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A Test of Two Refinements in Procedures
for Meta-Analysis

Kenneth S. Law, Frank L. Schmidt, and John E. Hunter

This study used Monte Carlo simulation to examine the increase in accuracy resulting from 2 statis-
tical refinements of the interactive Schmidt-Hunter procedures for meta-analysis: the use of the
mean correlation instead of individual correlations in the estimation of sampling error variance, and
a procedure that takes into account the nonlinear nature of the range-restriction correction. In all of
the cases examined, these refinements increased the accuracy of the interactive procedure in esti-
mating the variance of population correlations and resulted in more accuracy than other procedures
examined. The use of the mean correlation in the sampling error variance formula also increased
the accuracy of variance estimates for the multiplicative and Taylor Series procedures.

Meta-analysis has become a widely used research technique
in behavioral science. Among the different available meta-ana-
lytic approaches, the artifact-distribution-based meta-analytic
methods for correlation coefficients are used most often, with
numerous applications of this technique in different areas of
behavioral science (Hunter & Schmidt, 1990; Schmidt, 1992).
Computer simulation studies have examined the accuracy of
procedures of this type (Callender & Osburn, 1980; Kemery,
Mossholder, & Roth, 1987; Mendosa & Reinhardt, 1991; Raju
& Burke, 1983). Most applications of meta-analysis to large
real-world databases have yielded positive nonzero estimates
of the variance of population correlations (e.g., Pearlman,
Schmidt, & Hunter, 1980), although the variance estimates have
generally been very small. Simulations (e.g., see Raju & Burke,
1983) have shown that although all of the mean population cor-
relation estimates were very accurate, all of the procedures ex-
cept the Schmidt-Hunter noninteractive procedure overesti-
mated the true variance of population correlations. As a result,
there have been continuous efforts to improve the accuracy of
the existing meta-analytic procedures and to explain why they
overestimate the true variance of population correlations.

This study focused on two major modifications of the
Schmidt-Hunter noninteractive (Pearlman et al., 1980;
Schmidt, Hunter, Pearlman, & Shane, 1979) and interactive
(Schmidt, Gast-Rosenberg, & Hunter, 1980) procedures for
meta-analysis and used computer simulations to test the esti-
mates produced by these improved procedures. We hypothe-
sized that with these improvements overestimation of true vari-
ance of population correlations across studies would be reduced
and that more accurate estimates of the population parameters
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could be obtained. The two improvements tested in this study
were (a) the use of the mean observed correlation instead of
individual correlations in sampling error variance estimation
(Hunter & Schmidt, 1990, pp. 208-209) and (b) a procedure
that takes into account the nonlinear effect of the range-restric-
tion correction (Hunter & Schmidt, 1990, pp. 209-211).

This article is one in a series of related articles. The first arti-
cle (Law, Schmidt, & Hunter, 1994) used simulation studies of a
variety of validity distributions to evaluate the nonlinear range-
correction procedure for estimating SD,. To more clearly ad-
dress the effects of this refinement, we conducted that study un-
der conditions of no sampling error (all Ns were infinite). The
major finding was that the nonlinear refinement increased the
accuracy of estimates of SD, for the Schmidt~Hunter interac-
tive procedure, making that procedure generally more accurate
than other procedures. We also found that even gross violations
of the normality assumption entailed by the nonlinear refine-
ment did not prevent the refinement from increasing accuracy.
The next article in this series (Hunter & Schmidt, 1994) exam-
ined the question of whether use of 7 instead of r in the formula
for the sampling error variance of the (Pearson) correlation co-
efficient would increase the accuracy of estimates of sampling
error variance. This was accomplished analytically, not through
computer simulation. The major finding was that use of 7 in-
creased accuracy in all cases except those in which the mean
attenuated population correlation (py,) was larger than .60. Be-
cause attenuated population correlations are rarely as large as
.60 in real data (they are usually in the .00 to .40 range), Hunter
and Schmidt (1994) concluded that use of ¥ would usually in-
crease the accuracy of meta-analytic results. However, Hunter
and Schmidt addressed only the homogeneous case, in which
SD, = 0. The heterogeneous case, in which SD, is greater than
zero, is more complicated to address analytically and is still be-
ing studied. The difficulties in analytically evaluating the heter-
ogeneous case can be circumvented to some extent by using
computer-simulation studies to evaluate use of r in the hetero-
geneous case, which was one purpose of the present study. The
other purpose of this study was to examine the improvement in
accuracy of estimates of SD, resulting from the nonlinear range
refinement under conditions of finite (and realistic) sample sizes
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(both in individual studies and in meta-analysis as a whole). The
two major hypotheses were (a) that even in the heterogeneous
case use of r would improve accuracy (for all procedures) and
(b) that the nonlinear refinement would continue to improve
the accuracy of the interactive procedure’s estimates of SD,. A
final hypothesis was that the interactive procedure used with
both the nonlinear refinement and with 7 in the sampling error
variance formula would yield estimates of SD, that were more
accurate than those from any other procedure.

In the final study in this series, Schmidt et al. (1993) used the
interactive procedure to apply the two refinements mentioned
above to large sets of real data to determine the practical and
theoretical implications in the area of validity generalizability
for cognitive-ability selection tests. The general conclusion was
that results using the more accurate procedures further reduced
support for the hypothesis of situational specificity of validity
in personnel selection.

