
Implications of Direct and Indirect Range Restriction for Meta-Analysis
Methods and Findings

John E. Hunter
Michigan State University

Frank L. Schmidt
Henry B. Tippie College of Business, University of Iowa

Huy Le
Human Resources Research Organization

Range restriction in most data sets is indirect, but the meta-analysis methods used to date have applied
the correction for direct range restriction to data in which range restriction is indirect. The authors show
that this results in substantial undercorrections for the effects of range restriction, and they present
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In many research situations, such as educational and employ-
ment selection, researchers have data only from a restricted pop-
ulation and yet must attempt to estimate parameters of the unre-
stricted population. For example, the validity of the Graduate
Record Examination (GRE) for predicting performance in gradu-
ate school can be estimated only with samples of students admitted
to the graduate program (the restricted sample). However, the goal
is to estimate the validity of the GRE when used in the population
of applicants to the graduate program. Because of range restriction,
the population of admitted students typically has higher mean GRE
scores and a smaller standard deviation (SD) of scores. To estimate
the validity in the applicant population from the observed validity
in the incumbent population of admitted students, one must correct
for the effects of range restriction on GRE scores. In such a
situation, if applicants have been selected directly on test scores
top down, we have what is called direct or explicit range restric-
tion. On the other hand, if students have been selected on some
other variable that is correlated with GRE scores (such as a
composite of undergraduate grade point and letters of recommen-
dation), then the range restriction is said to be indirect. In this
article, we show that corrections for both direct and indirect range

restriction are more complicated than is generally realized and are
often erroneously applied.

Building on the earlier work of Pearson (1903), Thorndike
(1949) presented corrections for direct and indirect univariate
range restriction—that is, equations for correcting for range re-
striction when restriction has occurred on only one variable. His
Case II correction for direct range restriction is widely used, as
described later in the Research Domains With Direct Range Re-
striction section. His Case III correction for indirect range restric-
tion produced by direct restriction on a third, known variable can
rarely be used because its use requires considerable information on
the third variable, and in most research, this information is un-
known. Later in the Research Domains With Indirect Range Re-
striction section, we present a correction method that does not
require that information. Corrections for multivariate range restric-
tion are also available (Lawley, 1943; Johnson & Ree, 1994; Ree,
Caretta, Earles, & Albert, 1994). Multivariate range restriction
corrections are straightforward extensions of the univariate correc-
tion, and they correct for both the direct and the indirect range
restriction simultaneously. However, to use this procedure one
must know the intercorrelations of the independent variable mea-
sures in both the restricted and unrestricted populations and must
know both what tests are used in the selection composite and what
the selection ratio is. This information is rarely available outside
the military testing context. (For an overview of this and related
issues in range restriction, see Sackett & Yang, 2000.) Because the
range restriction corrections used in research are almost always
univariate corrections, the focus of this article is on univariate
range restriction.

Developments presented in Mendoza and Mumford’s (1987)
article suggested that meta-analysis procedures (Callender & Os-
burn, 1980; Hunter & Schmidt, 1990a; Raju, Burke, Normand, &
Langlois, 1991; Schmidt & Hunter, 1977) and range correction

John E. Hunter, Department of Psychology, Michigan State University;
Frank L. Schmidt, Department of Management and Organizations, Henry
B. Tippie College of Business, University of Iowa; Huy Le, Human
Resources Research Organization, Alexandria, Virginia.

We thank In-Sue Oh for his careful reading of earlier versions of this
article and his helpful comments.

Correspondence concerning this article should be addressed to Frank L.
Schmidt, Department of Management and Organizations, Henry B. Tippie
College of Business, University of Iowa, Iowa City, IA 52242. E-mail:
frank-schmidt@uiowa.edu

Journal of Applied Psychology Copyright 2006 by the American Psychological Association
2006, Vol. 91, No. 3, 594–612 0021-9010/06/$12.00 DOI: 10.1037/0021-9010.91.3.594

594



methods in general have used suboptimal procedures in correcting
for range restriction when range restriction is indirect (the most
common case). As shown later in the Research Domains With
Direct Range Restriction section, corrections for direct range re-
striction (where it does exist) have also frequently been suboptimal
because of issues related to measurement error. Because it is
mathematically easier to understand direct range restriction, re-
searchers have typically learned to correct for direct restriction and
have then applied the correction equation for direct restriction to
cases of both direct and indirect range restriction (Cohen & Cohen,
1983, p. 70). However, when the predictor is not perfectly mea-
sured (which is virtually always the case), the key equation is not
the same, and much of the underlying rationale is also different.
The resulting implications for meta-analysis findings are important
in many areas but are particularly important in the areas of edu-
cational and employment selection. For example, it is likely that
there has been considerable underestimation of the predictive
validity of selection procedures. The implications are likewise
important for other research areas in which range restriction is a
factor. For example, the participants in many studies are volun-
teers. Volunteering can be a self-selection mechanism that can
result in indirect range restriction on many traits and other char-
acteristics relevant to the research. The appropriate correction for
such indirect range restriction can result in a very different pattern
of study findings than correction based on the traditional but
inappropriate correction for direct range restriction (or that result-
ing when no correction for range restriction is made). The method
we present later in the Research Domains With Indirect Range
Restriction section can be used to correct for such indirect range
restriction.

Mendoza and Mumford (1987) focused on the differences in the
mathematics of direct and indirect range restriction at the level of
the individual study. This article differs from their work in that it
explicates the implications of these differences for meta-analysis
methods. To establish the concept of simple statistical artifacts, we
first briefly discuss meta-analysis in domains with no range re-
striction. The next two sections examine the role of the complex
statistical artifacts created by range restriction. The first of these
examines complex artifacts in domains with direct range restric-
tion and shows that accurate corrections require a specific but little
known sequencing of corrections for range restriction and mea-
surement error. This demonstration implies that widely used cur-
rent practices should be reconsidered, both in corrections of indi-
vidual correlations and in meta-analysis. The final section
(Research Domains With Indirect Range Restriction) examines
domains with indirect range restriction; it presents a new method
for correcting for indirect range restriction and describes how this
method can be used in meta-analysis.

In the derivations in this article, it is necessary to present
equations in terms of fully corrected correlations; that is, it is
necessary to include corrections not only for range restriction and
for measurement error in the dependent variable (performance
measure), but also for measurement error in the independent vari-
able (predictor). It becomes apparent, especially in the Research
Domains With Indirect Range Restriction section, that this is
necessary to explicate structural properties of the correction pro-
cesses and to produce correct final estimates. However, we are
well aware that such true score correlations do not estimate oper-

ational validities in applied settings and that the correction for
measurement error in the predictor is not made in such validity
estimates. We show in each case how final operational estimates
are obtained, and the results of our empirical analysis are presented
in terms of operational validities, not true score correlations. We
also note that the methods presented here do not directly address
the issue of sampling error. Random sampling error effects and
corrections in meta-analysis can be separated from the systematic
effects of the artifacts of range restriction and measurement error,
and are so separated in this article to facilitate the presentation.
However, it is understood that the final meta-analysis methods do
include corrections for sampling error (as described in Hunter &
Schmidt, 2004).

Recent literature includes numerous articles on the distinctions
between, and properties of, fixed effects versus random effects
models in meta-analysis (Field, 2001; Hedges & Vevea, 1998; Hall
& Brannick, 2002; Hunter & Schmidt, 2000; Schmidt & Hunter,
2003; Schmidt, Oh, & Hayes, 2006). In general, random effects
models appear to be more appropriate for research data (Field,
2001; Hunter & Schmidt, 2000; National Research Council, 1992).
The meta-analysis models considered in this article are all random
effects models. They are also models that correct for statistical and
measurement artifacts, such as range restriction and measurement
error, that distort study results. These models fall into two classes:
(a) those that use statistical methods based on distributions of
artifacts (e.g., reliability coefficients) to make these corrections
(e.g., see Callender & Osburn, 1980; Hunter & Schmidt, 2004,
chap. 4; Raju & Burke, 1983; Schmidt & Hunter, 1977) and (b)
those that correct each study finding (correlation or d value)
individually for these artifacts and then perform the meta-analysis
on the resulting corrected statistics (correlations or d values; e.g.,
see Hunter & Schmidt, 2004, chap. 3; Raju, Burke, Normand, &
Langlois, 1991).

Research Domains With No Range Restriction

When there is no range restriction, artifacts are simple artifacts
and their effects on study correlations are linear; that is, they can
be represented as multipliers. Each artifact multiplier can be com-
puted separately from other artifacts, because each artifact depends
on a different study imperfection and has a causal structure inde-
pendent of that for other artifacts. We show in the two following
sections that this is not true in the case of range restriction.
Measurement error is an example of a simple artifact. Measure-
ment error is random at the level of individual participant scores
but has a systematic effect at the level of population statistics. In
particular, the correlation between measures of two variables is
reduced in size to the extent that there is measurement error in the
independent variable and the dependent variable (Lord & Novick,
1968; Schmidt & Hunter, 1996, 1999). Other simple artifacts of
this sort include artificial dichotomization of quantitative variables
(Hunter & Schmidt, 1990b; MacCallum, Zhang, Preacher, &
Rucker, 2002) and imperfect construct validity (systematic error of
measurement; Hunter & Schmidt, 2004).

If several simple artifacts are present in a study, their effects
combine in a simple multiplicative way. The order in which the
artifacts are entered does not play a role. The final result is the
same for any order.
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Start with no artifacts, and let � � result for a methodologically
perfect study.

Add Artifact 1: �1 � a1� (e.g., a1 � �rXX , where rXX is the
independent variable reliability).

Add Artifact 2: �2 � a2�1 � a2(a1�) � a1a2� (e.g., a2 � �rYY,
where rYY is the dependent variable reliability).

Add Artifact 3: �3 � a3�2 � a3(a1a2�) � a1a2a3� (e.g., a3 �
attenuation factor for dichotomization of variable X; Hunter &
Schmidt, 1990b).

The final result is as follows:

�o � A�, where A � a1a2a3. (1)

For simple artifacts, the final result is an attenuation formula
with the same form as that for a single artifact. The true effect size
is multiplied by an overall artifact multiplier, A, which is the
product of the multipliers for the individual artifacts. The popula-
tion correlation can then be estimated by solving Equation 1 for �:

� � �o/A. (2)

When only simple artifacts are present, meta-analysis is quite
straightforward and accurate, whether correlations are corrected
individually or artifact distribution meta-analysis is used (Hunter
& Schmidt, 1990a, 2004). This is not the case when there is range
restriction.

