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Research conclusions in the social sciences are increasingly based on meta-analysis, making
questions of the accuracy of meta-analysis critical to the integrity of the base of cumulative
knowledge. Both fixed effects (FE) and random effects (RE) meta-analysis models have been
used widely in published meta-analyses. This article shows that FE models typically manifest a
substantial Type I bias in significance tests for mean effect sizes and for moderator variables
(interactions), while RE models do not. Likewise, FE models, but not RE models, yield
confidence intervals for mean effect sizes that are narrower than their nominal width, thereby
overstating the degree of precision in meta-analysis findings. This article demonstrates
analytically that these biases in FE procedures are large enough to create serious distortions in
conclusions about cumulative knowledge in the research literature. We therefore recommend
that RE methods routinely be employed in meta-analysis in preference to FE methods.

Introduction

I n the social and behavioral sciences today,
conclusions about cumulative knowledge are

increasingly based on the results of meta-
analyses (Cooper and Hedges 1994; Hunter
and Schmidt 1996). One indication of this is the
large number of meta-analyses appearing in
research journals in psychology and related
areas, including journals that formerly published
only individual empirical studies. Another
indication is the fact that textbooks summarizing
knowledge within fields increasingly cite meta-
analyses rather than a selection of primary
studies, as was the case until recently (Hunter
and Schmidt 1996).
This development means that the soundness

of the research endeavor is dependent on the
accuracy of meta-analyis methods. Any sub-
stantial inaccuracy in widely used meta-analysis
methods has fundamental implications for the
quality of the resulting knowledge structures.
This article focuses on an issue in meta-analysis
that has such implications.
Within meta-analysis methods there is a

distinction between fixed effects (FE) models
(Hedges and Olkin 1985, ch. 7) and random
effects (RE) models (Hedges and Olkin 1985, ch.
9). These models lead to different significance
tests and confidence intervals for mean effect
sizes (mean r or mean d). They also yield
different significance tests for moderator vari-
ables (interactions) in meta-analysis; that is,
different significance tests for the relation

between study characteristics and study
outcomes (effect sizes) (National Research
Council 1992; Overton 1998). Hedges (1992:
284±92) provides a succinct overview of the
differences between these two models in meta-
analysis. Other treatments of this distinction can
be found in Hedges (1994a; 1994b), National
Research Council (1992), Raudenbush (1994),
and Shadish and Haddock (1994).
Application of FE significance tests and

confidence intervals is based on the assumption
that the studies being analyzed are homo-
geneous at the level of study population effect
sizes. For example, if the effect size index used is
the d value, the FE model assumes that , the
population value of d, is the same in all studies
included in the meta-analysis. RE models do not
make this assumption (Hedges and Olkin, ch. 9;
Hedges 1992; National Research Council 1992).
RE models allow for the possibility that the
population parameter values vary from study to
study (Becker 1996; Hedges 1992).
The methods described in Hunter, Schmidt

and Jackson (1982), Hunter and Schmidt (1990a),
Callender and Osburn (1980), and Raju and
Burke (1983) are RE models (Hedges and Olkin
1985, ch. 9: 242; National Research Council
1992: 94-5). These methods have been
extensively applied to substantive questions in
the published literature (e.g., see Schmidt 1992).
The methods described in Hedges (1988),
Hedges and Olkin (1985, ch. 9), Raudenbush
and Bryk (1985), and Rubin (1980, 1981) are also
RE methods. These latter methods have been
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used less frequently in meta-analysis. For
example, although Psychological Bulletin, the
major review journal in psychology, has
published many meta-analyses, we could locate
no meta-analyses published in that journal that
employed these methods. Cooper stated: `In
practice, most meta-analysts opt for the fixed
effects assumption because it is analytically
easier to manage' (1997: 179). The National
Research Council report stated that many users
of meta-analysis prefer FE models because of
`their conceptual and computational simplicity'
(1992: 52).
RE formulas for statistical significance of mean

effect sizes and moderator relationships have the
appropriate Type I error rate (e.g., 5% for a
designated alpha of .05), both when population
parameter values (� or �) are the same across all
studies and when the population parameters
vary across studies. However, when population
parameters vary across studies, the FE formulas
have Type I error rates that are higher than the
nominal values ± often much higher.1 And if
confidence intervals are used based on the FE
standard errors, the confidence intervals are too
narrow. For example, a nominal 95% confidence
interval may actually be a 60% confidence
interval, a substantial inaccuracy, and a sub-
stantial over-statement of the precision of the
meta-analysis results.
The fact that FE models produce inaccurate

results unless population effect sizes are constant
across studies is important because it is likely
that there is at least some variation in study
population parameters in all research domains.
Many would argue that for theoretical or
substantive reasons there is always some
variation in population parameter values across
studies. That is, they would argue that there are
always at least some real (i.e., substantive, not
methodological) moderator variables that create
differing values of �i or �i across studies
(National Research Council 1992). We do not
argue for this position, because based on our
experience some study domains do appear to be
homogeneous at the level of substantive
population parameters (e.g., see Schmidt, Law,
Hunter, Rothstein, Pearlman and McDaniel
1993). However, whether this is true can be
ascertained only by using RE models to estimate
the level of heterogeneity. FE models do not
allow for an estimate of S2� or S2� , because they
assume homogeneity a priori. That is, they
assume S2� � 0 and S2� � 0.
Even if there are no substantive moderators

causing variation in population parameters, there
are methodological variations across studies that
cause variation in study population �i or �i. For
example, if the amount of measurement error in
the measures used varies across studies, this
variation creates variation in study population

parameters; studies with more measurement
error will have smaller study population values
of �i or �i. So even if there is no substantive
variation in population parameters, variations
across studies in such methodological factors as
reliability of measurement, range variation, or
dichotomization of continuous variables (Hunter
and Schmidt 1990b) will create variation in study
population parameters (Osburn and Callender
1992). Such variation will typically exist and,
hence, the assumption of homogeneous study
population effect sizes or correlations will
usually be false for this reason alone.

The formulas for statistical significance used in
published applications of the Hedges and Olkin
(1985) and Rosenthal and Rubin (1982a, b) meta-
analysis methods are almost invariably FE
formulas.2 Hedges and Olkin (1985) specify that
a chi square test for homogeneity should precede
the test for the significance of the mean
correlation or d value. This chi square test is
the same for both the fixed and RE models
(Hedges and Olkin 1985, ch. 9; Hedges 1992)
and does not itself suffer from any Type I error
bias. If this test is non-significant, then the chi
square test cannot reject the hypothesis of
homogeneity. However, a non-significant homo-
geneity test does not support a conclusion of
homogeneity of study population values of �
and �. Unless the number of studies is large, this
chi square test typically has low power to detect
variation in study population parameters
(Hedges and Olkin 1985; Mengersen, Tweedie,
and Biggerstaff 1995; Morris and DeShon 1997;
National Research Council 1992, p. 52), resulting
in frequent Type II errors. That is, the chi square
is often non-significant in the presence of real
variation in study population parameters
(Hedges and Olkin 1985). As a result, FE
significance tests are often applied to hetero-
geneous study domains, resulting in inflated
Type I error rates and confidence intervals
(around mean effect sizes) that are substantially
narrower than the actual confidence intervals.

In addition, even if the chi square test of
homogeneity is significant (indicating hetero-
geneity of population effect sizes), users of FE
methods nevertheless often apply FE formulas
for statistical significance of mean effect sizes (or
compute confidence intervals using the FE
standard error of the mean effect size). This
practice ensures distorted results and
conclusions. Examples of meta-analysis that have
been done this include Bettencourt and Miller
(1996), Bond and Titus (1983), Burt, Zembar, and
Niederehe (1995), Collins and Miller (1994),
Eagly and Johnson (1990), Eagly, Karau, and
Makhijani (1995), Eagly, Makhihani, and
Klonsky (1992), Erel and Burman (1996),
Feingold (1994), Ito, Tiffany, Miller, and Pollock
(1996), Knight, Fabes, and Higgins (1996),
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Newcomb and Bagwell (1995), Polich, Pollock,
and Bloom (1995), Symons and Johnson (1997),
Van Ijzendorn (1995), Wood (1987), and Wood,
Lundgren, Ouellette, Busceme, and Blackstone
(1994). These meta-analyses all focus on
substantive research questions that are quite
important. With these practices, it is even more
likely that FE significance tests will have
substantially inflated Type I error rates and will
report falsely narrow confidence intervals, over-
estimating the precision of the findings.3

The National Research Council (1992: 147)
stated that the use of FE models in meta-analysis
is `the rule rather than the exception' and that FE
models `tend to understate actual uncertainty' in
research findings. The National Research Council
recommended `an increase in the use of RE
models in preference to the current default of FE
models' (ibid: 2), (see also pp. 185±7 of that
report.). Others have also warned that use of FE
models can lead to inflated Type I error rates and
erroneously narrow confidence intervals (e.g.,
Hedges 1994a; Raudenbush 1994; Rosenthal
1995).4 However, FE models have continued to
be `the rule rather than the exception' in the
published literature in psychology and other
disciplines.
In this article, we focus on the two most

commonly used significance tests in meta-
analysis: (1) the test for the mean effect size
(e.g., mean r or mean d) in the domain of studies;
and (2) the test for potential moderator variables.
We quantitatively calibrate the extent to which
FE significance tests have Type I error rates that
are higher than nominal Type I error rates in
heterogeneous domains. We also calibrate the
extent to which confidence intervals computed
using FE methods are narrower than their true
values, suggesting levels of precision in meta-
analysis results that do not exist. The literature
currently includes no other studies that estimate
the magnitude of the errors induced in these two
tests by the FE model. Our demonstrations are in
terms of correlations, but the same principles and
conclusions apply to standardized effect sizes (d-
values) and to other effect size indices (such as
proportions and odds ratios).