Use of 7 Instead of r in the Sampling Error
Variance Formula

The well-known formula for the sampling error variance of
sample correlation coefficients is

- (1 - p?(y)2

2
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where N is the sample size and p,, is the (uncorrected) popula-
tion correlation. (A variation of this formula has N in the de-
nominator rather than N — 1. The formula using N — 1 has
smaller bias for all except very large sample sizes [e.g., see
Hunter & Schmidt, 1994] and is used in all of our meta-analytic
programs as well as by most researchers for most purposes.) The
value of p,, is unknown, and to use this formula, some method
must be found to estimate it. In single studies, the estimate of
pxy that is typically used—because it is the only one available—
is the observed correlation in the study at hand. In our early
meta-analyses of employment test validities (e.g., Schmidt et
al., 1979, 1980), we followed this tradition: The value used to
estimate the sampling error variance in every study was the ob-
served correlation in that study. We have since found that this
procedure i1s not optimal. The mean observed correlation
(Fobs)—a good estimate of p,,—is typically about .20 in this lit-
erature. Sample sizes are usually small, so there are substantial
departures in both directions from p,,. When the sampling er-
ror is large and positive (e.g., .20, so that r = .40), the estimated
S? is substantially reduced (by 23% in this example). However,
this effect is not symmetrical. When sampling error is large and
negative (e.g., —.20, so that r = .00), the estimated SZ is in-
creased by only a small amount (by 9% in this example). Thus,
on balance, the sampling error in a set of correlations is under-
estimated. The smaller the sample size is in the studies being
analyzed, the greater this underestimation will be. Also, the
smaller the (attenuated) population correlation is, the greater
the underestimation will be because smaller p,, values yield
larger sampling error variances, sample sizes being equal. The
result is underestimation of the amount of variance accounted
for by sampling error and overestimation of SD,. This distor-
tion can be eliminated by using the mean correlation for the set

of studies rather than individual correlations in the formula for
sampling error. The mean correlation contains little sampling
error, and extreme values are unlikely. The result should be
more accurate estimates of SD,.

By using analytic methods and by examining only the homo-
geneous case (no variation in population correlations, SD, = 0),
Hunter and Schmidt (1994) found that, under most conditions,
use of 7 yielded more accurate estimates. However, when the
attenuated population correlation (the true-score population
correlation reduced by unreliability, range restriction, or both)
was larger than about .60, the estimate based on the mean cor-
relation had slightly more negative bias (underestimation of ac-
tual sampling variance) than the estimate based on the individ-
ual correlations. The importance of this exception is limited by
the fact that in real data, attenuated population correlations as
large as .60 are rare. In the abilities domain of validity general-
ization, for example, the average value of the attenuated popu-
lation correlation is about .20 and is rarely above .25. No values
of this correlation at or above .60 appeared in the realistic sim-
ulation studies included in the present research. Thus, the
greater bias of sampling error variance estimates based on 7 in
this range was not of any consequence in this study (as would be
the case in virtually all real data sets).

In a Monte Carlo study, Millsap (1988) used 7 rather than rin
the formula for sampling error variance. In his study, all popu-
lation correlations were equal, so S2 was zero, and the variance
of the observed correlations was solely due to sampling error
variance (i.e., S? = S2). However, he found that his formula-
derived estimates of S? were slightly smaller than the observed
S? figures, and this discrepancy was larger for smaller sample
sizes. He attributed this finding to inaccuracy in the formula,
which is an approximation, but the phenomenon described here
is, in part, the explanation for his findings. Millsap also found
that the negative bias in his formula-derived estimates of sam-
pling error variance was larger when measures had lower reli-
ability. This finding is explained by the fact that lower reliability
leads to lower values of p,,, the attenuated population correla-
tion. Lower p; values have larger sampling error variances for
any fixed sample size, thus intensifying the process described
above. Therefore, it was not unreliability (measurement error)
per se that caused the increase in Millsap’s underestimation but
rather the reduced value of the attenuated population
correlation.

Nonlinearity in the Range Correction and a New
Correction Procedure

In artifact-distribution-based methods of meta-analysis, the
mean (p) and standard deviation (SD,) of true correlations are
estimated from the mean (7.) and standard deviation (SD,.) of
the residual distribution. The residual distribution is the distri-
bution of observed correlations expected across studies if &
were always infinite (i.e., there is no sampling error) and reli-
ability and range restriction were always constant at their re-
spective mean values (Law et al., 1994). To correct the residual
distribution for unreliability, we could divide every value in that
distribution by the mean of the square roots of the reliabilities.
However, because that value is a constant, we can instead simply
divide both 7., and SD,., by that constant and obtain the same
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result. This is what our artifact-distribution-based procedures
for meta-analysis have traditionally done. However, these pro-
cedures have done exactly the same thing in correcting the re-
sidual distribution for the effects of mean range restriction, and
here this approach does not work as accurately. Our traditional
procedures use the mean level of range restriction (in the form
of the ratio of the restricted predictor standard deviation to the
unrestricted predictor standard deviation) to correct 7. This
procedure increases 7, by some factor (e.g., 1.50). Then, SD,.,
is multiplied by this same factor to estimate the standard devia-
tion of a distribution in which each correlation has been cor-
rected for the mean level of range restriction. However, unlike
the reliability correction, the range-restriction correction is not
linear in . The correction is not the same for every value of r in
the residual distribution; instead, it is larger for smaller corre-
lations and smaller for larger correlations. Thus, the approxi-
mation based on the assumption of linearity in artifact-distri-
bution-based procedures for meta-analysis leads to overesti-
mates of SD,. Simulation studies (Callender & Osburn, 1980;
Raju & Burke, 1983) have demonstrated that the interactive
procedure—theoretically, our most sophisticated method (see
Schmidt et al., 1980)—yields estimates of SD, that are too large
by .02 or more. This overestimation occurs in simulated data in
which sample sizes are infinite (eliminating sampling error) and
uncorrected sources of artifactual variance such as computa-
tional errors, outliers, and non-Pearson correlations do not ex-
ist. This overestimation stems from failure to take into account
the nonlinearity of range-restriction corrections. This nonline-
arity can be taken into account by separately correcting each
value in the residual distribution for the mean level of range
restriction. To take this nonlinearity into account, the following
method can be used (Law et al., 1994): After determining the
mean and the standard deviation of the residual distribution, 60
additional values in that distribution are specified by moving
out from the mean in 0.1 SD units to 3 SD units above and
below the mean. Then, each of these values is corrected individ-
ually for range restriction by using the mean of the S/s ratio.
The formula used to correct each value is

