacts (measurement error in the dependent variable and
independent variable measures and range restriction in the
independent variable) are fixed at their mean values and (b)
there is no sampling error (Hunter & Schmidt, 2004). The
second stage corrects this distribution for the downward
biasing effects of range restriction and measurement error to
estimate the mean true correlation (p) and its variability
(SD,). Further details of this approach are presented in
Appendix B.

Indirect range restriction method—Taylor series approx-
imation approach. The approach is modeled after Raju
and Burke (1983), with some modifications. Hunter et al.
(2006) provided formulas and procedures for applying this
approach to corrections for indirect range restriction. Spe-
cifically, the mean true score correlation p;p, is estimated by
correcting the mean observed correlation using the mean of
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each artifact distribution following the procedure described
earlier (Equations 2, 4, and 5). This estimation procedure is
different from that used by the interactive procedure. Cal-
culation of the standard deviation SD, is based on the
following equation (Equation 31 in Hunter et al., 20006):

Urgx, UrpPre, (18)
Pxv, = 4y, )
TG, + 1 = g, \ipde, + 1 — pl,

where gy, = \/p; = square root of reliability of the depen-
dent variable Y in the restricted population and gy, = \/p;
= square root of reliability of the independent variable X in
the unrestricted population.

Equation 18 shows the observed correlation pyy, as a non-
linear function of four variables: gy, gy, Uy, and pzp,. If these
variables can be assumed to be independent, the multivariate
Taylor series approximates the nonlinear function with a mul-
tivariate polynomial.” The first level of approximation is a
linear function of the four parameters.® Accordingly, the vari-
ance of the nonlinear function can approximately be decom-
posed into four variance components:

Var(pxyi) = br‘fVar(ar) + b%Val‘(qy,.) + bgVar(uT)
+ biVar(psp,) + Var(e), (19)

with b, = first order partial derivative of pyy, with respect to
qx,; b, = first order partial derivative of pyy, with respect to
qy,;; by = first order partial derivative of pyy, with respect to
ur; b, = first order partial derivative of pyy, with respect to
prp,; and Var(e) = sampling error variance of fyy,.
Solving Equation 19 for Var(psp,), we obtain the formula
estimating the desired variance of true score correlations:

Var(pTPa) = [Var(PXy‘) - {bﬁvar(%(ﬂ) + b%Var(qy,)
+ biVar(u;) + Var(e)}]/b;. (20)

Taking the square root of Equation 20, we have the standard
deviation of the true score correlation (SD,). Hunter et al.
(2006) provided formulas for the derivatives and proofs of
the derivations.

The interactive meta-analysis approach based on direct
range restriction. This analysis is based on the interactive
method described in Law et al. (1994). However, because it
is assumed that only information about restricted dependent
variable reliabilities pyy, are available (whereas Law et al.,
1994, assumed the unrestricted dependent variable reliabili-
ties pyy, were known), the order of correction had to be
modified. Details of the modification are explained in
Hunter et al. (2006). The whole correction process can be
summarized by the following equation:

A Uxpxy,
Prro =

A 2 T 2o 29 1 (21)
[pxx.(Pyr, T Uxpxy, — pxr) 2

with p;p, = the mean true score correlation estimate in the
unrestricted population, f)XY[ = the mean observed correla-

tion in the restricted sample, Uy = 1/uy, iy = the mean

estimate of range restrictions on X, ﬁyyl = the mean depen-
dent variable reliability estimate in the restricted sample,
and 5XX“ = the mean independent variable reliability esti-
mate in the unrestricted population.

The interactive procedure as described earlier can be
applied to estimate the standard deviation SD,,. The range
restriction distribution used in the above analysis is the
artifact distribution for u, shown in Figure 3 corresponding
to the u, distribution used to simulate the data.

For each simulation condition, seven analyses were car-
ried out (six for the two approaches based on the new
meta-analysis method in Conditions 1-3 and one for the
conventional interactive method based on direct range re-
striction in Condition 4). Results provided by each analysis
were averaged across 500 replications. These averages were
then compared across analyses.

Reanalyzing a Published Meta-Analysis

The McDaniel et al. (1994) Meta-Analysis

In their comprehensive meta-analysis of employment in-
terviews, McDaniel et al. (1994) estimated the mean valid-
ity of interviews (corrected for range restriction and mea-
surement error in the dependent variable measures) at .37.
Interview structure was found to be the major moderator,
with structured interviews having higher validity (.44) than
unstructured interviews (.33). McDaniel et al. (1994) used
Hunter—Schmidt’s interactive meta-analysis method, which
used the model of direct range restriction. The researchers
used the sample-based range restriction distribution and
(restricted) independent variable reliability distribution in
their meta-analysis. To correct for measurement error in the
dependent variable (job performance), they used the Pearl-
man et al. (1980) distribution of unrestricted dependent
variable reliabilities pyy,.