Rationales for the Fixed Effects Model

What rationales have been offered for the FE
model? The initial rationale was that scientists
may sometimes not be interested in the mean
effect size for the full domain of studies, but
rather may be interested only in the specific
effect sizes represented in the studies included in
a meta-analysis (Hedges 1992; 1994a; 1994b;
Raudenbush 1994; Shadish and Haddock 1994).
Under this rationale, researchers do not regard
the studies in their meta-analysis as a sample

from a potentially larger population of studies,
but rather as the entire universe of studies of
interest. Under this assumption, there is no
possibility of sampling error due to this sampling
of study effect sizes, because all possible study
effect sizes are by definition included in the
meta-analysis. Overton (1998) showed that the
FE model has the appropriate level of Type I
error under this assumption. However, the key
question is whether this assumption is ever
realistic or appropriate.
The major problem with this assumption is

that it is difficult (and perhaps impossible) to
conceive of a situation in which a researcher
would be interested only in the specific studies
included in the meta-analysis and would not be
interested in the broader task of estimation of
the population effect sizes for the research
domain as a whole. For example, suppose that
16 studies have been conducted relating the
personality trait of Openness to Experience to
job performance, but those studies have been
published in widely varying journals. Suppose
that as a result, the meta-analyst locates only 8
of the 16 studies to include in his or her meta-
analysis. Consider this question in a hypothetical
survey of personality researchers: Which would
you as a researcher find more informative: (1)
meta-analysis means and confidence intervals
that generalize to the entire domain of studies in
this research area (RE model results), or (2) meta-
analysis means and confidence intervals that
describe only the specific studies located for this
meta-analysis and cannot be generalized to the
research domain as a whole (FE model)? It seems
clear that substantive researchers would (rightly)
prefer the random effects results. Science is about
generalization, and the purpose of research is the
identification of generalizable conclusions
(Overton 1998). Conclusions limited to a specific
subset of studies are not scientifically
informative.
Consider the same reasoning applied at the

broader study domain level. Would a researcher
rather have the results of a meta-analysis that
describes only the first several studies
conducted in a domain or the outcome of a
meta-analysis that generalizes to all studies that
could or might be conducted in the future in
that domain? That is, would he/she prefer for
the meta-analysis results and conclusions to
generalize to future replication studies or would
he/she prefer results that do not generalize to
future replication? Most researchers would
judge that conclusions about the broader study
domain are of more scientific value. That is, the
information produced by RE models is the
information most researchers expect a meta-
analysis to convey (Overton 1998), while the
information produced by FE models is of very
limited scientific value.
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This rationale in support of the fixed effects
model sprang from an analogy with FE models in
analysis of variance (ANOVA). In ANOVA, a FE
design is one in which all levels of the treatment
that are of interest are included in the design,
while a RE model in ANOVA is one in which
only a sample of treatment levels of interest is
included in the study. By analogy with this
distinction in ANOVA, Hedges and Olkin
(1985) labeled the two different approaches to
meta-analysis as FE and RE models. Hence in FE
meta-analysis models, the studies included in the
meta-analysis are assumed to constitute the
entire universe of relevant studies, whereas in
RE models the studies are taken to be a sample
of all possible studies that might be conducted or
might exist on the subject. The National
Research Council report (1992: 46 and 139)
indicates that there are problems with this
analogy. The report states:

The manner in which the terms `fixed effects'
and `random effects' are used in the meta-
analysis literature is somewhat different from
the classical definitions used in other
techniques of statistics such as analysis of
variance, where `fixed effects' is the term
required to deny the concept of a distribution
of the true effects, �1 . . . �k, and `random
effects' supposes that the are sampled from a
population and therefore have a distribution.
(ibid: 46)

As an aid in interpreting this statement,
consider research on the effects of drugs on
patients. A researcher might include the dosages
0 mg, 10 mg, and 20 mg. In FE ANOVA, these
treatments (dosages) are fixed at these levels,
the only ones considered of interest, and the
idea that there is a naturally occurring
distribution of dosages from which these three
dosages are sampled is denied. This is different
from the FE model in meta-analysis in two
important ways. First, in meta-analysis the
researcher does not specify (or fix) the
parameter values (�1 or �1) in the individual
studies included in the FE meta-analysis. Instead,
these are merely accepted as they happen to
occur in the sample of studies. That is, they are
merely observed and are not manipulated. The
second difference flows from the first: Because
the researcher does not fix the parameter values
in the studies included in the meta-analysis, but
rather merely accepts them as they happen to
have occurred, there is no basis or rationale for
postulating or assuming that these parameter
values do not have a distribution across studies
± the key assumption of the fixed model in
ANOVA. These are the reasons why the
National Research Council report (1992)
rejected the analogy between FE models in
ANOVA and FE models in meta-analysis. These

considerations lead to the conclusion (stated
earlier) that the FE model in meta-analysis is
legitimate only in study sets in which S2� or
S2�� � 0. Under these (rare) circumstances, study
parameter values are indeed fixed ± although all
at the same value, unlike FE ANOVA designs.
As discussed earlier, the National Research
Council report concluded that whenever this
condition is not met the FE meta-analysis model
leads to elevated Type I error rates and
unrealistically narrow confidence intervals.

Recently, Hedges and Vevea (1998: 488) have
abandoned the rationale discussed here for the
FE model in favor of the conclusion that there is
no statistical rationale or justification for the FE
model in meta-analysis, but that there can be a
rationale based on subjective judgment by the
researcher. They begin by acknowledging that
FE results are of little value or interest if they
cannot be generalized beyond the specific
studies included in the meta-analysis, and they
conclude that such generalization is `not justified
by a formal sampling argument.' However, they
argue that a researcher can make a subjective
`extrastatistical' or `extraempirical' judgment that
generalization of FE estimates to the whole
research domain is justified: `Specifically,
inferences may be justified if the studies are
judged a priori to be sufficiently similar to those
in the study sample' (ibid: 488). This judgment is
the judgment that the new studies (to which
generalization is to be extended) have study
parameters (�i or �i) that exactly reproduce,
study for study, those in the original study set
included in the FE meta-analysis. It is difficult to
see how such a subjective judgment could be
justified. What basis could a researcher have for
such knowledge?

Although Hedges and Vevea provide
computational examples of application of the
FE model, they give no substantive example
(even a hypothetical one) of a case in which such
a subjective judgment would be appropriate as a
rationale for use of the FE model. Nor do they
provide any guidelines or suggestions for when
this might be appropriate.

Hedges and Vevea recognize that the FE
model in meta-analysis has no statistical
justification, and this is a step forward. However,
their attempt to provide a subjective rationale
based on questionable judgments by researchers
appears to be weak. If a procedure has no
statistical justification, replacing it with one that
does would seem preferable to constructing a
subjective, non-statistical justification. The RE
model has a clear statistical justification, requires
no subjective judgments, and can be used in all
applications of meta-analysis.
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The Significance Test for the Mean Effect
Size

Many researchers conduct significance tests on
the mean effect size in meta-analysis. For-
tunately, the total sample size in meta-analysis
is usually large enough that the Type II error
rate for the test in meta-analysis is lower than
the average 50% to 60% Type II error rate in
significance tests in single studies (Cohen 1962;
1994; Hunter 1997; Schmidt 1996; Sedlmeier and
Gigerenzer 1989). Our focus here, however, is
on Type I, rather than Type II, errors.
The Type I error rates for the RE and FE

models for a variety of research domains are
shown in Table 1. The methods used to compute
Table 1 are presented in Appendix A. Study
sample sizes in Table 1 vary from 25 to 1600.
The second column in Panel B of Table 1 shows
the homogeneous case (SD� � 0). For the
remaining columns, the domain is successively
more heterogeneous, with SD� varying from .05
to .25, values that cover most of the range of
estimates of SD� in the empirical research
literature (Hunter and Schmidt 1990a).
Panel A in Table 1 indicates that the Type I

error rate for the RE formula is always 5%, the
requirement for a conventional significance test
when alpha = .05. Panel B shows the error rates
for the FE formula. Note first that for all sample
sizes, the FE formula has a 5% error rate if the
domain is homogeneous. The columns for the
heterogeneous domains show higher error rates.
The Type I error rate of the fixed effect formula
becomes larger as the extent of heterogeneity
increases and as the average sample size in the
domain increases.

The first row in Table 1 represents domains in
which the average sample size is N = 25; about
the average sample size for studies of the
effectiveness of psychotherapy (Stoffelmeyr,
Dillavou, and Hunter 1983), for example. For
SD� � .05, the error rate is only 6% (i.e., only
20% larger than the nominal 5% rate). However,
for SD� � .10, the error rate climbs to 8% (60%
larger than the 5% nominal rate). As
heterogeneity climbs to SD� � .25, the error
rate climbs to 22% (four times larger than the 5%
required for a conventional significance test).
The second row in Table 1 represents

domains in which the average study sample size
is N = 100; about the average for laboratory
studies in psychology. In this case, the sampling
error is large, but not so large that it overwhelms
the variance of population effect sizes
quantitatively. Even for a very small SD� �
.05, the error rate is 8% (i.e., 60% larger than the
5% required for a conventional significance test).
For SD� � .10, the error rate climbs to 16%
(more than three times as large as the 5%
required for a conventional significance test). As
the heterogeneity climbs to SD� � .25, the Type
I error rate climbs to 46%.
The third and fourth rows of Table 1

represent domains for survey research; i.e., study
sample sizes ranging from N = 400 to N =
1600. For these cases, sample size is larger than
for typical studies in psychology, and many
might intuitively expect any statistical procedure
to work better for such large sample studies than
for the more typical small sample study domain.
Actually, the opposite is true. The FE formulas
are less accurate for large sample study domains
than for small sample study domains. When N

Note: RE = Random Effects; FE = Fixed Effects. SD� = the standard deviation of population correlations
across the studies included in the meta-analysis.

