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How Crashes Develop: Intradaily Volatility
and Crash Evolution

DAVID S. BATES∗

ABSTRACT

This paper explores whether affine models with volatility jumps estimated on in-
tradaily S&P 500 futures data over 1983 to 2008 can capture major daily outliers
such as the 1987 stock market crash. Intradaily jumps in futures prices are typi-
cally small; self-exciting but short-lived volatility spikes capture intradaily and daily
returns better. Multifactor models of the evolution of diffusive variance and jump
intensities improve fits substantially, including out-of-sample over 2009 to 2016. The
models capture reasonably well the conditional distributions of daily returns and re-
alized variance outliers, but underpredict realized variance inliers. I also examine
option pricing implications.

WHAT IS A CRASH? IN THE jump-diffusion model of Merton (1976), a crash is a
rare event—a single adverse draw from a Poisson counter, with a vanishingly
small probability of multiple adverse draws within a single day. While this
model may be successful at capturing outliers in daily returns, it does not
appear to capture the intradaily evolution of major market downturns. The
28% drop in the December 1987 S&P 500 futures price (23% drop in the S&P
index) on Monday, October 19, 1987, from the preceding Friday’s closing level
did not occur within five minutes, for instance; it took all day to achieve the
full decline. Indeed, papers such as Tauchen and Zhou (2011) that use the
bipower variation approach of Barndorff-Nielsen and Shephard (2004, 2006)
to decompose realized variance into diffusive and jump components suggest
there were no jumps at all on October 19. Instead, it was a draw of roughly
two standard deviations on a day that happened to have an unusually high
intradaily realized volatility of 12%.

While the increasing availability of high-frequency data has led to explo-
ration of intradaily volatility evolution, including in stock markets, there has
been little direct estimation of dynamic models with stochastic volatility and
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jumps using intradaily data. Papers such as Andersen and Bollerslev (1997)
focus on volatility dynamics; in particular, on reconciling GARCH-based volatil-
ity evolution estimates from daily versus intradaily data. As described by
Andersen (2004), the recognition that realized variance effectively summa-
rizes intradaily volatility information and sidesteps the challenges in fitting
pronounced diurnal volatility patterns and announcement effects has led in-
tradaily research to shift focus to realized variance. Whether jumps are im-
portant has been assessed indirectly in this literature, with either the bipower
variation approach of Barndorff-Nielsen and Shephard (2004, 2006) or the
threshold approach of Mancini (2009) used to assess intradaily jump contri-
butions to realized variance. These approaches maintain the Merton (1976)
presumption that jumps are rare.

This indirect evidence and more direct parametric estimates by Stroud and
Johannes (2014) on intradaily data point to a fundamental mismatch between
jump magnitudes from intradaily versus from daily stock market data, let
alone those inferred from option prices. Stroud and Johannes (2014) find that
the standard deviation of unexpected jumps in five-minute returns is between
0.2% and 0.4%, and that magnitudes for predictable announcement effects are
similar. The jump magnitudes estimated by Bates (2012, Table VI) on daily
data over the 1926 to 2006 period using a double exponential jump distribution
are an order of magnitude higher: −2.1% on average for negative jumps and
+1.6% for positive jumps. The double exponential jump parameters inferred
from stock index options by Andersen, Fusari, and Todorov (2015) are even
larger: −3.9% on average for risk-neutral negative jumps and +2.7% for risk-
neutral positive jumps. Of course, one must be wary of parameter inferences
from option prices, as standard equity and volatility risk premia imply that
the frequency and magnitude of negative jumps are greater under the risk-
neutral than under the actual distribution. However, those effects are reversed
for positive jumps, implying that one should observe even larger (and more
frequent) positive jumps on average than the +2.7% estimate in Andersen,
Fusari, and Todorov (2015).

The objective of this paper is to bridge the gap between intradaily and daily
evidence on stock market returns and to explore continuous-time affine models
that might be compatible with both. The key feature of the models is “self-
exciting” synchronous and correlated jumps in intradaily stock returns and
volatility, which is essentially a stochastic-intensity version of the Duffie, Pan,
and Singleton (2000) constant-intensity volatility jump model. Every small
intradaily jump substantially increases the probability of more intradaily co-
jumps in volatility and returns, and these multiple price jumps can accumu-
late into the major outliers in daily returns that we occasionally observe. The
model is estimated on intradaily and overnight S&P 500 futures returns over
the 1983 to 2008 period using Bates’s (2006, 2012) approximate maximum
likelihood (AML) filtration methodology, taking into account special features of
intradaily futures data. Estimates are then tested for compatibility with daily
returns—including movements exceeding 10% in 1987 and 2008. The 2009 to
2016 period is used for out-of-sample tests of the model.
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The two central mechanisms of the model are volatility feedback (via jumps)
and leverage; that is, a tendency of conditional volatility to become more volatile
at higher levels combined with negative correlations between price and volatil-
ity shocks. These mechanisms have previously been proposed and estimated
on daily data using a variety of models and estimation methodologies. The
diffusive affine stochastic volatility model of Heston (1993) has both, and is es-
timated on daily stock market data by various authors surveyed in Bates (2006,
Table 7). The nonaffine diffusive log variance models in Chernov et al. (2003)
have substantial volatility feedback; the diffusive power variance model in
Jones (2003) has even more. Models with jumps typically have leverage but not
volatility feedback through jump channels, for example, the price/volatility co-
jump model of Eraker, Johannes, and Polson (2003) estimated on daily data and
the cojump model of Stroud and Johannes (2014) estimated on intradaily data.
Both of these papers use the Monte Carlo Markov chain estimation method-
ology and have constant-intensity rather than self-exciting jumps. Calvet and
Fisher (2008) propose a tightly parameterized Markov chain model for daily log
variance evolution that also lacks volatility feedback. Aı̈t-Sahalia, Cacho-Diaz,
and Laeven (2015) and Fulop, Li, and Wu (2015) employ affine models with
stochastic volatility and self-exciting volatility jumps, which they estimate on
daily stock market data. Andersen, Fusari, and Todorov (2015) have a model
of self-exciting price/volatility cojumps similar to this paper’s model, but their
estimation methodology differs in relying heavily on matching options data.

The nonparametric literature, of course, makes extensive use of intradaily
returns, typically at a five-minute horizon. That literature focuses primarily on
decomposing intradaily realized variance into diffusive and jump components,
and on developing tests of the null hypothesis of no jumps or cojumps.1 Such
analyses can also be conducted in the affine parametric framework used here.
Indeed, as discussed below, any affine latent characteristic can be estimated
from observed data using Bayesian filtration methods: the number and size of
stock market jumps, quadratic variation and its diffusive variance and squared
jump components, and even the magnitude of volatility jumps. Nested models
without volatility jumps can be tested via standard likelihood ratio tests.

The key difference between this paper and prior realized variance papers
is its focus on the intradaily dynamics of diffusive variance and jump intensi-
ties. Nonparametric estimates have an aliasing problem: if integrated diffusive
variances are estimated each day from intradaily data by bipower variation or
threshold techniques, the approach can at best describe the daily dynamics of
the series. This paper, by contrast, estimates dynamic models on intradaily data
to see whether volatility feedback in the form of self-exciting volatility/price co-
jumps is present at intradaily frequencies. The sign and magnitude of every
15-minute return contains important information for the probability of future

1 See Jacod and Todorov (2010) for statistical tests of price/volatility cojump models, and Bandi
and Renò (2016) for nonparametric estimates of cojump models on S&P futures returns over the
1982 to 2009 period. The latter includes a model in which the mean and volatility of price jumps
are affected by the level of conditional volatility—another form of volatility feedback.
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price/volatility cojumps over the next 15 minutes. This information includes
not just the large price movements that nonparametric methods can readily
identify as jumps, but also the more ambiguous returns of three to five diffusive
standard deviations that might be jumps.2 The explicit parametric models in
this paper provide the structure for extracting that information via a recur-
sive filtration procedure that updates assessments of the underlying diffusive
volatility and jump intensity state variables every 15 minutes.

I address four issues. First is the issue of identifying the appropriate time-
series model. To that end, I use an extensive history of intradaily and overnight
S&P 500 futures returns over the 1983 to 2008 period that includes the extreme
stock market movements in October 1987 and in the fall of 2008. Moreover, I
build up the models progressively. I start with a model that has price jumps
but not volatility jumps. I then add volatility cojumps, and finally add richer
dynamics for the evolution of diffusive volatility and jump intensities. I also
look at models without the self-exciting feature. I find that multifactor models
with self-exciting but short-lived volatility spikes substantially improve model
fits both in-sample and out-of-sample.

Second is the issue of time aggregation; that is, whether various proposed
affine models estimated using 15-minute returns actually capture the statisti-
cal properties of daily returns, including the major daily outliers in 1987 and
2008. Affine models are especially well suited for exploring this issue, because
affine models time-aggregate. An affine model for intradaily returns implies an
affine model for daily returns that can be used for standard QQ diagnostics of
conditional distributions.

Third is the issue of how well the models capture the statistical proper-
ties of daily realized variances. Insofar as realized variance is approximately
quadratic variation, which is affine, QQ diagnostics similar to those used for
daily returns can be used for realized variances. (In practice, simulation-based
bias corrections prove necessary.) I also look at how well various models fore-
cast realized variances at 1- to 21-day horizons, as a precursor to the final
model criterion: how well the models fit short-maturity option prices.

The paper is organized as follows. Section I describes the intradaily and
overnight data, the multifactor models and estimation methodology, and how
well the models fit. Section II contains additional diagnostics using intradaily
realized variance, while Section III explores option pricing fits. Section IV
concludes. Overall, the multifactor affine models with volatility spikes do a
reasonably good job of matching the properties of intradaily and daily S&P 500
futures returns, especially as more factors are added. Furthermore, the most
general three-factor model captures the occasionally extreme observations of
realized variance reasonably well—which is when extreme daily stock market
returns occur. The models underpredict the frequency of small realized variance
observations, however, which indicates that some specification error remains.
Similarly, the more general models fit the overall level of options’ implicit

2 See Bates (2006, pp. 942–943) or Aı̈t-Sahalia and Jacod (2014, pp. 118–119) for discussions of
this issue.
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volatilities progressively better, but all models have difficulty matching the
slope of the volatility smirk at maturities greater than the shortest one-day
horizon considered.

I. Data and Models

A. Data

S&P 500 futures began trading at the Chicago Mercantile Exchange (CME)
on April 21, 1982, using the open-outcry pit trading prevailing at the CME at
that time for all futures contracts. Initial trading hours were 9 AM to 3:15 PM
Central Standard Time, with CME pit trading typically extending 15 minutes
beyond trading at the New York Stock Exchange (NYSE).3 On September 30,
1985, the NYSE and CME shifted the opening time to 8:30 AM CST. Starting
in December 1990, both the NYSE and CME instituted fewer trading hours on
trading days adjacent to Christmas, the Fourth of July, and Thanksgiving.