R, = r,(S/s)
LS/ - 1+

(2)

where r; is the value of the correlation in the residual distribu-
tion; R; is the correlation corrected for range restriction; S'is the
unrestricted standard deviation; and s is the mean restricted
standard deviation.

Each range-corrected correlation is then corrected for the
mean effect of unreliability; the resulting value is symbolized as
pi. The relative frequency (f;) of each value of ris indexed by the
normal curve ordinate associated with its z score in the residual
distribution. (Law et al., 1994, provided both conceptual and
empirical justification for the normality assumption.) These
frequencies are applied to the corresponding corrected corre-
lations (p;). The frequency-weighted mean of the distribution of
the corrected correlations (p) is then determined, and the fol-
lowing frequency-weighted variance formula is used to find S

A T2
Eﬁ(l’i 0) (3)
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where f; is the frequency in the normal distribution associated
with p;. The square root of this value (i.e., SD,) is a more accu-
rate estimate of the standard deviation of true validities.

This procedure was discussed in more detail by Law et al.
(1994). They used computer simulation to compare the accu-
racy of this procedure to that of the older linear procedure and
found the new procedure to be considerably more accurate. The
increases in accuracy became more pronounced as the variabil-
ity of the population correlations became larger. The new pro-
cedure increased accuracy even when the normality assump-
tion described above was seriously violated. In Law et al’s study,
sample size was infinite, and thus there was no sampling error.
If there is sampling error, as in real data, and if sampling error
is incompletely corrected for as a result of use of r; in the sam-
pling error variance formula, the inaccuracy introduced by the
failure to allow for the nonlinearity of the range correction may
be intensified. In the present study, we examined the nonlinear
range-correction procedure under realistic conditions of sam-
pling error and contrasted the results obtained when r; versus
r was used in the sampling error variance formula. We believe
the results provide useful information on the operational accu-
racy of these meta-analytic methods.

Method

The simulation methods used by Callender and Osburn (1980) and
by Raju and Burke (1983) were not used in this study because samples
of only infinite size were considered in these earlier studies. Thus, with
these methods, the effect of improved sampling variance estimation
could not be tested. Instead, methods similar to those used by Osburn,
Callender, Greener, and Ashworth (1983) were used. However, Osburn
et al. focused on validity generalization, not meta-analysis as a general
technique. Thus, they considered the effects of criterion reliability but
not predictor reliability. Therefore, modification of their design was
required.

The simulation was divided into three different cases. Case 1 exam-
ined accuracy in predicting the mean and the variance of true popula-
tion correlations across different procedures when true population cor-
relations were constant (i.€., the true variance of population correlations
was zero, V, = 0). Three values of the true score correlation were simu-
lated (p = .30, .50, and .70). Case 2 focused on accuracy in estimating
the true mean population correlation and V, for different procedures
with variable true population correlations (i.e., true ¥, > 0). The hypo-
thetical distribution of population correlations used by Callender and
Osburn (1980) was considered unrealistic (Law et al., 1994) because in
real data, population correlations in a meta-analysis would be unlikely
to range from .06 t0 .94 (true V, = .0833). Osburn et al. (1983) tested the
accuracy of different procedures with four true population correlation
distributions of different variability. However, except for the distribu-
tion labeled as having small variance, the other distributions of true
population correlations had unrealistically large variances. (Interested
readers are referred to the original article by Osburn et al., 1983, for a
discussion of their distributions.) Therefore, three more realistic distri-
butions of true population correlations were used in the present study.
These distributions are listed in Table 1.

These three distributions have mean population correlations of .30,
.50, and .70, respectively, which correspond to the values in Case | of
this study. Each of these distributions had a true variance of .0030,
which was similar to the mean ¥V, estimate that Schmidt et al. (1993)
found by using a refined estimation procedure with large empirical da-
tabases. The distributions used in this study should therefore be more
realistic and empirically based than most of those used in past simula-
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Table 1
Case 2. Hypothetical Distributions of Population Correlations
Developed for This Study

Population 1 Population 2 Population 3
Frequency (0} (0) (0)
.10 .20 .40 .60
.20 25 45 .65
.40 .30 .50 .70
.20 .35 .55 75
.10 .40 .60 .80

Note. The mean population correlations for Populations 1, 2, and 3
were .30, .50, and .70, respectively. For all populations, the standard
deviation was .0548, and the variance was .0030.