Panel A. The RE significance test

Prob (Type I error) = .05 in all cases

Panel B. The FE significance test

Study Homogeneous Heterogenous cases (SD� > 0�
Sample Case SD�

Sizes (SD� � 0) .05 .10 .15 .20 .25

25 .05 .06 .08 .11 .16 .22
100 .05 .08 .16 .28 .38 .46
400 .05 .17 .38 .53 .63 .70

1600 .05 .38 .63 .75 .81 .85
. . .
1 .05 1.00 1.00 1.00 1.00 1.00

Table 1: Type I error rates for the random effects and the fixed effects significance test for the mean correlation
in meta-analysis (nominal alpha = .05)
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= 400, even for the very small of SD� .05, the
error rate is 17%. For SD� � .10, the error rate
climbs to 38%. As the heterogeneity climbs to
SD� � .25, the Type I error rate climbs to 70%.
For average study sample sizes larger than N

= 400, the Type I error rate for FE model
becomes very extreme. Consider a very small
degree of heterogeneity, SD� � .05. When
studies each have N = 1600, the Type I error
rate ranges from 38% to 85%. As the average
sample size becomes infinite, the Type I error
rate for the FE formula climbs toward 100%.
The FE significance test for mean effect size

presented by Rosenthal (1978) differs from the
FE tests advanced by Hedges and Olkin (1985,
ch. 7). Rosenthal (1978) suggested that
`combined p-value' methods be used to
determine the significance of mean effect sizes.
However, as shown in Appendix B, these
methods also assume homogeneous study
population �s or �s and also have elevated
Type I error rates whenever this assumption is
not met. So the analysis of Type I error rates
presented in Table 1 applies to combined p-value
methods, as well as to other FE significance tests.
(Criticism of combined p-value methods on other
grounds (Becker 1987; National Research
Council 1992: 178±80) has led to a recent
decline in their use in published meta-analyses.)

Effect on Confidence Intervals

In applying both FE and RE meta-analysis
methods, Hedges and Olkin (1985) suggest
placing confidence intervals around the mean
effect size rather than testing the mean effect size
for statistical significance. Others have also
concluded that confidence intervals are to be
preferred over significance tests (Cohen 1994;
Hunter 1997; Loftus 1996; Schmidt 1996).
However, as in the case of significance tests,
confidence intervals will typically be inaccurate
when based on FE formulas for the standard error
of the mean effect size. Because it omits the effects
of variation in study population effect sizes (see
Appendix A), the FE standard error of the mean
underestimates the actual standard error, resulting
in confidence intervals that are erroneously
narrow. The result is overestimation of the
precision of meta-analysis findings. This problem
is not hypothetical; it occurs with some frequency
in the meta-analysis research literature.5

This problem is illustrated in Table 2. This
table applies to the situation in which the mean
population correlation is zero (i.e., �� = 0).
(Results are more extreme when �� departs from
zero in either direction.) Panel A of Table 2
illustrates the underestimation of the standard
error of the mean correlation (or standard error
of the mean d value) by FE formulas for
heterogeneous study domains. This panel

presents the ratio of the FE standard error to
the actual standard error (� 100) for varying
values of SD� and study sample size.

When SD� � 0 (that is, when the study
domain is homogeneous), the FE standard error
is 100% of the actual standard error; that is, there
is no underestimation of the standard error.
However, as SD� becomes larger, the FE formula
increasingly underestimates the actual standard
error. For example, when studies each have N =
100, the estimated standard error is only 89% as
large as the actual standard error when SD� �
.05. As SD� increases beyond .05, under-
estimation becomes more severe: 69%, 43%,
31%, 23%, and 19%. That is, as study
heterogeneity becomes greater, the FE SE
formula, which assumes no heterogeneity exists,
produces increasingly inaccurate estimates of the
of the mean effect size.

Likewise, holding SD� constant, the FE esti-
mates become increasingly inaccurate as study
sample size increases. For example, consider the
column SD� � .10. As study Ns increase from
25 to 1600, the FE�r estimate declines from 89%
of the actual value to only 23% of the actual
value. As N becomes increasingly large, primary
sampling error becomes progressively smaller,
and the effect of heterogeneity of the study
domain (SD�) becomes increasingly more
important.

Panel B of Table 2 shows the effect of this
underestimation of the on confidence intervals
placed around the mean effect size. In meta-
analysis, as in other applications, construction of
confidence intervals is one of the most important
uses of the SE of the mean. Probably the most
commonly used confidence interval (CI) is the
95% CI. Panel B of Table 2 shows the actual
confidence levels of CIs that are obtained with FE
methods when the nominal CI is the 95% CI. First,
note that when SD� � 0 (i.e., in the homogeneous
case), the nominal and actual CIs are the same.
That is, a researcher intending to compute the
95% CI will, in fact, obtain a 95% CI.

However, as discussed earlier, homogeneity is
rare and may be essentially nonexistent. If the
studies are heterogeneous, the computed
ostensible 95% CI will in fact have a lower
confidence level. That is, the computed CI will be
too narrow. For example, if studies each have N
= 100 and SD� � .10, then the computed CI ±
believed by the researcher to be the 95% CI ± will
in fact be the 83% CI. That is, the meta-analyst
will report that one can be 95% confident that the
interval contains the actual (population) mean
value ± when, in fact, one can only be 83%
confident of this. As study Ns become larger, the
CIs become even less accurate: 60% and 35% here.

Likewise, as SD� becomes larger the com-
puted CI becomes increasingly inaccurate for a
given sample size. For example, holding study
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Ns constant at N = 100, the computed nominal
95% CI is the 92% CI when SD� � .05, the 83%
CI when SD� � .10, on to the 52% CI when
SD� � .25. In all cases, these confidence
intervals would be falsely interpreted as 95%
confidence intervals, exaggerating the precision
of our cumulative knowledge base.
Hence, when FE methods are used, confidence

intervals, like significance tests, can be quite
inaccurate when the studies in the meta-analysis
are heterogeneous even to a small or moderate
degree. As noted by the National Research
Council (1992), some degree of heterogeneity of
studies in meta-analysis is probably nearly
universal. Many published meta-analyses
employ FE methods to compute confidence
intervals around mean effect sizes, as noted
earlier. These CIs are almost certainly too
narrow and almost certainly overestimate the
precision of the meta-analysis findings (National
Research Council 1992). On the other hand, CIs
based on RE formulas do not have this problem
and are accurate.

Comment on Number of Studies in the Domain

Our analysis has not mentioned of the number of
studies included in the meta-analysis. Since the
total amount of data in a meta-analysis is

proportional to the number of studies, one
might think that the fixed effect formula would
work better for a meta-analysis conducted on a
large number of studies than for a meta-analysis
on a small number of studies. However, this is
not the case. The size of the inconsistency in the
fixed effect formula is the same regardless of the
number of studies in the meta-analysis.
The reason for this stems from the

fundamental problem with the FE formula: the
underestimation of the sampling error in the
mean sample correlation (see Appendix A).
The actual sampling variance for �r is:

Ve�r � Vr=K � �V� � Ve�=K
But the FE estimate of this sampling variance is:

Ve�r � Ve=K � �0� Ve�=K
where K is the number of studies; V� is the
variance of population correlations; and Ve is the
average sampling error variance within studies
(see Appendix A).
To illustrate the extent of this under-

estimation, one can look at the ratio of the FE
sampling error variance estimate to the actual
sampling error variance:

Table 2: Under-estimation of standard error of the mean (SE�r) and of confidence interval widths by fixed effects
models

Panel A. Under-statement of standard error of �r (SE�r) by the FE model when �� � 0

Study Homogeneous Heterogenous cases (SD� > 0�
Sample Case SD�

Sizes (SD� � 0) .05 .10 .15 .20 .25

25 100 .97 .89 .79 .70 .62
100 100 .89 .69 .54 .43 .36
400 100 .69 .43 .31 .23 .19

1600 100 .43 .23 .16 .12 .10
. . .
1 100 0 0 0 0 0

Panel B. Actual confidence levels of CIs for nominal FE 95% confidence interval when �� � 0

Study Homogeneous Heterogenous cases (SD� > 0�
Sample Case SD�

Sizes (SD� � 0) .05 .10 .15 .20 .25

25 95 .94 .92 .88 .83 .77
100 95 .92 .83 .71 .61 .52
400 95 .83 .60 .45 .35 .29
1600 95 .60 .35 .24 .18 .15
. . .
1 95 0 0 0 0 0

Notes: FE = Fixed Effects. Values shown are FE SE�r as a percentage of actual SE�r.
SD�= the standard deviation of population correlations across the studies included in the meta-analysis.
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Fixed effects estimate

Actual variance
�

Ve

K
V� � Ve

K

� Ve

V� � Ve

Note that in this ratio the constant K (the number
of studies) cancels out. That is, the ratio is the
same for any number of studies in the domain.