In 1992, the CME introduced after-hours electronic trading through its
Globex trading platform. In 1997, the CME introduced “E-mini” (ES) S&P 500
futures contracts, which are one-fifth the size of regular S&P 500 (SP) futures
contracts and trade exclusively on Globex, including during the day. Activity
has moved increasingly to electronic trading via Globex, which accounted for
84% of CME group volume by 2011.4

The CME provides data in two formats. The “End-of-Day” daily summaries
contain open, high, low, close, and settlement prices, as well as volume and open
interest, while the transaction-level “Time and Sales” data contain the time and
price of every daily transaction in which the price changed from the previous
transaction. Bid and ask prices are also recorded in transactions data when the
bid price is above or the ask price is below the price of the previous transaction.
No information is provided for the pit-traded SP contract regarding the volume
of transactions at a particular price, but is provided for the E-minis. I obtained
both sets of data for the original full-sized S&P 500 futures SP contract for the
period January 3, 1983, to December 31, 2013, and for the entire history of the
E-mini ES contract for the period September 7, 1997, to June 30, 2016. I then
discarded bid and ask data, as well as transactions that were subsequently
cancelled. The 1983 to 2008 SP data are used for parameter estimation, while
the 2009 to 2016 E-mini data are used for out-of-sample testing.5

3 The CME and NYSE closed at the same time on October 23 through November 6, 1987, in the
aftermath of the 1987 stock market crash.

4 CME Group, “Twenty Years of CME Globex,” June 21, 2012 (http://www.cmegroup.com/
education/files/globex-retrospective-2012-06-12.pdf).

5 Comparison of the end-of-period times of SP and ES trades indicates little difference over the
1998 to 2008 period (12.5 versus 2.5 seconds on average to the end of each 15-minute period), but
increasing divergences thereafter. The SP average time gap rose from 25 seconds in 2009 to 135
seconds in 2013, while 15-minute intervals without transactions occurred increasingly frequently:
5 in 2011, 37 in 2012, and 166 in 2013. The ES time gap, by contrast, averaged about 1.4 seconds
over 2009 to 2013. Absolute differences between end-of-period SP and ES log futures prices were

http://www.cmegroup.com/education/files/globex-retrospective-2012-06-12.pdf
http://www.cmegroup.com/education/files/globex-retrospective-2012-06-12.pdf
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S&P 500 futures contracts typically mature on the third Friday of March,
June, September, and December—except for March 2008 contracts, which ma-
tured a day earlier because of Good Friday. Of the available maturities, I select
the shortest maturity with nine or more days until the third Friday, because
it is the most actively traded contract according to the “End of Day” volume
data. For instance, I use data for March 1983 futures maturing on March 18,
1983, up to the close of trading on Wednesday, March 9. I then use prices of
June 1983 contracts to compute overnight futures returns from Wednesday to
Thursday, and for intradaily and overnight returns from Thursday, March 10
to the close of trading on Wednesday, June 8.

I construct intradaily 15-minute log-differenced futures prices broadly along
the lines of the five-minute futures returns in Chan, Chan, and Karolyi (1991)
and Andersen and Bollerslev (1997), by taking the last observed future price in
every interval. I use 15-minute returns instead of five-minute returns primar-
ily to triple optimization speed on this large data set, and also to span some
short-duration price limit constraints on futures returns over 1989–2002 that I
discuss below. For after-hours trading I extend the time window by one minute,
typically up through 3:16 PM CST, because trades were often recorded shortly
after trading had officially ended. Overnight futures returns are constructed
as the difference between the log of the futures price at the end of the first
15-minute trading session (typically 8:30 to 8:45 AM CST) and the log of the
futures price of comparable maturity at the end of the preceding day. This
approach allows for the incorporation of overnight news into the futures price
during the especially volatile initial 15 minutes of trading. Furthermore, skip-
ping the first 15 minutes of trading when computing overnight returns spans
possible constraints on opening futures prices from the price limit system in-
stituted by the CME in 1989. The final SP data set contains 6,557 overnight
returns and 168,297 intradaily returns from the closing price on December
31, 1982, through December 31, 2008. The 2009 to 2016 E-mini data comprise
1,885 overnight returns and 48,825 intradaily returns.

The CME’s price limit system was created in response to the stock market
crash of October 19, 1987, and paralleled the NYSE’s “circuit breaker” sys-
tem. The CME’s price limits typically involved four prespecified constraints: a
relatively tight initial band relative to the previous day’s short-maturity S&P
500 futures settlement price that temporarily constrained both upward and
downward moves at the open, and three progressively lower price limits (Lev-
els 1 through 3) that temporarily constrained downward moves during the day.
Hitting a price limit triggers a specific time interval during which the price
limit remains in effect, followed by a two-minute trading halt if the price limit
is binding (“locked limit”), followed by the resumption of trading with a new
lower price limit in effect. For instance, price change constraints from 1989 to
1996 were 5, 12, 20, and 30 points, respectively, over which time the S&P 500
index rose from 300 to 700. The five-point opening limit lasted only until 8:40,

typically only two to three basis points throughout the 1998 to 2013 period, but were occasionally
larger during volatile days or on days adjacent to holidays.
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with a trading halt from 8:40 to 8:42 if binding. A 12-point downward move
triggered an interval lasting 30 minutes or until 2:30 PM CST, during which
time futures contracts could be traded at or above the limit but not below. If the
price limit was binding at the end of the interval, a two-minute trading halt
was declared, followed by the resumption of trading with the 20-point lower
limit in place. Hitting the 20-point downward limit started another interval
lasting 30 minutes or until 2:30, followed by a trading halt (if still binding) and
the 30-point limit taking effect for the remainder of the day. Separate rules
apply if a price limit was binding at the close of the preceding day.

Limits on the opening price change were removed on October 15, 1997 as part
of a revision in the circuit breaker system. The levels of permissible downward
price changes changed over time, partly because of the rise and fall in the level
of the S&P 500. In addition, the price constraints were significantly widened
on May 13, 2001 to roughly 5%, 10%, and 15% of the end-of-quarter S&P 500
level, with roughly 20% being the maximal permissible daily price movement.
These limits were relaxed further in January 2008 to 10%, 20%, and 30%,
respectively, to be consistent with the Dow Jones–based percentages used on
the NYSE. (A 5% price limit remained on after-hours trading on Globex.) These
revisions in 2001 and 2008 considerably reduced the frequency of trading halts,
with an apparent absence of such halts in intradaily data from 2003 to 2008.6

Even the 10.4% intradaily drop in the December 2008 futures price on October
15, 2008, to 898.5 from October 14’s settlement price of 1,002.3 did not exceed
the 120-point limit that the CME had set on September 30, 2008, as the 10%
limit for the fourth quarter of 2008.

The corresponding time intervals triggered by hitting a price limit were also
shortened to roughly 15 minutes in 1996 and to roughly 10 minutes in 1997.
However, longer halts could arise because of trading halts at the NYSE. The
most notable such incident was the tripping of all three levels of NYSE circuit
breakers on October 27, 1997.

Trading at the CME also occasionally halted because of exogenous events in
New York or Chicago. On December 27, 1990, for instance, the explosion of a
Con Edison transformer in New York delayed the open of the NYSE and CME.
On April 13, 1992, the accidental flooding of utility tunnels in Chicago shut
down the CME, but not the NYSE.7 Both the NYSE and CME closed following
the attacks on September 11, 2001, and did not reopen until September 17.

Price limits can artificially constrain observed futures returns. Accordingly,
I extended the time interval whenever a price limit was hit until that limit had
expired and was no longer potentially binding on the futures price. Similarly,
I extended time intervals whenever trading was suspended until trading had
resumed, and computed returns over the expanded interval. For instance, the

6 John Nyhoff at the CME kindly provided me with a list of dates and times when the S&P 500
futures price limits were hit during regular trading hours. Stroud and Johannes (2014) note that
the Globex-traded E-mini contract hit its overnight limit on October 24, 2008.

7 A list of market closings at the NYSE is available at http://www.nyse.com/pdfs/closings.pdf.
Additional CME trading suspensions were identified by searching the data for periods without
reported trades, and matching them against news reports.

http://www.nyse.com/pdfs/closings.pdf


200 The Journal of Finance R©

CME suspended trading at 11:15 AM CST on October 20, 1987, the day after
the 1987 stock market crash,8 and the December 1987 futures price rebounded
when trading resumed at 12:05 PM. I combined returns over 11:15 AM to
12:15 PM into a single one-hour interval, with an associated log-differenced
futures price of 13.76%.9 Over the 1983 to 2008 period, there were 103 instances
of expanded time intervals, out of 174,859 total observations. The E-mini data
over 2009 to 2016 had three instances of expanded time intervals, out of 50,710
total observations.

B. Models

Affine models allow for considerable flexibility in how diffusive spot variance
and jump intensities evolve, and in the interactions between shocks to futures
returns and to the underlying state variables. I model the continuous-time
process for the log futures price ft = ln Ft underlying observed intradaily and
overnight S&P 500 futures returns as a potentially multifactor affine jump-
diffusion of the form

d ft = μ0dt +
I∑

i=1

[
(μi − 1/2) Vitdt +

√
VitdWit

]
+

J∑
j=1−K

(
γ jdNjt − λ jtk̄jdt

)
,

dV1t = (α − β1V1t) dt + σ
√

V1tdWV t + γV 1dN1t,

dVit = −βiVitdt + γV idNit for i > 1, (1)

where W1t and WV t are Wiener processes with correlation ρ, Wit for i > 1
are additional orthogonal Wiener processes, the Njt ’s are Poisson counters
with stochastic intensity λ jt that depend linearly on the state variables
V t = (V1t, . . . , VIt)′, and k̄j = E(eγ j ) − 1 is the jth expected percentage jump
size in futures. Furthermore, the state variables are divided into a core jump-
diffusive variance state variable V1t, and additional pure-jump state variables
Vit that capture transient variance shocks.

A key empirical question is how many state variables are necessary to ade-
quately summarize the stochastic volatility and jump risks underlying futures
returns. Potential specifications are categorized as SVJ(I,J,K) models, where I
is the number of underlying state variables, J is the number of synchronous
jump processes for futures prices and variance state variables, and K ≤ 1 is
the number of jump processes for futures prices only.

