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ABSTRACT 

This paper is an overview of empirical options research, with primary 

emphasis on research into systematic stochastic volatility and jump risks 

relevant for pricing stock index options.  The paper reviews evidence from 

time series analysis, option prices and option price evolution regarding 

those risks, and discusses required compensation. 
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Options are derivatives, with prices and payoffs sensitive to the stochastic evolution of the underlying 

asset price.  Much of the academic interest in options originates in their potential information regarding 

the nature of that stochastic evolution.  In particular, options research has attempted to shed light on the 

following questions: 

1) What risks are of concern to investors? 

2) What compensation do investors require for bearing those risks? 

Early options research surveyed in Smith (1976) sought to determine how stock options should be 

priced to generate appropriate compensation for their content of underlying stock price risk.  A resolution 

in Black & Scholes (1973) is that option returns are Gaussian in continuous time under the assumption of 

geometric Brownian motion for the underlying stock price, yielding a CAPM-based justification of the 

Black-Scholes-Merton option pricing formula.  (The no-arbitrage foundations of the formula in Black & 

Scholes (1973) and Merton (1973) understandably received greater attention.) 

Subsequent option pricing research expanded the types of risks under consideration to include 

stochastic volatility, stochastic interest rates, and jump risk.  This research developed in parallel with – 

and at times interacting with – research into the stochastic properties of underlying asset returns.  The 

continuous-time stochastic volatility option pricing models of the 1980’s were developed at the same time 

as extensive discrete-time ARCH modeling of the conditional volatility of daily asset returns.  Multifactor 

models of stochastic volatility are similar to the component GARCH model of Engle & Lee (1999).  Jump 

risk models such as Merton (1976) were influenced by earlier research by Mandelbrot (1963) and Fama 

(1965) into non-Gaussian properties of asset returns.   

This article primarily reviews empirical research into models used to price stock index options.  

Sections 1-4 discuss estimates of systematic stochastic volatility and jump risks underlying stock market 

evolution from time series analysis, from option prices, and from how option prices evolve.  Section 5 

discusses average option returns (including the implicit pricing kernel puzzle), while Section 6 concludes 

with interpretations of those returns. 

1. Models 

The papers reviewed in this article assume the underlying asset price �� follows a low-order Markov 

process – i.e., a relatively small number K of underlying state variables �� = (���, … , �
�) fully summarize 

conditional distributions of future asset returns at any point in time.  Continuous-time models of the joint 



3 

 

stochastic evolution of ��, �� and the positive pricing kernel �� used when pricing options typically 

involve special cases of the following jump-diffusions:  

 
���� = ��(��)
� − ���� �
���� , 
���� �� + �(��)
�� + �(�� − 1) 
 � − !(��)"#�
�$ 

�%� = &'%(��)
� + �'%(��)
�'%� + [)'%
 '%� − !'%(��))̅'%�
�], , = 1, … , -  


���� = −.(��)
� + �/(��)
�/� + �(��0 − 1) 
 /� − !/(��)"#/�
�$. 
1. 

�(��) is the cost of carry on the underlying asset:  zero for futures, .(��) − 2 if the instantaneous riskless 

rate is .(��) and the asset pays a continuous dividend yield 2. (��, �'%�, �/�) are correlated Wiener 

processes, while ( �,  '%� ,  /�) are correlated (and possibly identical) Poisson counters with intensities 

{!(��), !'%(��), !'%(��)} that identify random jumps (), )'%, )/) in (ln �� , �%�, ln ��).  The jump 

components have conditional means ("#�, )̅'%�, "#/�) = 5[(�� − 1, )'%, ��0 − 1)|��].  Papers that explore 

Lévy processes use infinite- rather than finite-activity jump processes, but can still have a low-order 

Markov representation (Bates 2012). 

Options are then priced at expected discounted terminal payoff using an equivalent “risk-neutral” 

process that incorporates required ��-based compensation for the various risks: 

 
���� = �(��) 
� + �(��)
��∗ + �(��∗ − 1)
 �∗ − !∗(��)"#�∗
�$ 

�%� = &'%∗ (��)
� + �'%(��)
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2. 

where &'%∗ (��) = &'%(��) + ����(
�%�, 
��/��)/
� . The variance-covariance matrix of diffusive 

(��, ��) shocks is identical under the objective and risk-neutral measures, but jump intensities and 

distributions generally change.1  As noted in Heston (1993) and extended by various authors (including 

myself), European option pricing is substantially more tractable if the drifts, variances, covariances and 

jump intensities in Equation 2 are linear (affine) functions of the underlying state variables ��.  As 

summarized in Duffie et al. (2000), affine models imply the risk-neutral conditional characteristic function 

for future log returns ln(�9/��) is an exponentially linear function of ��, permitting European option 

evaluation by numerical Fourier inversion. 

                                                 
1 See, e.g., Bates (1991, Appendix I) or Bates (2006, pp. 944-946). 
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There is a substantial parallel literature on GARCH option pricing models, using various GARCH 

specifications to estimate underlying volatility state variables from past daily returns.  GARCH models 

are typically but not invariably low-order Markov;  univariate GARCH models such as Bollerslev’s (1986) 

GARCH(1,1) have one underlying state variable, while Engle & Lee’s (1999) component GARCH model 

has two.  “Long-memory” volatility processes studied inter alia by Ding et al. (1993) lack a low-order 

Markov representation, but LeBaron (2001) argues they can be well approximated by a three-factor 

stochastic volatility model. 

Markov processes imply option prices are of the form :(��, ��; <, =) for maturity < and strike price X.  

It is common, however, to summarize observed option prices by their implied volatilities, and by the 

implied volatility surface >?(=/��, <) across different strike prices and maturities at any point in time.  

Implied volatility is the value of diffusive volatility � for which the constant-volatility Black-Scholes-

Merton option pricing formula :@AB(��, <; =, �) matches the observed market price of options.  Implied 

volatility surfaces describe the pricing failures of that model, in the same way that yields inferred from a 

bond pricing model premised on identical discount rates for all maturities are used to describe non-flat 

term structures of bond yields.  Implied volatilities express option prices in relatively intuitive terms that 

can be compared with time series estimates of annualized conditional volatility, while controlling for other 

factors (maturity, strike price, dividends, interest rates) that render direct inspection of option prices 

uninformative.  A U-shaped (“smile”) pattern in implied volatility patterns across different strike prices 

indicates a risk-neutral distribution more leptokurtic than the lognormal, while the “smirk” pattern in stock 

index options’ implied volatilities since 1987 indicates substantial negative skewness. 