Assessment of Potential Moderator
Variables

Effect on Significance Tests for Moderators

In addition to significance tests (and confidence
intervals) for mean effect sizes, meta-analyses
often report significance tests for hypothesized
moderator variables. Often, for example, the full
set of studies is broken out into subsets based on
an hypothesized moderator variable and tests are
run to determine whether these subset means are
significantly different from each other. For
example, one subset may be based on high
school students and the other on college
students. Within each subset of studies, the
study population values ��s and �s� can be
either homogeneous (identical in value) or
heterogeneous (differing in value).
Table 3 shows the actual Type I error rate for

the RE and FE formulas for a variety of research
domains. The methods used to compute Table 3
are presented in Appendix C. Again, the average
study sample size in a research domain is varied
from 25 to 1600, as noted in the first column of
Table 3. The homogeneous domain �SD� � 0� is
illustrated in the second column of Panel B in
Table 3. For the remaining columns, the domain

is successively more and more heterogeneous;
with SD� varying from .05 to .25, the same
range of values examined in Tables 1 and 2. The
mean population correlation for the domain is
assumed to be �� � .20.

The general pattern of findings in Table 3 is
identical to the pattern for Table 1. The FE
formula is slightly more inaccurate for the
moderator test than for the general test.
However, this is merely because the mean
correlation for the domain is �� =.20 instead
of �� =.00. For higher values of the mean
correlation, the FE model shows even larger
Type I error rates than those in Table 3. This is
because as the mean correlation becomes larger,
the primary sampling error becomes smaller (i.e.,
larger correlations have less sampling error).
Underestimation of the standard error by the FE
model is greater the smaller sampling error
variance is relative to the variance of population
correlations. This is the same pattern observed in
Table 2.

As shown in Panel A in Table 3, the Type I
error rate for the RE formula is always 5%; the
requirement for a conventional significance test
at �= .05. Panel B shows the error rates for the
FE formula for the moderator significance test. If
the domain is homogeneous, the fixed effect
formula has a 5% error rate for all sample sizes.
As noted earlier, the term homogeneous here
refers to the study population parameter cor-
relations across studies within each of the two
moderator categories (e.g., the studies conducted
on males vs. those conducted on females).

In general, homogeneity of population cor-
relations within hypothesized moderator groups
will occur rarely, if ever, in real data.

Note: RE = Random Effects; FE = Fixed Effects. SD� = The standard deviation of population correlations
across the studies within each of the two moderator categories. �� = .20 in each moderator category. Hence,
��1 ÿ ��2 � 0, and the Null Hypothesis holds.

Panel A. The RE significance test

Prob {Type I error} = 5% in all cases

Panel B. The FE significance test

Study Homogeneous Heterogenous cases (SD� > 0�
Sample Case SD�
Sizes (SD� � 0) .05 .10 .15 .20 .25

25 .05 .06 .08 .12 .17 .23
100 .05 .08 .17 .29 .39 .48
400 .05 .17 .40 .55 .65 .71

1600 .05 .40 .65 .76 .82 .85
. . .
1 .05 1.00 1.00 1.00 1.00 1.00

Table 3: Type I error rates for the random effects and fixed effects significance test for moderators in meta-
analysis (nominal alpha = .05)

282 INTERNATIONAL JOURNAL OF SELECTION AND ASSESSMENT

Volume 8 Number 4 December 2000 ß Blackwell Publishers Ltd 2000



Homogeneity of study population correlations
within sub-grouped study sets requires three
conditions for its occurrence. First, there must be
only one substantive moderator. (If there is more
than one moderator, then the subsets of studies
logically must be internally heterogeneous.)
Second, the researcher must correctly hypo-
thesize and test for this moderator and not for
some other potential moderator. Third, there
must be no heterogeneity of study population
correlations stemming from differences between
studies in amount of measurement error in
measures used, in range variation, in dichoto-
mization of measures, or in other methodological
factors that affect study population correlations
(Osburn and Callender 1988). Thus homo-
geneity of study population correlations within
moderator sub-grouped study sets is unlikely to
occur with any frequency.
All columns for the heterogeneous domains in

Table 3 show error rates higher than 5%. The
inconsistency of the fixed effect formula
becomes larger as the extent of heterogeneity
increases within the hypothesized moderator
categories and as the average study sample size
in the domain of studies increases. When the
average study sample size is N = 25, primary
sampling error is large relative to the variance of
population effect sizes. For SD� = .05, the error
rate is only 6%. However, for SD� = .10, the
error rate climbs to 8% (60% larger than the 5%
nominal rate). As the heterogeneity climbs to
SD� = .25, the Type I error rate climbs to 23%.
When the studies in the meta-analysis each

have sample size of 100, the primary sampling
error is large, but not so large that it overwhelms
the variance of population effects within
moderator categories. Even for a very small
SD� = .05, the error rate is 8%. For SD� = .10,
the error rate climbs to 17% (more than three
times as large as the 5% nominal rate). As the
heterogeneity climbs to SD� = .25, the Type I
error rate climbs to 48%.
Again, the third and fourth rows of Table 3

represent study domains for survey research;
sample sizes range from N= 400 to N = 1600.
As was the case in Table 1 and 2, the fixed effect
formula is less accurate for large sample study
domains than for small sample study domains.
Consider the row for N = 400. Even for a small
SD� = .05, the error rate is 17%. For SD� =
.10, the error rate climbs to 40%. As the
heterogeneity climbs to SD� = .25, the error
rate climbs to 71%. If the average sample size in
a domain is as high as N = 400, then the Type I
error rate for the FE formula in a heterogeneous
domain is always more than three times as high
as the 5% required for a conventional
significance test. For average study sample sizes
larger than N = 400, the FE formula becomes
very extreme. With study sample sizes of 1600,

instead of a 5% error rate, the Type I error rate
climbs from 40% to 85% as study domain
heterogeneity increases. As the average sample
size becomes infinite, the Type I error rate for
the FE formula climbs to 100%.
The practical implication of the findings in

Table 3 is that the current widespread use of FE
tests may be resulting in the `detection' of many
moderator variables that do not in fact exist.
Acceptance of non-existent moderators (inter-
actions) as real leads (among other things) to the
belief that the psychological phenomena studied
are more complex than they in fact are. This
results in misunderstanding of the meaning of
research literatures and therefore retards the
development of cumulative scientific knowledge.
Hence this is a potentially serious problem. (Our
discussion of the findings in Table 3 makes no
mention of the number of studies contained in
the meta-analysis. The reason is the same for the
moderator test as for the test applied to mean
effect sizes: The term K (the number of studies)
cancels out in the ratio that measures the
underestimation of the sampling error standard
deviation by the FE model, as noted earlier.)

Effect on Confidence Intervals for Moderators

Although they are used less frequently than
significance tests in the moderator literature,
confidence intervals can be employed in
examining moderator variables. In meta-analysis,
the relevant confidence interval is the interval
around the difference between the mean effect
sizes in the moderator sub-groups. For example,
we can determine the difference between the
mean correlation for men and the mean
correlation for women; we can then place a
confidence interval around this difference to
determine the precision of this estimate. In
heterogeneous domains, all such confidence
intervals computed using FE formulas will be
erroneously narrow, just as they are when placed
around mean effect sizes. That is, FE confidence
intervals for moderator variables overstate the
precision of the estimate of the difference
between the sub-group mean d or mean r values.
That is, they will overestimate the accuracy of
the moderator findings. Hence, the inaccuracy
problems associated with FE analyses of
moderator variables cannot be avoided by
employing confidence intervals in place of
significance tests. On the other hand, confidence
intervals based on the RE model do not have this
deficiency and are accurate.

Conclusion

Two significance tests are frequently applied to
mean correlations and mean d-values in meta-
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analysis: a test of the significance of the overall
mean effect size in a study domain and a
moderator test comparing means across subsets
of studies. The traditional RE significance tests
for these purposes were derived for meta-
analysis from the directly comparable tests in
elementary statistics; i.e., the t test and the F test
for comparing means. Hedges and Olkin (1985)
and Rosenthal and Rubin (1982a,b) have also
presented significance tests that derive from the
FE meta-analysis model. This article has shown
that in virtually all study domains the FE tests
are not conventional significance tests. In a
conventional significance test, the Type I error
rate equals the nominal alpha level. The FE tests
meet this requirement only if they are used in a
homogeneous study domain. If the study
domain is heterogeneous, as virtually all study
domains are, then the error rate for the FE
formulas is higher than 5%. This study is the first
to quantitatively calibrate the magnitude of the
increase in the Type I error rate and the bias in
confidence intervals for analysis of both means
and moderator variables. In both cases, these
errors are considerably larger than most
researchers have imagined them to be. They
are large enough to produce serious distortions
in research conclusions in the literature based on
meta-analyses.
We conclude that FE models and procedures

are rarely, if ever, appropriate for real data in
meta-analyses and that therefore RE models and
procedures should be used in preference to FE
models and procedures. This is the same
recommendation made by the National Research
Council (1992). Up until now, the recommend-
ations of the National Research Council Report
have apparently had little effect on actual
practice. We hope that the findings of this
research will help to change that.

Appendix A: Methods and Concepts
Underlying Table 1

The Homogeneous Domain

For a homogeneous domain, the population
effect size is uniform across studies and observed
study outcomes (rs or ds) differ only because of
ordinary sampling error, which we will label
primary sampling error. Consider the correlation
as a measure of effect size. Let ri � the sample
correlation for study i; �i � the population
correlation for study i; ei � the sampling error
for study i. In general, ri � �i � ei , but in the
homogeneous domain, SD� � 0 and �1 � �2 �
�3 � . . . � �, so ri � �� ei.
For a homogeneous domain, the average

population effect size is the same as `the'
population effect size because there is only one
effect size �. Thus to estimate the mean

population effect size is to estimate `the'
population effect size.