Research Domains With Direct Range Restriction

This section demonstrates the little known fact that when range
restriction is direct, accurate corrections for range restriction re-
quire not only use of the appropriate correction formula
(Thorndike’s, 1949, Case II formula), but also the correct sequenc-
ing of corrections for measurement error and range restriction.

Direct Range Restriction as a Single Artifact

Suppose that promotion from one level to another within a job
classification is required to be based solely on a job knowledge test
(X), a condition of direct range restriction. That is, people are
promoted top down based solely on their job knowledge test
scores. We want to estimate how well the knowledge test predicts
job performance in the population of applicants for promotion, but
we can get job performance data only for those who are actually
promoted (incumbents), with the result that we get no data on
people with low test scores. The usefulness of the knowledge test
depends on the correlation between knowledge and performance in
the applicant population, and so that is the correlation we want to
estimate. However, our data provides only the correlation for the
incumbent population.

The ratio of the observed standard deviations indexes how much
the incumbent population is restricted in comparison with the
applicant population: SDXa is the standard deviation on X in the
applicant population (unrestricted SD), while SDXi is the standard
deviation on X in the incumbent population (restricted SD). The
comparison ratio is then uX � SDXi/SDXa. Because the standard
deviation is smaller in the restricted population, uX � 1.00.

The attenuation formula for direct range restriction can be
written in the same form as that for simple artifacts, but the

multiplier is more complicated than for simple artifacts. Let � �
correlation between X and Y in the applicant population, and let
�o � correlation between X and Y in the incumbent population. We
then have the attenuation formula �o � a�, where (Callender &
Osburn, 1980)

a �
uX

�1 � (uX
2 � 1)�2

. (3)

The complication can be seen in the denominator of the multiplier
a. The presence of � in the denominator means that the multiplier
depends not only on the degree of restriction �uX) but also on the
level of correlation. This distinguishes range restriction from the
simple artifacts. For a simple artifact, the multiplier is determined
entirely by the extent of the artifact. For range restriction, the
multiplier is determined not only by the extent of the artifact but
also by the size of the unrestricted correlation.

Correction for Range Restriction

The simple reversal of the multiplication process that we saw in
Equation 2 for simple artifacts works to correct for range restric-
tion in principle but not in practice. The problem is that to compute
the multiplier a, one must already know �. The conventional
formula for correction for direct range restriction (Thorndike’s,
1949, Case II) algebraically reverses the nonlinear algebra of the
attenuation formula:

� � ��o, where � �
UX

�1 � (UX
2 � 1)�o

2 , (4)

where UX � 1/uX. The formula for � is the same in algebraic form
as the formula for attenuation due to range restriction; substitution
of the parameter UX for uX makes it correct in the opposite
direction. (Note that � � 1/a, where a is defined in Equation 3).

Meta-Analysis for Range Restrictions as a Single Artifact

Range restriction is not a simple artifact, and thus the meta-
analysis methods used for simple artifacts are not perfectly accu-
rate for range restriction. The problem is the term with �o in the
denominator of the multiplier � in Equation 4. If that term is small,
then the simple artifact methods provide a good approximation. If
that term is large, the multiplicative method is less accurate. The
problem term in Equation 3 is �uX

2 � 1)�2. This term is small if
either uX is close to 1 or if �2 is small. The ratio uX will be close
to 1 if there is very little range restriction. The squared correlation
�2 will be small if � is modest. There are many research domains
where these two conditions are probably met, but unfortunately
both conditions can fail to be met in employment and educational
selection. For example, general mental ability has a substantial
correlation with job performance (Schmidt & Hunter, 1998), and
range restriction on general mental ability is substantial in most
samples of job incumbents. There are almost certainly other re-
search areas in which these conditions are not met. The Taylor
series methods of Raju and Burke (1983) and the interactive
method of Schmidt, Gast-Rosenberg, and Hunter (1980) were
derived to solve this problem under direct range restriction. These
methods have been shown by means of computer simulation to
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provide good approximations when range restriction is direct un-
less the level of range restriction is very extreme (Law, Schmidt,
& Hunter, 1994a, 1994b).

The fact that we have two populations means that for any
parameter (and any estimate of that parameter), there will usually
be two different values, one for each population. For both vari-
ables, the means and standard deviations will differ between the
two populations. This duality is important for the consideration of
artifacts other than range restriction because the artifact values
might differ between the two populations. For example, consider
the reliability of the dependent variable Y. Direct selection on X
will produce indirect selection on Y. This means that the reliability
of Y will be smaller in the incumbent population than in the
applicant population. We return to this point later in the Research
Domains With Indirect Range Restriction section.

Error of Measurement in the Independent Variable in
Direct Range Restriction

Because the standard deviation of the predictor differs between
the two populations, the reliability of X will differ between the two
populations. However, there is a more serious problem that is
widely ignored in practice. The substantive nature of the direct
selection process makes the meaning of reliability unclear for the
independent variable measure in the incumbent data (Mendoza &
Mumford, 1987). As we show later, this fact implies that accuracy
of range restriction correction requires a specific sequencing of
range restriction and measurement error corrections. If we analyze
applicant data, then we can make the usual measurement assump-
tion that the true scores and errors are uncorrelated. For the
incumbent (restricted) population, this assumption does not hold
when range restriction is direct. Most researchers would assume
that they could use incumbent data to compute the reliability of the
independent variable in the incumbent group, but there is a prob-
lem in doing this: True scores and errors of measurement are
negatively correlated in the incumbent data for the scores that the
incumbents were selected on (Mendoza & Mumford, 1987). Using
an example as a vehicle, we demonstrate this fact in Appendix A.
In that example, the correlation between true scores and measure-
ment errors is �.47. Because of this negative correlation, reliabil-
ity cannot be estimated or even defined. For example, the conven-
tional definition of reliability as the square of the correlation
between observed score X and true score T (rXT

2 ) does not hold in
this context.

The solution to the problem created by correlated true and error
scores is to consider attenuation due to measurement error in the
independent variable before considering range restriction (Men-
doza & Mumford, 1987; Mendoza, Stafford, & Stauffer, 2000;
Stauffer & Mendoza, 2001). That is, because range restriction is
not a simple artifact, it is critical to consider the order in which
range restriction enters into the attenuation process. As shown later
in this section, this order in turn determines the order in which
corrections must be made in the disattenuation (correction) process
in meta-analysis.

In the following presentation, we use the symbol a to denote the
artifact multiplier (effect) of measurement error in the independent
variable, and we use the symbol c to denote the effect of range
restriction. The subscript a has a different meaning; it denotes the

applicant (i.e., unrestricted) group, while the subscript i denotes
the incumbent (i.e., restricted) group.

In the applicant population, we have the following:

�XPa � a�TPa, (5)

where a � �rXXa and rXXa � the reliability of predictor scores in
the applicant (unrestricted) population; P � the true score under-
lying the dependent variable; and T � the true score underlying X.

In the incumbent population, we have the following:

�XPi � c�XPa, (6)

where

c � uX/��1 � �uX
2 � 1) �XPa

2 ] (7)

� uX/�[1 � (uX
2 � 1) rXXa�TPa

2 ].

The artifact multiplier for range restriction is complicated. The
denominator contains not only �TPa, but also rXXa. That is, the value
of the artifact multiplier depends not only on the extent of restric-
tion �uX) but also on the true effect size ��TPa) and the reliability of
the independent variable in the unrestricted group (rXXa; Mendoza
& Mumford, 1987; Stauffer & Mendoza, 2001).

Error of Measurement in the Dependent Variable in
Direct Range Restriction

From a practical standpoint, the key question is how well the test
predicts educational or job performance. No study measures per-
formance perfectly. Most studies in the employment area use
supervisor ratings of job performance, which contain considerable
measurement error. For our discussion, we define performance as
the job performance rating true score.

Job performance ratings have two reliabilities: one for the
applicant population and one for the incumbent population. In
research domains other than selection, the reliability is usually
estimated in the full population. Thus, we would usually know the
reliability of the dependent variable in the unrestricted population.
If so, then we can compute the attenuation of the correlation by
adhering to the order principle for the independent variable: Intro-
duce range restriction last. Using the symbol b to denote the
artifact multiplier (effect) of measurement error in the dependent
variable, we have the following in the applicant population:

�TYa � b�TPa, where b � �rYYa. (8)

In the incumbent population, we have the following:

�TYi � c�TYa, (9)

where

c � uX/�[1 � (uX
2 � 1)�TYa

2 ] (10)

� uX/�[1 � (uX
2 � 1)rYYa�TPa

2 ]. (10')

Again, the artifact multiplier for range restriction is compli-
cated. The denominator not only has �TPa in it, but it has rYYa, too.
That is, the value of the artifact multiplier depends not only on the
extent of restriction (uX) but also on the true effect size ��TPa) and
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the reliability of the dependent variable in the unrestricted group
�rYYa).

Error of Measurement in Both Variables in Direct Range
Restriction

For scientific reasons, we want to know the construct level
correlation. Thus, we seek to eliminate the effects of measurement
error in both the predictor and the criterion measure. The key to the
attenuation formula is again to consider range restriction last.

In the applicant population, we have the following:

�XYa � ab�TPa, where a � �rXXa and b � �rYYa. (11)

In the incumbent population, we have the following:

�XYi � c�XYa, (12)

where

c � uX/�[1 � (uX
2 � 1)�XYa

2 ]

� uX/�[1 � (uX
2 � 1)rXXarYYa�TPa

2 ].

The artifact multiplier for range restriction is now even more
complicated. The denominator not only has �TPa in it, but it has
both rXXa and rYYa as well. That is, the value of the artifact multiplier
depends not only on the extent of restriction (uX) but also on the
true effect size ��TPa), the reliability of the independent variable
�rXXa), and the reliability of the dependent variable �rYYa).