Litterman & Scheinkmann (1991) use principal components analysis to describe how the term 

structure of bond yields evolves, and conclude that three factors (level, steepness and curvature) capture 

94 – 98% of the variance of bond returns at various maturities.  Similar analysis for the evolution of two-

dimensional IV surfaces is complicated by various methodological issues; in particular, whether the 

“moneyness” of representative options at various maturities should be measured in absolute terms (e.g., 

=/�� or =/C�,9 for forward price C�,9) or in standard deviation units (e.g., ln(=/C�,9)/�D9B√<, using the 

implied volatility from an at-the-money option of maturity < = F − �).  Nevertheless, analyses of the IV 

surface of S&P 500 options indicate that two to three factors can capture almost all of the variance of IV 
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surface changes.2  The first is roughly a “level” factor:  S&P IV’s for all strike prices and maturities tend 

to rise or fall in unison (albeit not perfectly in parallel), and are negatively correlated with S&P index 

returns.  The next two factors capture variations in the tilt of the moneyness smirk and in the slope of the 

term structure of IV’s.  Such studies suggest that an appropriately specified low-order Markov 

specification in Equation 2 might indeed match observed option prices.  

2. Estimates of volatility dynamics from time series analysis 

Much of what we know about the dynamics of the conditional volatility of asset returns comes from 

the GARCH literature.  More recent numerically intensive approaches for estimating the stochastic 

volatility models more commonly used in pricing options are similar in also delivering point estimates of 

short-horizon conditional variances, or “spot variance”.  Univariate GARCH models recursively update 

spot variance estimates based on the latest daily return G�; e.g. ℎ�I� ≡ ?K.[G�I�|L�] = M(G�, ℎ�) for 

information set L� = {G�, … , G�} and a parameterized news impact curve M(G�, ℎ�).  Univariate stochastic 

volatility models use Bayes’ rule to update what is known about spot variance ?�, as summarized by its 

conditional distribution 

 P(?�|L�) = P(G�, ?�|L�Q�)
P(G�|L�Q�) = R P(G�, ?�|?�Q�)P(?�Q�|L�Q�)
?�Q�

R P(G�|?�Q�)P(?�Q�|L�Q�)
?�Q�
. 3. 

The latest return G� is used to update yesterday’s conditional distribution P(?�Q�|L�Q�) to today’s 

conditional distribution P(?�|L�).  The point estimate of spot variance is then ?S�|� = R ?�P(?�|L�)
?�. 

Both approaches are empirically driven; there is no theoretical justification for choosing one model 

over another.  The GARCH literature explores many different specifications of the news impact curve 

M(G�, ℎ�), whereas the stochastic volatility filtration in Equation 3 relies on whatever Markov specification 

in Equation 1 underlies the joint transition density P(G�, ?�|?�Q�).  GARCH and stochastic volatility 

approaches to spot volatility estimation are similar in the absence of price jumps (Nelson 1992), but can 

differ substantially if there are jumps (Bates 2006, Table 5).  GARCH models assume that conditional 

spot variance ℎ� can be accurately estimated from past data (subject to parameter uncertainty), whereas 

                                                 
2 See Skiadopolous et al. (1999) and Cont & da Fonseca (2002) for early studies, and Carr & Wu (2020) for a more recent 

study.  Andersen et al. (2015) have a principal components analysis of IV surfaces, rather than of the change in IV surfaces.  

They find the first two principal components match IV surfaces over time with TU’s of 96.4% and 98.5%, respectively.  The 

corresponding RMSE’s for IV’s are 3.38% and 2.2% – respectable fits given IV’s can range from 6% to more than 100%. 
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stochastic volatility models also have state uncertainty ?K.(?�|L�) from the filtration in Equation 3 – an 

additional source of risk that may be of concern to investors.3  There has also been extensive exploration 

of other data that might be more informative for conditional spot volatility than daily returns; e.g., daily 

high-low ranges or intradaily realized volatility.4 

2.1. GARCH-based estimates 

The starting point for the GARCH literature was the discovery of substantial autocorrelations in 

squared and absolute daily returns.  Sometimes markets are noisy, sometimes quiet; and recent behavior 

tends to persist.  Influenced by Box & Jenkins (1970) ARMA analysis, Engle (1982) models conditional 

variance as a constrained AR process, while Bollerslev (1986) and Taylor (1986) extend this to ARMA 

specifications.  Attempts to more accurately model autocorrelations in squared returns at different 

horizons led to long-memory specifications and to the multifactor component GARCH model of Engle & 

Lee (1999). 

Black (1976) and Christie (1982) observe that stock volatility shocks and equity returns tend to be 

negatively correlated – a phenomenon commonly labeled “leverage” because of a possible origin in 

operational or financial leverage by individual firms.5  Nelson (1991) models the effect using an EGARCH 

model with an asymmetric news impact curve M(G�, ℎ�), and finds the asymmetry quite pronounced for 

CRSP stock market returns over 1962-1987.  Various authors propose alternate specifications for the news 

impact curve; see Hentschel (1995) for a structure that nests many of the alternatives. 

Under the standard GARCH assumption of conditionally Gaussian log-differenced prices, the 

objective and risk-neutral GARCH processes have identical news impact curves M(G�, ℎ�) but different 

conditional means for asset returns if daily log pricing kernel shocks are also conditionally Gaussian.6 

European options can consequently be priced via Monte Carlo simulation of risk-neutral asset return 

sample paths.  The GARCH model of Heston & Nandi (2000) has a conditional characteristic function for 

future stock returns that is exponentially affine in spot variance, permitting quicker option evaluation by 

                                                 
3 Shaliastovich (2015) explores state uncertainty as a relevant state variable for equity and option markets. 
4 See Alizadeh et al. (2002) for the former, and Corsi (2009) as an example of the latter. 
5 An alternate explanation is that higher volatility induces heavier discounting of future cash flows, and therefore lowers 

stock prices and the stock market (Campbell & Hentschel 1992).  Poterba & Summers (1986) are skeptical given their 

estimates of volatility dynamics.  A third explanation in Grossman & Zhou (1996) is that leverage is an equilibrium outcome 

for market volatility from portfolio insurers selling to limit losses as the market falls. 
6 This follows from applying the discrete-time equilibrium change of measure of Rubinstein (1976) and Brennan (1979) to a 

one-day horizon.  Duan (1995) is an early example of this approach for GARCH option pricing.  



7 

 

Fourier inversion.  Christoffersen et al. (2009) extend this to a version of the multifactor component 

GARCH model of Engle & Lee (1999).  There has also been examination of non-Gaussian GARCH 

models, including implications for option pricing.  Christoffersen et al. (2004) explore inverse Gaussian 

shocks, while Bates & Craine (1999) and Maheu & McCurdy (2004) estimate GARCH-jump models that 

mimic jump-diffusions. 