In light of the recent findings on the effects of indirect
range restriction discussed thus far (Hunter et al., 2006;
Sackett et al., 2002), the McDaniel et al. (1994) analysis

71t can be seen that gy, is not independent of u;,. Thus, the
independence assumption for the model is violated. Nevertheless,
it is expected that the violation will not seriously affect the accu-
racy of the estimation (cf. Raju, Anselmi, Goodman, & Thomas,
1998).

8 We used only the first derivatives of the variables because (a)
adding higher order derivatives would make the calculation much
more complicated and (b) past research showed that linear equa-
tions based on first derivatives could provide reasonably accurate
estimates (Raju & Burke, 1983; Raju et al., 1991).
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appears to have two methodological problems: (a) Range
restriction in the primary studies included in the meta-
analysis is indirect, and (b) the Pearlman et al. (1980)
generalized artifact distribution for dependent variable reli-
abilities was actually derived from the restricted population
instead of from the unrestricted one.

Range Restriction

Most validation studies for interviews used incumbents.
As such, samples of the studies came from the restricted
population. Even in rare situations in which applicants were
used, such samples of applicants were hired on the basis of
other selection procedures. Thus, the effect of range restric-
tion is mostly or entirely indirect. Consequently, the valid-
ities of employment interviews estimated in McDaniel et
al.’s (1994) study were downwardly biased.

Reliabilities of the Job Performance Rating
Criterion

As discussed earlier, the artifact distribution of dependent
variable reliabilities commonly used in previous research ac-
tually included reliabilities for the restricted population of job
incumbents (pyy,), not the unrestricted one (pyy, ). Using values
of restricted independent variable reliabilities as if they were
estimated for the unrestricted population could result in slight
overestimation of the true validities of interviews.

The combined effects due to the two problems discussed
above can partially offset each other. However, this fact
does not justify use of a conceptually inappropriate analyt-
ical method. Further, it is important to directly examine the
extent and direction of the bias by estimating the true
validities using the more appropriate analysis.

Reanalysis

We reanalyzed McDaniel et al.’s (1994) data using the
new Hunter et al. (2006) meta-analysis method based on the
indirect range restriction correction described earlier. Com-
paring results of this analysis with those originally reported
in McDaniel et al. (1994) should provide information on
whether use of the new, more methodologically appropriate
approach can yield substantively different conclusions.

Results
Examining Effects of Violating the Basic Assumption

We computed results for 648 conditions. Because of
space constraints, only representative results for a group of
conditions (when pyp, = .60, ps;, = .80, pxx, = .70, and
pyy, = .50) are presented in Table 1. Full results of this
analysis can be found in Le (2003).° Below we discuss the
results provided by the new procedure and the procedure

based on direct range restriction under two conditions: when
the model assumption was met and when it was violated.

When the Model Assumption Was Met (k€ = 0)

When kg = 0, the new procedure accurately estimated the
true score correlation pyp,. Under the same condition, the
direct range restriction procedure underestimated p;p,, with
the underestimation ranging from being negligible (0.03%;
when prp, = .20, psr, = .10, pxx, = .90, pyy, = .80, and
ug = 0.844; not shown) to fairly serious (22.67%; pyp,
= .60, pyr, .80, pxx, 70, pyy, .50, and ug =
0.411; see Table 1). The extent of underestimation mainly
depends on (a) the degree of range restriction on S (ug) and
(b) the magnitude of the correlation between S and T (pgy,).
The greater the range restriction on S or the higher the
correlation between S and 7, the more serious the underes-
timation becomes.

When the Model Assumption Was Violated (k€ > 0)

Both correction procedures underestimated the true score
correlation p;p, when the model assumption was violated.
The more severely the assumption is violated, the more
serious the underestimation becomes. As in the case in
which the assumption is met, the degree of underestimation
depends largely on the values of ug and pgr,. Most impor-
tant, the underestimation resulting from using the new pro-
cedure is always less serious than that obtained from the
direct range restriction correction. As shown in Table 1, the
most serious underestimation obtained from the new proce-
dure occurred when k€ = .50 (psy, =.80 and ug = .411) and
is 44.50% (prp, = .33 when pg;, = .60). Under the same
condition, the direct range restriction procedure underesti-
mates pgr, by 63.83% (prp, = .22 when pg;, = .60).

Results of the current analyses confirm earlier research
findings (Hunter et al., 2006; Linn et al., 1981); that is, the
conventional direct range restriction correction procedure
underestimates true correlation when range restriction is
indirect. As expected, the new procedure provides accurate
estimates when its key assumption is met. More important,
it generally provides less biased estimates for the true score
correlation pgy, even when the assumption is violated. Thus,
it can be reasonably concluded that the new method should
be used, both in individual studies and in meta-analyses,
instead of the existing method of direct range restriction
when range restriction is indirect.