Another important issue is the joint distribution of the (γ j, γV j) cojumps.
Affine models require γV j ≥ 0 to preclude negative variances, but otherwise

8 See Carlson (2006, p.11).
9 Andersen and Bollerslev (1997) follow Chan, Chan, and Karolyi (1991) in omitting data over

October 15 through November 13, 1987. They also linearly interpolate prices when data are miss-
ing, yielding roughly identical successive five-minute returns.
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place no restrictions on this joint distribution. I use the Duffie, Pan, and
Singleton (2000) specification

γ j = ρ j γV j + γfj, (2)

where γV j ∼ Exp(γ̄V j) is the exponentially distributed jump in spot variance Vjt
conditional on dNjt = 1, γfj ∼ N(γ̄fj, δ

2
fj) is an independent Gaussian shock, and

ρ j captures the degree to which synchronous jumps in futures prices and vari-
ance covary. The Poisson counter N0t identifies additional futures price jumps
(with a V1t-sensitive jump intensity) that are unaccompanied by volatility
jumps—an extension that substantially improves overall fit. Volatility jumps
that are unaccompanied by price jumps are also possible if (ρ j, γ̄fj, δ

2
fj) = 0.10

The final empirical issue is the specification of jump intensities. Whereas
Duffie, Pan, and Singleton (2000) is a constant-intensity model, self-exciting
jumps are plausibly a major explanation for the intradaily development of
major daily outliers.11 For tractability, I use jump intensities of the general
form

λ jt =
{
λ j0 + λ j1V1t∗ for j ≤ 1
λ j0 + λ j1V1t∗ + λ j j Vjt∗ for j > 1,

(3)

with specific parameter restrictions discussed further below. The jump inten-
sities λ jt for each Poisson counter Njt are assumed to be constant within each
intradaily or overnight period, reset at the end of every period, and depend on
the spot variance levels V t∗ prevailing at the start of the period. This allows
jumps to be self-exciting across periods while retaining the analytic tractability
of the Duffie, Pan, and Singleton (2000) model. The recursive structure in (3)
for j > 1 allows the initiation of additional self-exciting volatility components
Vjt to depend on the level of core volatility V1t.

The multifactor specification for V t in equations (1) to (3) allows for consid-
erable flexibility in how underlying diffusive variances and jump intensities
can evolve. For instance, the multifactor specification (1) nests a univariate
model with variance jumps drawn from a mixture of exponentials, when the
rates of mean reversion βi are identical and jump intensities are similarly re-
stricted. More generally, multivariate models allow the distributions of jumps
in stock market returns and in total diffusive spot variance to vary as the
components of V t change. Those components can have different degrees of
persistence, and different correlations with the contemporaneous stock mar-
ket returns from which they are estimated. Because each Vit follows an in-
dependent AR(1) process, total diffusive variance and jump intensities follow
ARMA(I, I − 1) processes.

10 Andersen, Fusari, and Todorov (2015) propose an interesting but less tractable model in which
the futures jump γ j has a double exponential distribution. Variance jumps are a weighted sum of
the negative price jump component squared and an additional independent squared exponential
shock.

11 See Fulop, Li, and Yu (2015) for estimates of such a model from daily stock index returns.
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The model does not explicitly consider scheduled announcement effects,
which Prokopczuk and Semen (2014) estimate at 25% of observed jumps in
E-mini futures prices during regular business hours over the period 2008 to
2014.12 Major macroeconomic announcements are treated as randomly timed
jumps, with the schedule unexploited in specification (3) of jump intensities.
Furthermore, the estimates below implicitly assume that such announcements
have the same self-exciting dynamic implications of other jumps. Stroud and
Johannes (2014) provide a detailed look at the volatility impact of various major
scheduled announcements, most of which are deliberately scheduled outside of
regular trading hours.

Affine models such as equations (1) to (3) imply that the joint cumulant-
generating function of returns yt+1 = ft+1 − ft and future spot variances V t+1
given current V t is affine in V t,

CGF
(
	,ψ |V t, τt

) = ln E
[
e	yt+1+ψ ′V t+1 | V t

]
= C (τt;	,ψ) + D(τt;	,ψ)′V t, (4)

where τt is the time horizon. The precise functional forms of C(·) and D(·) for
the various SVJ(I,J,K) models are in Appendix A. By iterated expectations, the
joint conditional cumulant-generating function conditional on observing past
data Y t = {y1, . . . , yt} is then of the form

CGF (	,ψ |Y t, τt) = ln E
{
exp
[
	yt+1 + ψ ′V t+1

] | Y t
}

= C (τt;	,ψ) + gt|t
[
D(τt;	,ψ)

]
, (5)

where gt|t(ψ) ≡ ln E[eψ
′V t |Y t] is the cumulant-generating function of V t con-

ditional on data Y t. I discuss below in more detail how to compute gt|t(ψ)
recursively via Bayesian filtration.

C. Rounding Models and Filtration

Because SP S&P 500 futures had a price tick size of 0.05 through
October 31, 1997, and 0.10 thereafter, observed intradaily futures returns
are not drawn from a continuous distribution. Indeed, 5% of all intradaily
15-minute returns over 1983 to 2008 are exactly zero despite intervening in-
traperiod price changes,13 while 42% are over a range of ±5 price ticks. The
E-minis had a tick size of 0.25 throughout 1997 to 2016, and 42% of E-mini
absolute price changes were zero to three price ticks over 2009 to 2016. Con-
sequently, the above continuous-time models are assumed to represent the

12 Prokopczuk and Simen (2014) use a Lee and Mykland (2008) nonparametric jump estimation
procedure at a five-minute frequency, with adjustments for diurnal effects. They find that another
25% of jumps are attributable to major but unscheduled news, with the remaining 50% unassoci-
ated with any observable news. They also find that unscheduled jumps have three times the overall
variance contribution of scheduled jumps.

13 On average there were 30 price changes per period for those intradaily periods with a futures
return of zero.
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underlying conditional distribution of futures returns, and those returns are
rounded to the futures returns actually observed. I compute the scaled probabil-
ity of an observed log futures return yt+1 = ln(Ft+1/Ft) over a horizon of length
τt via Fourier inversion as the integrated conditional density of all realizations
falling within ±½ of a price tick of the observed Ft+1:

Pt+1 =
Prob[yt+1 ∈ (y

t+1
, ȳt+1)|Y t]

ȳt+1 − y
t+1

= 1
2π

∫ ∞

−∞
eC(τt;i	,0)+ gt|t[D(τt;i	,0)] e−i	ȳt+1 − e−i	y

t+1

−i	
(

ȳt+1 − y
t+1

) d	 for y
t+1

= ln
(

Ft+1 − ε/2
Ft

)
, ȳt+1 = ln

(
Ft+1 + ε/2

Ft

)
, and ε = one price tick. (6)

I then estimate parameters by maximizing the log likelihood function ln L =∑
t ln Pt+1 .14 The computed probabilities are scaled by ȳt+1 − y

t+1
to make the

results comparable in magnitude to log likelihood values based on conditional
probability densities.

The conditional moment generating function Gt|t (ψ) = exp[gt|t(ψ)] that sum-
marizes what is known about V t at time t can be updated recursively over time
via a straightforward extension of the AML methodology in Bates (2006, 2012):

Gt+1|t+1 (ψ) = 1
2πPt+1

∫ ∞

−∞
eC(τt;i	,ψ)+ gt|t[D(τt;i	,ψ)] e−i	ȳt+1 − e−i	y

t+1

−i	(ȳt+1 − y
t+1

)
d	. (7)

Derivatives of equation (7) provide the noncentral posterior moments of V t+1
conditional on adding the latest datum yt+1 to the data set,

E
[
V n

i,t+1|Y t+1
] = ∂nGt+1|t+1 (ψ)

∂ψn
i

∣∣∣∣
ψ=0

, (8)

using analytical derivatives of the integrand in equation (7). These posterior
moments are used to generate a gamma-based moment matching approxima-
tion to gt+1|t+1(ψ) of the form

gt+1|t+1 (ψ) = −
I∑

i = 1

vi,t+1 ln
(
1 − κi,t+1ψi

)
, (9)

where

E
[
Vi,t+1|Y t+1

] ≡ V̂i,t+1|t+1 = κi,t+1 vi,t+1 ,

Var
[
Vi,t+1|Y t+1

] ≡ Pi,t+1|t+1 = κ2
i,t+1 vi,t+1. (10)

14 This approach generalizes the Gaussian ordered-probit approach of Hausman, Lo, and
MacKinlay (1992) to arbitrary underlying distributions (5). See Campbell, Lo, and MacKinlay
(1997, Section 3.3.2) and Aı̈t-Sahalia and Jacod (2014, Section 2.3.2) for overviews of rounding
models.
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The overall procedure is a version of robust Kalman filtration and directly
generates filtered estimates V̂ t|t of the latent state variables as a by-product.15

The realized variance literature has focused on nonparametric estimation of
the diffusive variance and jump components of intraperiod quadratic variation.
In an affine model, these quantities are affine latent variables that can be
directly estimated from observed futures returns, in the same fashion as in
equations (7) and (8) above for estimating latent V t+1. In Appendix A, I derive
the relevant versions of C(·) and D(·) to compute E[�xt+1|Y t+1] for various
latent characteristics xt of interest. This filtration procedure is similar to that
in Lee and Mykland (2008) in using only past and current data to estimate
diffusive variance and jumps for every period.16

D. Intradaily and Overnight Seasonals

The effective length of any time interval differs for overnight and intradaily
15-minute returns. In addition, there is intradaily variation in trading activity
and volatility, as well as day-of-the-week effects for intradaily and overnight
effects. Finally, the actual length of a given trading day occasionally varies
because of late openings or early closings—especially the half-day trading that
began in December 1990 on specific days adjacent to Christmas, the Fourth of
July, and Thanksgiving.

I arbitrarily select Wednesday as the benchmark day, with Tuesday close
to Wednesday close representing one full business day. The effective division
between overnight returns (including the first 15 minutes of intradaily market
trading) and intradaily returns (for the remainder of the day, typically until
3:16 PM CST) is estimated as variance proportions (1 − fdaily, fdaily), respec-
tively. I construct the daily time horizon 252 τnm on day n and time segment m
as

252τnm =

⎧⎪⎪⎨⎪⎪⎩
(
1 − fdaily

)
exp(βON

′dON
n ) overnight (m= 0)

fdaily
exp[ f (m,Mn)]∑Mn

m=1 exp[ f (m,Mn)]
exp
(
β ID

′dID
n

)
intradaily (m> 0)

5 − fdaily exp
(
βMonday

)
for Sept. 10 to 17, 2001 (close to open),

(11)

where dON
n are day-of-the-week, holiday, and weekend dummies for overnight

returns, dID
n are day-specific dummies for intradaily returns (including a half-

day indicator for shortened trading days adjacent to holidays), and Mn ≤ 26
is the number of 15-minute segments available on day n after the opening
segment.

15 Bates (2006) shows that AML parameter estimation efficiency is comparable to that of the
Monte Carlo Markov Chain (MCMC) approach, for specific stochastic volatility processes with and
without jumps. MCMC generates smoothed but not filtered estimates of latent state variables.