tion studies. In addition, by holding true variance of population corre-
lations constant at .0030, we could test the accuracy of different proce-
dures with respect to different values of the mean true population cor-
relation; such an analysis had not been conducted previously. However,
to ensure generalizability of the results, we also tested three distribu-
tions of true validities with larger variance; these were the same as those
used by Osburn et al. (1983) and are presented in Table 2. These three
distributions are collectively referred to as Case 3 in this study.
Estimates from 12 different combinations of procedures were com-
pared in this study. These procedures originated from five meta-analytic
models—the Schmidt-Hunter interactive and noninteractive models,
the Callender-Osburn (Callender & Osburn, 1980) multiplicative
model, and the two Taylor Series models of Raju and Burke (1983).
The sampling variance estimation refinement was applicable to all five
procedures. Therefore, sampling variance estimates calculated with r
and r for each of these five procedures were compared, which produced
10 combinations. The nonlinear range-restriction correction was appli-
cable only to the Schmidt-Hunter procedures (Law et al., 1994). There-
fore, the remaining two combinations were the interactive and nonin-

Table 2
Case 3. Osburn et al’s (1983) Distributions of Population
Correlations Used for This Study

Population 1 Population 2 Population 3

Frequency (o) (0) )]
1 .74 .82 .90
1 74 .78 .85
2 .68 74 .80
2 65 .70 .75
3 62 T 66 .70
4 .59 .62 .65
4 .56 .58 .60
5 .53 .54 .55
6 50 .50 50
5 47 46 45
4 44 42 40
4 41 .38 35
3 38 .34 30
2 35 .30 25
2 32 .26 20
1 29 .22 15
1 26 .18 10

Note. The mean population correlation for all populations was .50.
The variances for Populations 1, 2, and 3 were .0122, .0218, and .0340,
respectively.

teractive procedures with nonlinear range-restriction correction. On the
basis of the findings of Law et al. (1994), the nonlinear range-restriction
correction was expected to increase accuracy in Case 2 analyses (in
which V, > 0); however, it was expected to have a smaller beneficial
effect in Case 1 analyses (in which V, = 0). The use of rin the sampling
variance formula was expected to improve accuracy regardless of the
value of V,. As stated earlier, one objective of this study was to deter-
mine the combined effects of these two refinements. Raju, Burke, Nor-
mand, and Langlois’s (1991) procedure was found by Law et al. (1994)
to be considerably less accurate in estimating V, than the more tradi-
tional procedures; therefore, it was not included in the present study.
Also, because of the reasons explained in detail by Law et al., Thomas’s
(1990) method also could not be included.

The artifact distributions used by Schmidt et al. (1979, 1980) were
used as the distributions of reliabilities and range-restriction levels. As
is the usual case in meta-analysis, the artifacts were assumed to be un-
correlated; that is, it was assumed there was no correlation between
degree of range restriction and reliability values. The rationale for this
assumption was discussed by Schmidt et al. (1980). These artifact dis-
tributions were used both in the generation of the data that were ana-
lyzed and in the meta-analysis of those data. Thus, the artifact distribu-
tions used in the meta-analyses were those known to be exactly appro-
priate for the data. A reviewer suggested that we also examine the effect
on accuracy of using incorrect or inappropriate artifact distributions.
Use of such distributions would cause error in the estimated means
and variances. However, even under these circumstances, addition of the
refinements examined in this study would make these estimates more
accurate, relatively speaking; that is, the results would be less inaccurate
with the refinements than without them. Thus, use of inappropriate
artifact distributions would have no effect on the evaluation the accu-
racy improvements produced by the refinements, and therefore, the
effects of using inappropriate artifact distributions are not relevant to
the purposes of this research. Concern about the possible effects of in-
appropriate artifact distributions seems to stem from the belief that dis-
crepancies between our artifact distributions and those appropriate for
empirical data might be large. This concern does not appear to be justi-
fied. Our distributions were carefully developed on the basis of exami-
nation of numerous validity studies and data sets in which predictor and
criterion reliabilities and range-restriction values were either given or
could be computed. These distributions were later checked against fig-
ures from large empirical databases, yielding considerable empirical ev-
idence that these distributions closely match those found in real data
(Alexander, Carson, Alliger, & Cronshaw, 1989; Rothstein, 1990;
Schmidt, Hunter, Pearlman, & Hirsh, 1985, question and answer 26,
pp. 750-756). Thus, reported validity generalization findings are un-
likely to be affected in any significant way by mismatching of artifact
distributions.

In this study, the number of studies in a meta-analysis and the sample
size of each study within one meta-analysis (simulation run) were ran-
domly assigned. The number of studies in a meta-analysis was restricted
to be greater than 30 but less than 100. These limits were chosen to
represent the usual number of studies in a meta-analysis in the litera-
ture. Within a study, the sample size was also randomly assigned with
limits of 30 and 150. These limits were chosen in consideration of the
fact that Lent, Auerbach, and Levin (1971) found a median sample size
of 68 in the personnel research literature. Five hundred simulation runs
were conducted for each population correlation or distribution of pop-
ulation correlations, each with a different value for number of studies
and sample size for each study.