Meta-Analysis in Direct Range Restriction

Three research teams have contributed methods of meta-
analysis that include range restriction: Hunter and Schmidt (1990a)
and Schmidt and Hunter (1977); Callender and Osburn (1980); and
Raju and Burke (1983). The model for meta-analysis for all three
teams has been the model for direct range restriction. As long as
corrections for range restriction and measurement error are se-
quenced in the correct order, there is no problem with that model
if range restriction is indeed direct. In fact, these methods have
been shown by means of computer simulation to be quite accurate
under conditions of direct range restriction (Law et al., 1994a,
1994b). One problem is that corrections are not always appropri-
ately sequenced. Another problem is that this model has been used
for domains where the range restriction is indirect, leading to much
larger inaccuracies than inappropriate sequencing of corrections.
In the Research Domains With Indirect Range Restriction section,
we show that attenuation Equations 11 and 12 do not hold for
indirect range restriction.

Correction Order in Educational and Employment
Selection

In educational selection, the dependent variable is usually grade
point average (often first-year grade point average). In personnel
selection, the dependent variable is usually job performance or
some employment behavior such as training performance, acci-
dents, theft, or turnover. Consider performance ratings. All re-
search on performance ratings has been of necessity conducted on

incumbents. For example, a recent review of interrater reliability
findings (Viswesvaran, Ones, & Schmidt, 1996) found the average
interrater reliability of multiscale rating scales to be .47. This is the
incumbent reliability and should not be used in the attenuation
formula presented as the attenuation model for meta-analysis. The
applicant reliability is higher.

Equation 13 can be used to compute rYYa (Brogden, 1968;
Schmidt, Hunter, & Urry, 1976):

rYYa � 1 �
1 � rYYi

1 � rXYi

2 �1 �
SXa

2

SXi

2 �, (13)

where rXYi is the observed correlation between X and Y in the incum-
bent sample. (An equivalent formula is given in Callender & Osburn,
1980.) Consider a realistic case: Let uX � SDXi/SDXa � .70, rXYi � .25,
and rYYi � .47. Equation 13 then yields rYYa � .50. Hence the reliability
of ratings of job performance would be .03 (6%) higher in the absence
of range restriction. Equation 13 provides an estimate of rYYa, and this
makes possible use of Equation 12. However, it is possible to develop
a hybrid model that requires only an estimate of rYYi. This model is
more convenient to use and is the one on which corrections in
meta-analysis programs are based under direct range restriction.

In most research domains, the reliabilities in the unrestricted
group are known. The conventional method (Equations 11 and 12)
above works for these domains. For domains like educational and
employment selection, the dependent variable reliability is known
only for the incumbent population. In this case, we can analyze the
data using a different model, one that introduces the dependent
variable measurement error after range restriction. This is possible
because the random measurement errors in the dependent variable
(Y) come into being after the selection process and are not affected
by the direct selection on the independent variable.

In the applicant population, we have the following:

�XPa � a�TPa, where a � �rXXa . (14)

In the incumbent population, we have the following:

�XPi � c�XPa, where c � uX/�[1 � (uX
2 � 1)�XPa

2 ], (15)

and

�XYi � b�XPi, where b � �rYYi. (16)

Correction for attenuation in this model proceeds in three steps.
We start with �XYi and correct it for dependent variable unreliability
using the incumbent reliability �rYYi). The corrected correlation is
�XPi. This correlation is then corrected for (direct) range restriction.
That correlation is �XPa, which is the estimate of operational (true)
validity. If researchers desire to estimate the true score or construct
level correlation, they then correct this value for predictor unreli-
ability using the applicant reliability rXXa. The resulting correlation
is the estimate of �TPa in the applicant population. Table 1 sum-
marizes the steps in this process. It is important that corrections be
made in this order; this has not always been the case in published
meta-analyses. Hence, even when range restriction is direct and the
appropriate correction formula for direct range restriction is used,
corrections can be inaccurate because of inappropriate sequencing
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of range restriction and measurement error corrections or because
of use of reliabilities estimated on inappropriate populations. Fur-
ther, use of rXX computed in the restricted group is an additional
and separate error, as noted earlier.

Meta-Analysis Correcting Correlations
Individually—Direct Range Restriction

As noted earlier, in addition to artifact-distribution-based meta-
analysis, researchers can also conduct a meta-analysis that corrects
each observed correlation individually for measurement error and
range restriction. This procedure is used less frequently because
primary studies often do not report uX values and estimates of
reliability for independent and dependent variables for the indi-
vidual correlations reported in the study. However, when these
data are reported, the procedure for correcting each individual
study correlation is the one described here. With the symbolism
described above, this three-step procedure can be combined into
one equation:1

�TPa �
UX�XYi

[rXXa(rYYi � UX
2�XYi

2 � �XYi

2 )]
1⁄2 , (17)

where UX � 1/uX. The meta-analysis is then performed on the
corrected correlations (the �TPa estimates) using the methods de-
scribed in Hunter and Schmidt (2004, chap. 3). Schmidt and Le’s
(2004) program package includes a program that computes the
corrected values in Equation 17 and performs meta-analysis on
them. For applications in personnel selection, this program has a
subroutine that converts the �TPa values (true score correlations) to
�XPa values (operational validities).

Artifact Distribution Meta-Analysis—Direct Range
Restriction

Artifact-distribution-based meta-analysis is used when reliabili-
ties and range restriction values are only sporadically available for

the correlations in the meta-analysis. Application of these methods
based on the hybrid model presented here is discussed in Hunter
and Schmidt (2004, chap. 4). Again, Schmidt and Le’s (2004)
program package includes a program that implements this meta-
analysis method.

Research Domains With Indirect Range Restriction

Until recently the formula to correct range restriction that is
used in the methods of Callender and Osburn (1980), Hunter and
Schmidt (1990a), Hunter, Schmidt, and Jackson (1982), Raju and

1 This can be shown as follows. Working back from Equation 14, we
have the following:

�TPa
� �XPa

/�rXXa
.

Equation 15, which is Thorndike’s (1949) Case II formula showing �XPi
as

a function of �XPa
, can be rewritten to show the reverse relationship, �XPa

as
a function of �XPi:

�XPa � UX�XPi
/�[1 � (UX

2 � 1)�XP
2

i].

Solving Equation 16 for �XPi, we have the following:

�XPi
� �XYi

/�rYYi
.

Now replacing the third equation above into the second equation and
summarizing, we obtain the new equation showing �XPa

as a function of
�XYi:

�XPa �
UX�XYi

�rYYi
� UX

2�XY
2

i � �XY
2

i

.

Replacing the above equation into the first equation relating �TPa
to �XPa

, we
have the desired equation:

�TPa �
UX�XYi

[rXXa
(rYYi

� UX
2�XY

2
i � �XY

2
i)]

1⁄2 .

Table 1
Steps in Correcting for Direct Range Restriction

Step Purpose Input Output Formula

1 Correcting for measurement error
in Y (measure of construct P)

Correlation between X and
Y in the restricted
population: �XYi

Correlation between X and P in
the restricted population:
�XPi

�XPi � �XYi /�rYYi

Reliability of Y in the
restricted population:
rYYi

2a Correcting for the effect of direct
range restriction on X

Correlation between X and
P in the restricted
population: �XPi

Correlation between X and P in
the unrestricted population:
�XPa

�XPa �
UX�XPi

�1 � (UX
2 � 1)�XPi

2

Range restriction on X: uX Note. UX � 1/uX

3 Correcting for measurement error
in the X (measure of construct
T)

Correlation between X and
P in the unrestricted
population: �XPa

Correlation between T and P in
the unrestricted population:
�TPa

�TPa � �XPa /�rXXa

Reliability of X in the
unrestricted population:
rXXa

a The output for this step (�XPa
) is the operational validity of measure X, so depending on research questions, the correction process may end here.
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Burke (1983), Raju et al. (1991), and Schmidt and Hunter (1977)
has been Thorndike’s (1949) Case II formula (our Equation 4).
This formula assumes direct range restriction (truncation) on the
predictor. It has long been known that if range restriction is
indirect rather than direct, this formula will undercorrect (e.g., see
Linn, Harnisch, & Dunbar, 1981; Schmidt, Hunter, & Pearlman,
1981; Schmidt, Hunter, Pearlman, Hirsh, 1985, p. 751; Schmidt et
al., 1993, p. 7). Until recently, no method was available that could
be used to correct for the most common case of indirect range
restriction. Hence, Thorndike’s Case II correction formula was
used by default. Although it was known that this formula under-
corrected, it was apparently assumed that the undercorrection was
modest (e.g., 5% or so). As it turns out, it is not.

Historically, a common context for validity studies in applied
psychology is an organization that is considering moving to the use
of a new test for future selection. A concurrent validation study is
conducted: The test is given to incumbent workers (or students) at
the same time that job (or academic) performance is measured.
Those data are used to estimate the true effect size (operational
validity) in the applicant group. Range restriction is indirect in all
cases of this sort. In fact, range restriction is indirect in almost all
validity studies in employment and education (Thorndike, 1949, p.
175). For example in the U.S. Department of Labor database on the
General Aptitude Test Battery (Hunter, 1983; Hunter & Hunter,
1984), all of the 515 validity studies (425 based on job perfor-
mance measures and 90 based on training success measures) were
concurrent in nature, and hence range restriction was indirect in all
studies. Range restriction is often indirect even in predictive stud-
ies: The tests to be validated are often given to incumbents, with
the criterion measures being taken months or years later. In our
research over the years, we have rarely seen a study (outside of
military selection research) in which there was direct selection on
the predictor(s) being validated. This is the only kind of study for
which the Case II range correction formula for direct range re-
striction would not undercorrect.

If the Case II range correction formula undercorrects, then one
might ask why this undercorrection has not shown up in computer
simulation studies. As noted most recently by Hall and Brannick
(2002), computer simulation studies have shown that these meth-
ods are quite accurate. The answer is that all published computer
simulation studies have assumed (and programmed) only direct
range restriction. Hence these simulation studies by definition
cannot detect the undercorrection that occurs when range restric-
tion is indirect.

In indirect range restriction, selection is based on variables other
than the predictor itself. For example, suppose the organization
considers a high school diploma critical to high job performance.
If only high school graduates are hired, then the bottom 20% of the
intelligence distribution will be strongly underrepresented, leading
to a smaller standard deviation of intelligence test scores. Mendoza
and Mumford (1987) noted that indirect range restriction leads to
a reduction in the slope of the regression line of the dependent
variable on test scores. Direct range restriction produces no such
reduction. This is important because the Case II formula for range
restriction assumes that the regression slope is the same in the two
populations. If range restriction is indirect, this equality would
hold only if the independent variable were perfectly measured. In
such situations, the Case II correction formula would be accurate,

but such a case is hypothetical because variables are never mea-
sured perfectly.