16 Tauchen and Zhou (2011) and Andersen, Fusari, and Todorov (2015) by contrast use nonpara-
metric smoothing procedures. All five-minute returns in a given day are used to identify jumps at
any time within that day.
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Figure 1. Overnight (ON) and intradaily (ID) time horizons, relative to Wednesday
(from Tuesday close to Wednesday close). Overnight returns for Monday (from Friday close
to Monday open) and for Tuesday through Friday include the first 15 minutes of the opening day,
as do overnight returns spanning two-day holidays and four- or five-day holiday weekends. (Color
figure can be viewed at wileyonlinelibrary.com)

The function f (m,Mn) follows Andersen and Bollerslev (1997) in using
Gallant’s (1981) flexible Fourier form approach to estimate the intradaily vari-
ance pattern

f (m,Mn) = b1
m

Avgn (m)
+ b2

m2

Avgn
(
m2
) + bah1 (m = ah)

+
2∑

p = 1

[
cpcos

(
2π p

m
Mn

)
+ dpsin

(
2π p

m
Mn

)]
, (12)

where Avgn (m) = (Mn + 1)/2, Avgn (m2) = (Mn + 1)(Mn + 2)/6, and 1(m = ah)
indicates an after-hours trading segment at m = Mn .17

As discussed above, intradaily futures returns were constrained by endoge-
nous price limits or exogenous market closings on 103 occasions over the 1989
to 2002 period. In such cases, I aggregate log futures returns over additional
periods until the trading constraint or market closing is no longer in effect, and
I treat the yearly time interval associated with that aggregate log return as
the sum of the spanned τnm’s. This approach is equivalent when filtering V t to
treating the subintervals of the full interval as missing observations.

Figure 1 shows the Vjump1b estimates of the intradaily and overnight vari-
ance patterns.18 Overnight trading (including trading in the first 15 minutes
of Wednesday morning) typically accounts for 18.8% of the return variance
from Tuesday close to Wednesday close. Intradaily trading over the remainder

17 There were no after-hours sessions from October 23 to November 6, 1987.
18 Because the results from other one-factor models are almost identical, I also use the Vjump1b

time parameter estimates in the multifactor Vjump2 and Vjump3 models, to speed up optimization.
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Figure 2. Estimated intradaily 15-minute horizons and quadratic variation over 1985 to 2008,
as percentages of the intradaily totals. The shaded areas indicate the period-specific estimated
components of quadratic variation from the Vjump1b model. The black rectangles are period-
specific realized variances as percentages of total intradaily estimated quadratic variation.

of Wednesday accounts for the remaining 81.2%. These patterns are roughly
comparable for other days of the week. As shown in Figure 1, there is a U-
shaped weekly pattern to overnight return variance and an inverse U-shaped
pattern to intradaily variance, with the sum of the two imparting a roughly flat
but slightly increasing trend in business day variance across the week. Holi-
days during the week or as part of a holiday weekend substantially increase
the variance of “overnight” returns that span those holidays. Intradaily trad-
ing on half-days adjacent to holidays have only 37.5% the variance of a regular
intradaily trading interval.

Figure 2 shows the intradaily pattern of effective time horizons for 15-minute
returns over 8:45 AM through 3:16 PM for the longer trading days on September
30, 1985 through December 31, 2008, excluding the initial 8:30 to 8:45 interval.
For comparison, period-specific average filtered quadratic variations and their
diffusive variance, tiny jump, and big jump components from the Vjump1b
model are also plotted, as are period-specific realized variances observed over
1985 to 2008. The roughly U-shaped intradaily pattern in time horizons roughly
reflects the intradaily pattern of realized variance. Average filtered quadratic
variation is approximately but not exactly equal to average realized variance,
with diffusive variance and tiny jump components responsible for 85% of the
total intradaily quadratic variation. The realized variance and big jump outliers
in the second 9 to 9:15 period appear attributable to large 3.5% to 5% drops
in the stock market on October 19, 20, and 22, 1987, rather than to regularly
scheduled announcements at 9 AM CST.19

The U-shaped pattern in time horizons and realized variances mimics
Andersen and Bollerslev’s (1997) Figure 6b, which is estimated on five-minute

19 Andersen and Bollerslev (1998) find pronounced announcement effects evident in five-minute
currency returns at 9 to 9:05 AM CST.
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S&P 500 futures returns using a GARCH model. Variance peaks in the after-
noon at 2:15 to 2:30 PM CST and falls off thereafter, especially in the after-hours
3 to 3:15 PM trading segment. Andersen and Bollerslev (1997) emphasize that
it is critical to account for this periodic intradaily pattern, which if ignored
would strongly affect estimates of variance mean reversion. Accounting for
this intradaily periodicity is also important when estimating jump risk. Sub-
stantial distributional mixing occurs, with opening and closing returns having
roughly double the variance (40% higher volatility) of midday returns. Failing
to account for this mixing would exaggerate the conditional leptokurtosis of 15-
minute returns and increase the estimated magnitudes of intradaily jump risk.

E. Volatility and Jump Parameter Estimates

Tables B.I to B.V in Appendix B contain estimates of the other jump-diffusion
parameters that describe the evolution of diffusive spot variances V t and the
distributions of jumps. Five models are considered, all sequentially nested:

Model Variance processes Jumps in log futures prices

SVJ1 One-factor diffusive process for V1t; no
volatility jumps

Normally distributed jumps with
V1t-dependent jump intensity

Vjump1a One-factor jump-diffusion Jumps are correlated with V1t jumps
and have a V1t-dependent jump
intensity

Vjump1b One-factor jump-diffusion Two jumps: one uncorrelated with V1t
jumps, one correlated. Both have
V1t-dependent intensities

Vjump2 Two-factor additive variance process.
V1t follows a jump-diffusion, while
V2t is a pure-jump volatility spike
process

Three jumps, with the last two
correlated with V1t and V2t jumps,
respectively

Vjump3 Three-factor additive variance process.
V1t follows a jump-diffusion, while
V2t and V3t are pure-jump volatility
spike processes

Four jumps, with the last three
correlated with V1t, V2t, and V3t
jumps, respectively

I estimate all of the above models with the constraint λ j0 = 0 for j ≤ 1, based
on evidence in Bates (2006, Table 7) supporting that restriction.20 In addition,
I estimate the models Vjump20 and Vjump30 with λ j0 �= 0 for j ≤ 1 and with
the self-exciting jump components suppressed by setting λ j j = 0 for all j ≥ 1.

Comparing the models in Table B.I and in Figure 3 points to two important
sources of overall improvement in fit. The first relates to accurately modeling
high-frequency price changes of zero to five ticks, which account for 42% of the
data. Of primary importance is the introduction in model Vjump1b of a second
futures jump component N0t that is uncorrelated with variance jumps. This

20 Relaxing this constraint for the Vjump3 model raises the log likelihood from 893,432.73 to
892,438.82—a small but statistically significant change.
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Figure 3. Cumulative log likelihood improvements relative to the one-factor SVJ1 model, and
impact of eliminating self-exciting jumps in the Vjump2 and Vjump3 models. (Color figure can be
viewed at wileyonlinelibrary.com)

futures jump component is estimated as a high-frequency, small-amplitude
jump component in Vjump1b, and is even higher in frequency and smaller in
amplitude in the more general Vjump2 and Vjump3 models (Table B.IV). While
observationally equivalent for daily returns to just scaling up diffusive variance
V1t, the N0t futures jump component helps model the 15-minute price changes
of zero to five ticks more precisely. The adjusted correlation parameter

ρadj ≡ ρ + ρ1λ11E
(
γ 2

V 1

)√
σ 2 + λ11E

(
γ 2

V 1

) √
1 + λ01E

(
γ 2

0

)+ λ11E
(
γ 2

1

) (13)

in Table B.III indicates the overall leverage effect—the equivalent of ρ =
Corr(dW1t,dWV t) if the (γ0, γ1, γV 1) shocks were replaced by diffusive shocks
with equivalent variances and covariances.

The second major source of improvement in fit is the impact of the 1987 crash.
Better modeling of intradaily developments on October 19 and 20 accounts
for almost a quarter of the log likelihood improvement in-sample of the most
general Vjump3 model versus SVJ1 in Figure 3. The more general models
also fit data in the fall of 2008 progressively better, indicating that the two
largest stock market crises in the 1983 to 2008 period substantially influence
parameter estimates. Turbulent markets at other times (the first Gulf War,
market declines in 1997 and 1998, and post-9/11) do not appear to have had as
much of an impact on log likelihood fits. However, log likelihoods are generally
increasing throughout the full 1983 to 2008 sample.

The more general models also fit better out-of-sample over 2009 to 2016.
The progressively better fit of the Vjump1b, Vjump2, and Vjump3 models
out-of-sample is entirely attributable to better modeling of zero to three tick
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price movements, which account for 42% of observed E-mini price changes. Fur-
ther breakdown in Table B.II by volatility environment indicates that these
models fit all data better regardless of the recent level of realized volatility,
both in-sample and out-of-sample. The Vjump20 and Vjump30 models without
self-exciting jumps do worse both in-sample (mostly during the 1987 crash) and
out-of-sample.

The multifactor Vjump2 and Vjump3 models have progressively richer de-
scriptions of variance dynamics relative to the nested Vjump1b model. In par-
ticular, these two models indicate that substantial self-exciting volatility spikes
are an important component of volatility evolution. In the Vjump2 estimates,
V2t is typically near zero and has a V1t-dependent intensity that averages
out to λ20 + λ21E(V1t) = 48 jumps per year. If a variance jump occurs of av-
erage size 0.07, V2t increases to (0.265)2 and the jump intensity increases by
λ22 γ̄V 2 = 1,486 jumps per year, or six jumps per day. This increase in jump in-
tensity implies that λ22γ̄V 2/(β2 − λ22γ̄V 2) = 3.0 additional variance jumps are
expected from every average-sized jump in V2t.21 Furthermore, the positively
skewed exponential distribution can have V2t jumps that are two or three times
the average jump magnitude γ̄V 2, with corresponding projections of six or nine
additional variance jumps. The associated futures price jumps have roughly
zero mean, a standard deviation of 0.36%, and a strongly negative correlation
(−0.92) with the variance jumps. The V2t spikes resulting from variance jumps
are highly transient, with an estimated half-life of roughly one-third of a day.

The Vjump3 model decomposes variance jumps into small, medium, and
large sizes, with different properties and different associations with the futures
returns from which they are filtered. The moderately frequent V2t jumps of
average size 0.070 in the Vjump2 model are further divided in the Vjump3
model into frequent jumps in V2t of average size 0.022 and rarer jumps in
V3t with average size 0.076. The V2t jumps have little self-propagation, die off
rapidly within the day (half-life of 0.08 days), and primarily add additional
and transient noise to the combined spot variance process V1t + V2t. The large
and relatively rare V3t jumps have a −0.76 correlation with associated log
futures jumps γ3 ∼ [−0.2%, (1.0%)2], indicating that they are inferred from
the largest 15-minute or overnight futures returns. V3t reverts toward zero
with a half-life of 1.6 days, implying some spillover across days. Sequences of
V3t jumps typically initiate from near zero values of V3t, with a V1t-dependent
intensity that averages out to λ30 + λ31E(V1t) = 7.4 jumps per year. Conditional
on initiation, each average-sized V3t jump generates an expected additional
4.9 jumps through its impact on expected future jump intensities.