At the beginning of each simulation, a random number was first
generated by using the IMSL (International Mathematical and Statis-
tical Library) subroutine DRNUNE (Double-Precision Random
Number Uniform Distribution Function). This number was linearly
transformed to impose lower and upper limits of 30 and 100, respec-
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tively, and was then used as the number of studies in this particular
meta-analysis (this particular run of the 500 replications of the simula-
tion). Thus, a different number of studies was generated for each of the
500 simulations. Another random number was subsequently generated
and linearly transformed with limits of 30 and 150. This number was
then used as the sample size for one study within this meta-analysis
(simulation run). Next, one value for criterion reliability (p,,) and one
value for predictor reliability (o,,) were randomly chosen from the two
reliability distributions. The true predictor (x,) and criterion (%) values
were normally distributed with a mean of zero and a standard deviation
of unity. A random true score, x,, was sampled from that standard, nor-
mal true-score distribution by using the IMSL subroutine DRNNOF
(Double-Precision Random Number Normally Distributed Function).
A value for measurement error was randomly sampled from a normal
distribution with a mean of zero and a standard deviation equal to the
standard error of measurement ( a. ). The predicted true score (J}) cor-
responding to the generated true score x; was found by using the preset
population correlation between true scores x; and ;. The actual true
score ), (given a particular x, value) was then sampled from a normal
distribution with a mean of y, and a standard deviation of ay,-x (i.e., the
conditional standard deviation of true scores). Next, a measurement
error for the true score 3, was sampled from a normal distribution with
a mean of zero and a standard deviation of Te, (the standard error of
measurement for y; O, Was estimated with a procedure similar to that
for o ). Finally, the observed y score is the sum of actual true score »,
and error score y,.

This data generation procedure can be mathematically represented
by the following equations:

X=X+ e, 4)
y=n-te, (5)
oi = uf,l = 1.00, ©6)

x

7=/ L=t (70)

o 1_
oe, = oV —pxx=pv—="‘\/1 I \/T”—‘fand (7a)

Pyy
L Inl. _ 8
Y1 = Py Xt = PxyXes (8
Ix,
oo = VT =2 ©

where x is the observed x score; x; is the true x score, N0, 1); y; is the
true y score, N0, 1); e, is the error score for x, MO, o ); €, is the error
score for , N(O, ¢.); o2 is the variance of the observed x score, o2 >
1.00;, af, is the variance of the observed y score, ai > 1.00; q,_is the
standard error measurement of x; Ge, is the standard error measurement
of y; pxx is the reliability of x; py, is the reliability of y; p,,,, is the corre-
lation between true score x and true score ; 3, is the predicted true
score y given a true score (x,); and a,,.,, is the conditional standard devi-
ation of y, (conditional on x;).

To incorporate range restriction on the observed x-y pairs, a selection
ratio was randomly selected from the distribution of range-restriction
values. The critical z score corresponding to the generated selection ra-
tio was calculated. Any generated x-y pair with x smaller than the crit-
ical value was rejected. This procedure was repeated until the desired
number of x-y pairs (sample size for each correlation) was obtained.
The correlation between these x-) pairs was calculated as the observed
correlation for that study. This procedure for generating observed cor-
relations was repeated until the desired number of correlations for a
meta-analysis was obtained.

There were 500 simulated meta-analyses for each value of the popu-
lation correlation in Case 1. The simulation procedure for Cases 2 and

3 was the same as that for Case 1. The only difference was that instead
of using one specific true-score population correlation for all 500 runs
of the simulation, a randomly drawn true population correlation from
the prescribed distributions in Table ! or Table 2 (with replacement)
was used each time in generating each observed correlation for a meta-
analysis. Law et al. (1994) discuss the importance of sampling with re-
placement. Again, 500 simulated meta-analyses were conducted for

~ each value of the mean true population correlation.

Results and Discussion
Results for Simulation Case 1

The simulation results for 500 runs for different fixed popu-
lation correlation values (p = .30, .50, and .70) are presented in
Tables 3 and 4. It can be seen that mean estimates of the true
population correlations of the six procedures were very similar.
Differences across procedures were within rounding error. (In
actual usage, estimates of the true mean population correlation
are routinely rounded to two decimal places.) Mean population
correlation estimates of the interactive and noninteractive pro-
cedures with linear range-restriction correction are presented
together because these procedures yield identical estimated
mean population correlations when the older linear range-re-
striction correction procedure is used (see Law et al., 1994). We
conclude that all of these procedures are about equally accurate
in estimating the true population correlation when it is con-
stant. In terms of estimating the mean population correlation,
the refined Schmidt-Hunter procedures do not increase the ac-
curacy of the original procedures because the older procedures
are already very accurate.

Table 4 summarizes the accuracy of different procedures for
estimating the variance of population correlations for different
values of true mean population correlations. Because there was
only one population correlation in this case, the true variance
of population correlations is zero in all cells, and the mean esti-
mated population variance is also the mean error. Both of the
refinements led to a smaller estimation of the true variance of
population correlations and, thus, to increased accuracy of the
V, estimates. For the interactive procedure, application of the
two refinements reduced the mean V, estimate from .0089 to
.0064, a 28% increase in accuracy. For the noninteractive pro-
cedure, the mean SD, estimate decreased from .0046 to .0033
(a 28% decrease) when the two refinements were used. It ap-
pears that the nonlinear range-restriction correction proce-
dures were more accurate than the corresponding linear range-
restriction correction procedures even in Case 1, where V, = 0.
The reason is that even though estimates of the residual stan-
dard deviation (SD,.) are usually very small in Case 1, these
estimates are increased less when they are transformed into es-
timates of SD, (and V).