When range restriction is direct, people are selected on observed
test scores, and so they are selected partly on their true scores and
partly on their measurement errors. For indirect selection, scores
on the test of interest are not used in selection and so errors of
measurement in those test scores have no effect on the selection
process. The impact of indirect selection is on the predictor true
score T; there is no effect on the errors of measurement in the
observed scores.

A Model for Indirect Range Restriction

The selection process is a decision process. The organization has
certain information about applicants, and this information is con-
verted into a judgment about the suitability of the applicants. The
organization then hires or admits top down on the basis of these
suitability judgments. The assumption is that an evaluation vari-
able is implicitly constructed by the organization and used to make
selection decisions (Linn, Harnish, & Dunbar, 1981). We call this
variable suitability and denote it by S. The variables that go into S
can be any combination of explicitly measured variables, subjec-
tively assessed unmeasured variables (e.g., interview impressions
and judgments), or any other information. The method used to
combine these variables to produce S can be any linear or nonlin-
ear function. For direct range restriction, the selection variable S is
identical to the predictor observed score X, but for indirect range
restriction, S can be very different from X.

There are five variables in our model: the selection variable S, the
predictor (independent variable) true score T, the predictor observed
score X, the criterion (dependent variable) true score P, and the
criterion observed score Y. The path diagram for the applicant (unre-
stricted) population is presented in Figure 1. The causality depicted in
Figure 1 is not substantive causality but rather the causality of range
restriction. For example, S does not cause T in any substantive sense;
rather (direct) range restriction on S causes (indirect) range restriction
on T. In indirect range restriction, the selection process reduces the
standard deviation for the predictor variable. This is represented in
Figure 1 by an arrow from the selection variable S to the predictor
variable. There is effectively no way that an organization could
predict the errors of measurement in the predictor scores; that is,
selection on S cannot be correlated with the measurement errors in X.

Figure 1. The path diagram for range restriction effects for the applicant
population in indirect range restriction. S � the suitability composite used
by the organization to select applicants; X � the predictor (e.g., test
scores); T � true scores on the predictor X; Y � the measure of job
performance; and P � the true score on Y.
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Thus, in our model, we make the usual covariance analysis assump-
tion that the arrow goes from construct to construct rather than from
observed score to observed score. Hence there is an arrow from S to
T. The arrow from T to X represents the predictor measurement
process. Because errors of measurement do not enter the selection
process, there is no arrow from S to X. The criterion variable is also
represented by two variables: the true score P and the observed score
Y. The model for the usual substantive theory represents the effect as
an arrow from one true score to the other; that is, from T to P. The
measurement process is represented by an arrow from P to Y.

Our model has an arrow from S to T and from T to P, so there
is an indirect effect of selection on the criterion variable. Our
model makes the assumption that there is no other arrow connect-
ing S and P. This corresponds to the assumption that the selection
process does not assess any characteristic that would affect the
criterion variable for reasons other than those measured by the
current predictor variable X. That is, all effects of selection on
range restriction are assumed to be mediated by their effect on the
predictor. If this assumption is met, our correction for indirect
range restriction is identical to Thorndike’s (1949) Case III cor-
rection. If this assumption is violated, our method for correcting
for indirect range restriction will generally undercorrect, as can be
seen logically from Figure 1. However, computer simulation stud-
ies indicate that the values produced under this condition are still
more accurate (or less inaccurate) than those produced by the use
of the correction for direct range restriction (Le, 2003).
(Thorndike’s, 1949, Case III formula does not make this assump-
tion and does not undercorrect when there is a direct path from S
to P. However, as discussed earlier, the information needed to
apply the Case III formula is rarely available.)

Effects of Range Restriction on S

The most fundamental restriction is on the selection variable S.
The organization hires top down on S, creating direct range re-
striction on S. The path coefficient from T to P is the correlation
between T and P, and that is the target of formulas for correction
for range restriction. This path coefficient is smaller in the incum-
bent population than in the applicant population.

Selection reduces the standard deviations of all five variables in
the path diagram. The only comparison ratio computed in tradi-
tional research is the u ratio for the observed predictor score X, that
is, uX. Range restriction on the other variables is represented by the
corresponding ratios of their restricted to unrestricted SDs: uS, uT,
uP, and uY. The strongest indirect range restriction is on the
predictor true score T. The range restriction on T is caused directly
by the range restriction on S. If the regression of T on S is linear,
then we can compute uT from uS. The formulas that relate them can
be derived for either applicant population or incumbent population
and are derived in Appendix B.

The equations for restriction on T are as follows:

Applicant population: uT
2 � �STa

2 uS
2 � �STa

2 � 1; (18)

Incumbent population: uT
2 � uS

2/�uS
2 � �STi

2 uS
2 � �STi

2 �. (18a)

Similarly, the restriction on X is caused directly by restriction on
T. The formulas that relate them are as follows:

Applicant population: uX
2 � �TXa

2 uT
2 � �TXa

2 � 1; (19)

Incumbent population: uX
2 � uT

2/�uT
2 � �TXi

2 uT
2 � �TXi

2 �. (19a)

The restriction on P is caused directly by restriction on T. The
formulas that relate them are as follows:

Applicant population: uP
2 � �TPa

2 uT
2 � �TPa

2 � 1; (20)

Incumbent population: uP
2 � uT

2/�uT
2 � �TPi

2 uT
2 � �TPi

2 �. (20a)

The restriction on Y is caused directly by restriction on P. The
formulas that relate them are as follows:

Applicant population: uY
2 � �PYa

2 uP
2 � �PYa

2 � 1; (21)

Incumbent population: uY
2 � uP

2/�uP
2 � �PYi

2 uP
2 � �PYi

2 �. (21a)

Estimation in Indirect Range Restriction

S is not observed and neither is uS. Fortunately, we do not need
this value for our purposes. The critical value is the restriction ratio
for the predictor true score T. This is not observed, but it can be
computed from the observed value for uX. Equation 19 relating uX

to uT can be rewritten as follows:

Restriction on X: uX
2 � rXXauT

2 � rXXa � 1,

where rXXa is the applicant reliability of the predictor variable
(rXXa � �TXa

2 ).
Solving this equation for uT yields the following:

uT
2 � [uX

2 � (1 � rXXa)]/rXXa. (22)

This formula may appear strange at first, but it is important to
remember that the smallest possible value for uX is not zero. Although
in the case of direct range restriction, uX can be as small as zero
(because SDXi can be zero and therefore SDXi/SDXa � uX � 0), this is
not true for indirect range restriction. For indirect range restriction,
errors of measurement are not included in the selection process, so
selection produces no change in the measurement error variance.
Thus, the restricted variance of X is always at least as large as the
measurement error variance of X, and the minimum value for uX is
�1 � rXXa .

As an example, consider the U.S. Employment Service (USES)
database analyzed by Hunter (1983; Hunter & Hunter, 1984). The
average value for uX across the 425 studies that used job perfor-
mance as the dependent variable was .67. The applicant population
reliability �rXXa) of the General Aptitude Test Battery (Hunter &
Hunter, 1984) measure of intelligence used was a constant .81. The
average value of uT is therefore as follows:

uT
2 � [.672 � (1 � .81)]/.81 � .3196;

uT � �.3196 � .56.

The mean value of uT of .56 is considerably smaller than the mean
value of uX (uX � .67). This means that taking uX as a measure of
range restriction leads to a consistent understatement of the extent
of actual range restriction and an underestimation of the attenuat-
ing effects of range restriction. The finding for the example can be
generalized: The value of uT will always indicate more extreme
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range restriction than the value of uX. That is, uT is always smaller
than uX.

The Correlation Between S and T

The correlation between S and T is a measure of the extent to
which the organization indirectly relies on T in their selection
scheme when it selects on S. That correlation can be computed
from the range restriction values for S and T, that is, from uS and
uT. The extent of range restriction on the predictor true score
depends on the extent of range restriction on S and on the size of
the correlation between S and T in the applicant population. Equa-
tion 18 can be solved for �STa as follows:

�STa

2 � (uT
2 � 1)/(uS

2 � 1) � (1 � uT
2)/(1 � uS

2). (23)

Consider the USES database example. If an organization selects
the top 10% from a normal distribution on S, then the range
restriction on S is uS � .41 (cf. Schmidt et al., 1976). If its average
range restriction on T is uT � .56, then the correlation between S
and T in the applicant population is

�STa � ��1 � uT
2)/(1 � uS

2) � � (1 � .562)/ (1 � .412)

� ��.6864/.8319� � .91.

If the average selection ratio for the organizations studied by the
USES was .10, then �STa � .91 would be the average correlation
between suitability and intelligence. If the average selection ratio
is smaller than 10%, the average correlation would be lower. (The
actual average selection ratio for S in this data set is, of course,
unknown.)

The Attenuation Model in Indirect Range Restriction

The easiest context in which to understand the attenuation
model in indirect range restriction is concurrent validation. In a
concurrent validity study, it is clear that selection precedes mea-
surement on both X and Y. Thus, range restriction will be the first
artifact in operation, and measurement errors are added later for
the incumbent population when measures of predictor and criterion
are administered.

Starting in the applicant population, range restriction occurs on
T:

�TPi � c�TPa, where c � uT /�(uT
2�TPa

2 � 1 � �TPa

2 ) . (24)

Then in the incumbent population, measurement error produces
attenuation. For measurement error in the predictor (independent
variable),

�XPi � a�TPi, where a � �rXXi .

For measurement error in the criterion (dependent variable),

�XYi � b�XPi, where b � �rYYi.

For educational and employment selection research, this model is
fortunate in that the needed dependent variable reliability infor-
mation is that for the restricted population, and this reliability

coefficient can be computed from the data on hand (i.e., the
restricted data).

Predictor Measurement Error in Indirect Range
Restriction

Our model indicates that incumbent reliability of the indepen-
dent variable may be considerably lower than the applicant reli-
ability. As shown below, the incumbent predictor reliability can be
estimated from either range restriction on uT or range restriction
on uX.