Below are some stylized facts from the GARCH literature that are relevant when pricing options. 

1) Spot variance mean-reverts, with a typical half-life from univariate models estimated on daily data 

of 0.5 to 2 months. 

2) Multivariate models improve upon univariate models.  The long-run component in a component 

GARCH model is highly persistent, with a near unit root, while the short-run component typically 

has a half-life of days.   

3) GARCH models of stock market volatility exhibit leverage, for both short- and long-run volatility 

in multivariate models such as Christoffersen et al. (2009). 

4) Time-varying volatility accounts for much but not all of the unconditional leptokurtosis of daily 

asset returns.  Daily asset returns are also conditionally leptokurtic and possibly skewed. 

The first two points are relevant for modeling the term structure of at-the-money implied volatilities, 

which are downwardly biased relative to the square root of risk-neutral expected future variance.  

Symmetric GARCH models generate leptokurtic distributions and implied volatility smiles at multiday 

horizons via volatility randomization, while leverage generates skewed distributions and implied volatility 

smirks. 

GARCH options research by its nature tends to examine the option pricing implications of GARCH 

models fitted to time series data on underlying asset returns.  Babaoglu et al. (2018) conclude that volatility 

risk aversion, multifactor volatility models and fat-tailed shocks all play important roles in matching 

observed stock index option prices. 

2.2 Estimates of continuous-time stochastic volatility models 

Continuous-time models of the evolution of asset prices or of underlying fundamentals are of interest 

in finance for issues such as the optimal lifetime consumption/saving strategy, asset market equilibrium, 

and the pricing of bonds and options.  Affine models can generate closed-form solutions to these issues, 

making them a popular modeling approach.  There is substantial flexibility in affine models, but also some 
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significant constraints when pricing options.  All variances and covariances of diffusive shocks in 

Equation 2 must be linear functions of state variables.  Jump intensities must be linear in state variables, 

while jump distributions must be invariant.  Spot variance jumps cannot be negative, to preclude negative 

values.  

Estimating continuous-time stochastic volatility models on discrete-time asset return data and using 

them to pricing options typically involves two numerically intensive steps: 

1) Estimating the parameters of a postulated structure of asset price evolution (Equation 1); 

2) Using Bayesian filtration (Equation 3) to estimate current state variable values �� that are inputs 

to the option pricing formula :(��, ��; <, =).   

Melino & Turnbull (1990) estimate a stochastic volatility process for the Canadian dollar/U.S. dollar 

exchange rate via GMM, and use an extended Kalman filter to estimate current spot volatility and price 

FX options.  Chernov et al. (2003) use an EMM/SNP approach that builds upon GARCH estimation 

procedures to estimate an extensive assortment of affine and non-affine models of stock market evolution 

over 1953-99.  Eraker et al. (2003) use Bayesian Monte Carlo Markov Chain (MCMC) for the first step 

(for stock indices), while Johannes et al. (2009) use a particle filter for the second step.  I use robust 

Kalman filtration in Bates (2006, 2012, 2019) to estimate and filter affine stochastic volatility models of 

stock market evolution without and with jumps.  Christoffersen et al. (2010) use a particle filter approach 

to estimate six affine and non-affine stochastic volatility models of stock market evolution, without and 

with jumps. 

Continuous-time stochastic volatility models differ from the discrete-time GARCH approach in a 

focus on diffusive versus jump specifications – primarily for the asset price process, but increasingly for 

the evolution of underlying state variables as well.  Jumps capture outliers; but what counts as an outlier 

relative to a Gaussian benchmark depends upon the data frequency and the level of conditional volatility.  

A daily absolute movement more than 5% in the S&P 500 would normally be considered an outlier, 

occurring only 0.3% of the time over 1962-2020; but is much more likely if daily conditional volatility is 

at 3% than at its unconditional level of 1%.  Intradaily market movements of 0.5  – 2% are considered 

jumps at the five-minute frequency,7 while Barro & Ursúa (2008, 2012) define consumption disasters as 

a drop of more than 10% peak-to-trough over a two- to four-year window.   

                                                 
7 See Tauchen & Zhou (2011) for estimates of intradaily jump magnitudes.  
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Table 1 contains examples of some continuous-time stochastic volatility models without and with 

jumps that have been used to price options and/or estimated on stock market data.  Estimates on daily data 

broadly agree with GARCH estimates that stock market volatility is mean-reverting and has shocks that 

are negatively correlated with market returns.  Using a central-tendency model, Bates (2012) finds results 

similar to component GARCH:  spot variance mean-reverts to a central tendency with a half-life of a 

week, while the central tendency over 1926-2006 has a half-life of a year.  Furthermore, the central-

tendency model fits the term structure of at-the-money implied volatilities better than univariate models, 

although substantial divergences remain. 

[Table 1 about here] 

Jumps and stochastic volatility interact in complicated fashions that can affect the estimation of both.  

Estimates may also be affected by a bias towards tractability:  affine versus non-affine, as well as which 

affine models are considered.  Univariate affine models must impose time-invariant jump distributions, 

although the jump intensity can vary over time.8  Furthermore, affine stochastic volatility models have 

known conditional characteristic functions in only two cases: 

1) constant- or stochastic-intensity price jumps without volatility jumps (e.g., Bates 1996, 2000); 

2) constant-intensity price/volatility cojumps (Duffie et al. 2000). 

Stochastic-intensity price/volatility cojumps – a structure implying self-exciting volatility surges – lack a 

known conditional characteristic function.  

In Bates (2006), I find stochastic-intensity price jump models substantially outperform constant-

intensity processes for daily stock market returns, but have difficulty matching the 1987 stock market 

crash.  In Bates (2012), I explore alternate stochastic-intensity Lévy specifications, again without volatility 

jumps.  I find little difference between the various fat-tailed specifications regarding time series fit and 

implications for pricing options; and matching the 1987 crash is again an issue.  In Bates (2019) I estimate 

a stochastic-intensity price/volatility cojump model on intradaily (15-minute) and overnight returns.  The 

most general three-factor model is able to capture daily stock market movements exceeding 10% in 

magnitude in 1987 and 2008 as runs of self-exciting but small intradaily price/volatility cojumps. 