 Results for the other conditions are qualitatively similar to
those presented in Table 1 and would provide the same conclu-
sions about the relative accuracies of Hunter et al.’s (2006) pro-
cedure and conventional procedures although the magnitudes of
the biases vary.



Table 1

Effects of Violation of the Model Assumption (prp, = .60, psr = .80, pxy, = .70, and py,, =
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Direct range

New method restriction
Simulated conditions® Unobserved variables® Observed variables® results® correction®
Ug ke Psp, Ur Uup Uy Prp, Ux Pxx; Pyy, Pxy, Prp, B, % Prp, B, %

0.844 0.00 480 0903 0966  0.983 .561 0.933 .656 483 316 .600 0.00 .567 —5.50
0.844 0.10 528 0903 0959 0980 .552 0.933 .656 479 310 591 —1.50 557 —=7.17
0.844 020 576 0903  0.951 0.976 544 0.933 .656 475 304 583 —2.83 .546 —9.00
0.844 030 .624 0903 0942 0972 536 0933 .656 470 298 575 —4.17 .536 —10.67
0.844 040 672 0903 0933  0.967 529 0.933 .656 465 292 .568 —5.33 .525 —12.50
0.844 0.50 720 0903 0922  0.962 521 0.933 .656 460 286 .560 —6.67 515 —14.17
0.603 0.00 480 0.770  0.924  0.963 500 0.846 580 460 258 .600 0.00 .510 —15.00
0.603 0.10 528 0.770  0.907  0.955 474 0846 580 451 243 573 —4.50 480 —20.00
0.603 020 576 0.770  0.888  0.946 449 0.846 580 441 227 .546 —=9.00  .449 —=25.17
0.603 030 .624  0.770  0.867  0.936 423 0.846  .580  .429 211 S18 —13.67 418 —30.33
0.603 040 672 0770 0.844  0.925 397 0.846 580 416 195 490 —18.33 .387 —35.50
0.603 0.50 .720  0.770 0.819 0914 370 0.846 .580  .401 179 460 —23.33 .355 —40.83
0.411 0.00 480 0.684 0.899 0951 457 0792 522 447 221 .600 0.00 464 —22.67
0.411 0.10 528 0.684 0.877 0940 415 0.792 522 434 198 .555 7.50 417 —30.50
0.411 020 576 0.684  0.851 0.929 373 0.792 522 420 175 .506 —15.67 .369 —38.50
0.411 030 .624  0.684 0.822 0916 329 0792 522 403 151 454 —24.33 .320 —46.67
0411 040 672 0.684 0.790 0.901 283 0.792 522 .385 127 .396 —=34.00 .270 —55.00
0411 0.50 720  0.684  0.754  0.886 235 0.792 522 .363 102 333 —-44.50 217 —63.83

# Values of the basic parameters in the Hunter et al. (2006) model.
that are often available in primary studies and were used to make correction for the effects of range restriction and measurement error in the current

® Variables in the model that usually cannot be observed.

¢ Variables in the model

study.
direct range restriction procedure.

Examining the Accuracy of the New Method

Estimating the Mean of the True Score Correlation
Distribution

We now turn to the simulation results for the meta-
analysis methods. Results are presented in Table 2. The
means of true score correlations (pyp,) were estimated fairly
accurately by both new approaches (interactive and Taylor
series) under the new meta-analysis method across Condi-
tions 1-3. In general, the Taylor series approach overesti-
mated the real mean true score correlations, and the inter-
active approach provided more balanced, comparatively
accurate estimates. The overestimations, however, are neg-
ligible (maximum overestimate is .034 when the mean true
score correlation is .500, or 6.8% overestimation, for Dis-
tribution 9 under Case 3, Condition 2).

Compared with the new method, the conventional meta-
analysis method based on direct range restriction performed
poorly (see Condition 4.) The mean true score correlation
prp, Was consistently underestimated, with underestimation
ranging from 36.3% (ﬁrpa = .446 when p;p, = .700; Case
1) to 44.7% (f)m = .166 when p;p, = .300; Case 2). This
degree of underestimation is likely to be consequential,
potentially influencing substantive research conclusions.
The information available in Condition 4 was the same as

4 Results (estimate of the true correlation and its bias) provided by the new Hunter et al. (2006) correction procedure.

¢ Results provided by the

that in Condition 1, so the most appropriate comparison is
that between these two conditions. However, conclusions
are the same when Condition 4 is compared with Conditions
2 and 3.