Estimating incumbent reliability from uT. It is useful in deriv-
ing a formula to shift from the reliability to the square root of the
reliability, which is the correlation �TX. This correlation will
change between populations due to range restriction on T, and the
formula for the incumbent �TX is the same range restriction formula
as for the effect size �TP.

In the applicant population, we have �TXa, and range restric-
tion on T is indexed by uT. In the incumbent population, we
have �TXi:

�TXi � c�TXa, where c � uT /�(uT
2�TXa

2 � 1 � �TXa

2 ). (25)

The resulting reliability equation is as follows:

rXXi � �TXi

2 � c2�TXa

2 � c2rXXa. (26)

In the case of the USES database, the applicant reliability is
rXXa � .81, and so �TXa � .90. Range restriction on T causes �TXi to
drop to .756, which means the incumbent reliability is only
(.756)2 � .57. That is, a test that has a reliability of .81 in the
applicant population has only a modest reliability of .57 in the
incumbent population.

Estimating incumbent reliability from uX. This can be
achieved with the formula relating reliability in two populations
(cf. Nunnally & Bernstein, 1994; Schmidt, Le, & Ilies, 2003):

rXXi � 1 �
SXa

2 (1 � rXXa)

SXi

2 � 1 � UX
2(1 � rXXa), (27)

where UX � 1/uX. Part 2 of Appendix B demonstrates that Equa-
tions 26 and 27 are equivalent. Equation 27 is more convenient to
use. In cases in which the independent variable reliability estimates
are from the restricted group, one can skip this step and go straight
to Equation 28.

Meta-Analysis Correcting Each Correlation Individually—
Indirect Range Restriction

When meta-analysis is performed on study correlations cor-
rected individually for the effects of all three artifacts, the proce-
dure is as follows: First, convert rXXa to rXXi using Equation 26 or 27
above. Second, correct the observed correlation in the restricted
group ��XYi) with rXXi and rYYi:

�TPi � �XYi/(rXXirYYi)
1⁄2. (28)

Third, correct this value for range restriction using UT � 1/uT in
the equation for direct range restriction correction:
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�TPa �
UT�TPi

(1 � UT
2�TPi

2 � �TPi

2 )
1⁄2. (29)

This sequence of corrections is summarized in Table 2. This
procedure relies on the fact that in the absence of measurement
error, the formula for correcting for direct range restriction is
accurate in cases in which range restriction is indirect. In this
procedure, the measurement error is first removed and then the
formula for correcting for direct range restriction is applied.
After each study correlation is corrected in this manner, the
meta-analysis is performed on the corrected correlations with
the methods described in Hunter and Schmidt (2004, chap. 3).
Schmidt and Le’s (2004) program package includes a program
that computes the values in Equation 29 and conducts a meta-
analysis on these values. In the case of personnel selection, the
program has a subroutine that converts �TPa values (true score
correlations) to �XPa values (operational validities). However,
this procedure frequently cannot be used because primary stud-
ies often do not include the necessary information on reliabili-
ties and range restriction for individual correlations. In such
cases, meta-analysis must be conducted with distributions of
artifacts compiled from the studies that report them (Hunter &
Schmidt, 2004, chap. 4).

Artifact Distribution Meta-Analysis: The Model for
Indirect Range Restriction

The attenuation equations presented earlier provide a model for
artifact distribution meta-analysis in the context of indirect range
restriction. In the Meta-Analysis for Indirect Range Restriction
section, we present a method for applying meta-analysis based on
this new model.

The first step is a bare bones meta-analysis (Hunter & Schmidt,
1990a, 2004). This meta-analysis converts the mean and standard
deviation of sample correlations �rXYi) into a mean and standard
deviation for incumbent population attenuated correlations ��XYi)
by correcting for sampling error. That is, the bare bones meta-
analysis provides estimates of the mean and standard deviation of
attenuated population correlations (�XY for the incumbent popula-
tions). The purpose of subsequent steps in the meta-analysis is to
remove the effects of three artifacts: range restriction, error of
measurement in the dependent variable measure, and error of
measurement in the independent variable measure.

For indirect range restriction, it is convenient if predictor reli-
ability information is applicant data, so it can be used in estimating
uT, on the basis of Equation 22. On the other hand, criterion
reliability information is easiest to use if it is incumbent reliability

Table 2
Steps in Correcting for Indirect Range Restriction

Step Purpose Input Output Formula

1 Correcting for measurement
error in Y (measure of
construct P)

Correlation between X and Y in
the restricted population: �XYi

Correlation between X and
P in the restricted
population: �XPi

�XPi
� �XYi

/�rYYi

Reliability of Y in the restricted
population: rYYi

2 Estimating reliability of X
in the restricted
population: rXXi

(if rXXi
is

already known from the
data, proceed directly to
Step 3)

Range restriction on X: uX

Reliability of X in the
unrestricted population: rXXa

Reliability of X in the
restricted population:
rXXi

rXXi
� 1 � UX

2(1 � rXXa
)

Note. UX � 1/uX

3 Correcting for measurement
error in X (measure of
construct T)

Correlation between X and P in
the restricted population:
�XPi

Correlation between T and
P in the restricted
population: �TPi

�TPi
� �XPi

/�rXXi

Reliability of X in the restricted
population: rXXi

4 Estimating reliability of X
in the unrestricted
population: rXXa

(if rXXa
is already known from
the data, proceed directly
to Step 5)

Range restriction on X: uX

Reliability of X in the restricted
population: rXXi

Reliability of X in the
unrestricted population:
rXXa

rXXa
� 1 � uX

2(1 � rXXi
)

5 Estimating range restriction
on T: uT

Range restriction on X: uX Range restriction on T: uT uT � �[uX
2 � (1 � rXXa

)]/rXXa
Reliability of X in the

unrestricted population: rXXa
6 Correcting for the effect of

indirect range restriction
Range restriction on T: uT

Correlation between T and P in
the restricted population: �TPi

Correlation between T and
P in the unrestricted
population: �TPa

�TPa �
UT�TPi

�1 � (UT
2 � 1)�TPi

2

Note. UT � 1/uT

7a Reintroducing measurement
error in T to estimate the
operational validity of X
(as a measure of T): �XPa

Correlation between T and P in
the unrestricted population:
�TPa

Correlation between X and
P in the unrestricted
population: �XPa

�XPa
� �TPa�rXXa

Reliability of X in the
unrestricted population: rXXa

a The output for this step (�XPa
) is the operational validity of measure X, so depending on research questions, the correction process may end at Step 6.
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data. Both of these conventions fit the usual data-gathering situa-
tion for educational and employment selection. That is, typically
reliability information is available for the unrestricted population
for the independent variable and for the restricted population for
the dependent variable. The crucial value for indirect range restric-
tion is uT rather than uX. If an empirical estimate of uX is accom-
panied by the corresponding estimate of unrestricted predictor
reliability in the applicant group, then the corresponding estimate
of uT can be computed for that source with Equation 22. (If values
of uX are given independently from values for the predictor reli-
ability, approximate estimates of uT can be obtained with the
average unrestricted predictor reliability to convert each value of
uX to an estimated value for uT.)

The input artifact data for the multiplicative method of meta-
analysis is three sets of means and standard deviations: the means
and standard deviations of (a) square roots of applicant indepen-
dent variable reliability ��TXa), (b) square roots of incumbent de-
pendent variable reliability ��PYi), and (c) range restriction (uT).
Continuing use of our earlier notation, we have

�o � abc�TPa,

where a is the multiplier for predictor measurement error, b is the
multiplier for criterion measurement error, and c is a multiplier for
range restriction.

The major problem for the multiplicative model lies in the
relationship between the multipliers a and c. For direct range
restriction, a is the simple quantity �TXa, and there is only a small
correlation between a and c. For indirect range restriction, the
formula for a is the same range restriction formula as for c, and
there is a high correlation between a and c. This high correlation
between a and c rules out use of Callender and Osburn’s (1980)
multiplicative method of analysis when range restriction is indi-
rect—because the violation of the assumption of the independence
of a, b, and c is extreme, as we show next.

For this purpose, we found it useful to express the attenuation
equation in a different format from the abc multiplicative format.
Let qX � �TX � �rXX, and qY � �PY � �rYY. The incumbent atten-
uation formula can be written as

�XYi � qXiqYi�TPi, (30)

whereas the applicant attenuation formula is �XYa � qXaqYa�TPa. All
three of these component values will be different in these two
populations. We seek an attenuation formula that relates �TPa to
�XYi.

In the attenuation formula for measurement error in the incum-
bent population (Equation 30):

qXi �
uTqXa

�uT
2qXa

2 � 1 � qXa

2

and

�TPi �
uT�TPa

�uT
2�TPa

2 � 1 � �TPa

2 .

This yields the following attenuation formula:

�XYi � qYi

uTqXa

�uT
2qXa

2 � 1 � qXa

2

uT�TPa

�uT
2�TPa

2 � 1 � �TPa

2 . (31)

The reader should note the double occurrence of the range restric-
tion expression, first for qXi and then for �TPi. As a result of this, the
last two terms are so highly correlated that they rule out use of the
multiplicative model.

Meta-Analysis for Indirect Range Restriction

The mean true effect size. Earlier computer simulation tests of
the meta-analysis model for direct range restriction show that, given
the correct sequencing of corrections, there is little error in estimating
the mean effect size (e.g., see Law et al., 1994a, 1994b). The mean
study population correlation ���XYi) corrected for attenuation with the
mean values for the artifact values provides an accurate estimate of
��TPa. There is no reason why this should not also hold true for indirect
range restriction, and Le (2003) has shown by means of a computer
simulation that this is indeed the case. We illustrate this procedure by
use of the USES database originally analyzed by Hunter (1983) and
Hunter and Hunter (1984). In that database, the mean study popula-
tion correlation (pooling all data) is .26, the mean applicant square
root of the predictor reliability �qXa) is .90, the mean incumbent square
root of criterion reliability �qYi) is .69, and the mean range restriction
on T is uT � .56.