                                                 
8 Multivariate models allow distributional variation by allowing the frequency of big jumps versus small jumps to vary over 

time. 
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I suggested stock market volatility might jump in a working paper presented at the 1995 WFA 

convention, based upon implausibly large movements in ?� estimates inferred from option prices.9  Eraker 

et al. (2003) find strong evidence for constant-intensity price/volatility cojumps using MCMC methods 

on daily stock market data spanning the 1987 crash.  (The strongest evidence, of course, is the large daily 

stock market movements immediately following the crash).  Aït-Sahalia et al. (2015) and Fulop et al. 

(2015) find evidence of self-exciting price/volatility cojumps in daily stock market data. 

Affine models are tractable but may be seriously constraining parameter estimates.  Chernov et al. 

(2003) find that leptokurtosis in daily asset returns can be explained either by price jumps or by explosive 

but mean-reverting behavior in a non-affine diffusive stochastic volatility component of a multifactor 

model.  (The estimates in Bates (2019) on intradaily data support the latter explanation.)  Christoffersen 

et al. (2010) estimate six models of diffusive spot variance evolution on daily stock market data.  They 

conclude the volatility of diffusive spot variance shocks is proportional to its level, as opposed to the 

square-root restriction of affine models.  They find this conclusion is robust to adding constant-intensity 

price jumps, but do not explore volatility jumps or price/volatility cojumps as alternate models of the 

volatility of volatility. 

I view jump processes as a representation of outliers at a specific data frequency, rather than literal 

continuous-time truth.  Big stock market movements at a daily frequency are typically the aggregation of 

smaller intradaily movements.  The stock market crash on October 19, 1987 did not occur within five 

minutes, for instance; it took all day for the S&P 500 index to fall 23%.  Similarly, while daily stock 

market movements of -12.3%, -10.2% and +12.5%  on October 28-30, 1929 were dramatic precursors to 

the Great Depression, it was over the subsequent 2.7 years (through June 8, 1932) that the S&P 90 fell 

81%, accompanied by a major increase in market volatility.  Lower-frequency leverage, possibly in the 

form of self-exciting price/volatility cojumps for a more persistent volatility component, may be a better 

description of disaster risk than the stochastic-intensity rare-events approach of Gabaix (2008) and 

Wachter (2013).    

3. Risk-neutral processes inferred from option prices 

Pricing options under jumps and/or stochastic volatility benefitted greatly from Heston’s (1993) 

                                                 
9 The paper included estimates of a constant-intensity jump-diffusion with exponentially distributed jumps for the evolution 

of implicit ?� – the process subsequently expanded into a cojump model by Duffie et al. (2000).  I omitted those estimates 

from the Bates (2000) published version because a stochastic-intensity model was used to infer ?�. 
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Fourier inversion approach to pricing European options; there are many more distributions with analytical 

characteristic functions than with analytical probability density functions.  Option pricing evolved from 

models without price jumps (Black & Scholes 1973; Merton 1973) to constant-volatility models with 

constant-intensity jumps (Merton 1976; Carr et al. 2002) to stochastic-intensity jumps (Bates 2000, 2012; 

Carr et al. 2003).  While Hull & White (1987) and Scott (1987) use a non-affine diffusive log variance 

process without leverage, the affine diffusive stochastic volatility model (with leverage) of Hull & White 

(1988) and Heston (1993) was followed by diffusive stochastic volatility plus constant-intensity price 

jumps (Bates 1996) or stochastic-intensity jumps (Bates 2000).  Duffie et al. (2000) introduce a constant-

intensity cojump model in which spot variance also jumps, synchronously and in correlated fashion with 

price jumps.  Andersen et al. (2015), Carr & Wu (2017) and Bates (2019) have cojump models with a self-

exciting jump intensity.  Early models use univariate specifications of spot variance evolution; more recent 

models are multivariate. 

Because implied volatilities (IV’s) are proxies for option prices, it is useful to understand which 

distributional features generate which IV patterns.  Backus et al. (1997) use a Gram-Charlier expansion to 

approximate IV patterns at maturity < as  

 >?(
�)√< ≈ �W �1 − �-5�
3! 
� + =-ZTF

4! (
�U − 1)�, 4. 

where  

 
� = ln(C/=) + ½�WU
�W ≈ − ln = − ln C

�W  5. 

measures how far options are in- or out-of-the-money in standard deviation units.  Gram-Charlier 

approximations are not ideal – they can generate negative probability densities in the tails – but the 

approximation illustrates the broad relationship of IV patterns to the finite-horizon risk-neutral moments 

of log-differenced asset prices.  Excess kurtosis generates a U-shaped “smile” pattern whereas skewness 

tilts the pattern, creating a “smirk”.  Symmetric stochastic volatility and jumps generate excess kurtosis 

but not skewness (the basis for the skewness premium of Bates 1991, 1997), whereas leverage and 

asymmetric jumps generate skewness.  Finite-variance processes with constant diffusive volatility and 

constant-intensity jumps have skewness and excess kurtosis proportional to 1/√< and 1/< respectively, 

counterfactually predicting flatter IV patterns at longer maturities. 
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An alternate approach is in Aït-Sahalia et al. (2021a, b), who relate the properties of Taylor expansion 

representations of the IV surface >?(=/��, <|?�) conditional on diffusive spot variance ?� to the 

instantaneous risk-neutral joint evolution of the asset price and ?�.  (At-the-money implied volatilities 

converge to ]?� as < approaches zero, rather than to total spot volatility ]?� + !�∗5�∗()U) .)  Those 

properties are strongly affected by price jumps; models without jumps imply conditionally Gaussian 

returns as < approaches zero, and an instantaneously flat IV pattern. Models with finite-activity jumps are 

better represented by Taylor expansions in √< rather than in <.  The overall patterns are largely as 

discussed above (e.g., volatility smirks can arise from leverage or from asymmetric jumps), but the 

approach permits scrutiny of the relationship between the level and evolution of ?� implicit in option prices 

without imposing substantial model structure. 

Structural models generate option prices :(��, ��; <, =; ^) given asset price ��, underlying state 

variables ��, maturity <, strike price X, and parameters Θ.  While early papers such as Bates (1991) and 

Bakshi et al. (1997) estimate the parameters ^� each day essentially as a form of data description, it has 

become more common since Bates (1996) to impose constant parameters and rely on implicit state 

variables �_� to match observed option prices.  Taylor & Xu (1994) and Bates (2000) use two-factor models 

of volatility evolution to price currency and stock index options, respectively; more recent papers that 

infer state variables from option prices use three-factor models.  One criterion of success is how closely 

the models fit option prices or implied volatilities. 

Andersen et al. (2015) examine various stochastic-intensity price/volatility cojump models, using two 

alternative structures to price stock index options: 

1) Asset price jumps ) = `)a + )b, where )a is an exponentially distributed jump in diffusive spot 

variance and )b is an independent Gaussian or double-exponential shock; or 

2) Spot variance jumps )a = &�)QU + &U)UU, where )Q is the negative component of a double-

exponential asset price jump and )U is an independent exponentially distributed shock. 