As expected, the procedures that used the mean correlation
in estimating sampling variance were more accurate than the
corresponding procedures that used individual correlations, as
demonstrated analytically by Hunter and Schmidt (1994). On
average, the error in estimating V, decreased by about .001
when 7 was used instead of r. This was true even for the multi-
plicative and Taylor Series procedures. When the nonlinear
range-restriction correction was used for the Schmidt-Hunter
procedures, error in estimating ¥V, decreased futher.
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Table 3
Case 1. Mean Population Correlation (M,) Estimates by Different Procedures When True V, = 0
True M, = .30 True M, = .50 True M, =.70

Procedure M Error % error M Error % error M Error % error
Interactive/noninteractive, linear 2991 —.0009 -0.30 4975 -.0025 -0.50 6974 —-.0026 -0.37
Interactive, nonlinear 2982 —.0018 -0.60 .4960 —.0040 —0.80 6951 —.0049 —0.70
Noninteractive, nonlinear 2984 —-.0016 -0.53 4968 —-.0032 —-0.64 6966 —.0034 -0.49
Multiplicative .2989 —.0011 -0.40 .4966 —.0034 —0.68 6952 —-.0048 -0.69
First Taylor Series .2963 —.0037 -1.20 .4930 —.0070 -1.40 6910 —.0090 —1.30
Second Taylor Series .2991 —.0009 -0.30 4975 -.0025 —0.50 6974 -.0026 -0.37

Note.

In comparison with other procedures, the refined Schmidt-
Hunter procedures gave more accurate estimates of the true
variance of population correlations than the multiplicative pro-
cedure. As shown in Table 4, mean V, estimates produced by
the refined interactive and noninteractive procedures were
.0064 and .0033, respectively, as compared with .0089 for the
multiplicative procedure using 7. The two Taylor Series proce-
dures using r yielded the same mean V, estimate up to the third
decimal place as the refined Schmidt-Hunter interactive proce-
dure (rows 10 and 12 vs. row 3).

All procedures overestimated the true variance of population
correlations (V,). However, it is an inherent property of all of
these procedures that any negative variance estimate must be
set to zero. Therefore, with a true V, of zero, no procedure
could produce an underestimate. One reviewer was concerned
that, under the circumstances of Case 1 (¥, = 0), results for the
accuracy of the V, estimates might be biased; this is not the
case. The purpose of this study was to evaluate the accuracy of
these procedures as they are actually used to analyze data. In
real applications of these methods, negative variance estimates
cannot be used and are not used. Therefore, it is irrelevant
whether such negative estimates would create bias if they were
used. In the case of the interactive and noninteractive proce-
dures, an essential property of the methods is that the estimate

Table 4

Mean values of the M, estimates are based on 500 simulation runs. V, = variance of population correlation.

of residual variance is set to zero when the observed estimate of
residual variance is negative, leading to an estimate of zero for
V,. The other procedures do not define or compute a residual
variance (see Law et al., 1994, for a discussion of this point).
However, an essential property of each of these other methods is
that any negative estimates of V, are set to zero. This rule is
similar to that in Cronbach’s generalizability theory (Cronbach,
Gleser, Nanda, & Rajaratnam, 1972; see discussion in Hunter
& Schmidt, 1990, p. 413). Thus, the figures for ¥, in Table 4 are
not biased estimates. It is simply a fact that in cases in which V,
is equal to zero, all procedures overestimate V/,.

Results for Simulation Case 2

The simulation results for Case 2 (V, > 0) are presented in
Tables 5 and 6. Table 5 shows the mean population correlation
estimates when true ¥, is equal to .0030. Once again, all proce-
dures yielded very accurate estimates (to two decimal places)
of the mean population correlations. Furthermore, the refined
procedures did not contribute more accurate estimates because
the original estimates were already very accurate.

Table 6 shows the accuracy of ¥, estimates for different pro-
cedures. As in Case 1, most of the procedures, on average, over-
estimated V,. However, in this case, an underestimation of V,

Case 1. Variance of Population Correlation (V,) Estimates by Different Procedures

When True V, =0

Procedure TrueM,=.30 TrueM,=.50 TrueM,=.70 Mean
Interactive, linear, individual r .0082 0089 0096 0089
Interactive, linear, mean r 0071 0078 0087 0079
Interactive, nonlinear, mean r .0065 0065 .0062 .0064
Noninteractive, linear, individual r .0062 .0043 .0032 0046
Noninteractive, linear, mean r .0053 .0037 .0028 .0039
Noninteractive, nonlinear, mean r .0048 .0031 .0020 .0033
Multiplicative, individual r .0079 .0093 .0127 .0100
Multiplicative, mean r .0068 .0082 0117 .0089
TSAL, individual r .0077 .0074 .0063 .0071
TSAI1, mean r 0066 .0065 0057 0063
TSA2, individual r .0078 0074 .0061 .0071
TSA2, meanr 0067 0064 .0055 .0062

Note. Mean V, estimates are based on 500 simulation runs. M, = mean population correlation; TSAl =

first Taylor Series; TSA2 = second Taylor Series.
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Table 5
Case 2. Mean Population Correlation (M,) Estimates by Different Procedures When True V, = .0030
True M, = .30 True M, = .50 True M, =.70

Procedure M Error % error M Error % error M Error % error
Interactive/noninteractive, linear 2981 —-.0019 —0.63 4992 —.0008 —0.16 6964 —.0036 —0.51
Interactive, nonlinear 2974 -.0026 —0.87 4980 —.0020 —0.40 6947 —.0053 -0.76
Noninteractive, nonlinear 2976 —.0024 —0.80 4987 -.0013 —0.26 6960 —.0040 —0.57
Multiplicative 2979 —-.0021 -0.70 4983 -.0017 -0.34 6942 —.0058 —0.83
First Taylor Series 2953 -.0047 —1.60 4947 —-.0053 ~1.10 .6900 -.0100 —1.40
Second Taylor Series 2981 —.0019 —0.63 .4992 —.0008 -0.16 .6964 —.0036 -0.51