Let V tot
it be the total impact of the state variable Vit on diffusive and jump

variance, using the variance factor loadings of Table B.V. Figure 4 graphs
the incremental contributions of the total variance components to end-of-day

21 This calculation is based on a continuous-time stochastic intensity λ2t = λ20 + λ21V1t + λ22V2t,
with reversion rate β2 − λ22γ̄V 2 for V2t. The increase in expected future jumps (from an increase in
expected future jump intensities) is approximately equal to but less than the number when jump
intensities are constant within periods.
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Figure 4. Components of annualized conditional volatility and daily estimated number
of jumps, 1983 to 2016. Total end-of-day variance estimates V tot

it from the three-factor variance
model Vjump3 include the contributions to both diffusion risk and jump risk. (Color figure can be
viewed at wileyonlinelibrary.com)

total spot volatility (V tot
1t + V tot

2t + V tot
3t )1/2 over the 1983 to 2016 period. The

total estimated number of jumps each day (from close to close), calculated
using the filtration procedure described in Section I.C above, is also shown.
Figure 4 indicates that major but substantially transient volatility spikes from
V3t jumps tend to occur when core volatility

√
V tot

1t is relatively high. Further-
more, the volatility spikes are typically the outcome of multiple synchronous
jumps in log futures prices and underlying volatility. For instance, the −32.7%
change in the log futures price on October 19, 1987, from the previous Friday’s
closing value was the result of an estimated 34 jumps in V3t. Similarly, the
+5.7% and +17.4% returns on October 20 and 21 were the outcome of 97 and
52 jumps, respectively, in V3t. The turbulent and predominantly falling market
in the fall of 2008 was the result of multiple intradaily and overnight jumps in
V2t and V3t that accompanied predominantly negative stock market jumps.

Figure 5 shows the intradaily evolution of the three factors over October 12
to 30, 1987. A declining stock market over the week of October 12 to 16, in-
cluding an accelerating drop on Friday, October 16, set the stage for the stock
market crash of October 19. A volatility spike began developing late on Fri-
day afternoon, and was further stimulated by the log futures price dropping
5.4% by 9:15 AM on Monday, October 19. Substantial intradaily drops over
October 19 generated additional substantial estimated increases in the volatil-
ity spike factor

√
V tot

3t , which ended the day at roughly 193% annualized (2.1%
per quarter-hour). Major market turbulence on October 20 contributed to fur-
ther estimated increases in

√
V tot

3t , which peaked at 282% annualized (3.1% per
quarter-hour) at midday before ultimately declining in the afternoon and on
October 21. Log futures prices fell 5% between 9 and 9:15 AM on October 22,
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Figure 5. Annualized intradaily conditional volatility factors over October 12 to 30,
1987 (100% annualized = 1.1% per quarter-hour). The December 1987 S&P 500 futures price (+)
is on the right scale. (Color figure can be viewed at wileyonlinelibrary.com)

Figure 6. Annualized intradaily conditional volatility factors over September and
October 2008 (100% annualized = 1.1% per quarter-hour). September and December 2008 S&P
500 futures prices (+) are on the right scale. (Color figure can be viewed at wileyonlinelibrary.com)

prompting another short-lived volatility burst that decayed as the market re-
bounded and stabilized.

Figure 6 shows the comparable evolution in factors over September and
October 2008. The sharp shocks to the volatility spike factor

√
V tot

3t in Septem-
ber largely reflect various announcements: the government takeover of FNMA
and FHLMC announced on September 7, the Lehman Brothers bankruptcy
declaration before markets opened on September 15, and the Senate’s initial
rejection of the Troubled Asset Relief Program (TARP) on September 29. Inter-
estingly, the subsequent passage of TARP on October 3 also caused a decline in
the market, and an associated jump in

√
V tot

3t . The House of Representatives’ vote
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to approve TARP at 1:27 EST was accompanied by a −0.74% drop in futures
prices over 12:15 to 12:30 CST, and a further decrease of −1.76% by 12:45.√

V tot
3t rose immediately in response, from 5.7% to 9.2% to 44.2% annualized

over 12:15 to 12:45. A declining market for the remainder of the day kept
√

V tot
3t

high throughout the afternoon. The subsequent week of October 6 to 10 saw
a further market decline of 20% and associated high values of volatility. The
market remained turbulent throughout the remainder of October.

F. Return Diagnostics

Whether the above models are broadly capturing the conditional distri-
butions of returns can be examined by looking at the normalized returns
zt+1 = N−1[CDF(yt+1|Y t, �̂)], where CDF(·) is the conditional cumulative dis-
tribution function derived from the specified models and computed by Fourier
inversions involving the associated conditional characteristic functions. Under
correct model specification, these residuals are independent draws from a stan-
dard Gaussian distribution. Table I reports in-sample summary statistics for z’s
from various models, while Figure 7 presents related normal probability plots.
Normalized returns are computed at two horizons: for intradaily/overnight
returns conditional on past data, and for daily returns (from close to close)
conditional on past intradaily and overnight data up through the close of the
preceding day. In addition, 100 sample paths of data over 1983 to 2008 were
simulated at the estimated parameters and time horizons, and were used to
generate 95% confidence intervals for Figure 7.

Table I and Figure 7 indicate that the multifactor models are doing a pro-
gressively better job in-sample of capturing conditional distributions at the
intradaily/overnight frequencies used when estimating the models. The first
four moments are roughly those of a standard normal distribution, although
there are statistically significant deviations in all cases. The graphs in the
first column of Figure 7 show that the multifactor models Vjump2 and Vjump3
help capture intradaily outliers, which are often substantially sequential. Both
models do well for |z|-values less than four, but have some difficulty in cap-
turing the extreme tails (|z|> 4). The Vjump2 model underpredicts extreme
negative returns, while the Vjump3 model overpredicts those returns. Both
models underpredict extreme positive returns (z > 4).

The statistics in Table I for daily data indicate that the one-factor variance
models Vjump1a and Vjump1b have difficulty capturing the stock market crash
of October 19, 1987. Whereas the Vjump1b model partially explains any single
15-minute intradaily outlier, the probability under that model of observing
the sequence of outliers that culminated in the overall −32.7% change in log
futures prices is low—the equivalent of observing a seven standard deviation
draw from a standard normal distribution. By contrast, the two-factor model
Vjump2 successfully captures the 1987 outlier as a volatility spike that is
plausible under the (in-sample) parameter estimates. The Vjump3 model does
even better at capturing that one day.
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Figure 7. Normal probability plots for various models. Panels in the first column compare
the ordered normalized residual values zt+1 = N−1[CDF(yt+1|Y t, �̂)] (+ symbols on the vertical
axis) with the models’ predicted values (diagonal lines) over 1983 to 2008. The second column does
the same for daily returns conditional on intradaily and overnight data Y t through the end of the
preceding day. Gray areas show 95% confidence intervals from 100 simulated paths. (Color figure
can be viewed at wileyonlinelibrary.com)
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Table I
Statistical Properties of the Normalized Returns for Parameter

Estimates from Various Models
This table presents summary statistics for the normalized returns zt+1 = N−1[CDF(yt+1|Yt, �̂)]
at intradaily/overnight and daily frequencies. Under correct model specification, the zt+1 values
should be independent draws from a Gaussian N(0,1) distribution. Heteroskedasticity-consistent
standard errors are in parentheses

Vjump1a Vjump1b Vjump2 Vjump3

Intradaily and overnight returns (174,854 observations)

Maximum 6.49 5.46 5.54 4.79
Minimum −7.38 −5.17 −5.01 −4.41
Mean 0.064 0.063 0.053 0.050
(Std. error) (0.002) (0.002) (0.002) (0.002)
Std. deviation 0.956 0.970 0.999 1.001
Skewness 0.03 0.01 −0.01 −0.02
Excess kurtosis −0.11 −0.20 0.02 0.00
Corr(zt+1, zt) −0.013 −0.015 −0.012 −0.013
(Std. error) (0.003) (0.002) (0.002) (0.002)
Corr(|zt+1|, |zt|) 0.016 0.025 0.006 −0.005
(Std. error) (0.003) (0.003) (0.002) (0.002)

Daily returns (6,558 observations)

Maximum 4.10 3.99 3.54 3.65
Minimum −7.39 −7.11 −5.17 −4.16
Mean 0.004 0.013 0.019 0.005
(Std. error) (0.013) (0.013) (0.013) (0.013)
Std. deviation 1.051 1.037 1.028 1.032
Skewness 0.01 0.03 0.00 0.04
Excess kurtosis 0.79 0.53 0.17 0.24
Corr(zt+1, zt) −0.004 −0.006 −0.004 −0.010
(Std. error) (0.012) (0.012) (0.012) (0.012)
Corr(|zt+1|, |zt|) −0.070 −0.068 −0.070 −0.067
(Std. error) (0.012) (0.012) (0.012) (0.012)

Autocorrelation estimates for z and |z| are also given in Table I, as tests of the
independence implications of a correctly fitted model. All models have a small
but statistically significant negative autocorrelation in intradaily/overnight
normalized returns—a result reflecting a small negative autocorrelation in
the original log-differenced futures prices. At the daily horizon, the autocor-
relation in normalized returns is smaller and not statistically significant.
Autocorrelations in absolute normalized returns |z| for intradaily/overnight
data are reduced (although still statistically significant) under the multifac-
tor Vjump2 and Vjump3 models, which indicates that the multifactor models
capture intradaily volatility dynamics better. All models have a statistically
significant −7% autocorrelation in daily |z|, which suggests the models are not
fully capturing daily volatility dynamics.
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II. Realized Variance

Define

RV n =
Mn∑

m=1

[
ln
(
Fn,m
)− ln

(
Fn,m−1

)]2 (14)

as the daily realized variance on day n from Mn ≤ 26 sequential intradaily
time intervals that begin 15 minutes after pit trading in the S&P 500 futures
contract opens and typically have a duration of about 15 minutes. The realized
variance literature relies heavily on the asymptotic convergence of realized
variance to quadratic variation as the sampling frequency increases:

QVn ≡
∫ t+τdaily

n

s = t
(d fs)2 =

∫ t+τdaily
n

s=t

⎛⎝ I∑
i=1

Visds +
J∑

j=1−K

γ 2
j dNjs

⎞⎠ . (15)

The correlation between realized variance and quadratic variation in simu-
lated Vjump3 data is 95% at the 15-minute horizon, and rises to 98% and 99.7%
at five- and one-minute horizons, respectively. Because quadratic variation is
an affine latent characteristic in affine models, with an analytical conditional
characteristic function that is given in Appendix A, examining distributional
properties of realized variance as a proxy for those of quadratic variation is
another potentially useful diagnostic of the proposed time-series models.

The effective length of the intradaily trading period varies on a daily basis,
making it desirable to rescale realized variance by the aggregate intradaily
time interval

252τdaily
n =

Mn∑
m=1

252τnm = fdaily exp
(
β ID

′dID
n

)
, (16)

where exp(β ID
′dID

n ) are the intradaily day-of-the-week effects graphed in
Figure 1, and 252 converts the time units from yearly to daily. In particular,

Rvoln =
√

RVn

252τdaily
n

(17)

is the realized volatility on a daily (24-hour) Wednesday equivalent basis that
can be compared to conditional or unconditional volatility assessments from
daily close-to-close returns. The major impact of the daily rescaling is to elim-
inate the impact of half-days adjacent to holidays, which otherwise look like
inliers.