The issue is constructing a negative correlation between volatility jumps and log price jumps, while 

ensuring the former is strictly positive to preclude negative volatility.  The former structure includes a 

stochastic-intensity version of the Duffie et al. (2000) cojump model; the latter is GARCH-like in going 

from asset price jumps (squared) to spot variance jumps.  The latter approach has a more aggressive 

volatility response to asset price jumps through the squared-exponential structure, and fits option prices 
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better.  The most general three-factor model achieves an overall RMSE for IV’s of 1.71%.  The authors 

note that their third “U” factor captures movements in the left tail of the risk-neutral distribution 

(especially during crises), is strongly correlated with the Hu et al.’s (2013) “noise factor” measure of 

financial stress, and is especially useful in predicting stock market returns. 

Carr & Wu (2017) model the diffusive spot variance and jump intensities underlying total asset value 

as evolving independently; the former as a diffusion, the latter as a self-exciting pure-jump process.  

Shocks to both are negatively correlated with asset price shocks.  Their model also has a third factor to 

capture equity leverage.  Implicit jump intensities were high during various crisis periods (especially 2008-

9), suggesting it is capturing the same phenomena as Andersen et al.’s U factor.  

Gruber (2015) uses the Wishart process of Bru (1991) to separate but interconnect diffusive variance 

and jump intensity factors in a matrix affine structure.  Both must of course be nonnegative, which additive 

models achieve by positively weighted sums of underlying nonnegative processes such as the square-root 

diffusion.  Wishart processes generalize additive and concatenated models by working with a matrix c� 

that is always positive definite because of the positive definite structure of its shocks.  Gruber then 

specifies diffusive spot variance in terms of the strictly positive diagonal elements of c�, while allowing 

the off-diagonal element =�U� (which can and does go negative) to influence the jump intensity.   

The above three papers agree that specifying partially independent evolution of diffusive spot variance 

and jump intensities is needed to match observed prices of stock index options.  Variation in jump 

intensities captures variation in prices of OTM put options that protect against downside risk – especially 

major put price increases observed during the 2008-9 financial crisis. 

4. Option price evolution 

Various authors use the evolution of state variables inferred from option prices to describe how option 

prices evolve, and to test for compatibility with option pricing patterns.  Taylor & Xu (1994) find the term 

structure of at-the-money implied volatilities from four PHLX currency options is broadly compatible 

with a central-tendency model describing how implied volatilities evolve.  (Their option pricing model 

postulates a unit root for the central tendency, whereas their time series estimates find persistent but 

stationary processes with near unit roots.)  Bates (1996, 2000) and Bakshi et al. (1997) focus more on the 

volatility of volatility – a key parameter along with leverage for generating volatility smiles and smirks in 

the absence of price jumps, and one that is common to the objective and risk-neutral processes in Equations 
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1 and 2.  The papers found that “vol-of-vol” implicit parameter estimates run too high relative to the 

observed volatility of implicit spot variance evolution, especially when price jumps are precluded in the 

option pricing models.  The latter two papers also present evidence of apparent jumps in volatility state 

variables inferred from index option prices. 

An alternate and roughly model-free implicit state variable from stock index options is the VIX.  

Squared VIX is proportional to the price of a portfolio of put and call options that approximately replicates 

the log contract of Neuberger (1994).  The log contract if delta-hedged approximately pays off the realized 

variance of the underlying asset, thereby making the price of the replicating portfolio a risk-neutral 

valuation of expected future realized variance (Demerfi et al. 1999).   The VIX has gained widespread 

acceptance as an options-based assessment of future stock market volatility.10  The Chicago Board Options 

Exchange has offered VIX futures since March 2004 and VIX options since February 2006, further 

motivating research into how the VIX evolves.  

Dotsis et al. (2007) explore various univariate models of VIX evolution, as well as German and Italian 

equivalents, and conclude that jump-diffusion models with both positive and negative jumps capture their 

evolution better than diffusive models.  Amengual & Xiu (2018) find the negative jumps typically coincide 

with FOMC announcements or speeches by Fed chairmen.11  The VVIX measure of VIX volatility 

constructed from VIX options is only weakly correlated with the VIX itself (Huang et al. 2019), indicating 

multivariate rather than univariate models of VIX evolution are necessary.  Amengual & Xiu (2018) fit a 

two-factor model to the S&P 500 and the term structure of variance swaps, while Bardgett et al. (2019) fit 

a three-factor model to S&P 500 index options and VIX options.  

5. Option returns 

Because we have almost a century of value-weighted U.S. stock market returns (and 136 years of the 

Dow Jones Industrial Average), we are reasonably confident that the U.S. stock market outperforms short-

term money market instruments such as Treasury bills by about 6% per annum, with a standard error of 

1.6%.  We lack comparable histories of stock option returns, which have traded on centralized exchanges 

such as the CBOE only since 1973.  Stock index and currency options began trading on U.S. exchanges 

                                                 
10 Jiang & Tian (2005) explore replication issues for the VIX, as well as its biases when forecasting realized volatility.  

Andersen et al. (2015) highlight the sensitivity of the VIX to the strike price range of the options used in its construction, and 

propose a “corridor implied volatility” alternative. 
11 Patell & Wolfson (1979) similarly find that stocks’ implicit volatilities increase up until earnings announcements and drop 

substantially thereafter. 
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in 1983 and 1984, at the CBOE and PHLX respectively.  Furthermore, the stock market crash of 1987 led 

to major new constraints in how options could be traded, making pre- and post-1987 data not comparable.  

The popular OptionMetrics data base begins in January 1996.  Options as levered investments in the 

underlying assets have high volatility and severe skewness and leptokurtosis, further complicating the 

statistical reliability of average option returns.12   

Figure 1a gives the cumulative weekly returns of unhedged American put and call options on S&P 

500 futures over 1988-2020, based on end-of-day settlement prices.    All positions are positive-beta given 

short-put and long-call positions.  The graph illustrates two stylized facts for stock index options: 

1) Selling at-the-money (ATM) or out-of-the-money (OTM) put options has greatly outperformed 

the S&P 500, with greater returns from selling deeper OTM puts. 

2) Buying ATM or OTM call options has underperformed the market. 