Note.

was possible because the true value of ¥, was .0030 and the
minimum possible value was zero. The only procedure that
gave an underestimated mean V/, was the noninteractive proce-
dure for large values of mean population correlations (mean
population correlation = .50 and .70). This finding implies that
accuracy of this procedure may vary with the values of true
mean correlations. The multiplicative procedure, on the other
hand, showed the opposite pattern: the larger the mean popula-
tion correlation, the larger were the I, estimates. As expected,
both of the refinements led to more accurate mean estimates of
V, for the interactive procedure. However, for the noninterac-
tive procedure, this was not the case; as the true mean popula-
tion correlation increased from .30 to .50 to .70, true variance
estimates produced by the noninteractive procedure decreased,
as did the accuracy of estimation. When the true mean popula-
tion correlation equaled .50 or .70, the refined noninteractive
procedures underestimated the true variance of population cor-
relations. From this analysis, we conclude that when true popu-
lation correlations vary, the refined procedures give a more ac-
curate estimate of ¥, when they are used with the interactive
procedure.

When the refined Schmidt-Hunter procedures were com-
pared with the multiplicative procedure and the two Taylor Se-
ries procedures, results similar to those for Case 1 were ob-

Table 6

Mean values of the M, estimates are based on 500 simulation runs.

served. The two Schmidt-Hunter procedures gave more accu-
rate mean V, estimates than the multiplicative procedure. The
two Taylor Series procedures with r yielded the same V/, esti-
mates to the third decimal place as the interactive procedure
with refinements (rows 10 and 12 vs. row 3).

Results for Simulation Case 3

Tables 7 and 8 show the estimates of different procedures
when the very wide distributions of population correlations
used by Osburn et al. (1983) were analyzed. Results from Tables
7 and 8 demonstrate the usefulness of the two refinements when
the true variance of population correlations is very large (V, =
.0122,.0218, and .0340). It is clear from Tables 7 and 8 that the
conclusions derived from Cases 1 and 2 can be applied equally
to wide distributions of population correlations with large vari-
ances. In Table 7, it can be seen that the mean population cor-
relation estimates were very similar across procedures and
again were the same within rounding error.

For mean V, estimates, the effect of the refined procedures
are more pronounced than in Case 2. The V, estimates for the
interactive refined procedure are extremely accurate with these
wide distributions of true population correlations. For example,
for the widest of these distributions, the mean V, estimate of the

Case 2. Variance of Population Correlation (V,) Estimates by Different Procedures

When True V, = .0030

Procedure M,=.30 M,=.50 M,=.70 M Error % error
Interactive, linear, individual r .0062 .0069 .0073 .0068 .0038 126.67
Interactive, linear, mean r .0052 .0059 .0065 .0059 .0029 95.56
Interactive, nonlinear, mean r 0048 0049 0046 0048 0018 58.89
Noninteractive, linear, individual r 0045 .0031 0018 .0031 0001 4.44
Noninteractive, linear, mean r .0037 .0026 .0015 0026 —.0004 —13.33
Noninteractive, nonlinear, mean r 0034 0021 .0011 0022 —-.0008 —26.67
Mulitiplicative, individual r .0060 0073 0100 .0078 .0048 158.89
Multiplicative, mean r 0050 0063 0091 0068 0038 126.67
TSAL, individual r .0058 .0057 .0048 .0054 .0024 81.11
TSAIL, mean r .0049 .0049 .0042 .0047 .0017 55.56
TSAZ2, individual r .0059 .0057 .0046 .0054 .0024 80.00
TSA2, mean r .0049 .0049 .0040 .0046 .0016 53.33

Note. Mean V, estimates are based on 500 simulation runs. M, = mean population correlation; TSA1 =

first Taylor Series; TSA2 = second Taylor Series.
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Case 3. Mean Population Correlation (M,) Estimates by Different Procedures When Osburn et al.’s (1983) Distributions

of Population Correlations Are Used

Moderate Large Extreme

Procedure M Error % error M Error % error M Error % error
Interactive/noninteractive, linear 4977 -.0023 -0.46 .5001 .0001 0.02 5037 .0037 0.74
Interactive, nonlinear 4947 —-.0053 -1.06 .4945 —.0055 -1.10 4951 —.0049 -0.98
Noninteractive, nonlinear .4960 —.0040 —0.80 4961 —.0039 —0.78 4968 —.0032 ~0.64
Multiplicative .4968 —.0032 -0.64 4991 —.0009 —0.18 5028 .0028 0.56
First Taylor Series .4931 —.0069 —-1.38 .4955 —.0045 -0.90 .4991 —.0009 —0.18
Second Taylor Series 4977 —.0023 —0.46 .5001 .0001 0.02 5037 .0037 0.74

Note.

interactive procedure with nonlinear range-restriction correc-
tion and use of 7 in sampling error estimation was accurate up
to the third decimal place (.0353 vs. the true value of .0340; row
3 in Table 8 for the distribution labeled extreme), for an error
of only 3.82%. The results in Table 8 show that the refined in-
teractive procedure is the most accurate procedure when the
true population variance is large. The refined interactive proce-
dure is more accurate than the Taylor Series procedures for the
distributions of population correlations in Table 8. As expected,
the mean V, estimates of the multiplicative procedure and the
two Taylor Series procedures were more accurate when
r instead of r was used in the sampling error estimation for-
mula, which was the same pattern of findings observed earlier
in Cases ! and 2.