Table II describes characteristics of various transforms of realized volatility,
while Figure 8 graphs realized variance and volatility. Realized variance is an
extremely skewed and leptokurtic random variable, with especially pronounced
outliers during October 19 to 22, 1987. By contrast, a log transform for volatil-
ity (or variance) appears substantially better behaved, with substantially less
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Table II
Summary Statistics for Daily Realized Volatility Measures

This table presents summary statistics for transforms of realized volatility Rvoln =
√∑

(� ln F) 2

252τn
,

where 252τn is the estimated length of the intradaily period in days, with an average value of
0.774 (Vjump1b estimates). ARMA models are estimated in RATS, using the Bayes information
criterion for model selection. Major Rvoln outliers: 26.9% (10/20/1987), 14.8% (10/19/1987), 11.4%
(10/22/1987), and 8.7% (10/10/2008).

Rvol2
n Rvoln ln(Rvoln)

Maximum 0.027530 26.93% −1.312
Minimum 0.000003 0.17% −6.380
Mean 0.000130 0.91% −4.825
(Std. error) (0.000012) (0.01%) (0.006)
Median 0.000062 0.79% −4.847
Std. deviation 0.000982 0.68% 0.477
Skewness 63.4 12.5 0.63
Excess kurtosis 4553 367 1.83
ARMA model ARMA(3,1) ARMA(3,1) ARMA(3,2)

Figure 8. Daily realized variance (regular scale) and volatility (log scale).
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pronounced skewness and excess kurtosis in Table II and more discernable per-
sistence in Figure 8. Indeed, Figure 8 appears to offer significant support for
the two-factor diffusive log variance process estimated on daily data by Cher-
nov et al. (2003), in contrast to the affine specifications explored here. However,
as discussed in Appendix A.3, this paper’s extended Duffie, Pan, and Singleton
(2000) volatility jump model implies a heavy-tailed distribution for quadratic
variation that is potentially compatible with the occasional extreme outliers in
realized variance.

A Box-Jenkins analysis indicates that realized variance follows an
ARMA(3,1) process, using a Bayes information criterion for model selection.
The statistical reliability of the least squares ARMA estimation methodology
is questionable given the extreme nonnormality of realized variance data. Nev-
ertheless, the result is qualitatively consistent with the Vjump3 model, which
implies an ARMA(3, 3) process for quadratic variation.

Table III compares the models’ ability to forecast realized variance with two
other methodologies: ARMA forecasts of average intradaily realized variances
at 1-, 5-, and 21-business-day horizons, and VIX-based forecasts of average
realized variance (including overnight) over 21 business days. For the 1983
to 2008 period used in the original estimations, all Vjump models outperform
ARMA-based forecasts, and the more general models do better. All forecasts
fit poorly, because of extreme realized variances observed during the 1987
crash.

All forecasts perform comparably at a one-day horizon over the quieter 1990
to 2008 period that excludes the 1987 crash. The Vjump3 outperforms the
simpler models at 5- and 21-day horizons. Unsurprisingly, the VIX-based fore-
casting methodology outforecasts all of the Vjump models at the 21-day horizon,
given options markets have access to more information than forecasts based
on past returns. All models have similar forecasting accuracy at one- and five-
day horizons out-of-sample over the 2009 to 2016 period. The Vjump3 model of
volatility dynamics outperforms the simpler models at the 21-day horizon, and
comes close to matching the VIX-based forecasts.

Finally, how well the proposed models match the overall conditional
distributions of realized variance realizations can in principle be evalu-
ated via normal probability plots, in the same fashion used in Figure 7
above for intradaily/overnight and daily returns. Normalized residuals zRV

n+1 =
N−1[CDFQV (RVn+1|Y n,Mn, �̂)] are computed by Fourier inversion, using the
conditional characteristic function of quadratic variation in Appendix A.

It turns out, however, that conditional distributions of realized variances can
differ substantially from those of quadratic variation. Whereas the correlation
between 15-minute realized variance and quadratic variation is 95% for data
simulated from the Vjump3 model, the correlation of the corresponding z-values
is only 80%. (The z correlations on simulated Vjump3 data rise to 92% and
98% for five- and one-minute realized variances, respectively.) Consequently,
the graphs in Figure 9 use simulation-based bias corrections and confidence
intervals to compare what should be observed for ordered zRV

n+1 values with what
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Table III
Forecasts of Average Daily Realized Variances over 1983 to 2016

This table presents the fit of various forecasts of future realized variances, which are measured in
squared percentages. An average intradaily realized variance of 1.31 over 1983 to 2008 corresponds
to a 1.14% realized volatility, scaled as in Table II to a daily horizon. VIX-based forecasts of average
realized variances over 21 business days use the regression

252 RV t+1→t+21 = −0.08 − 0.19 V IXt + 0.89 V IX2
t

(0.49) (0.77) (0.30)

on daily data over 1990 to 2008. Standard errors for the above regression are in parentheses,
corrected for heteroscedasticity and for serial correlation from overlapping forecasts.

Intradaily Realized Variance (Scaled)

One-Day Five-Day 21-Day

Intradaily/
Overnight
21-Day RV

1983–2008 (in-sample): Avg(RV) = 1.31 intradaily, 1.43 intradaily and overnight

SD(RV): 9.83 6.06 3.62 4.73
R2

ARMA(3,1) 0.132 0.087 0.063
Vjump1b 0.139 0.128 0.094 0.101
Vjump2 0.161 0.099 0.099 0.120
Vjump3 0.270 0.174 0.132 0.137

1990–2008 (in-sample): Avg(RV) = 1.18 intradaily, 1.26 intradaily/overnight

SD(RV): 2.69 2.23 1.97 2.17
R2

ARMA(3,1) 0.440 0.421 0.288
Vjump1b 0.535 0.585 0.350 0.327
Vjump2 0.517 0.521 0.366 0.342
Vjump3 0.503 0.610 0.440 0.419
VIX-based 0.537

2009–16 (out-of-sample): Avg(RV) = 0.94 intradaily, 1.17 intradaily/overnight

SD(RV): 1.90 1.37 1.09 1.32
R2

ARMA(3,1) 0.280 0.345 0.317
Vjump1b 0.351 0.445 0.319 0.333
Vjump2 0.360 0.501 0.436 0.454
Vjump3 0.314 0.447 0.475 0.537
VIX-based 0.569

is actually observed. In Table IV, I use similar simulation-based benchmarks
to examine the moments and other characteristics of the zRV

n+1 values.
Two results stand out. First, the more general models match the conditional

distributions better, using simulation-based benchmarks that correct the bi-
ases of CDFs based on quadratic variation. The Vjump2 model substantially
reduces the frequency of realized variance inliers and outliers relative to the
Vjump1b model. The Vjump3 model captures outliers even better than the
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Figure 9. Normal probability plots for intradaily realized variance. The panels compare
the ordered normalized residual values zRV

n+1 = N−1[CDFQV (RVn+1|Y n,Mn, �̂)] (+ symbols on the
vertical axis) with predicted values (dotted lines) based on quadratic variation’s conditional CDFs
and with average values (solid lines) from 100 runs of simulated data. The grey shaded areas are
95% confidence intervals for the deviation between observed data and average simulated values.
(Color figure can be viewed at wileyonlinelibrary.com)
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Table IV
Summary Statistics for the Normalized Residuals of Realized

Variances over 1983 to 2008, on Actual and Simulated Data
This table presents statistics for the normalized residuals zRV

n+1 = N−1[C DF QV (RVn+1|Yn,Mn, �̂)],
which should be i.i.d. standard Gaussian conditional on correct specification and on 15-minute re-
alized variance closely approximating quadratic variation. Comparison of actual versus simulated
summary statistics corrects for biases from a poor approximation. Simulated data are from 100
runs of 6,557 days each, using model-specific parameter estimates and time gaps. The t-statistics
for compatibility between actual and simulated statistics are [Mact − Avg(Msim)]/[SD(Msim)

√
1.01].

Simulated Data

Statistic Actual Data Average Std. Deviation t-Statistic

Vjump1b
Maximum >7a 3.80 0.34 9.41
Minimum −7.55 −4.52 0.42 −7.17
Mean −0.191 −0.106 0.012 −7.27
Median −0.155 −0.093 0.017 −3.59
SD 1.265 1.158 0.011 9.99
Skewness −.32 −.12 0.03 −8.17
Excess kurtosis 0.55 −.28 0.05 16.40
Vjump2
Maximum 6.46 3.80 0.31 8.52
Minimum −5.50 −5.13 0.52 −0.71
Mean −0.225 −0.163 0.014 −4.35
Median −0.121 −0.096 0.022 −1.16
SD 1.250 1.211 0.009 4.10
Skewness −0.40 −0.28 0.03 −3.50
Excess kurtosis 0.16 −0.13 0.06 4.41
Vjump3
Maximum 5.88 3.80 0.34 6.04
Minimum −5.62 −5.01 0.40 −1.53
Mean −0.190 −0.156 0.012 −2.77
Median −0.119 −0.112 0.017 −0.39
SD 1.245 1.215 0.011 2.88
Skewness −0.33 −0.20 0.03 −3.78
Excess kurtosis 0.20 −0.10 0.07 4.53

aThe normalized residual observed on October 20, 1987 could not be computed for the Vjump1b
model, but is in excess of 7. The summary statistics use a value of 7 for that observation.

Vjump2 model, but does slightly worse with regard to inliers. In all cases, how-
ever, the realized variance realization of (26.9%)2 on October 20, 1987 remains
a major positive outlier.

Second, even the most general Vjump3 model has substantial and statis-
tically significant deviations from simulation benchmarks, in both Table IV
and Figure 9. While these affine models capture the conditional distributions
of daily returns reasonably well, as indicated in Figure 6, there appears to
be significant room for improvement in their predictions for the overall con-
ditional distributions of realized variances—especially the frequency of re-
alized variance inliers. However, the Vjump3 model does a reasonably good
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job of capturing median, above median, and extreme realizations of realized
variance.

III. Option Pricing Implications

A final criterion of the various models is how well they fit observed option
prices. The diagnostics below use implicit volatilities from daily end-of-day
settlement prices of American options on S&P 500 futures over January 1990
to June 2016. Because this paper focuses on high-frequency properties of stock
index returns, I use the shortest maturity available, down to at least one full day
before expiration. One-day serial option prices are typically from the Thursday
settlement prior to expiration at Friday’s close, while one-day quarterly option
prices are typically from the Wednesday settlement prior to Friday’s Special
Opening Quotation. Maturities exceeding one month are not examined, because
Bates (2012, Table 8) argues that longer term volatility dynamics not modeled
in this paper become important at those horizons.

Similar to Andersen, Fusari, and Todorov (2015), I construct representative
prices and associated implicit volatilities for strike prices Xit that are integer
multiples of the at-the-money implicit volatility,

dit ≡ ln (Xit/Ft)
IV atm

t
√

Tt
= 0, ±1,±2, . . . , (18)

where Ft is the futures settlement price and Tt is the option maturity, estimated
using the Vjump1b time horizon parameters graphed in Figures 1 and 2. Be-
cause of much greater depth in puts than calls, out-of-the-money put prices
are interpolated over zero to six standard deviations (d = {−6, . . . ,0}), while
call prices are interpolated over zero to two standard deviations (d = {0,1,2}),
using the constrained cubic spline interpolation methodology of Bates (1991,
2000).