[Figures 1a,b about here] 

Option risk premia can be written as 

 5� �
:�:� � − .�
� = 5� �
:�:� � − 5�∗ �
:�:� � 

= ��:�
d:
d� �5� �
���� � − ��� + 1

:�
d:
d�′ [5�(
��) − 5�∗(
��)] + 1

:�
(5� − 5�∗)f:F� 

             Equity risk premium                  �� risk premia                jump risk premia 

6. 

where f:F� collects higher-order terms in the Taylor expansion of 
:(��, ��; <, =).  Diffusive risk 

contributions to f:F� are either identical or negligible under 5� and 5�∗, so the last term represents 

compensation for jump risk in �� and/or ��.   Delta-hedged option returns focus attention on the last 

two components of Equation 6:  the jump risk premia and those parts of �� risk premia that are not 

linearly attributable to equity risk.  While delta-hedged returns often use Black-Scholes-Merton (BSM) 

deltas evaluated at the option’s implied volatility, such estimates are biased when there is a volatility 

smirk (Bates 2005), and do not take into account the negative correlation between market returns and 

                                                 
12 Broadie et al. (2009) discuss these issues, using simulated put returns.  Chambers et al. (2014) dispute their results for 

unhedged put returns but concur with their results for delta-hedged put returns. 
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implied volatility changes.  Figure 1b consequently shows cumulative weekly returns from short put 

and call positions using delta-hedged returns 

 Δ:
: − hC�:

d:@AB
dC + ij ΔC

C  
7. 

 

 

where c is a correction term (the regression coefficient of BSM-based delta-hedged returns on futures 

returns) that makes hedged options returns delta-neutral (and zero-beta) over 1988-2020. 

     Figure 1b reinforces the anomalies graphed in Figure 1a.  Delta-hedged short put positions were 

reliably profitable over 1988-2017, with occasional sharp weekly losses but no sustained drawdowns until 

2018-20.  Selling puts and delta-hedging generated Sharpe ratios that were 2.8 to 3.7 times that of the 

market over 1988-2017, although poor performance thereafter (including during the pandemic) lowered 

relative performance to two to three times that of the market over 1988-2020.  Selling OTM call options 

and delta-hedging was also profitable, albeit less so – an anomaly highlighted by Coval & Shumway 

(2001) and Bakshi & Kapadia (2003).  These authors speculate that the substantial negative excess returns 

on hedged put and call positions represent required compensation for volatility risk. 

5.1 Implicit pricing kernels 

A conceptual building block for assessing option prices and returns is the butterfly spread, which can 

be created from European calls or puts such as the SPX options on the S&P 500.  Butterfly spreads 

approximate the Arrow-Debreu claims on future ��Ik outcomes discussed in Breeden & Litzenberger 

(1978).  M(=%)/Δ= units of a butterfly spread constructed from options with strike spacing Δ= replicate an 

arbitrary payoff function M(��Ik) at the point ��Ik = =%, while a portfolio of such butterfly spreads creates 

a continuous, piecewise linear replication of the payoff function over the available strike price range.  

Options with the two lowest and two highest strike prices can be added to linearly extrapolate the 

approximate payoff functions below and above the available strike price range.13     

Correspondingly, the market for European options is a market for butterfly spreads.  European put 

(call) spreads held to maturity are equally-weighted bundles of butterfly spreads below (above) the 

relevant strike price, with returns determined by the returns on those butterfly spreads.  European put and 

                                                 
13 This is not standard practice.  Andersen et al. (2015) note that the VIX replication portfolio discards all deeper out-of-the-

money calls and puts once a zero bid price is observed. 
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call options similarly represent portfolios with linearly increasing quantities of butterfly spreads deeper 

out of the money.   

The implicit pricing kernel literature surveyed in Cuedeanu & Jackwerth (2018) essentially examines 

returns of butterfly spreads on the S&P 500 across different strike prices.  Wealth-based models such as 

the CAPM imply the pricing kernel is inversely related to the stock market return.  This monotonicity 

hypothesis implies conditional expected excess returns on butterfly spreads should be inversely related to 

strike price:  negative for low =/��, positive for high =/��.14  Unconditional expected excess returns 

should therefore also be inversely related to =/�� – a hypothesis testable using sample excess returns.  

OTM European puts or calls that load heavily on low- or high-strike butterfly spreads should exhibit 

negative or positive excess returns respectively if held to maturity. Furthermore, calls and call spreads 

load more heavily on higher-strike butterfly spreads as the strike price increases and should therefore 

exhibit ever-higher excess returns – a result empirically rejected in Bakshi et al. (2010). 

While conceptually straightforward, directly computing average excess returns on butterfly spreads is 

not.  Early key papers by Jackwerth (2000) and Aït-Sahalia & Lo (2000) compute average payoff and 

average price separately:  the former from estimates of the unconditional density of stock market returns, 

the latter from average risk-neutral densities from option prices.  Both papers find near-the-money non-

monotonicities in the implicit pricing kernel.  Rosenberg & Engle (2002) estimate conditional densities 

from a GARCH model with conditionally Gaussian shocks plus leverage, and examine what distributional 

transformation of that conditional density best matches observed option prices.  They also find near-the-

money non-monotonicities in the implicit pricing kernel. 

Early studies of implicit pricing kernels had limited options data to work with.  Aït-Sahalia & Lo 

(2000) compare risk-neutral densities over 1993 (when the VXO measure of �D9B from 1-month 

American S&P 100 options averaged 12.65) with stock market returns over 1989-93 (when the VXO 

averaged 17.59).  Jackwerth (2000) uses monthly returns over the four years preceding his 1988-91 options 

data.  Because stock market volatility exhibits long-memory phenomena, with periods of high or low 

volatility that can last for years, reexamination of pricing kernel puzzles using longer and better-matched 

data appears warranted. 

                                                 
14 Because an equally weighted portfolio of butterfly spreads over [0, ∞) replicates a riskless payoff, its conditional expected 

return must be the riskless rate.  Binsbergen et al. (2021) confirm this using box spreads (overlapping call and put spreads 

with identical strikes), with an implicit interest rate from midpoint SPX option prices that is typically slightly below LIBOR. 
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Linn et al. (2018) follow Bliss & Panigirtzoglou (2004) in examining what transform of the conditional 

risk-neutral distribution from options best matches subsequent monthly stock market returns – the inverse 

of the approach in Rosenberg & Engle (2002).15  They note their cubic spline approach for the transform 

is similar to looking at returns on butterfly spreads (smoothed across adjacent strikes), and find no 

evidence of near-the-money non-monotonicity in the implicit pricing kernel for monthly returns over 

1996-2014.   