The mean correlation across studies. Given the
sample correlations from K studies, the average
sample correlation across studies is related to the
average population correlation by the following
formula:

�r � ����e � ���e

Thus the sampling error in the average cor-
relation is the average sampling error. This
average sampling error is minimized if the
average used is a frequency (sample size)
weighted average of the study effect sizes. If a
frequency weighted average is used, then the
sampling error in �r in a homogeneous domain of
studies is V�e � Ve=K, where Ve is the sample size
weighted average sampling error for the K
individual studies. The critical ratio significance
test is Z � �r=SD�e (two tailed test 5% comparison
value: Z � 1:96 (where SD�e �

����
V
p

�e). For
homogeneous domains, this critical ratio formula
is both the RE formula and the FE formula. If the
null hypothesis is correct, this formula will
falsely register as significant only 5% of the time
at alpha = .05.

The Heterogeneous Domain

In the heterogeneous domain, the study
population correlations vary from study to
study; i.e., V� > 0. For example, Barrick and
Mount (1991) found in a large meta-analysis that
for the personality trait of Openness to
Experience, the distribution of population
correlations with job performance has a mean
of .04 and a standard deviation of .16; i.e.,
V� � :162 � :0256. This variance is not due to
sampling error and does not depend on sample
size in the studies. It is an estimate of variability
in the actual underlying study population values
of �i. This variability exists even if N were
infinite in every study.

For any study conducted in this domain, with
probability .68, the population correlation for
that study would fall in the range between ÿ:12
and �.20. With probability .16, the study
population correlation could be lower than
ÿ:12, and with probability .16, the study
population correlation could be higher than
�.20. Consider the values of the population
correlation (not the observed correlation) in the
first 4 studies conducted in this domain. Each
study population correlation will differ randomly
from the domain average of .04. Thus the mean
study population average for the meta-analysis
of those 4 studies would differ from the domain
average of .04. The variance of the average is the
variance of a single study value divided by the
number of studies. In each study V� � :0256
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and SD� � :16. For the average of 4 studies
V�� � V�=4 and SD�� � SD�=2. In this case,
V�� � :0064 and SD� � :08. That is, the average
population value (not the observed value) across
the first four studies will vary with a mean of .04
and a standard deviation of .08. This means that
with probability .68, the mean population
correlation will be between ÿ.04 and �.12.
However, with probability .16, the mean
population correlation for those four studies
could be smaller than ÿ.04, and with probability
.16, the mean population correlation for those
four studies could be larger than �.12.
Unless the number of studies is extremely

large, the average population effect size in a
meta-analysis is subject to random variation
because of the variation in population effect sizes
in that study domain. This variation is not due to
primary sampling error; it occurs even if every
study in the meta-analysis has an infinite sample
size. This variation must be considered and
included when computing either confidence
intervals or a significance test for the mean
population correlation (Becker 1996; Osburn and
Callender 1992; Schmidt, Hunter and Raju 1988).
Let the domain mean population correlation

be symbolized ��. Then the mean for K studies is
M� � �� � e0, where e0 is a sampling error with
SDe � SD�=

����
K
p

.
We now consider real studies with finite

sample sizes. That is, we now introduce primary
sampling error. We then compute the sampling
error in the mean observed (sample) study
correlation as an estimate of the domain mean
population correlation.
For each study i, ri � �i � ei, where ei is the

primary sampling error. Averaging across
studies, �r � ����e � �� � e0 � �� � �e0 ��e�.
Sampling error in the heterogeneous case can
now be seen to have two components: e0 and �e.
The variance of sampling error also has two
components: Ve0 � V�e.
The difference between the fixed effect

formulas and the RE formulas can now be simply
stated: the FE formulas do not include the error
component e0. The fixed effect formula has only
the component V�e and does not have the
component Ve0 . That is, the FE formula assumes
that is zero. This assumption is met for the
homogeneous domain but not met for the
heterogeneous domain.
Thus the FE model is a special case of the

more general RE model (National Research
Council 1992: 139). The special case represented
by the FE model is the case in which it is known
a priori that the study population parameters do
not vary from study to study. Hence the
National Research Council Report states that
the FE model should be used only if one has
`significant prior information' that study
population parameters are constant across

studies (ibid: 143 and 147). Otherwise, one
should use the more general RE model `to reduce
the likelihood of overstating precision' of
findings (ibid: 143). However, it is rare that
one has such prior information. Because its
statistical power is frequently low, the chi-square
based test of homogeneity cannot be relied on to
make this determination. The National Research
Council report states that the major reason for
preferring RE models is the low statistical power
of homogeneity tests (ibid: 52).
Suppose that the null hypothesis in our

example is true and the mean correlation
between Openness to Experience and job
performance is not .04 but .00. With this
assumption, we can now examine Type I bias
in the FE model. The standard deviation is still
assumed to be .16. The critical region for the
significance test is determined by the 95% two-
sided probability interval for the average sample
correlation. The null hypothesis for openness is
�� � 0. For any study i, primary sampling error
is then Vei � 1=�Ni ÿ 1�. Let Ve be the average
of these values across studies. Sampling error
variance for the mean sample correlation is then:

RE formula: V � Ve0 � V�e � :162=K � Ve=K

FE formula: V � Ve0 � Ve=K

For example, let K � 4 and let all Ni � 65:

V� � :162 � 0:256 and Ve � 1=64 � 0:15625

The RE formula for the sampling error variance
of the mean observed correlation then yields:

V � :0256=4� :015625=4 � :01030625
SDe�r � ��

:
p

00390625 � :1015
The FE formula for the sampling error variance
of the mean observed correlation yields:

V � :015625=4 � :00390625
SDe�r � ��

:
p

00390625 � :0625
The 95% confidence intervals ��� � 1:96�SDe�r�� 0� 1:96�SDe�r�� are then:

RE formula: ÿ :20� :20
FE formula: ÿ :12� :12

The Hedges and Olkin (1985, ch. 7) FE methods
emphasize confidence intervals over significance
tests performed on the mean effect size. As
explained in the main text, we believe this
emphasis on confidence intervals is laudable.
However, as this example shows, use of FE
standard errors of the mean to compute
confidence intervals leads to confidence intervals
that are erroneously narrow.
The fixed effect formula underestimates the
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sampling error standard deviation for the mean
sample correlation. In our example, SDe�r is .1015
but is estimated to be .0625 by the FE model. If
the FE standard error were correct, then only 5%
of sample values would be more extreme than
�.12. But in our example more than 5% of
values are outside the central region.
Consider the upper critical region; the region

that is assumed to have only a 2.5% chance of
occurring.

Prob f�� > :12g � fProb z > :12=SDe�r

� :12=:1015g
� Prob fz > 1:18g � 12%

That is, the effective critical value for this
significance test is not 1.96 but 1.18. The upper
critical region thus has a rate of 12% instead of
2.5%. As a result, the overall Type I error rate for
this test is 24% rather than 5%. The resulting
confidence interval is not the nominal expected
95% interval, but is instead the 76% confidence
interval.

Appendix B: FE Significance Tests Based
on Combined p-Values

Combined p-values: Summed z Value

Researchers using the methods presented by
Rosenthal and Rubin typically use any of a
variety of techniques to test the mean correlation
for significance. These techniques are from
Rosenthal's (1978) article advocating the com-
bined p value as a way of testing the global null
hypothesis for effect sizes. This appendix briefly
discusses the more important of these methods.
Rosenthal and Rubin use the `z' notation in two
different ways. When the effect size is measured
using a correlation, they use `z' for the Fisher z
transformation of the correlation. However, in
other contexts, they use `z' for the critical ratio of
a significance test. It is as a critical ratio that they
use `z' in their discussion of combined p values.
The two methods that Rosenthal (1978)

recommended as having the lowest Type II
error rates are the methods that use `summed z
values'. These methods were developed by
Mosteller and Bush (1954) from earlier work
by Stouffer, Suchman, De Vinney, Star and
Williams (1949). In both methods, each effect
size is used to generate a one-tailed significance
test. The p value for this test is then converted
to a standardized normal deviate denoted `z' and
the z values are either summed directly or used
to compute a weighted sum.
Although Rosenthal and Rubin (1982b) do

not note it, there is a direct connection between
the summed z values and the average correlation.
Consider the direct sum of z values. If the effect

size is measured by a correlation, then we need
not compute p values in order to convert that
treatment correlation to a significance test z
value. The classic z test (critical ratio) for the
correlation can be written:

z �
����������������
�N ÿ 1�

p
r

The summed z value is thus a weighted sum of
the correlations. If we use the symbol wi for the
weight to be given to the results from study I,
then:

wi �
�����������������
�Ni ÿ 1�

p
The summed z value is then computed to be:

Sum zi � Sum wiri

Dividing by the sum of the weights converts this
to a weighted average:

WtAve�r� � �wiri=�wi

The significance test on the summed z value is
obtained by noting that under the global null
hypothesis, the summed z value is the sum of
independent unit normal deviates and thus has
variance K where K is the number of studies. The
critical ratio for the summed z value is thus:

CR � Sumzi=
����
K
p

Exactly this same test is easily computed for the
weighted average correlation using:

CR � �WtAve�r�;
where � � ��wi�=

����
K
p

.
In summary, the simplest method of combining p
values is to compute the sum of z values for each
study where `z' is the critical ratio normal deviate
for a one tailed significance test. This method is
identical to using a weighted average correlation
where each study is weighted by the square root
of sample size.

We can compare the summed z value to the
conventional test on the mean correlation by
asking the following questions: Does the use of
square root weighting change the basic
assumptions of the test? And, does it have
higher or lower Type II error?