Any pricing kernel that is affine in the underlying risks implies an affine
risk-neutral process that can be used to price European options on futures.
This paper uses the following parsimonious pricing kernel discussed in Bates
(2006, pp. 944–945):

d ln Mt = μm dt − R d ln Ft + R′
V dV t, (19)

where the risk premium parameters rp≡ (R, RV ) determine the compensa-
tions for equity, volatility, and jump risks. I examine three different parame-
terizations of rp:

(i) rp1: the (R, RV ) = (2.45, 0) parameters from Bates (2012), based on the
estimated sensitivity over 1926 to 2006 of the daily conditional equity
premium to V t;

(ii) rp2: (R, RV ) > 0, using the best fits to option prices over 1990 to 2008;
and

(iii) rp3: unconstrained (R, RV ), again using the best fits to option prices.



222 The Journal of Finance R©

As discussed in Appendix C, the risk premia alter the intensity and average
jump sizes of the underlying exponential and Gaussian jumps. The first two
specifications imply more frequent and larger negative jumps in log futures
prices under the risk-neutral measure than under the objective measure. The
risk premia also affect the conditional equity premium of futures returns.

This paper uses option pricing fit as an additional diagnostic of the merits of
the underlying time-series models. Consequently, options are priced conditional
on the time-series parameter estimates and the filtered end-of-day conditional
distributions ĝt|t of V t. I evaluate fit using the loss function

RMSE (rp) =
√√√√ 1

NOBS

∑
t,i

[
ô
(
Ft,Tt, Xit, rt|ĝt|t, rp

)− oB(Ft,Tt, Xit, rt, IVit)

oB
IV (Ft,Tt, Xit, rt, IVit)

]2

, (20)

where ô(·) is the model-specific European put or call option price estimate
given the inputs,22 oB

it(·) is the corresponding Black (1976) European futures
option price given implicit volatility IVit from interpolated American option
prices, and oB

IV (·) is the corresponding option vega. The loss function uses the
Broadie, Chernov, and Johannes (2007) approach of extrapolating from Ameri-
can to European futures option prices, while the inverse vega weights make the
loss function approximately the root mean squared error of estimated versus
observed implicit volatilities.

Estimates of rp = (R, RV ) for the rp2 and rp3 specifications are based on
minimizing equation (20) for standardized option prices over 1990 to 2008, with
2009 to 2016 used for out-of-sample diagnostics. Three additional criteria are
used to assess the resulting fits:

(i) the level of the volatility smirk, as measured by IV atm
t ;

(ii) the slope of the volatility smirk, as measured by the divergence SKEWt ≡
IV call

t − IV put
t between implicit volatilities of calls and puts that are one

standard deviation out-of-the-money; and
(iii) the log likelihood implications over 1983 to 2016 of the rp estimates for

conditional intradaily/overnight equity premia.

The second criterion is the Bates (1991, 1997) skewness premium measure of
asymmetry in risk-neutral distributions, expressed in implicit volatility terms.
Backus et al.’s (1997) Gram-Charlier approximation indicates that implicit
volatilities from options that are one standard deviation out-of-the-money are
linearly sensitive to skewness but insensitive to excess kurtosis, making this
divergence roughly proportional to risk-neutral skewness.23

Results from the various time-series models and rp specifications are re-
ported in Table V. Overall, more state variables (Vjump1b, . . . , Vjump3)

22 See Bates (2012), equation (50).
23 Bakshi, Kapadia, and Madan (2003) provide a more accurate method of estimating risk-

neutral skewness from option prices. However, their approach requires a greater strike price
range for calls than is reliably available over 1990 to 2008, whereas calls one standard deviation
out-of-the-money are almost always actively traded.



How Crashes Develop 223

Table V
Option and Time-Series Fit from Various Specifications

of Risk Premia
This table presents how well the models fit option prices and returns using three estimates of risk
premia: (R; RV ) = (2.45; 0) (rp1), (R; RV ) > 0 (rp2), and unconstrained (R; RV ) (rp3). IV-RMSE
is the overall fit to all short-maturity options’ implicit volatilities over 1990 to 2016.� ln L | {ĝt|t}
is the change in log likelihoods of intradaily and overnight returns over 1983 to 2016 from the
resulting changes in the conditional equity premium, with filtered ĝt|t unchanged. ÎV

atm
is the

predicted at-the-money implicit volatility. SK̂EW = ÎV
call − ÎV

put
is the predicted slope of the

volatility smirk, using calls and puts that are one standard deviation out-of-the-money.

Overall IV-RMSE, in % Time series: � ln L | {ĝt|t}

rp1 rp2 rp3 rp1 rp2 rp3

Vjump1b 4.41 4.37 4.32 5.49 1.58 −1,484
Vjump2 4.49 4.00 3.93 5.50 6.76 −26,533
Vjump3 4.00 3.79 3.63 −10.41 −12.00 −7,814

Avg( ÎV
atm

) data RMSE( ÎV
atm

)
Vjump1b 17.15 17.48 17.38 17.06 4.05 4.03 4.02
Vjump2 15.86 16.75 16.68 17.06 4.09 3.75 3.81
Vjump3 15.52 16.78 16.83 17.06 3.73 3.29 3.28

Avg(SK̂EW) data RMSE(SK̂EW)
Vjump1b −1.86 −1.91 −2.03 −3.97 2.72 2.72 2.61
Vjump2 −2.11 −2.27 −2.60 −3.97 2.37 2.31 2.06
Vjump3 −2.16 −1.90 −2.37 −3.97 2.24 2.54 2.18

generally lead to more accurate option prices, with further increases in ac-
curacy when the (R, RV ) parameters are allowed greater flexibility. Overall
RMSE drops from 4.41% under the Vjump1b + rp1 specification to 3.63% un-
der the Vjump3 + rp3 specifications.24 The (R, RV ) parameters for rp3 that
best fit option prices yield highly implausible conditional equity premia over
1983 to 2016, whereas the constrained rp1 and rp2 specifications appear in-
nocuous. The implications for risk-neutral parameters are given in Table C.I in
Appendix C.

Much of the improvement in fit of Vjump3 versus Vjump1b appears at-
tributable to more accurate prediction of the overall level of implicit volatility,
as proxied by IV atm

t . This parallels the results in Table II that the Vjump3
model forecasts future realized variance more accurately at longer horizons
than the Vjump2 or Vjump1b models, and approaches the accuracy of the VIX-
based forecasts. The Vjump2 model generates the steepest and most accurate
predictions of the slope of the volatility smirk.

24 Andersen, Fusari, and Todorov (2015) achieve an overall RMSE of 1.40% across all maturities
over 1996 to 2010 for their best-fitting three-factor model. However, they use the Bates (1996,
2000) approach of estimating the risk-neutral parameters and implicit state variables that best
match observed option prices, with a penalty if the total daily implicit diffusive variance common
to both objective and risk-neutral measures diverges excessively from an intradaily nonparametric
estimate. By contrast, I estimate parameters and state variables from past intradaily and overnight
futures returns, with only a few additional rp parameters used to match option prices.



224 The Journal of Finance R©

Figure 10. Observed and estimated at-the-money implicit volatilities IV atm, and divergences
SKEW= IV call − IV put for calls and puts one standard deviation out-of-the-money. Option matu-
rities are the shortest available with at least one day to maturity. Line breaks in the observed and
estimated SKEW series indicate option maturity shifts from one day to one month. (Color figure
can be viewed at wileyonlinelibrary.com)

There is a strong maturity effect on the slope of the volatility smirk that all
models largely fail to capture. The volatility smirk measured by SKEW typically
flattens as options approach maturity. And while the Vjump3/rp2 estimates
graphed in Figure 10 are not far off at the one-day horizon, the estimates do
increasingly poorly at longer five- or 18-day horizons. Even the most flexible
risk-neutral parameterizations under the rp3 specification generally fail to
match this maturity effect, as shown in Table VI.

In sum, the time-series models fit observed option prices progressively better
as more state variables are added, with Vjump3 achieving the best overall fit.
However, there remains a substantial and systematic gap between predicted
and observed volatility smirks of less than one month’s maturity. Possible ex-
planations include greater downside jump risk, more aggressive leverage and
volatility feedback effects than those in the models, or greater aversion to
downside risk than is captured by the pricing kernel specification (19).

The first explanation seems unlikely. Jump-diffusive option pricing mod-
els with independent returns such as Bates (1991) or Andersen, Fusari, and
Todorov (2017) counterfactually predict that the volatility smirk should steepen
rather than flatten as options approach maturity. The third explanation is pro-
posed by Andersen, Fusari, and Todorov (2015) in the form of an additional
U-factor inferred from movements in risk-neutral left tail risk that is orthogo-
nal to movements in diffusive variance.
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Table VI
Average SK̂EW by Maturity (in Business Days)

This table presents average estimated SK̂EW = ÎV
call − ÎV

put
and corresponding observed val-

ues for the specified maturities, based on 311 to 316 monthly observations over 1990 to 2016.

Vjump1b Vjump2 Vjump3

rp1 rp2 rp3 rp1 rp2 rp3 rp1 rp2 rp3 data

One-day −1.25 −1.30 −1.34 −1.32 −1.41 −1.72 −1.22 −1.32 −1.76 −2.46
Five-day −1.95 −2.01 −2.11 −2.08 −2.26 −2.59 −1.92 −1.81 −2.31 −3.46
18-day −1.83 −1.87 −2.01 −2.19 −2.33 −2.66 −2.45 −2.02 −2.45 −4.70

Overall, however, I feel that exploring alternative models of leverage and
volatility feedback effects is the most promising area for future research. As
Das and Sundaram (1999) discuss, a direct relationship between volatility
smirks and option maturity at short maturities is suggestive of substantial
distributional randomization, such as from stochastic volatility plus leverage.
The time-series model in equations (1) to (3) is based on Duffie, Pan, and
Singleton (2000) because it is the earliest and most tractable volatility jump
model. But other time-series models even within an affine framework (e.g.,
Andersen, Fusari, and Todorov (2015)), as well as nonaffine models, might be
more compatible with short-maturity option prices.

IV. Summary

Finite-activity jump-diffusion models such as Merton (1976) posit that log-
differenced asset prices are drawn from a mixture of distributions, with major
daily outliers the outcome of a draw from a higher volatility distribution. This
model can be viewed as positing instantaneous but instantaneously transitory
spikes in intradaily and daily volatility. The intradaily evidence does not sup-
port this description of volatility evolution. Instead, large daily market move-
ments are the accumulation over the day of a series of rapid and self-exciting
intradaily increases in conditional volatility, typically accompanied by a falling
market. Volatility can accelerate rapidly from relatively low levels and can sub-
side quickly from high levels, but the shifts take time to develop within a given
day and can spill over into subsequent days. These short-lived volatility spikes
affect both diffusive and jump volatility, with the former more important. The
initiation of a volatility spike is more likely when core volatility is already high.