Estimating the Standard Deviation of the True Score
Correlation Distribution

Table 3 shows the results. Under the condition of fixed
effects (i.e., SD, = .00), all the approaches overestimated
the standard deviation SD,,. This result is expected because
when the true standard deviation is zero, the estimated
standard deviation will be negative 50% of the time because
of sampling error, but all the approaches set the estimated
variance (and consequently the standard deviation) to zero
in such situations. Thus, when averaged across simulations,
the results become positively biased (cf. Overton, 1998).
Accordingly, the accuracy of the approaches under this
condition can be examined only by the magnitudes of their
estimated standard deviations (Sﬁp). As shown in Table 3,
on average, the two new approaches overestimated true
score standard deviation SD, by .048 to .086 (Var, =
.002-.008).

For a concrete idea of the extent of the overestimation, it
is helpful to compare the current results with those in the
Law et al. (1994) study, which examined the performance of
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Simulation Results: Estimates of the Mean True Score Correlation (pzp, )

Interactive approach

Taylor series approach

Information condition F_A)rpa B %B [_)ATP(, B %B
Case 1
Distribution 1 (p7 = .300, SD,, = .000)
1 301 0.001 0.33 304 0.004 1.33
2 310 0.010 3.33 317 0.017 5.67
3 301 0.001 0.33 309 0.009 3.00
4 .169 —0.132 —43.67
Distribution 2 (pz = .500, SD,, = .000)
1 499 —0.001 —0.20 .506 0.006 1.20
2 .503 0.003 0.60 .520 0.020 4.00
3 495 —0.005 —1.00 .509 0.009 1.80
4 .289 —0.211 —42.20
Distribution 3 (p;» = .700, SD,, = .000)
1 .682 —0.018 —2.57 .698 —0.002 —0.29
2 .680 —0.020 —2.86 715 0.015 2.14
3 710 0.010 1.43 716 0.016 2.29
4 446 —0.255 —36.29
Average
1 —0.006 —0.81 0.003 0.75
2 —0.002 0.36 0.017 3.94
3 0.002 0.25 0.011 2.36
4 —0.199 —40.72
Case 2
Distribution 4 (p;» = .300, SD,, = .055)
1 304 0.004 1.33 309 0.009 3.00
2 311 0.011 3.67 319 0.019 6.33
3 301 0.001 0.33 307 0.007 2.33
4 .166 —0.134 —44.67
Distribution 5 (p7 = .500, SD,, = .055)
1 494 —0.006 —1.20 504 0.004 0.80
2 .500 0.000 0.00 519 0.019 3.80
3 491 —0.009 —1.80 .504 0.004 0.80
4 .290 —0.211 —42.00
Distribution 6 (p;» = .700, SD,, = .055)
1 .684 —0.016 —2.29 .701 0.001 0.14
2 .677 —0.023 -3.29 711 0.011 1.57
3 .673 —0.027 —3.86 .696 —0.004 —0.57
4 441 —0.259 —37.00
Average
1 —0.006 —0.72 0.004 1.31
2 —0.004 0.13 0.016 3.90
3 —0.012 —-1.77 0.002 0.85
4 —0.201 —41.22
Case 3
Distribution 7 (pz = .500, SD,, = .110)
1 502 0.002 0.40 515 0.015 3.00
2 .503 0.003 0.60 528 0.028 5.60
3 496 —0.004 —0.80 512 0.012 2.40
4 .296 —0.204 —40.80
Distribution 8 (p;» = .500, SD,, = .148)
1 499 —0.001 —0.20 516 0.016 3.20
2 499 —0.001 —0.20 529 0.029 5.80
3 492 —0.008 —1.60 514 0.014 2.80
4 295 —0.205 —41.00
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Table 2 (continued)

Interactive approach Taylor series approach

Information condition ﬁTPH B %B 5TPH B %B
Distribution 9 (p7» = .500, SD,, = .184)
1 496 —0.004 —0.80 521 0.021 4.20
2 496 —0.005 —0.80 534 0.034 6.80
3 490 —0.010 —2.00 S12 0.012 2.40
4 .299 —0.202 —40.20
Average
1 —0.001 —0.20 0.017 3.47
2 —0.001 —0.13 0.030 6.07
3 —0.007 —1.47 0.012 2.53
4 —0.204 —40.67

Note. B = difference between the estimated value and true value. %B = percent difference between estimated value and true value (%B = 100 X
(estimate — true value)/true value). Information Condition 4 = application of the direct range restriction correction; application is based on same
information availability as Information Condition 1. Results appear only under the interactive column because there is no Taylor series based procedure

for the direct range restriction correction.