For indirect range restriction, the correlation is attenuated for range
restriction before measurement error. Corrections must be applied in
the order opposite to the order in which the artifacts have attenuated
the correlation. For indirect range restriction, that means that we first
correct for measurement error and then correct for range restriction
(see Table 2). The correction for criterion (dependent variable) mea-
surement error is straightforward. The data on criterion reliability is
incumbent data and can thus be used directly. To correct for criterion
unreliability, we simply divide the mean study correlation by the
mean square root of incumbent criterion reliability �qYi), as noted
earlier. For example, the mean reliability of performance ratings for
incumbents on a multi-item rating instrument is .47 (Viswesvaran et
al., 1996). Thus, the mean �qYi) is �.47 � .69. We divide the mean
study correlation of .26 by .69 to get .38.

The correction for predictor measurement error is more compli-
cated. The data on predictor reliability are applicant data. Thus, the
applicant value of �.81 � .90 must be converted to the incumbent
value with the range restriction formula (i.e., with Equations 26 or
27). For the USES data, this reduces the applicant value of .90 to
a considerably lower .76. This is the value used to correct the .38
obtained by correcting for criterion unreliability. The correlation
corrected for both sources of error is .38/.76 � .50.

After we correct for measurement error, we must correct for
range restriction using the mean value for uT. For the USES data,
this means that we correct the .50 using the mean value of uT,
which is .56. The correction formula used is Equation 29. The
estimate of mean true score correlation is then .73. The mean true
(operational) validity is then �.81 �.73� � .66. Again, the steps in
this process are summarized in Table 2.

Hunter (1983) analyzed the USES data using the direct range
restriction model, an inappropriate model. The average true validity
correlation was estimated to be .54, considerably smaller than the .66
obtained using the correct model. Other published estimates of the
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average true validity of selection procedures for predicting job or
academic performance are likely to be underestimates for the same
reason. That is, all other currently published analyses have inappro-
priately used the model for direct range restriction and hence have
produced underestimates of mean operational validities.

The standard deviation of true effect sizes. The major differ-
ences between methods for the direct and indirect range restriction
models are in the methods for estimating the standard deviation of
effect sizes �SD�TPa

). As shown earlier, the multiplicative method is not
accurate for the indirect range restriction model because of the high
correlations among its component terms (see Equation 31). An adap-
tation of the interactive meta-analysis model for the direct range
restriction condition (Law et al., 1994a, 1994b; Schmidt et al., 1980,
1993) to indirect range restriction (Schmidt & Le, 2004) has proven to
provide acceptably accurate estimates of �SD�TPa

) for the indirect range
restriction case (Le, 2003). This procedure is not based on the mul-
tiplicative model. In the case of direct range restriction, the interac-
tions method (with certain refinements) has proven to be slightly more
accurate than other methods (Law et al., 1994a, 1994b). Computer
simulation results (Le, 2003) suggest it may also be the method of
choice for artifact-distribution-based meta-analysis when range re-
striction is indirect. However, this method is very cumbersome to
present and describe. We have therefore derived an alternative method
based on the multivariate Taylor’s series approach used by Raju and
Burke (1983), and we now present that method.

As a mathematical expression, the attenuation model has four
independent quantities: qXa, qYi, uT, and �TPa. Mathematically these are
treated as variables, even though in the scientific context we would
consider them parameters. As is the case with the other derivations
presented, sampling error is not part of this model. Sampling error is
addressed in a prior step in which it is subtracted out in a bare bones
meta-analysis (see The USES Database: An Empirical Example sec-
tion). The multivariate Taylor’s series approximates the nonlinear
function with a multivariate polynomial. The first level of approxi-
mation, a linear function of the four parameters, is used in this method
of meta-analysis. This approximation has the desirable property that it
breaks the variance of study population correlations into four terms,
one for each independent variable. Within the approximation, these
terms can be considered as variance components and approximate
percentages of variance accounted for can be associated with them.
(Such percentage breakdowns cannot be obtained for the actual non-
linear model.)

The linear approximation uses the deviation score of each pa-
rameter from its mean. Suppose we denote the deviation scores as
x1 through x4. The linear approximation then takes the form

�XYi � c � b1x1 � b2x2 � b3x3 � b4x4. (32)

The constant term c is the value of the nonlinear function evaluated
at the mean values for all the parameters. To a close approxima-
tion, c is �� XYi; that is, the mean population attenuated correlation in
the restricted population.

The four deviation scores x1 through x4 in Equation 32 represent
qXa, qYi, uT, and �TPa. The multivariate Taylor’s series approximates
the nonlinear function with a multivariate polynomial (Raju &
Burke, 1983). Specifically, variance of the observed (restricted)
correlations �XYi can be broken down into four variance compo-
nents:

var�XYi
� b1

2varqXa
� b2

2varqYi � b3
2varuT � b4

2var�TPa
, (33)

where b1 � first order partial derivative of �XYi with respect to qXa;
b2 � first order partial derivative of �XYi with respect to qYi; b3 �
first order partial derivative of �XYi with respect to uT; and b4 � first
order partial derivative of �XYi with respect to �TPa.

Again, in connection with sampling error, note that var�XYi

� varrXYi
� vare, where varrXYi

is the variance of the observed
correlations and vare is the sampling error variance. Solving
Equation 33 for var�TPa, we obtain the formula to estimate the
desired variance of true score correlations:

var�TPa � [var�XYi � (b1
2varqXa � b2

2varq
Y

i

� b3
2varuT

)]/b4
2. (34)

Appendix C presents formulas for the derivatives b1, b2, b3, and
b4 and proofs for the derivations. Taking the square root of
Equation 34, we have the standard deviation of the true score
correlation:

SD�TPa � �var�
TPa

. (35)

The estimated standard deviation of true validities is then

SD�XPa � �rXXa
SD�TPa.

Testing of this method through computer simulation shows that it
is almost as accurate in estimating SD�TPa as the Taylor’s series
method applied to the direct range restriction model (Le, 2003).
The slight drop in accuracy is due to the fact that the effect of
range restriction is more nonlinear for indirect range restriction
than for direct range restriction. Computer simulation results show
that this Taylor’s series method and the interactive method de-
scribed earlier produce about equally accurate estimates of SD�TPa

for the case of indirect range restriction (Le, 2003).

The USES Database: An Empirical Example

To contrast the models for direct and indirect range restriction,
we use the USES database as analyzed by Hunter (1983) and
Hunter and Hunter (1984). The data to be considered here are the
data for the measure of general mental ability derived from the
General Aptitude Test Battery in the prediction of job performance
ratings (425 studies). The job families and the methods used to
construct them are described in Hunter and Hunter. The job fam-
ilies are numbered from 1 (most complex) to 5 (least complex) on
the basis of their requirements for information processing.

Table 3 presents results for four analyses. The columns under
“Sample values” show the mean and standard deviation of ob-
served sample correlations �rXYi) in each family. The columns
under “Bare bones meta-analysis” present the bare bones meta-
analysis on each family. These are the estimated means and stan-
dard deviations of study population correlations ��XYi). The stan-
dard deviations here are smaller because sampling error variance
has been removed, but mean values are the same. The columns
under “Hunter’s original meta-analysis” present an update of
Hunter’s (1983) full meta-analysis results, with corrections for
direct range restriction. These figures are somewhat different from
those given in Hunter (1983) and Hunter and Hunter (1984),
because in these results, the estimates of SD�XPa

are corrected for
variation across studies in range restriction, whereas Hunter did

605RANGE RESTRICTION AND META-ANALYSIS



not make this correction in his earlier analysis. The effect of this
is to decrease SD�XPa estimates slightly.

The final two data columns (under “Current meta-analysis”)
present the more accurate estimates produced by the model for
indirect range restriction based on the Taylor’s series approxima-
tion. In all cases, the mean for the indirect range restriction model
is considerably higher than for the direct restriction model. It is
clear that Hunter (1983) and Hunter and Hunter (1984) underes-
timated these correlations by a substantial margin. For example,
consider the mean for medium complexity jobs (over half of all
jobs in the U.S. economy). The correct model estimates this
correlation to be .66, whereas Hunter (1983) estimated it as .49, a
26% underestimate. The values in Table 3 are for operational
validities. (Values for true score [i.e., construct level] correlations
can be obtained by multiplying all figures by 1/�.81 or 1.11.)
These findings are consistent with those of Schmidt, Oh, and Le
(2006), which are based on four different independent databases.

The point here is not that general mental ability is a highly valid
predictor of job performance; that is a well-known fact. The point
is the size of the underestimation of the validity and the fact that
underestimation by such large amounts is likely to have occurred
not only in past validity and validity generalization studies but also
in many other areas of industrial and organizational research. That
is, these results suggest the hypothesis that the strength of many
relationships in industrial and organizational psychology has been
substantially underestimated. If so, this would have implications
both for levels of practical utility and for the nature and evaluation
of theories of performance and work behavior. For example, the
extent to which job performance is determined by combinations of
traits may have been seriously underestimated.

Related Questions

A reviewer raised the question of the proper range restriction
correction when the focus is on incremental validity of individual
predictors in a sequential (multiple hurdle) selection process. Re-
search has shown that relations between selection methods and

performance criteria are almost always linear (Coward & Sackett,
1990). An important implication of this is that compensatory
selection models yield the highest selection utility. In a compen-
satory model, an applicant can make up for being low on one
predictor by being high on another (or others). To implement a
compensatory model, all applicants must be given all predictors.
This means the desired validity estimate for each predictor is that
in the initial (complete) applicant pool. The present article is cast
in terms of using range restriction corrections to estimate such
validities. If there are multiple predictors, then the applicant pool
validity of each should be estimated and used along with the
applicant pool predictor intercorrelations (computable without
range restriction corrections) in a regression equation predicting
job performance. The regression equation is the statistical imple-
mentation of the compensatory selection model.