A further complicating issue is asymmetric depth for puts versus calls on the stock index.  Put options 

have been more actively traded since the stock market crash of 1987 (Bates 2000, Figure 3), and are readily 

available three or more standard deviations out-of-the-money, as measured by �D9B√<.  Calls by contrast 

are thinly traded beyond one standard deviation out-of-the-money (Andersen et al. 2015, Table 1).  We 

consequently have to rely on calls and call spreads as bundles of butterfly spreads when assessing the 

implicit pricing kernel for upside risk. 

Point estimates of the implicit pricing kernel do appear to be non-monotonic, with the major caveat 

that standard errors are large.  In particular, average returns in Bakshi et al. (2010) decrease and go 

negative for stock index calls and call spreads further out-of-the-money that load more heavily on deep 

OTM butterfly spreads.  The implication is negative rather than positive returns on high-strike butterfly 

spreads.  This combined with the negative returns observed for OTM put options (indicating negative 

returns on low-strike butterfly spreads) and the fact that butterfly spreads averaged across all strikes earn 

the riskless rate suggest a non-monotonic and broadly U-shaped pricing kernel.   

6. Interpreting option returns 

There are two competing theoretical frameworks for the structure of supply and demand in option 

markets.  These two frameworks offer alternative interpretations of the empirical evidence that OTM 

options on stock indexes appear to be overpriced – especially put options. 

Framework #1:  Equity and options markets are integrated.  Equity investors can freely buy or 

sell index options to manage their equity exposures.  Agents may be heterogeneous; they may have 

different aversions to or beliefs about downside risk.  However, their ability to directly trade OTM put 

options leads to market-clearing prices for those options.  Those with strong aversions to downside risk 

can buy downside protection from those less averse to or less pessimistic about downside risk.  Resulting 

                                                 
15 An early example of this approach is Fackler & King (1990), who examine commodity options. 
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option prices and risk-neutral distributions reflect average (“representative”) preferences or beliefs about 

future stock market outcomes, plus required compensation for those risks. 

Identifying equilibrium in this framework is easier if markets are dynamically complete, with options 

spanning systematic volatility and jump risks of concern to investors.  A complete-markets framework 

implies the dynamic competitive equilibrium can be identified from fundamental underlying risks by 

solving an associated central planner’s problem.16   The “representative agent” can be identified by a social 

utility function that is a wealth-sensitive positive weighting of individual utility functions.  The 

representative agent shares properties with individual utility functions:  expected utility if individual 

utilities are von Neumann-Morgenstern, concave if individual utilities are concave (Constantinides 1982; 

Ziegler 2007).  The representative agent’s preferences change over time because of wealth redistributions 

across heterogeneous agents, generally in a nonstationary fashion.17  Equilibrium prices of all assets 

change in response, in a fashion that magnifies underlying shocks to fundamentals.  Positive news about 

future cash flows increases stock prices both directly and because the average investor becomes less risk-

averse, because of wealth transfers to risk-tolerant investors who have invested more heavily in equity.  

Framework #2:  Options markets are partly segmented from the underlying equity markets.  

Equity investors can easily buy OTM index puts, but trading restrictions instituted after the 1987 stock 

market crash prevent most investors from selling puts.18  Financial intermediaries (especially option 

market makers) play a central role; they willingly sell overpriced OTM puts to equity investors especially 

averse to downside or volatility risks.  Intermediaries can delta-hedge against small market movements 

(with spillover consequences for equity markets) but are perforce exposed in aggregate to jump and 

volatility risks.  Equity investors less averse to downside risk who might also be willing to sell OTM puts 

are shut out of the options market by the trading restrictions.  Options prices therefore do not represent 

the average preferences and beliefs of most equity investors, and are only partly relevant for the resulting 

equilibrium in equity markets. 

                                                 
16See Grossman and Zhou (1996) and Weinbaum (2009) for heterogeneous-agent models with one diffusive source of risk, 

and Bates (2008) for a heterogeneous-agent model with an additional jump risk that is spanned by options. 
17 See Bates (2008).  Chan & Kogan (2002) show that models with external habit formation can have a stationary wealth 

distribution across heterogeneous agents, generating a stationary asset market equilibrium. 
18 Individual investors could still buy calls or puts relatively easily after 1987, but “sophisticated” or “accredited” investor 

status (including adequate income or net wealth) was required to sell uncovered puts or calls. 
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The fundamental theorem of asset pricing states that we have 5����,k(T�Ik − Tn�)$ = 0 under both 

frameworks, but the interpretation of the pricing kernel ��,k differs.  In particular, an equilibrium 

relationship between individuals’ pricing kernels and excess returns applies only to unconstrained agents.  

The first framework assumes all agents are unconstrained, who trade until the product of state-contingent 

marginal utilities and subjective probabilities is proportional across all agents.  Risk dispersal permits 

calibration of such models based upon aggregate wealth or aggregate consumption of all agents, given 

wealth-weighted aggregate demand for options in zero net supply must equal zero.   

The second framework by contrast mostly focusses upon financial intermediaries as key unconstrained 

agents.  Their willingness to sell OTM puts is affected by how many puts they have already sold, and the 

aggregate wealth of the financial sector.  This framework has been explored in demand-based option 

pricing papers such as Bollen & Whaley (2004) and Garleanu et al. (2009).  The latter paper shows that 

option market makers have indeed been net sellers of puts and calls on stock indexes – especially puts. 

In framework #1, overpriced OTM puts and calls on stock indexes are interpreted either as direct 

evidence of average investor preferences, or evidence of additional risks of concern to investors. 

Rosenberg & Engle (2002) point out the implicit pricing kernel is the expected pricing kernel conditional 

upon observing specific stock market returns.  High values of the pricing kernel (negative returns on 

butterfly spreads) can be either because of direct wealth effects or because the returns are proxies for other 

risks affecting the pricing kernel.  In this framework, OTM puts are overpriced both because of strong 

aversion to downside market risk and because negative market returns are correlated with crash risk or 

volatility risk.  OTM calls are overpriced either for behavioral reasons such as a long-shot bias by investors 

(Hodges et al. 2004), or because large positive returns are correlated with high-volatility periods to which 

investors are averse.  Christoffersen et al. (2012) show that aversion to volatility shocks can generate a U-

shaped pricing kernel in a GARCH option pricing model, while Babaoglu et al. (2018) find volatility 

aversion substantially improves the fit of such models to observed option prices. 

In framework #2, overpriced puts are attributed to selection bias among equity investors, with only 

those especially averse to downside risk or volatility risk participating (on the buy side) in the index 

options markets.19  A major motivation for this framework is the apparent profit opportunities from selling 

OTM puts since the 1987 stock market crash.  It seems easier to attribute the substantial profit 

                                                 
19 Scheinkman and Xiong (2013) similarly argue that short-sales constraints can lead to overpriced stocks because pessimists 

are shut out of the market, leaving only optimists. 
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opportunities graphed in Figure 1 to difficulties in exploiting those opportunities rather than to rational 

concerns by investors about downside risk.  In particular:  why would anyone invest in the stock market 

when they can get two to three times the Sharpe ratio by selling delta-hedged puts?   