the conventional meta-analysis methods based on direct
range restriction when their assumption of direct range
restriction is met. In that study, the conventional methods
overestimated the variance of true score correlation from
.003 to .010 (mean SD, = .057-.100) when it was actually
zero (Law et al., 1994, Table 4, p. 983). Thus, it appears that
the new approaches provide relatively accurate results.
When the true score correlation varies slightly (SD, =
.055, Case 2), both new approaches overestimated the true
score standard deviation. This pattern of overestimation is
also expected because of the same problem discussed ear-
lier. That is, the approaches automatically set the estimated
variances to be zero when the calculated values are negative
because of sampling error. Although the percentage over-
estimation appears to be very high under certain conditions,
the absolute magnitudes are not (e.g., in Condition 3, the
most adverse condition in terms of information availability,
average overestimates were .044 and .027 for the interactive
approach and the Taylor series approach, respectively).
Results of the current analyses can again be compared
with those in Law et al. (1994) to provide more concrete
evaluations of the performance of the new meta-analysis
approaches vis-a-vis those of the existing meta-analysis
methods when their respective assumptions are met. In the
Law et al. (1994) study, the interactive method, the best
overall method, overestimated the true variance Varp by
.002 (Law et al., 1994, Table 6, p. 984), which is equivalent
to the overestimation of .015 in SD,,. These results should be
compared with those provided by the new approaches in
Condition 1 as explained earlier (i.e., Condition 1 in the
current study is similar to the condition assumed in Law et
al., 1994). As can be seen in Table 3, the average overes-
timations of the interactive and the Taylor series approaches
are .023 and .003, respectively. Thus, it is evident that the
new approaches compare favorably with the most highly
recommended meta-analysis method based on direct range

restriction correction (when their respective assumptions of
range restriction are met).

The above comparison ignores the fact that range restric-
tion is almost always indirect in practice. As can be seen in
Condition 4 in Table 3, under indirect range restriction, the
currently best meta-analysis method based on direct range
restriction correction (Law et al., 1994) appears to seriously
overestimate the standard deviation SD,: The overestima-
tions averaged .070 across simulation conditions in Case 2
(see Table 3). Coupled with the underestimation of mean
true score correlation pyp, discussed earlier (see Table 2),
this finding shows that conventional meta-analysis methods
based on direct range restriction produce serious underesti-
mations of the generalizability of relationships between
variables of interest.

When true score correlations are more variable (Case
3), both new approaches generally underestimated the
standard deviations of true score correlation SD,. The
underestimations, however, are generally small in abso-
lute value. The method based on direct range restriction
(Condition 4) provides inconsistent estimates of SD,
across simulation conditions, ranging from overestima-
tion (.033 when true SD, = .110) to underestimation
(—.012 when true SD, = .184).

Reanalysis of McDaniel et al.’s (1994) Meta-Analysis

Data from McDaniel et al. (1994) were reanalyzed with
both the interactive and Taylor series approaches. As in the
original analysis, we used the sample-based range restric-
tion on interview ratings (ily) and restricted independent
variable reliability gxy,. The Pearlman et al. (1980) gener-
alized artifact distribution, however, was specified to be
restricted dependent variable reliabilities (fyy,) in the cur-
rent analysis.
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Table 3

Simulation Results: Estimates of the Standard Deviation of the True Score Correlation (SD,, )

LE AND SCHMIDT

Interactive approach

Taylor series approach

Information condition SD,,, B J%B SD,,, B %B
Case 1
Distribution 1 (p, = .300, SD,, = .000)
1 .057 .057 .057 .057
2 .056 .056 .057 .057
3 .066 .066 .068 .068
4 .067 .067
Distribution 2 (pzp, = .500; SD,, , = .000)
1 .061 .061 .048 .048
2 .066 .066 .047 .047
3 .081 .081 .069 .069
4 121 121
Distribution 3 (pzp, = .700, SD,, , = .000)
1 .085 .085 .041 .041
2 .071 .071 .041 .041
3 112 112 .071 .071
4 173 173
Average
1 .068 .049
2 .064 .048
3 .086 .069
4 120
Case 2
Distribution 4 (pz», = .300, SD,, = .055)
1 .070 .015 27.27 .071 .016 29.09
2 .071 .016 29.09 .071 .016 29.09
3 .079 .024 43.64 .081 .026 47.27
4 .073 .018 32.73
Distribution 5 (pzp, = .500, SD,, = .055)
1 .076 .021 38.18 .062 .007 12.73
2 074 .019 34.55 .062 .007 12.73
3 .099 .044 80.00 .088 .033 60.00
4 126 .071 129.09
Distribution 6 (pz» = .700, SD,, = .055)
1 .087 .032 58.18 .041 —.014 —25.45
2 .081 .026 47.27 .043 —.012 —21.82
3 118 .063 114.55 .077 .022 40.00
4 177 122 221.82
Average
1 .023 41.21 .003 5.45
2 .020 36.97 .004 6.67
3 .044 79.39 027 49.09
4 .070 127.88
Case 3
Distribution 7 (pzp, = .500, SD,, = .110)
1 .095 —.015 —13.64 .078 —.032 —29.09
2 .092 —.018 —16.36 .071 —.039 —35.45
3 114 .004 3.64 .100 —.010 —9.09
4 .143 .033 30.00
Distribution 8 (pz = .500, SD,, = .143)
1 120 —.028 —18.92 101 —.047 —31.76
2 121 —.027 —18.24 101 —.047 —31.76
3 146 —.002 —1.35 130 —.018 —12.16
4 158 .010 6.76
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Table 3 (continued)
Interactive approach Taylor series approach
Information condition Slaprp B %B Sﬁprp B %B
Distribution 9 (f)TPa = .500, SD, = .184)
1 154 —.030 —16.30 135 —.049 —26.63
2 150 —.034 —18.48 127 —.057 —30.98
3 174 —.010 —5.43 156 —.028 —15.22
4 172 —.012 —6.52
Average
1 —.024 —16.29 —.043 —29.16
2 —.026 —17.70 —.048 —32.73
3 —.003 —1.05 —.019 —12.16
4 .010 10.08
Note. B = difference between the estimated value and true value. %B = percent difference between estimated value and true value (%B = 100 X