All multiple hurdle selection models, by contrast, are noncom-
pensatory. That is, any applicant who falls below the cut score on
any predictor is rejected at that point, no matter how high his or her
scores are on predictors previously administered (or would have
been on those yet to come in the sequence). Although the explicit
reasons for adopting multiple hurdle models usually center around
administrative convenience, the noncompensatory feature means
that use of multiple hurdle models (also called multiple cutoff
models) is equivalent to making the false assumption of nonlinear
relationships between predictors and criteria. Therefore, traditional
selection utility models (Brogden, 1949; Schmidt, Hunter, Mc-
Kenzie, & Muldrow, 1979) do not apply to multiple hurdle selec-
tion. In a multiple hurdle selection process, the incremental valid-
ity is its validity in the applicant group that has already been
selected on the predictors preceding it in the sequence. This
incremental validity depends on how stringent selection is on the
previous predictors and on the order in which the predictor is
given. The number of possible combinations of cutoff scores and
orders of predictor administration is very large, making a complete
assessment of incremental validity nearly impossible. In contrast,
with the compensatory selection model, each predictor has a single

Table 3
Validities From the U.S. Employment Service Database Presented at Four Levels of Analysis
Accuracy (Cognitive Ability Predicting Job Performance Ratings)

Job
family
number

Sample
values

Bare bones
meta-analysisa

Hunter’s original
meta-analysisb

Current
meta-analysisc

r� SDr ��XYi
SD�

XY
��XPa

SD�
XPa

��XPa
SD�

XPa

1 .32 .13 .32 .01 .58 .02 .73 .00
2 .32 .16 .32 .08 .58 .09 .74 .04
3 .26 .15 .26 .08 .49 .09 .66 .05
4 .21 .13 .21 .01 .40 .02 .56 .00
5 .13 .14 .13 .05 .25 .06 .39 .06

Note. Job Family 1 � complex set up jobs (2.5% of the workforce, 17 studies); Job Family 2 � managerial/
professional jobs (14.7% of the workforce, 36 studies); Job Family 3 � technican and skilled jobs (62.7% of the
workforce, 151 studies); Job Family 4 � semiskilled jobs (17.7% of the workforce, 201 studies); Job Family 5 �
unskilled jobs (2.4% of the workforce, 20 studies).
a These correlations are corrected only for sampling error. b Correlations corrected for direct range restriction
and for measurement error in the criterion. These are operational validity estimates (see Hunter, 1983). c Cor-
relations corrected for indirect range restriction and for measurement error in the criterion. These are operational
validity estimates.
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zero order validity (the validity in the initial applicant pool), and
the incremental contribution to job performance of each predictor
over and above other predictors is represented by its partial re-
gression weight in the regression equation. Sequential selection
models are often used by employers to save testing time and
testing costs, although the savings are almost always less than the
loss in selection utility (Hunter & Schmidt, 1982). If the decision
is made to use a sequential procedure, decisions about the sequenc-
ing should be based not only on each predictor’s costs, but also on
its initial validity (i.e., its validity in the initial applicant pool).
Hence, even when a sequential procedure is used, one needs the
validity estimates discussed in this article.

Another question concerns the relationship between estimates of
true score correlations and operational validities. For the presen-
tation in this article, we have assumed that the only difference
between these two is that in the case of operational validity, there
is no correction for measurement error in the independent (predic-
tor) variable, whereas this correction is made in the case of the true
score correlation (making it an estimate of the construct level
correlation or construct validity). This assumption is correct if both
estimates are assumed to have been made for the applicant popu-
lation (as is the case here) or if the applicant population and other
relevant populations have the same independent variable SD. How-
ever, if the operational validity is estimated for the applicant
population and the construct level correlation is assumed to be
estimated for a more general population (e.g., the U.S. workforce
as a whole), the more general population may have a different
(presumably larger) unrestricted independent variable SD, requir-
ing a larger correction for range restriction. In this case, simply
correcting the operational validity estimate for measurement error
in the predictor would underestimate the true score correlation in
the broader population. However, research by Sackett and Ost-
gaard (1994) has suggested that the underestimation would be
minimal. Using a large database on a cognitive ability test and a
large number of jobs, Sackett and Ostgaard compared job-specific
applicant pool predictor SDs to predictor SDs in national norm
(general workforce) data. On average, predictor SDs were only 8%
larger in the national norm data, suggesting that true score corre-
lations estimates on job-specific applicant samples underestimate
true score correlations in the general workforce only slightly.
Likewise, use of national norm SDs as estimates of unrestricted
applicant pool SDs would lead to only slight overestimates of
operational validities. It is important to remember that mean pre-
dictor scores can vary substantially across applicant pools for
different jobs (as was indeed the case in the Sackett & Ostgaard’s,
1994, data), while still allowing the mean applicant pool SD to be
only slightly smaller than the overall workforce SD. By a well
know theorem in analysis of variance, we know that if group
means differ, the average within-group SD must be smaller than
the overall SD. However, it is not well known that this difference
in SDs can be quite small even when the subgroup means differ
considerably. A related question concerns the effects of predictor
SD differences on estimates of reliability. If reliability is estimated
in a workforce norm group, and the SD in that group is larger than
in the applicant group, the reliability estimate will be at least
slightly overestimated relative to the applicant group (leading to
slight undercorrection for measurement error). If the two SDs are
known, Equation 27 can be used to determine the appropriate

reliability in the applicant group. A more detailed discussion of the
dependence of reliability values on group SDs can be found in
Hunter and Schmidt (2004, chap. 3).

In some cases, there may be not only range restriction (direct or
indirect) on the independent variable, but also direct range restriction
on the dependent variable. Another possibility is that there is indirect
range restriction on the dependent variable caused by something other
than the range restriction on the independent variable. In such cases,
all standard range correction procedures, including those presented in
this article, will undercorrect. These special cases and procedures
proposed for dealing with them are discussed in Hunter and Schmidt
(2004, pp. 39–41). One might also raise the question of whether
range restriction corrections can be applied to the d statistic (the
standardized difference between mean groups). In some cases, range
correction procedures, including those presented in this article, can be
applied to the d statistic. A full discussion of such applications is
beyond the scope of this article. Such a discussion is provided by
Roth, Bobko, Switzer, and Dean (2001).

Discussion and Conclusions

When range restriction is direct, accurate corrections for range
restriction require the correct sequencing of corrections for mea-
surement error and range restriction. In particular, because reli-
ability of the predictor cannot be determined in the restricted group
data, any correction for measurement error in the predictor must be
made after the correction for range restriction and must use the
reliability in the unrestricted group. One first corrects for measure-
ment error in the dependent variable (criterion), then for range
restriction, and finally for measurement error in the predictor (if
desired). This little known sequence and the reasons underlying it
are explicated in detail in this article and are summarized (along
with the relevant equations) in Table 1.

However, range restriction is usually indirect rather than direct.
A major error in range restriction correction methods, both in
individual studies and in meta-analysis methods, has been gener-
alization of the model for direct range restriction to use in contexts
of indirect range restriction. We have shown that this practice
results in substantial negative biases in corrected values. This
article has presented a method for correcting for indirect range
restriction that can be used when the information needed to apply
Thorndike’s (1949) Case III correction for indirect range restric-
tion is not available. The sequence of corrections is that one first
corrects for measurement error in both variables using restricted
sample reliability values and then corrects for range restriction
using the Case II formula but using uT rather than uX as the index
of range restriction. The article presents a detailed analytical
derivation of this procedure. This sequence of corrections and the
equations needed for it are summarized in Table 2. This procedure
should be used whenever range restriction is indirect, including
those cases in which the range restriction results from self-
selection. A reviewer noted that some degree of self-selection may
be nearly ubiquitous in research samples and asked how a re-
searcher can determine when to apply this correction for indirect
range restriction. This correction should be applied whenever the
independent variable SDs are different in one’s sample and the
population of interest.
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This method of correcting for indirect range restriction can be
applied in meta-analysis methods as well as to correlations in indi-
vidual studies. This article presented a Taylor-series-based method for
conducting artifact distribution meta-analysis when range restriction
is indirect. Computer simulations testing the accuracy of this model
indicate that the method produces accurate estimates of SD� (Le,
2003). There is also a version of the interactive model (Law et al.,
1994a, 1994b; Schmidt et al., 1980; Schmidt & Le, 2004) adapted to
the requirements of data shaped by indirect range restriction, and
simulation tests indicate that this model is as accurate as the Taylor-
series-based model (Le, 2003). This article also presented meta-
analysis methods for correcting each correlation individually, meth-
ods that incorporate the new correction for indirect range restriction.
Meta-analysis programs that incorporate both direct and indirect range
restriction corrections are available (Schmidt & Le, 2004). Meta-
analysis results produced when one corrects for indirect range restric-
tion produce larger mean ���XPa) values in comparison with those
produced by application of the inappropriate correction for direct
range restriction. The derivations, equations, and results presented in
this article suggest that the use of the direct range restriction model
may have led to considerable underestimation of the validity of
measures used in educational and employment selection and, by
extension, may have led to underestimation of important parameters
in other areas of research. In view of the fact that range restriction is
indirect in most social and behavioral science research domains sub-
ject to range restriction, this issue appears to be an important one, and
the development of accurate estimation models for meta-analysis of
such data therefore appears to be important.
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Appendix A

Demonstration That True Scores and Measurement Errors Are Correlated Under Direct
Range Restriction

For simplicity, we consider an applicant reliability of .50. This makes the
measurement error variance �Ve) the same size as the true score variance
�VT). That is, if we use the classical equation, X � T � e, for notation, then
Ve � VT. Accordingly, we have the following:

VX � VT � Ve � 2VT � 2Ve.

Suppose we set the selection cutoff score at the median of the applicant
population. That is, suppose we promote the top half of the applicants. If
we delete the bottom half of a normal distribution, then the standard
deviation in the restricted group (top half) is only 60% as large as the
original standard deviation (Schmidt et al., 1976). That is, if the applicant
standard deviation is 10 (SD � 10), then the incumbent standard deviation
would be 6 (SD � 6). The variance is smaller by the square of .60 or .36.
For example, if the applicant variance is 100, then the incumbent variance
is 36.

At this point, the mathematics is made easier if we introduce a new
variable that has no substantive meaning but is mathematically convenient.
Denote it by B. We then compute its variance and its correlation with X:

B � T � e

Applicant population, VB � VT � Ve and rBX � 0.
Because the reliability is .50, the new variable B is uncorrelated with the
old variable X.A1 In the applicant population, both variables are normally
distributed and independent (because they are uncorrelated).