The combined p value approaches all assume
the null hypothesis to be the global null
hypothesis; i.e., these methods assume that the
study population correlations are uniformly zero.
Thus the summed z test assumes a homogeneous
domain and has a Type I error rate of 5% only if
the domain is homogeneous ± the same problem
that exists other fixed effect formulas.

Even if the study domain is homogeneous,
this combined p value test has less than optimal
statistical power to detect a nonzero population.
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Consider the hypothesis that the study domain
is homogeneous but the domain correlation is
not zero. Against this hypothesis, the ideal
weight for each correlation is not the square root
of sample size but rather the sample size itself
(for simplicity, we ignore the use of N rather
than N ÿ 1). Thus the summed z test will have
lower power than the usual test of the
significance of the frequency weighted mean r.
The worst possible case occurs when there is one
large sample study and many small sample
studies. For example, if we have 16 studies with
sample size 26 and one study with sample size
401, then the standard error for the square root
weighted average will be 51% larger than the
standard error for the ordinary sample size
weighted average and the summed z test will
have its lowest power relative to test on the
frequency weighted mean r.
We know of no situation where the square

root weights would be equal to or superior to
the simple sample size weights in terms of
sampling error. When evaluated for power, the
sum of z values appears to be an inferior
significance test under all conditions.

Combined p-values: Weighted Sum of z Values

Rosenthal (1978) also noted that Mosteller and
Bush (1954) suggested that the simple sum of z
values could be replaced by a weighted sum of z
values. In particular, they recommended the use
of a frequency weighted z value. That is, they
recommended:

Weighted sum of z � �wizi;where wi � Ni

This weighed sum is also the numerator for a
weighted average correlation. Consider the
weights:

wi � Ni

�����������������
�Ni ÿ 1�

p
which differs only trivially from

wi � N1:5
i

Weighted sum of z � �wiri

The corresponding weighted average correlation
is thus obtained by dividing the weighted sum of
z by the sum of the weights for the correlations:

WtAve�r� � �wiri=�wi

The significance test for the weighted sum of z is
obtained by dividing by its standard error.
Assuming the global null hypothesis, the
sampling error variance is:

SEV of Weighted sum of z � �N2
i

Exactly that same significance test is run by
dividing the weighted average correlation by its
standard error. The sampling error variance of
the weighted average r is:

SEV of Weighted sum of r � �N2
i =��wi�2

Note that this technique also assumes the global
null hypothesis. Thus it assumes not only that
the mean population correlation is zero, but also
that the domain is homogeneous. If the mean
correlation is zero but the domain is not
homogeneous, then this technique will not have
an alpha of 5% but will have a larger Type I error
rate. Hence it has the problems discussed in the
text of this article for FE models.
The Type II error rate of the weighted sum of

z will also be larger than the Type II error rate of
the ordinary weighted average correlation. The
optimal weight for the homogeneous domain is
the sample size itself, not the 1.5th power of the
sample size. While the simple sum of z gives too
little weight to large studies, the weighted sum
of z gives too much weight to large studies. As
in the story of Goldilocks and the three bears, it
is the medium weights of the conventional
frequency weighting that are `just right'.
Others have also discussed problems with

combined p-value statistics. Perhaps the most
comprehensive treatments are Becker (1987) and
National Research Council (1992: 174±80). As a
result of these problems, the National Research
Council (ibid: 182) recommended that the use of
combined p-value methods in meta-analysis `be
discontinued'. A scanning of the literature does
in fact suggest that there has been a decline in
the use of these methods in meta-analysis.

Appendix C: Methods and Concepts
Underlying Table 3

The Homogeneous Domain

The FE formula has the appropriate Type I error
rate if the overall domain is homogeneous; the
Type I error rate will be the 5% required for a
conventional � � :05 significance test.
The null hypothesis for a moderator variable

significance test is that the potential moderator is
in fact not a moderator variable. That is, the null
hypothesis is that the mean effect sizes do not
differ from one another across the domain of
studies. Is this assumption of homogeneity
reasonable?

If a domain is homogeneous, there can be no
true moderator variables for that domain. Every
potential or hypothesized moderator is in fact not
a moderator variable. The null hypothesis would
be true for every potential moderator variable.
But if a meta-analyst knows that the domain is
homogeneous, he or she would not consider
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testing for moderator variables for that domain.
This is consistent with the actual practice of many
meta-analysts. Many meta-analysts conduct a chi
square test for homogeneity on the complete set
of studies. If that test is not significant, they
conclude that the domain is homogeneous and do
not test further for potential moderator variables.
Only if the test is significant do they present
analyses for potential moderator variables. That
is, in current practice, most meta-analysts do not
test a potential moderator hypotheses unless they
have evidence from the homogeneity test that the
domain is not homogeneous. That is, many meta-
analysts who use the FE formula to test their
moderator hypotheses already have evidence
indicating that the domain is heterogeneous. If
the FE formula is inappropriate for the
heterogeneous domain, then it is inappropriate
in virtually all current applications of that formula
to the analysis of hypothesized moderators. We
show that this is, in fact, the case.

The Heterogeneous Domain

If a study domain is heterogeneous, then study
population correlations vary across the domain
and there must be some explanation for the
variation. Suppose that there is a true moderator
variable and it is binary in nature. That is, �i
assumes only two values. What is the Type I
error rate for the FE model? If the null hypothesis
is true, then ��1 � ��2 for any false moderator.
The FE significance test for ��1 � ��2 assumes
that SD�1 � SD�2 � 0 That is, it assumes there
is no variation in study population parameters
within the two moderator study subsets. If this
condition is not met, the FE test has an elevated
Type I error rate. Whenever there is a real
moderator within the study subsets, it will cause
SD�1 and SD�2 to be greater than zero, creating
a Type I bias in the FE test.
Because this point is important, we illustrate it

with an extended (hypothetical) example. As
noted in an example in the main text, there is
considerable variation in the population
correlation between Openness to Experience
and job performance; i.e., a standard deviation of
SD� � :16 (Barrick and Mount 1991). Suppose
that this variation is explained by some binary
variable. For example, suppose that in autocratic
organizations, inquisitiveness is regarded as
questioning of authority and that high Openness
workers are therefore regarded as `attitude
problems' and thus receive lower performance
ratings. On the other hand, assume that in
democratic organizations, inquisitiveness is
positively regarded and encouraged. High
Openness workers are regarded as `showing
initiative' and thus receive higher performance
ratings. This means that openness will have a
positive correlation with performance ratings in

a democratic organization but will have a nega-
tive correlation in an autocratic organization.

Consider a hypothetical example that matches
the findings for the population correlation
between Openness to Experience and job
performance: �� � :04 and SD� � :16. Assume
for convenience that there is a 50±50 split
between autocratic and democratic organi-
zations. Now suppose that in autocratic
organizations � � ÿ:12 and in democratic
organizations � � �:20. Hence we have a
binary moderator variable.

The null hypothesis for the moderator
significance test is that we are studying some
potential moderator variable that is not in fact a
true moderator. In our binary example, the null
hypothesis assumes that if the studies are broken
out into two groups based on the moderator
hypothesis, the mean correlation will be the
same in both groups. Let us consider a false
moderator (i.e., one for which ��1 � ��2).
Because any potential moderator variable that
is correlated with organization climate will be
spuriously correlated with study outcome, a false
moderator variable must be uncorrelated with
the true moderator. So to illustrate the null
hypothesis we need a potential moderator
variable that is uncorrelated with organization
climate. Let that potential moderator variable be
sex of the employee. Some theorists might
hypothesize that inquisitive questioning will be
encouraged from men but discouraged from
women (i.e., men are allowed autonomy while
women are expected to be compliant). Thus a
meta-analyst faced with the finding that this
study domain is heterogeneous �S2� > 0� might
predict that sex of worker will be a moderator
variable for this domain. For purpose of our
example, we assume that this hypothesis is false.

Suppose then that the reviewer locates a
subset of studies in which the workers were all
women and another subset of similar size in
which the workers were all men. The reviewer
predicts that sex will be a moderator variable
and expects to find a positive correlation in the
studies on male workers and a negative
correlation in the studies on female workers. If
the null hypothesis is true, then sex of worker is
not a moderator variable, and the mean
correlation will be the same in each sub-domain
���1 � ��2�.