(estimate — true value)/true value). Information Condition 4 = application of the direct range restriction correction; application is based on same
information availability as Information Condition 1. Results appear only under the interactive column because there is no Taylor series based procedure

for the direct range restriction correction.

McDaniel et al. (1994) reported the operational validities
of employment interviews (i.e., correlation between inter-
views with job performance, not corrected for measurement
error in interview ratings). The new approaches discussed
thus far have been presented for true score correlations; so
the results (the true score correlation between interviews
and job performance constructs and its SD,) must be atten-
uated here to account for the effect of measurement error in
interview ratings. This process requires information on the
unrestricted independent variable reliability (pyy,), which
can be estimated by solving Equation 3 for pyy,:

Prx, = 1 — ax(1 — Pxx,)- (22)

The interactive and Taylor series approaches yielded
comparable results; so we report only results from the
interactive approach. Table 4 presents the results. As
shown in the table, the estimate of overall validity of
employment interviews is .393, indicating that the value
reported by McDaniel et al. (1994; .370) underestimated

Table 4

the true validity by 5.85%. Validities of job-related struc-
tured and unstructured interviews were estimated to be
.440 and .407, respectively. From these results, it appears
that the validity of unstructured interviews is not much
lower than that of structured interviews, contrary to Mc-
Daniel et al.’s results. As for estimation of standard
deviations, results in Table 4 show that McDaniel et al.
overestimated the standard deviations of validities of
employment interviews, with the overestimation ranging
from 10.1% (for all interviews) to 27.5% (for unstruc-
tured interviews). Combined with the underestimation of
the mean validities mentioned above, these overestima-
tions result in rather serious underestimations of the 90%
credibility values (ranging from 35.5% to 44.0%). This is
important because the 90% credibility value is typically
used to determine generalizability of the relationship.
In conclusion, the findings show that McDaniel et al.’s
(1994) meta-analysis generally underestimated the validities
of employment interviews. The underestimations of the
mean validities, however, are moderate because of the com-

Reanalysis of McDaniel et al.’s (1994) Meta-Analysis: Results and Comparisons

Bare bones analysis

Reanalysis results

% difference between
the approaches

McDaniel et al. (1994)
original results

Interview Validity SDyajiaicy Validity SDyajiaity

distributions N k 7 Var(e) Var(r) f)x,,“ SlA)pXP” 90% CV ;Q)XPH SDApXP“ 90% CV Validity SD (&Y%
All interviews 25,244 160 .200 .0060 .0239  .393 209 124 .370 230 .080 —5.85 10.05 —3548
Job-related

structured 11,801 89 .237 .0069 .0337 .440 245 125 440 280 .070 0.00 14.29 —44.00
Job-related

unstructured 8,985 34 .177 .0036 .0119  .407 102 277 .330 130 170 —18.92 27.45 —38.63

Note.

N = total sample size; k = number of studies; 7 = mean observed validity; Var(e) = variance due to sampling error; Var(r) = variance of observed

correlations; 90% CV = credibility value for the distribution of true validities; % difference = 100 X (original value — reanalysis value)/reanalysis value;

CV = credibility value.
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bined neutralizing effects of two methodological problems
discussed earlier: (a) the underestimating effect created by
the use of meta-analysis methods based on direct range
restriction correction and (b) the overestimating effect re-
sulting from using independent variable reliabilities esti-
mated in the restricted population as if they came from the
unrestricted population.

Discussion

The current study corroborates Hunter et al.’s (2006)
analytically based conclusions about the problem caused by
using meta-analysis methods based on the direct range
restriction model when range restriction is actually indirect.
As shown in the Monte Carlo simulation, under the condi-
tion of indirect range restriction, the interactive meta-anal-
ysis method based on direct range restriction consistently
underestimated the true score correlations across different
configurations of simulated parameters. The underestima-
tion ranges from 36% (Case 1, when pyp, = .50) to 45%
(Case 2, when pyp, = .30). Because range restriction is
likely to be indirect in most research situations, it is indeed
sobering to note that the best interactive meta-analysis
method to date could provide such biased estimates— esti-
mates that can potentially affect many substantive research
conclusions.