Conclusions

This study examined the usefulness of the nonlinear range-
restriction correction process and the use of 7 in sampling vari-
ance estimation in increasing the accuracy of estimates of M,
and ¥, in meta-analysis. A previous study (Law et al., 1994) had

Table 8

Mean values of the M, estimates are based on 500 simulation runs.

shown that the nonlinear range correction improved accuracy
in the absence of sampling error (all Ns infinite). The present
study examined accuracy under realistic conditions of sampling
error (Ns between 30 and 150) and the effect on accuracy of
using r in the formula for sampling error variance. From the
above findings, we conclude that, when used with the interactive
procedure, both of the refinements are effective in reducing er-
ror in estimating V,. Thus, our initial hypothesis is supported.
For example, when V, is equal to 0 (Case 1), the mean V, esti-
mate produced by the interactive procedure with the two re-
finements shows a 28% reduction in error when compared with
the value produced without the refinements. For a mean true-
score correlation of .50, the effect of this increase in accuracy is
to increase the 90% credibility estimate from .38 to .40. When
V, is .0030 (Case 2), the refined interactive procedure is 53%
more accurate in estimating ¥, as compared with the original
interactive procedure. For a mean true-score correlation of .50,
the effect of this increase in accuracy is to increase the 90%
credibility estimate from .39 to .41. With the high variance dis-
tributions of population correlations (Case 3), the refinements
produce reductions in error of 98%, 87%, and 89% for the mod-

Case 3. Variance of Population Correlation (V,) Estimates by Different Procedures When Osburn et al.’s (1983) Distributions

of Population Correlations Are Used

Moderate Large Extreme
vV, =.0122) vV, =.0218) (V, =.0340)

Procedure M Error % error M Error % error M Error % error
Interactive, linear, individual r 0164 .0042 34.43 0297 .0079 36.24 .0456 0116 34.12
Interactive, linear, mean r 0149 0027 22.13 0278 0060 27.52 0434 0094 27.65
Interactive, nonlinear, mean r 0123 0001 0.82 .0228 0010 4.59 0353 0013 3.82
Noninteractive, linear, individual r .0095 -.0027 —-22.13 0214 ~.0004 ~1.83 0366 0026 7.65
Noninteractive, linear, mean r .0083 -.0039 -31.97 0197 ~.0021 -9.63 .0343 .0003 0.88
Noninteractive, nonlinear, mean r 0069 -.0053 —43.44 0162 ~.0056 -25.69 .0281 —.0059 —-17.35
Multiplicative, individual r 0167 .0045 36.89 .0295 .0077 35.32 .0447 .0107 31.47
Multiplicative, mean r 0152 .0030 24.59 0277 .0059 27.56 .0425 .0085 25.00
TSAL, individual r 0137 0015 12.30 10248 .0030 13.76 .0379 .0039 11.47
TSAl, mean r 0124 .0002 1.64 .0232 0014 6.42 .0360 .0020 5.88
TSA2, individual r 0137 0015 12.30 .0250 .0032 14.68 .0383 .0043 12.65
TSA2, mean r .0124 .0002 1.64 .0233 0015 6.88 .0364 .0024 7.06
Note. Mean V, estimates are based on 500 simulation runs. TSA 1 = first Taylor Series; TSA2 = second Taylor Series.
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erate, large, and extreme distributions, respectively, as shown in
Table 8. For the large variance distribution in Table 8, the effect
of this increase in accuracy is to increase the 90% credibility
estimate from .28 to .30. For the high-variance correlation dis-
tributions, the refined interactive procedure is the most accu-
rate of the procedures tested in this study.

For all of the procedures, use of 7 in the sampling error vari-
ance formula improved the accuracy of the V, estimates. This
was true for the multiplicative and Taylor Series procedures as
well as for the interactive procedures, and was true under all
conditions examined. Thus, these findings show that use of 7in
the sampling error variance formula increases accuracy in the
heterogeneous case (¥, > 0). Previously, this had been demon-
strated only for the homogeneous case (¥, = 0; Hunter &
Schmidt, 1994).

An interesting point to be noted from the results in this study
1s that, for some procedures under study, the accuracy of the
mean V, estimate is dependent on the value of the true mean
population correlation (M,). For example, in Table 6, the mean
V, estimate of the noninteractive procedure and the Taylor Se-
ries procedures decreased as true A, increased from .30 to .50
to .70. In contrast, the mean ¥, estimate of the multiplicative
procedure increased as true M, increased from .30 to .50 to .70.
This mean population correlation dependency of some proce-
dures in estimating V/, is a new finding. However, the differences
of V, estimates with different A/, values are small for most pro-
cedures. Therefore, this dependency effect of ¥V, estimates
should not be overemphasized. Further studies are needed to
explain this phenomenon.

In estimating the mean population correlation, the refined
procedures do not yield improvements in accuracy because the
original procedures are already very accurate. As is well-
known, the major questions of accuracy in meta-analysis have
traditionally centered on estimates of V, (or SD,) and not on
M, In estimating V,, the two refinements used with the inter-
active procedure appear to lead to substantial improvements in
accuracy under realistic sample-size conditions. Taken together
with the findings of Law et al. (1994), the findings of the present
study support the conclusion that, considered across a variety
of types of true population correlation distributions, the proce-
dure that is most frequently the most accurate is the interactive
procedure used with the two refinements examined in this
study.
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