Assume then that half the studies with women
workers were conducted in autocratic organ-
izations while the other half were conducted in
democratic organizations. Assume the same for
studies with men workers. Then in each sub-
domain, we have

Male workers: � �:04; SD� � :16
Female workers: � �:04; SD� � :16

288 INTERNATIONAL JOURNAL OF SELECTION AND ASSESSMENT

Volume 8 Number 4 December 2000 ß Blackwell Publishers Ltd 2000



We have a false potential moderator that meets
the assumptions for the null hypothesis of the
moderator significance test. Within the two sub-
groups, �� and SD� � :16, the same values as in
the total group of studies.
Up to this point, this analysis is at the level of

study population parameters (�s). That is, we
have assumed that each study had an infinite
sample size. We now introduce primary
sampling error. For simplicity, assume that the
average sample size for studies with women is
the same as the average sample size for men.
Suppose that in both cases, the average sample
size is N = 68. Then in every study conducted
in autocratic organizations, �� � ÿ:12 and
SDe � 1ÿ �ÿ:12�2= �����

67
p � :1204. Likewise, in

every study conducted in democratic organ-
izations, �rho � :20 and SDe � :1173. Across all
studies, �r � �ÿ:12� :20�=2 � �:04 and:

Vr � V� � Ave(Ve)

� :162 � �:12042 � :11732�=2
� :0256� :0141277 � :0397277

SEr � :1993
Consider now the meta-analysis moderator
analysis for sex of worker. If there were a large
number of studies in both sub-domains, then the
preliminary findings would be the same for both
subsets of studies: for men, the mean sample
correlation would be �.04 with a standard
deviation of .1993 and for women, the mean
sample correlation would be �.04 with a
standard deviation of .1993. This is the null
hypothesis for the moderator significance test.
In fact, the number of studies done in this

domain will probably be modest. The mean
sample correlation for men will differ randomly
from �.04. The mean sample correlation for
women will differ randomly from �.04. Since
these means are from independent samples, the
two deviations will be independent of each
other. As a result, the two deviations will be
different (if computed without rounding) and
thus the two observed means will be different.
This difference will be due to sampling error and
will fall within the range dictated by statistical
theory.
We now have a set of observed correlations

(studies) with mean �.04 and standard deviation
.1993. If we randomly select K such studies and
compute the mean of those K studies, then the
sampling variance of that mean will be:

Vm � Vr=K � :0397=K
Thus we have the statistical basis for predicting
the outcome of the meta-analysis:

K studies with women workers:

�rw � �:04� sampling error � :04� sew

Vsew � :0397=K
K studies with men workers:

�rw � �:04� sampling error � :04� sem

Vsem � :0397=K
Difference between means:

�rm ÿ�rw � :00� sem ÿ sew

Vse � Var�sem� � Var�sew�
� �:0397=K� � �:0397=K�
� 2�:0397=K� � :0794=K

The RE significance test is then:

z � ��rm ÿ�rw�=V 1
2
se � ��rm ÿ�rw�=SDse

z � ��rm ÿ�rw�=
��������������������
�:0794=K�

p
For the FE model formula:

Ve � variance due to primary sampling error

� �1ÿ �2�2=�N ÿ 1� � �1ÿ :042�2=67
� :014878

SDe � :1220
� Vem=K � Vew=K

� 2Ve � 2�:01478=K�
� :02956=K

The FE significance test is then:

z � ��rm ÿ�rw�=
����������������������
�:02956=K�

p
The two significance tests differ in their

estimate of the standard error in the mean
correlation for each sub-set of studies. The FE
formula erroneously assumes that the standard
deviation of sample correlations in each group is
.1220 when it is in fact .1993. That is, the FE
formula underestimates the standard error by a
factor of .1220/.1993 � .61, i.e., by 39%. To
state this another way, the FE formula assumes a
standard deviation of .12 when the actual
standard deviation is 63% larger than .12. The
probability of the critical region is thus higher
than the 5% assumed by the advocates of the FE
significance test.
Suppose there are 25 studies in each sub-set

(i.e., a total of 50 studies for the whole meta-
analysis). The FE formula assumes that the
critical region for its statistic `z' is the usual
�.1.96 because it assumes that the standard
deviation of `z' is 1. But in reality, the standard
deviation of this `z' is actually 1.63. The

IMPLICATIONS FOR CUMULATIVE RESEARCH KNOWLEDGE 289

ß Blackwell Publishers Ltd 2000 Volume 8 Number 4 December 2000



probability of the upper critical region for the RE
formula is Pz > 1:96� � :025. For the FE
formula this probability is:

Pf`z' > 1:96� � Pfz > 1:96=1:63 � 1:20g
� :115

Thus the overall Type I error rate is 5% for the
RE formula but 23% for the FE formula. Users of
FE model assume that the error rate for their
significance test is 5% when it is in fact 23%,
nearly 5 times larger.

Notes

1 Much of the focus of this article is on the use
of significance tests in meta-analysis ± a
practice that we do not advocate (Hunter
1997; Schmidt 1996; Schmidt and Hunter
1997). However, this practice is widespread
and therefore it is important to examine its
effects, especially with respect to Type I error
rates in the FE meta-analysis models.

2 The following meta-analyses, all of which
appeared in Psychological Bulletin, the premier
general review journal in psychology, are
some recent examples: Bettencourt and Miller
(1996), Bond and Titus (1983), Burt, Zembar
and Niederehe (1995), Collins and Miller
(1994), Eagly and Carli (1981), Eagly and
Johnson (1990), Eagly, Karau and Makhijani
(1995), Eagly, Makhihani and Klonsky (1992),
Erel and Burman (1996), Feingold (1994),
Herbert and Cohen (1995), Ito, Tiffany, Miller
and Pollock (1996), Jorgensen, Johnson,
Kolodzie0, and Scheer (1996), Knight, Fabes
and Higgins (1996), Newcomb and Bagwell
(1995), Polich, Pollock, and Bloom (1994),
Symons and Johnson (1997), Van Ijzendorn
(1995), Voyer, Voyer and Bryden (1995),
Wood (1987), and Wood, Lundgren,
Ouellette, Busceme and Blackstone (1994).

3 In some of these meta-analyses, the authors
specify that confidence intervals for mean
effect sizes are first computed and presented
and only after this are tests of homogeneity
conducted (e.g., Collins and Miller 1994: 462;
Feingold 1994: 432)!

4 Erez, Bloom and Wells (1996) called for
increased use of RE models in preference to
FE models. However, they did not discuss the
most widely used FE methods, those of
Hedges and Olkin (1985). Nor did they
discuss the FE methods of Rosenthal and
Rubin (Rosenthal 1991; Rosenthal and Rubin
1982). They also misidentified the methods in
Hunter, Schmidt and Jackson (1982), Hunter
and Schmidt (1990a), Callendar and Osburn
(1980), and Raju and Burke (1983) as FE
methods; these methods are all RE methods.

5 Examples include Bettencourt and Miller
(1996), Bond and Titus (1983), Burt, Zember
and Niederehe (1995), Collins and Miller
(1994), Eagly and Johnson (1990), Eagly,
Karau and Makhijani (1995), Eagly,
Makhihani and Klonsky (1992), Erel and
Burman (1996), Feingold (1994), Ito et al.
(1996), Knight, Fabes and Higgins (1996),
Newcomb and Bagwell (1995), Polich, Pollock
and Bloom (1995), Van Ijzendorn (1995),
Wood (1987), Wood et al. (1994).

References

Barrick, M.R. and Mount, M.K. (1991) The Big Five
personality dimensions and job performance: A
meta-analysis. Personnel Psychology, 44, 1±26.

Becker, B.J. (1987) Applying tests of combined
significance in meta-analysis. Psychological Bulletin,
102, 164±71.

Becker, B.J. (1988) Synthesizing standardized mean
change measures. British Journal of Mathematical
and Statistical Psychology, 41, 257±78.

Becker, B.J. (1996) The generalizability of empirical
research results. In C. P. Benbow and D. Lubinski
(eds.), Intellectual Talent: Psychological and Social
Issues. Baltimore: Johns Hopkins University Press,
363±83.

Bettencourt, B.A. and Miller, N. (1996) Gender
differences in aggression as a function of
provocation: A meta-analysis. Psychological
Bulletin, 119, 422±7.

Bond, C.F. and Titus, L.J. (1983) Social facilitation: A
meta-analysis of 241 studies. Psychological Bulletin,
94, 265±92.

Brown, S.P. (1996) A meta-analysis and review of
organizational research. Psychological Bulletin, 120,
235±55.

Burt, D. B., Zembar, M.J. and Niederehe, G. (1995)
Depression and memory impairment: A meta-
analysis of the association, it pattern, and
specificity. Psychological Bulletin, 117, 285±303.

Callender, J.C. and Osburn, H.G. (1980) Development
and test of a new model for validity
generalization. Journal of Applied Psychology, 65,
543±58.

Cohen, J. (1962) The statistical power of abnormal-
social psychological research: A review. Journal of
Abnormal and Social Psychology, 65, 145±53.

Cohen, J. (1988) Statistical Power Analysis for the
Behavioral Sciences. (2nd edn.) Hillsdale, NJ:
Erlbaum.

Cohen, J. (1992) Statistical power analysis. Current
Directions in Psychological Science, 1, 98±101.

Cohen, J. (1994) The earth is flat (p < .05). American
Psychologist, 49, 997±1003.

Collins, N.L. and Miller, L.C. (1994) Self-disclosure
and liking: A meta-analytic review. Psychological
Bulletin, 116, 457±75.

Cooper, H. (1997) Some finer points in meta-analysis.
In M. Hunt (ed.), How Science Takes Stock: The
Story of Meta-analysis. New York: Russell Sage
Foundation, pp. 169±81.

Cooper, H. and Hedges, L.V. (eds.) (1994) The

290 INTERNATIONAL JOURNAL OF SELECTION AND ASSESSMENT

Volume 8 Number 4 December 2000 ß Blackwell Publishers Ltd 2000



Handbook of Research Synthesis. New York: Russell
Sage Foundation.

Cowles, M. (1989) Statistics in Psychology: An
Historical Perspective. Hillsdale, NJ: Erlbaum.

Eagly, A.H. and Carli, L.L. (1981) Sex of researchers
and sex-typical communications as determinants
of sex differences in influenceability: A meta-
analysis of social influence studies. Psychological
Bulletin, 90, 1±20.

Eagly, A.H. and Johnson, B.T. (1990) Gender and
leadership style: A meta-analysis. Psychological
Bulletin, 108, 233±56.

Eagly, A.H., Karau, S.J. and Makhijani, M.G. (1995)
Gender and the effectiveness of leaders: A meta-
analysis. Psychological Bulletin, 117, 125±45.

Eagly, A.H., Makhijani, M.G. and Klonsky, B.G.
(1992) Gender and the evaluation of leaders: A
meta-analysis. Psychological Bulletin, 111, 3±22.