The reanalysis of McDaniel et al.’s (1994) meta-analysis
provides a real-world examination of the problem resulting
from the combined effects of two methodological issues that
affect most meta-analyses in the literature. Although the
underestimation may not be quite as serious as suggested by
the Monte Carlo simulations (partially because of the
abovementioned offsetting effects and rather high reliabili-
ties of interview ratings reported in the primary studies), the
use of inappropriate meta-analysis methods may have led to
erroneous conclusions about the relative magnitudes of the
validities of structured and unstructured interviews (i.e., in
the original analysis, the percentage difference in the valid-
ities of the interviews is 25%, whereas it is only 7.5% in the
reanalysis).

These findings suggest that many previous meta-analyses
in the literature based on existing methods underestimate
the true relationships between constructs. Even in cases in
which the underestimations are moderate (as in the case of
McDaniel et al.’s, 1994, study examined here), they may
still be problematic when such meta-analytically estimated
correlations are further used to examine competing models
of structural-causal relationships among constructs by
means of path analysis or structural equation modeling (cf.
Becker, 1989; Becker & Schram, 1994; Tett & Meyer,
1993; Viswesvaran & Ones, 1995). Further, combined with
the fact that existing meta-analysis methods based on the
direct range restriction correction generally overestimate the
standard deviation of the true score correlation (SDp), the

underestimation of the mean would be likely to result in
erroneous conclusions about the generalizability of the re-
lationships between constructs.

Results of this study demonstrate that the problem
caused by the use of the inappropriate meta-analysis
methods is indeed serious enough to distort many re-
search conclusions. Hunter et al. (2006) suggested the
new meta-analysis method as a solution for the problem.
The new meta-analysis method is based on the crucial
assumption that the effect of selection on the third vari-
able S on the dependent variable P is fully mediated by
the independent variable 7. The accuracy of the new
method depends on the extent to which the assumption
holds in practice. On theoretical grounds, it is expected
that the assumption indeed holds in many research situ-
ations. However, even when the assumption is violated,
the new method was found to provide less biased esti-
mates than those provided by the existing method based
on direct range restriction. Thus, results from the present
study demonstrate the overall superiority of the new
meta-analysis method when range restriction is indirect,
the common case in practice.

Correction for indirect range restriction in meta-anal-
ysis is a complicated process because of the nonlinearity
of the attenuating effect (Mendoza & Reinhardt, 1991).
This nonlinear effect is more serious under the condition
of indirect range restriction as compared with direct
range restriction, because the degree of range restriction
in true score 7T is more severe than that on observed score
X. Both approaches introduced for the new meta-analysis
method (interactive and Taylor series) are therefore ap-
proximation processes (as are many statistical estimation
procedures). And apart from the theoretical (substantive)
assumption of the new meta-analysis method discussed
above, those approximation methods for meta-analysis
require a methodological assumption: the independence
among the essential components in Equation 1. As ex-
plained earlier, this assumption is in fact always violated
to a certain degree.

Given all these complexities, it is encouraging that the
two new meta-analysis approaches perform reasonably
well. Across all the conditions of simulations and informa-
tion availability, both the Taylor series and the interactive
approaches yielded very accurate estimates of the mean true
score correlations. Estimating the standard deviation of true
score correlation SD,, proved to be more challenging, as
expected from previous research findings (e.g., Mendoza &
Reinhardt, 1991). The new approaches appear to provide
biased estimates of the standard deviations. Nevertheless, as
discussed earlier, the magnitudes of biases are moderate and
unlikely to lead to serious problems in substantive research.
Perhaps more important, results of the Monte Carlo simu-
lation analyses demonstrate that overall the new approaches
can provide more accurate estimates of the means and
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standard deviations of the true score correlations than can
conventional procedures based on direct range restriction
and therefore should be used by empirical researchers in
place of the conventional meta-analysis methods.'® A com-
puter program (Schmidt & Le, 2004) based on the Hunter et
al. (2006) method has been developed and is available to
facilitate use of the new procedure in meta-analyses to
correct for the biasing effects of indirect range restriction.'’

Although it is disappointing to find that existing meta-
analysis methods and published meta-analyses based on
them may seriously underestimate relations between con-
structs, the findings of this study open opportunities to
reexamine many important research conclusions that have
been reached on the basis of the less-than-optimal analytical
methods. Many published meta-analyses, especially those in
the fields of educational and employment selection, may
have seriously underestimated relationships between con-
structs.'? Conceivably, reanalyses of those studies may
yield results that can challenge established knowledge in
these areas and many others.