Consider direct range restriction on X. B is independent of X. Thus, when
we select on X, there will be no selection on B. Thus, in the incumbent
population, the variance of B will be unchanged. We next use a procedure
that allows the computation of the correlation between T and e in the
incumbent population. Note that in our example, VT and Ve are equal before
selection, so selection operates symmetrically on them. That means that the
two variances will still be equal after selection. In the incumbent popula-
tion, we have the following:

Ve � VT

VX � VT � Ve � 2covTe � 36

VB � VT � Ve � 2covTe � 100

Add variances:

VX � VB � 2VT � 2Ve � 36 � 100 � 136

VT � Ve � (1/2)2(VT � Ve) � (1/2)136 � 68

A1 This can be shown as follows:

rBX � r(T�e)(T�e) �
covTT � covee

2(ST
2 � Se

2)
�

ST
2 � Se

2

2(ST
2 � Se

2)
�

0

2(ST
2 � Se

2)
� 0.
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Because Ve � VT (above), we have VT � VT � Ve � Ve � 68

VT � Ve � 68/2 � 34

Subtract variances:

VX � VB � 4covTe � 36 � 100 � �64

covTe � �16

Compute rTe:

rTe � covTe /(SDTSDe) � �16/(�34�34) � �16/34 � �.47.

To summarize the example, in the whole applicant population, the
measurement errors are uncorrelated with true scores, but in the selected
subpopulation of incumbents, the true scores and errors are correlated –.47.
All procedures for estimating reliability assume that rTe � 0. Hence, it is
a problem to estimate or even define reliability in this context (Mendoza &
Mumford, 1987).

Appendix B

Estimating Range Restriction in the Dependent Variable From Range Restriction on Its
Independent Variable

We demonstrate the derivations of formulas to estimate the effect of
range restriction on an independent variable X (uX) on range restriction of
a dependent variable Y (uY), using correlation between the variables either
from the unrestricted population or from the restricted population.

The notation follows:

� � �XY � correlation between X and Y;

Subscript i � values estimated in the restricted population (e.g., �i �
correlation between X and Y in the restricted population); subscript a �
values estimated in the unrestricted population (e.g., �a � correlation
between X and Y in the unrestricted population); SXi and SXa � standard
deviations of variable X in the restricted population and unrestricted
population, respectively; SYi and SYa � standard deviations of variable Y in
the restricted population and unrestricted population, respectively. We
have the following:

uX � SXi/SXa � range restriction in X; (B1)

uY � SYi/SYa � range restriction in Y. (B2)

The two basic assumptions made by Pearson and Thorndike in deriving
the formulas to correct for range restriction are: (a) the regression weight
(for predicting/explaining dependent variable from independent variable)
in the restricted population is the same as the regression weight in the
unrestricted population, and (b) the standard error of estimate in the
restricted population is the same as the standard error of estimate in the
unrestricted population (Mendoza & Mumford, 1987). The first assumption
can be demonstrated as follows:

� iSYi/SXi � �aSYa/SXa. (B3)

The second assumption can be demonstrated as follows:

SYi(1 � �i
2)1/2 � SYa(1 � �a

2)1/2 (B4)

Multiply both sides of Equation B3 for SXi
/SYa

and simplify:

� iSYi/SYa � �aSXi/SXa. (B5)

From Equations B1, B2, and B5, we have the following:

� iuY � �auX. (B6)

Square both sides of Equation B6 and solve for �i
2, and we have the

following:

� i
2 � �a

2uX
2/uY

2. (B6�)

Divide both sides of Equation B4 by SYa
:

�SYi /SYa)(1 � �i
2)1/2 � (1 � �a

2)1/2. (B7)

From Equations B2 and B7, we have the following:

uY(1 � �i
2)1/2 � (1 � �a

2)1/2 . (B8)

Square both sides of Equation B8, and then solve it for uY
2:

uY
2 � (1 � �a

2)/(1 � �i
2). (B9)

Equations B6� and B9 above now can be used to derive the formulas of
interest. To estimate uY from uX and �a, complete the following:

Replace Equation B6� into Equation B9:

uY
2 � (1 � �a

2)/(1 � �a
2uX

2/uY
2). (B10)

Expand and simplify Equation B10:

uY
2 � �a

2uX
2 � 1 � �a

2. (B11)

Solving Equation B11 for uY
2, we have the formula of interest:

uY
2 � �a

2uX
2 � �a

2 � 1. (B12)

To estimate uY from uX and �i, first, solve Equation B6� for �a
2:

�a
2 � � i

2uY
2/uX

2. (B13)

Then replace Equation B13 into Equation B9:

uY
2 � (1 � �i

2uY
2/uX

2)/(1 � �i
2). (B14)

Expand Equation B14:

uX
2uY

2 � uX
2uY

2�i
2 � uX

2 � �i
2uY

2. (B15)

Rearrange the components of Equation B15:

uX
2uY

2 � uX
2uY

2�i
2 � �i

2uY
2 � uX

2. (B16)

Solving B16 for uY
2, we have the formula of interest:

uY
2 � uX

2/(uX
2 � uX

2�i
2 � �i

2). (B17)
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Equivalence of Equations Estimating Restricted Reliability From
Unrestricted Reliability

In this part of Appendix B, we show that the two equations introduced
in the text to estimate restricted reliability from unrestricted reliability
(Equations 26 and 27) are in fact equivalent. To do that, we demonstrate
that Equation 27 can be derived from Equation 26 through algebraic
transformation. The demonstration makes use of Equation B13 above. It
can be seen that when Equation B13 is applied to the current situation, �a

2

and �i
2 represent the unrestricted rXXa and restricted reliability rXXi, respec-

tively. Similarly, the squared range restriction ratios uY
2 and uX

2 reflect
squared range restriction on observed score �uX

2) and true score �uT
2),

respectively. Equation B13 can then be rewritten as follows:

rXXa � rXXiuX
2/uT

2. (B18)

Solving B18 for uT
2, we have the following:

uT
2 � uX

2rXXi/rXXa. (B19)

Replacing uT
2 in Equation B19 above into Equation 26 in the text, we have

the following:

rXXi �
uT

2rXXa

uT
2rXXa � 1 � rXXa

�
(uX

2rXXi/rXXa)rXXa

(uX
2rXXi/rXXa)rXXa � 1 � rXXa

�
uX

2rXXi

uX
2rXXi � 1 � rXXa. (B20)

Equation B20 can be simplified by multiplying both sides by
uX

2rXXi � 1 � rXXa

rXXi
:

uX
2rXXi � 1 � rXXa � uX

2. (B21)

Solving Equation B21 for rXXi, we obtain Equation 27 in the text:

rXXi � 1 �
1 � rXXa

uX
2 � 1 � UX

2(1 � rXXa). (B22)

Appendix C

Development of the Taylor’s Series: Approximation Approach

This approach is based on Equation 31 in the text, which shows the
observed correlation �XYi as the function of the following: (a) the square
root of the unrestricted independent variable reliability (qXa � �rXXa), (b)
the square root of the restricted dependent variable reliability (qYi � �rYYi),
(c) range restriction on true score T(uT), and (d) the true score correlation
in the unrestricted population �TPa:

�XYi � qYi

uTqXa

�uT
2qX

2
a � 1 � qX

2
a

uT�TPa

�uT
2�TP

2
a � 1 � �TP

2
a

. (C1)

As shown in the text, variance of the true score correlation �TPa can be
estimated by the following equation:

var�TPa
� [var�XYi

� (b1
2varqXa

� b2
2varqYi

� b3
2varuT

� vare)]/b4
2, (C2)

with b1 � first order partial derivative of �XYi with respect to qXa; b2 � first
order partial derivative of �XYi with respect to qYi; b3 � first order partial
derivative of �XYi with respect to uT; b4 � first order partial derivative of
�XYi with respect to �TPa.

To simplify the presentation, the following notation is used:

P � �XYi;

X � qXa;

Y � qYi;

U � uT;

� � �TPa;

A �
1

�uT
2�TP

2
a � �TPa

2
� 1

;

B �
1

�uT
2qX

2
a � qX

2
a � 1

.

Equation C1 above can be rewritten as follows:

P � XY�U2AB. (C3)

The derivatives in Equation C2 can then be estimated from Equation C3 as
follows.

Estimating b1

The coefficient b1 is the first order partial derivative of P with respect to
X:

b1 � dP/dX � Y�U2A[d(XB)/dX] � Y�U2A

d� X

�U2X2 � X2 � 1�
dX

. (C4)

Applying the formula for derivatives of the product to Equation C4, we
have the following:

b1 � Y�U2A � 1

�U2X2 � X2 � 1

� X[2X(U2 � 1)]� �1

2�(U2X2 � X2 � 1)3��. (C5)

Simplifying and rearranging Equation C5, we have the needed formula to
estimate b1:

b1 � Y�U2A[B � X2(U2 � 1)B3] �
P

X
� PXB2(U2 � 1). (C6)

Estimating b2

As mentioned above, b2 is first order partial derivative of P with respect
to Y:

b2 � dP/dY � X�U2AB � P/Y. (C7)
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Estimating b3

The coefficient b3 is the first order partial derivative of P with respect to U:

b3 � dP/dU � XY��d� U2

�U2X2 � X2 � 1�U2�2 � �2 � 1�
dU

	. (C8)

Applying formula for derivatives of the product to Equation C8, we have
the following:

b3 � XY��2UAB � U2A(2UX2)� �1

2�(U2X2 � X2 � 1)3� �

U2B(2U�2)� �1

2�(U2�2 � �2 � 1)3��. (C9)

Simplifying and rearranging Equation C9, we have the needed formula to
estimate b3:

b3 � XY�(2UAB � U3X2AB3 � U3�2A3B) �
2P

U
� PUX2B2 � PU�2A2.

(C10)

Estimating b4

The coefficient b4 is the first order partial derivative of P with respect
to �:

b4 � dP/d� � XYU2B[d(XA)/d�] � XYU2B

d� �

�U2�2 � �2 � 1�
d�

.

(C11)

Applying formula for derivatives of the product to Equation C11, we have
the following:

b4 � XYU2B� 1

�U2�2 � �2 � 1

� �[2�(U2 � 1)]� �1

2�(U2�2 � �2 � 1)3��. (C12)

Simplifying and rearranging Equation C12, we have the needed formula to
estimate b4:

b4 � XYU2B[A � �2(U2 � 1)B3] �
P

�
� P�A2(U2 � 1). (C13)

The variance of true score correlation can then be estimated by Equation
C2. The values of b1, b2, b3, and b4 in Equation C2 are estimated by
replacing the means of X, Y, U, and � in their respective distributions into
Equations C6, C7, C10, and C13.
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