Erel, O. and Burman, B. (1996) Interrelatedness of
marital relations and parent-child relations: A
meta-analytic review. Psychological Bulletin, 118,
108±32.

Erez, A., Bloom, M.C. and Wells, M.T. (1996) Using
random rather than fixed effects models in meta-
analysis: Implications for situational specificity and
validity generalization. Personnel Psychology, 49,
275±306.

Feingold, A. (1994) Gender differences in personality:
A meta-analysis. Psychological Bulletin, 116, 429±
56.

Hedges, L.V. (1983) A random effects model for
effect sizes. Psychological Bulletin, 93, 388±95.

Hedges, L.V. (1988) The meta-analysis of test validity
studies: Some new approaches. In H. Wainer and
H. Braun (eds.), Test Validity. Hillsdale, NJ:
Erlbaum, pp. 191±212.

Hedges, L.V. (1992) Meta-analysis. Journal of
Educational Statistics, 17, 279±96.

Hedges, L.V. (1994a) Statistical considerations. In H.
Cooper and L.V. Hedges (eds.), Handbook of
Research Synthesis. New York: Russell Sage
Foundation, pp. 29±38.

Hedges, L.V. (1994b) Fixed effects models. In H.
Cooper and L.V. Hedges (eds.), Handbook of
Research Synthesis. New York: Russell Sage
Foundation, pp. 285±300.

Hedges, L.V. and Olkin, I. (1985) Statistical Methods
for Meta-analysis. Orlando, FL: Academic Press.

Hedges, L.V. and Vevea, J.L. (1998) Fixed- and
random effects models in meta-analysis.
Psychological Methods, 3, 486±504.

Herbert, T.B. and Cohen, S. (1995) Depression and
immunity: A meta-analytic review. Psychological
Bulletin, 113, 472±86.

Hunter, J.E. (1997) Needed: A ban on the significance
test. Psychological Science, 8, 3±7.

Hunter, J.E. and Schmidt, F.L. (1990a) Methods of
Meta-analysis: Correcting Error and Bias in Research
Findings. Beverly Hills, CA: Sage.

Hunter, J.E. and Schmidt, F.L. (1990b)
Dichotomization of continuous variables: The
implications for meta-analysis. Journal of Applied
Psychology, 75, 334±49.

Hunter, J.E. and Schmidt, F.L. (1996) Cumulative
research knowledge and social policy formulation:
the critical role of meta-analysis. Psychology, Public
Policy and Law, 2, 324±347.

Hunter, J.E., Schmidt, F.L. and Jackson, G.B. (1982)
Meta-analysis: Cumulating Research Finding across
Studies. Beverly Hills, CA: Sage.

Ito, Tiffany A., Miller, N. and Pollock, V.E. (1996)
Alcohol and aggression: A meta-analysis of the
moderating effects of inhibitory cues, triggering
events, and self-focused attention. Psychological
Bulletin, 120, 60±82.

Jorgensen, R.S., Johnson, B.T., Kolodziej, M.E. and
Scheer, G.E. (1996) Elevated blood pressure and
personality: A meta-analytic review. Psychological
Bulletin, 120, 293±320.

Knight, G.P., Fabes, R.A., and Higgins, D.A. (1996)
Concerns about drawing causal inferences from
meta-analyses: An example in the study of gender
differences in aggression. Psychological Bulletin,
119, 410±21.

Loftus, G.R. (1996) Psychology will be a much better
science when we change the way we analyze data.
Current Directions in Psychological Science, 5, 161±
71.

Mengersen, K.L., Tweedie, R.L. and Biggerstaff, B.
(1995) The impact of method choice on meta-
analysis. Australian Journal of Statistics, 37, 19±44.

Morris, S.B. and DeShon, R.P. (1997) Correcting
effect sizes computed from factorial analysis of
variance for use in meta-analysis. Psychological
Methods, 2, 192±9.

Mosteller, F.M. and Bush, R.R. (1954) Selected
quantitative techniques. In G. Lindzey (Ed.),
Handbook of Social Psychology: Volume I. Theory
and Method. Cambridge, MA: Addison-Wesley.

National Research Council (1992) Combining
Information: Statistical Issues and Opportunities for
Research. Washington, DC: National Academy
Press.

Newcomb, A.F. and Bagwell, C.L. (1995) Children's
friendship relations: A meta-analytic review.
Psychological Bulletin, 117, 306±47.

Osburn, H.G. and Callender, J. (1992) A note on the
sampling variance of the mean uncorrected
correlation in meta-analysis and validity
generalization. Journal of Applied Psychology, 77,
115±22.

Overton, R.C. (1998) A comparison of fixed effects
and mixed (random effects) models for meta-
analysis tests of moderator variable effects.
Psychological Methods, 3, 354±79.

Polich, J., Pollock, V.E., and Bloom, F.E. (1994) Meta-
analysis of P300 amplitude from males at risk for
alcoholism. Psychological Bulletin, 115, 55±73.

Raju, N.S. and Burke, M.J. (1983) Two procedures for
studying validity generalization. Journal of Applied
Psychology, 68, 382±95.

Raudenbush, S.W. (1994) Random effects models. In
H. Cooper and L.V. Hedges (eds.), Handbook of
Research Synthesis. New York: Russell Sage
Foundation, pp. 301±22.

Raudenbush, S.W. and Bryk, A.S. (1985) Empirical
Bayes meta-analysis. Journal of Educational
Statistics, 10, 75±98.

Rosenthal, R. (1978) Combining results of
independent studies. Psychological Bulletin, 85,
185±93.

Rosenthal, R. (1991) Meta-analytic Procedures for Social
Research. Sage.

Rosenthal, R. (1995) Writing a meta-analytic review.

IMPLICATIONS FOR CUMULATIVE RESEARCH KNOWLEDGE 291

ß Blackwell Publishers Ltd 2000 Volume 8 Number 4 December 2000



Psychological Bulletin, 118, 183±92.
Rosenthal, R. and Rubin, D.B. (1982a) Further meta-

analytic procedures for assessing cognitive gender
differences. Journal of Educational Psychology, 74,
708±12.

Rosenthal, R. and Rubin, D.B. (1982b) Comparing
effect sizes of independent studies. Psychological
Bulletin, 92, 500±4.

Rubin, D.B. (1980) Using empirical Bayes techniques
in the law school validity studies. Journal of the
American Statistical Association, 75 (372), 801±27.

Rubin, D.B. (1981) Estimation in parallel randomized
experiments. Journal of Educational Statistics, 6,
337±400.

Schmidt, F.L (1992) What do data really mean?
Research findings, meta-analysis, and cumulative
knowledge in psychology. American Psychologist,
47, 1173±81.

Schmidt, F.L. (1996) Statistical significance testing and
cumulative knowledge in psychology:
Implications for the training of researchers.
Psychological Methods, 1, 115±29.

Schmidt, F.L. and Hunter, J.E. (1997) Eight common
but false objections to the discontinuation of
statistical significance testing. In L. Harlow and S.
Muliak (eds.), What If There Were No Significance
Tests? Hillsdale, NJ: Lawrence Erlbaum.

Schmidt, F.L., Hunter, J.E. and Raju, N. S. (1988)
Validity generalization and situational specificity:
A second look at the 75% rule and the Fisher z
transformation. Journal of Applied Psychology, 73,
665±72.

Schmidt, F.L., Law, K., Hunter, J.E., Rothstein, H.R.,
Pearlman, K. and McDaniel, M. (1993)
Refinements in validity generalization methods:
Implications for the situational specificity

hypothesis. Journal of Applied Psychology, 78, 3±13.
Sedlmeier, P. and Gigerenzer, G. (1989) Do studies of

statistical power have an effect on the power of
studies? Psychological Bulletin, 105, 309±16.

Shadish, W.R., and Haddock, C.K. (1994) Combining
estimates of effects size. In H. Cooper and L.V.
Hedges (eds.), Handbook of Research Synthesis. New
York: Russell Sage Foundation, pp. 261±82.

Stoffelmeyr, B.E., Dillavou, D. and Hunter, J.E. (1983)
Premorbid functioning and recidivism in
schizophrena: A cumulative analysis. Journal of
Consulting and Clinical Psychology, 51, 338±52.

Stouffer, S.A., Suchman, E.A., DeVinney, L.C., Star,
S.A. and Williams, R.M., Jr. (1949) The American
Soldier: Adjustment During Army Life (Vol. 1).
Princeton, NJ: Princeton University Press.

Symons, C.S. and Johnson, B.T. (1997) The self-
reference effect in memory: A meta-analysis.
Psychological Bulletin, 121, 371±94.

Van Iizendorn, M.H. (1995) Adult attachment
representations, parental responsiveness, and
infant attachment: A meta-analysis on the
predictive validity of the adult attachment
interview. Psychological Bulletin, 117, 387±403.

Voyer, D., Voyer, S. and Bryden, M.P. (1995)
Magnitude of sex differences in spatial abilities:
A meta-analysis and consideration of critical
variables. Psychological Bulletin, 117, 250±70.

Wood, W. (1987) Meta-analytic review of sex
differences in group performance. Psychological
Bulletin, 102, 53±71.

Wood, W., Lundgren, S., Ouellette, J.A., Busceme, S.,
and Blackstone, T. (1994) Minority influence: A
meta-analytic review of social influence processes.
Psychological Bulletin, 115, 323±45.

292 INTERNATIONAL JOURNAL OF SELECTION AND ASSESSMENT

Volume 8 Number 4 December 2000 ß Blackwell Publishers Ltd 2000