Explaining overpriced OTM calls is trickier; selling covered calls is a substantially unrestricted 

strategy available to equity investors.  However, Garleanu et al. (2009) find option market makers face 

net demand for calls.  Given their substantial volatility and jump risk exposures from delta-hedged short 

put positions, market makers require volatility or jump risk premia to be willing to also sell calls. 

Compensation for crash or volatility risk are two competing explanations for option return anomalies.  

Coval & Shumway (2001) attempt to disentangle the two by using OTM puts to partially hedge the crash 

risk from writing delta-neutral at-the-money straddles.  They label such positions “crash-neutral”, and 

conclude observed excess returns are compensation for volatility risk rather than crash risk.20  Bakshi & 

Kapadia (2003) also conclude volatility risk is the better explanation. 

Crash and volatility risks should also affect investors’ assessments of underlying investments, and 

show up in the equity risk premium.  Welch (2016) notes that a “crash-insured” equity investment that 

uses puts to limit monthly losses to at most 15% still earned 5.1% per year over 1983-2012, as opposed 

to the 7.2% return from unhedged equity.  He concludes that disaster risk consequently cannot explain the 

equity premium.  Jurek (2014) similarly notes that option-hedged strategies to exploit the carry trade 

remain profitable, ruling out currency crash risk as an explanation.  Ang (2014, pp. 218-222) considers 

volatility risk (from both diffusive and jump sources) to be an “extremely important risk factor” that affects 

many investments.   

It is difficult at this point to distinguish between volatility risk and jump risk, let alone to identify what 

precisely volatility risk represents.  The empirical evidence from recent cojump models is that everything 

is correlated.  Stock market jumps are typically synchronous and negatively correlated with jumps in the 

VIX and in time series estimates of diffusive volatility and jump intensities.  Objective and risk-neutral 

measures of conditional volatility covary with major market drops that are clearly of concern to investors:  

the 2008-9 financial crisis, for instance, or the onset of the pandemic in February to March of 2020.  Stock 

market volatility reached high and sustained levels during the Great Depression as the stock market fell 

                                                 
20 A position closer to “crash-neutral” is the delta-gamma-neutral strategy, which involves considerably more OTM puts. 
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(and firm leverage rose).  Volatility risk premia could consequently be compensation for related risks of 

concern to investors, such as major recessions or financial crises. 

Estimates of volatility risk premia are based on divergences between objective and risk-neutral 

measures of stochastic processes, with the latter inferred from option prices.  The alternate possibility 

from framework #2 that it reflects major overpricing of options in a market somewhat segmented from 

the underlying equity market should also be kept in mind.  Such overpricing should be (and does appear 

to be) especially pronounced during financial crises, perhaps because reduced capital of financial 

intermediaries reduces the supply of options available to equity investors concerned about downside risk. 

 I noted in Bates (1991) that stochastic volatility with leverage and fears of asymmetric jumps are both 

possible explanations for periods of risk-neutral skewness observed prior to the stock market crash of 

1987.  While I focused more on the latter, I now consider the former more important.  In particular, time 

aggregation of stock market returns appears to play a key role in downside risk.  Major daily stock market 

movements are typically the accumulation of smaller intradaily price/volatility comovements, whether 

diffusive (Chernov et al. 2003) or via self-exciting cojumps (Bates 2019).  Component GARCH models 

such as Christoffersen et al. (2009) suggest similar mechanisms at longer horizons.  These forms of longer-

term leverage appear implicit in option prices as well:  risk-neutral skewness from stock index options 

increases rather than decreases with option maturity at short horizons.  Runs of bad shocks that lead to 

major cumulative losses – against which put-based portfolio insurance offers only a partial defense – are 

plausibly of greater concern to investors than occasional major outliers in daily returns.  The degree to 

which required compensation for this type of risk is responsible for observed returns on stock index 

options and for the equity premium is an open question.  
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Models Jump Intensities Examples 

Univariate models of diffusive variance op  

 ln ?� = (q − r ln ?�)
� + �a
�a� No jumps 

 

Hull & White (1987), 

Scott (1987) 


?� = (q − r?�)
� + �a]?�
�a� No jumps 

 !s !� = !s + !�?� 

Hull & White (1988), 

Heston (1993) 

Bates (1996) 

Bates (2000, 2006) 


?� = (q − r?�)
� + �a]?�
�a� + )a
 a�  !s  

 !s + !�?�  

Duffie et al. (2000),  

Eraker et al. (2003) 

Andersen et al. (2015),  

Bates (2019) 


?� = t?u(v − ?�)
� + �?�w
�a�  !� = 0 or !s  Christoffersen et al. (2010) 

Multivariate models (with diffusive variance ?� = ∑ ?%�% ) 

additive 


?%� = (q% − r%?%�)
� + �a%]?%�
�a�  

 λ| = λs + }~o�  

 

Bates (2000) 

self-exciting 


?%� = (q% − r%?%�)
� + �a%]?%�
�a�+)a
 a� 

 λ| = λs + }~o�  

Andersen et al. (2015),  

Bates (2019) 

concatenated 


?� = t(v� − ?�) + ��]?� 
�a�  


v� = t(v̅ − v�)
� + ��]v� 
��� 

 

No jumps λ| = λs + }~o�  

 

Taylor (1994) 

Bates (2012)  

Wishart 

c� = � ?�� =�U�=�U� ?U� � 


c� = [r�~� + �c� + c��~]
� 
            +]c�
��� + �~
��′]c� 

 

 λ| = λs + � ∙ c�  

 

 

Gruber (2015) 

 

Non-affine 
 ln ?%� = (q%s + q%% ln ?%�) 
� 

            + (r%s + r%% ln ?%�)��
�a%� 

  

Chernov et al. (2003) 
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Figure 1.  Cumulative weekly returns (Wednesday to Wednesday) of option strategies for American SP 

(1988-2008) and ES (2009-20) options on S&P 500 futures.  All option positions are scaled to have the 

same 16.2% annualized volatility over 1988-2020 as S&P 500 futures (black line).   

  Maturities:  monthly, plus or minus two weeks.  At least two-week maturity on terminal Wednesday. 

  Moneyness:  Options initially at-the-money or 1-2 standard deviations (�D9B√<) out-of-the-money. 

 

 