19 A reviewer questioned the generalizability of the conclusion
about the accuracy of the two approaches under the new Hunter et
al. (2006) meta-analysis method to other conditions not presented
here. This question can partially be answered by Le (2003), who
also examined two additional distributions of the true score cor-
relations (a bimodal distribution [prp, = .150, SD, = .163] and
a rectangular distribution [psp, = .225, SD, = .144]) and three
other distributions of range restrictions u,. Results obtained from
these conditions are very similar to those presented here. That is,
both approaches (interactive and Taylor series) yielded very accu-
rate estimates of the mean true score correlations (ém) and rea-
sonably accurate estimates of the standard deviations (SDP).

"1 Readers can refer to Hunter and Schmidt (2004) for informa-
tion about how to obtain the program.

2 Of course, there are published meta-analyses that make no
attempt to correct for either range restriction or measurement error
(e.g. Mullen & Copper, 1994; Spangler, 1992). The underestima-
tion produced in those meta-analyses is much greater than that in
meta-analyses that corrected for direct range restriction when the
correction should have been for indirect range restriction.
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Appendix A

Constructing the Distribution of Range Restriction in the Independent Variable True Score (u;)

When there is indirect range restriction, independent
variable reliability in the unrestricted population (pyy,)
and range restriction on independent variable observed
scores (uy) are not independent of each other because the
latter is a function of the former and range restriction of
the independent variable true scores (u;). This depen-
dency makes it impossible to derive the u, distribution by
simply combining the uy and pyy, distributions as per
Equation 17. Because of that, an iterative approach is
needed to estimate the distribution of u#;,. The approach
involves initially selecting a plausible distribution for u;
(@17). The distribution includes a number of representative
values of i, together with their respective frequencies.
All those values of i, are then entered into Equation 8
with each value of pyy, in its distribution to estimate iiy.
The resulting values of iy form a distribution with the

frequency of each value being the product of the corre-
sponding frequencies of 7, and pyy, in their respective
distributions (this calculation is possible because #i; and
pxx, are independent of each other). This iy distribution is
then compared with the observed distribution uy, on the
basis of a preset criterion. If they are different, as deter-
mined by the criterion, a new iteration is started. A new
plausible distribution of #i; will be constructed by keep-
ing the original values of i, but systematically changing
their frequencies. The whole process described above is
repeated until the distribution of iy is similar to the
observed uy distribution (as determined by the criterion).
Further details can be found in Le (2003). A computer
program was written in SAS to facilitate the process
(which may require hundreds of thousands of iterations).
The program is available from Huy Le upon request.

Appendix B

Analytic Steps for the New Meta-Analysis Interactive Approach

As mentioned in the text, the first step involved estimat-
ing the hypothetical distribution of observed correlations
that would obtain when (a) all the artifacts are fixed at their
mean values and (b) there is no sampling error. The mean of
this hypothetical distribution is the sample size weighted
mean of the observed correlations:

2N,
A J

Pxy, = SN
J
j

where N; and ; are the sample size and observed correlation
of a primary study j included in the meta-analysis,
respectively.

The variance of the hypothetical distribution is estimated
by subtracting from the observed variance (a) sampling
error variance and (b) variance due to the combined effects
of variation across studies in the three statistical artifacts
(measurement error in the dependent variable and indepen-
dent variable measures and range restriction in the indepen-
dent variable):

Var,,, = Var,,, — Var, — Var,

PXXPYYUT >

where Vary, the hypothetical variance of interest,
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Var,,, = observed variance (Var,

j
Var, = averaged sampling variance of the primary studies
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oxxprrar — Variance due
i
to the combined effect of the three statistical artifacts.
Var is calculated by the following steps:

PXXPYYUT

1. Disattenuate the mean of the hypothetical distri-

bution (ﬁxy,) using the means of the artifact
distributions.

2. Create a 3-D matrix with the cells being all the
possible combinations of values of reliability of
dependent variable measure (pyy,), reliability of
independent variable measure (pyy,), and range
restriction on the independent variable (uy).

3. For each cell, calculate the expected value of the
observed correlation by attenuating the disattenu-
ated mean value obtained in Step 1 using the
values of the artifacts in the cell.

(Appendixes continue)



438

LE AND SCHMIDT

Compute the variance of the correlations obtained
in Step 3 across cells, weighting each by its cell
frequency. Because the statistical artifacts (pyyx,,
Pyy. and u;) are assumed to be independent, cell
frequencies are computed by taking the products
of the frequencies of the artifacts in their respec-
tive distributions. For example, frequency for a
cell defined by the values of pyy, = .90 (fre-
quency = .15; see Figure 2), pyy, .80 (fre-
quency = .06; see Figure 2), and u; = 499 (fre-
quency = .14; see Figure 3) is .00126 (.15 X
.06 X .14 = .00126). The resulting variance is
Var,

PXXPYYUT*®
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