The central intradaily dynamic proposed and estimated in this paper con-
sists of self-exciting intradaily volatility spikes that accompany modest and
predominantly negative intradaily stock market jumps. The results are largely
consistent with the evidence from the nonparametric realized variance litera-
ture that intradaily price jumps tend to be small, with the largest ones in the
Vjump3 model having a standard deviation of 1%. Their importance lies more
in their dynamic implications: a signal that there is immediate risk of more
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price/volatility cojumps and of a run of such jumps that could accumulate into
a major daily price movement. Runs of successive intradaily price/volatility
cojumps generated market moves exceeding 10% in magnitude in 1987 and
2008.
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Appendix A: Joint Characteristic Functions

A.1. Models with One Underlying State Variable

The fundamental building blocks for the multifactor and multijump models
in this paper are based on the single-factor Duffie, Pan, and Singleton (2000)
model, which has constant-intensity synchronous correlated jumps in the log
futures prices ft and underlying spot variance Vt. Let xt be some additional la-
tent variable of interest: the accumulated number or size of jumps, or quadratic
variation and its integrated variance and squared jump components. Each of
these variables follows a pure jump process, which implies that ( ft, Vt, xt)
evolve as

df t = [μ0 + (μ1 − 1/2
)

Vt]dt +
√

VtdWt + (γdNt − λk̄dt
)
,

dVt = (α − βVt) dt + σ
√

VtdWVt + γV dNt,

dxt = μx Vtdt + γxdNt, (A.1)

where Wt and WV t are Wiener processes with correlation ρ, Nt is a Pois-
son counter with constant intensity λ, γV ∼ Exp(γ̄V ) is the exponentially dis-
tributed jump in spot variance conditional on a jump, and γ = ρJ γV + γ f for
γ f ∼ N(γ̄ f , δ

2
f ) is the correlated jump in log futures prices, with expected per-

centage jump size k̄ = E(eγ j) = eγ̄ f +1/2δ
2
f /(1 − ρJ γ̄V ) − 1. Specific processes for xt

are discussed below.
The generalized Fourier transform for future zt+τ = ( ft+τ ,Vt+τ , xt+τ ) and

complex (	, ψ, ξ ) conditional on current zt is

F (τ ;	,ψ, ξ |zt) ≡ E
[
exp (	 ft+τ + ψVt+τ + ξxt+τ ) | zt

]
= exp

[
	 ft + ξxt + C (τ ;	,ψ, ξ )

+ D (τ ;	,ψ, ξ ) Vt + λE (τ ;	,ψ, ξ )
]
. (A.2)

The function F(·) solves the backward Kolmogorov equation EtdF(·) = 0 as-
sociated with (A.1), implying that C(τ ; ·), D(τ ; ·), and E(τ ; ·) solve the following
system of ordinary differential equations subject to C (0; ·) = E (0; ·) = 0 and
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D (0; ·) = ψ :

Cτ = μ0 	+ αD

Dτ = N (	, ξ ) + M (	) D + 1/2σ
2 D2

Eτ = E
[
e	(γ f +ρJγV )+D(τ ;·)γV +ξγx

]
− 1 −	k̄, (A.3)

where N(	, ξ ) = 1/2	
2 + (μ1 − 1/2

)
	+ μxξ and M(	) = ρσ	− β. I use ξ when

estimating the latent characteristic xt+τ − xt, and otherwise set it to zero. The
solution for D(τ ; ·) is25

D (τ ;	,ψ, ξ ) = 2N (	, ξ ) + ψ
[
M (	) + R (τ,	, ξ )

]
R (τ,	, ξ ) − M (	) − σ 2ψ

, (A.4)

where

R (τ,	, ξ ) = γ (	, ξ )
eγ (	, ξ )τ + 1
eγ (	, ξ )τ − 1

and

γ (	, ξ ) =
√

M(	)2 − 2σ 2 N (	, ξ ) . (A.5)

The solution for C(τ ; ·) is

C (τ ;	,ψ, ξ ) = μ0	τ − ατ

σ 2

[
M (	) − γ (	, ξ )

]
−2α
σ 2 ln

{
1 + [M (	) − γ (	, ξ )

] 1 − eγ (	,ξ )τ

2γ (	, ξ )

}
−2α
σ 2 ln

[
1 − σ 2ψ

R (τ,	, ξ ) − M (	)

]
. (A.6)

The solution for E(τ ; ·) depends on the specification of the jump distribution
γx of xt. For the benchmark model with ξ = 0 that is used when filtering and
estimating models,

E (τ ;	,ψ, 0) = e	γ̄ f +1/2	
2δ2

f

{
b
d
τ − e ln

[
1 + c

(
e−γ (	,0)τ − 1

)
c + d

]}
− (1 +	k̄

)
τ

≡ H (τ ;	,ψ) − (1 +	k̄
)
τ, (A.7)

where
b = [M (	) − γ (	,0)

]+ σ 2ψ,

c = {−s
[
M (	) + γ (	,0)

]− 2γ̄V N (	,0)} + ψ
{−sσ 2 − γ̄V

[
M (	) − γ (	,0)

]}
,

25 If jumps have stochastic intensity λt = λ+ λ1Vt, then D(τ ; ·) solves Dτ = N + MD +
1/2σ

2 D2 + λ1Eτ (τ ;	, D(·), ξ ). This is of cubic rather than quadratic order when ξ = 0, and has
an implicit rather than explicit solution for D(τ ; ·), precluding rapid evaluation. Such models
typically are solved numerically. See, for example, Carr and Wu (2008).
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d = {s [M (	) − γ (	,0)
]+ 2γ̄V N (	,0)} + ψ

{
sσ 2 + γ̄V

[
M (	) + γ (	,0)

]}
,

e = 2γ̄V

2γ̄ 2
V N (	,0) + 2γ̄V M (	) s + σ 2s2

, and

s = 1 − ρJ γ̄V	. (A.8)

When xt is the accumulated number or size of jumps, or the integrated vari-
ance, E(τ ; ·) takes the following forms, for H(·) defined as in (A.7) above:

xt μx γx E(τ ;	,ψ, ξ )

Nt 0 1 eξ H(τ ;	,ψ) − (1 +	k̄)τ∫ t
0 γdNs 0 γ H(τ ;	+ ξ ,ψ) − (1 +	k̄)τ∫ t
0 γV dNs 0 γV H(τ ;	,ψ + ξ ) − (1 +	k̄)τ∫ t
0 Vsds 1 0 H(τ ;	,ψ) − (1 +	k̄)τ

For quadratic variation xt = ∫ t
0 (Vsds + γ 2dNs), or its squared jump subcompo-

nent, the jump size γx = γ 2 = (γ f + ρsvγV )2. This has a heavy-tailed distribution
when γV is exponentially distributed, with infinite values for the moment gen-
erating function E[eξγ

2
] when ξ is real and positive. Quadratic variation is con-

sequently also heavy-tailed for the Duffie, Pan, and Singleton (2000) process, al-
though the conditional characteristic function and moments of all orders exist.
Integrating successively over the independent Gaussian and exponential dis-
tributions of γ f and γV , the generalized transform of the jump components is

F J (	,ψ, ξ ) ≡ E exp
[
	
(
γ f + ρsvγV

)+ ψγV + ξ
(
γ f + ρsvγV

)2]
= E

{
exp
[
a (ξ ) γ 2

V + b (	,ψ, ξ ) γV + c (	, ξ )
]}√

1 − 2δ2
f ξ

= ec(	,ξ )

2γ̄V

√
−π
ρ2

svξ
w

(
d (ξ )

b (	,ψ, ξ ) γ̄V − 1

2γ̄V
√

a (ξ )

)
, (A.9)

where

a (ξ ) = ρ2
svξ

1 − 2δ2
f ξ
,

b (	,ψ, ξ ) = ψ + ρsv
(
	+ 2γ̄ f ξ

)
1 − 2δ2

f ξ
,

c (	, ξ ) =
1/2δ

2
f	

2 + γ̄ f	+ γ̄ 2
f ξ

1 − 2δ2
f ξ

,

d (ξ ) = Sign
{
Im
[
a (ξ )
]} = ±1, (A.10)
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and w(z) for complex-valued z is the Fadeeva or plasma-dispersion function
(equation 7.1.3 in Abramowitz and Stegun (1972, p.297)). It is a scaled version
of the complex complementary error function (w(z) = e−z2

erfc(−iz)), and can
be evaluated using algorithm 680 of Poppe and Wijers (1990).26 Equation
(A.9) is well defined for complex-valued ξ provided Re[a(ξ )] < 0—which is
not true for small positive real values of ξ . The jump term E(τ ;	,ψ, ξ ) in
(A.2) and (A.3) that is used for estimating latent quadratic variation or its
squared jump component given parameter estimates can then be computed
numerically:

E (τ ;	,ψ, ξ ) =
∫ τ

s=0
F J (	, D (s; ·) , ξ ) ds − (1 +	k̄

)
τ. (A.11)

I use nine-point trapezoidal integration to compute (A.11).

A.2. Multiple State Variables

Because all state variables Vit are assumed to evolve independently intrape-
riod, log characteristic functions are the sum of the log characteristic functions
associated with each Vit. Define �di f f

i = (μi, αi, βi, σi, ρi;μxi) as the diffusive
parameters associated with the variance process Vit and latent characteristic
xit, and define � jump

j = (γ̄V j, ρ j, γ̄fj, δ j) as the jump parameters associated with
jump process Njt. Define Ci(τ ;	,ψ i, ξ i) and Di(τ ;	,ψ i, ξ i) as equations (A.6)
and (A.4) evaluated at parameter values �di f f

i . For i > 1, (αi, σi, ρi) = 0 and
Ci = 0. Define Ej(τ ;	,ψ j, ξ j) for j > 0 as the relevant above expression for
E(τ ;	,ψ j, ξ j) evaluated at (�di f f

j ,�
jump
i ). Finally, let E0(τ ;	, ξ0) be the solu-

tion in the simpler special case associated with jump process N0t, for futures
jumps that are unaccompanied by volatility jumps. Because jump intensities
are assumed constant intraperiod, the generalized Fourier transform for future
zt+τ = ( ft+τ ,V t+τ , xt+τ ) conditional on current zt is a multifactor extension
of (A.2):

F (τ ;	,ψ, ξ | zt) ≡ E
[
exp
(
	 ft+τ + ψ ′V t+τ + ξ ′xt+τ

) | zt
]

= exp

[
	 ft + μ0	τ + ξ ′xt +

I∑
i=1

[
Ci
(
τ ;	,ψ i, ξ i

)+ Di
(
τ ;	,ψ i, ξ i

)
Vit
]

+ λ01V1t E0 (τ ;	, ξ0) +
J∑

j = 1

(
λ j0 + λ′

j V t
)

Ej
(
τ ;	,ψ j, ξ j

)⎤⎦ . (A.12)

26 Poppe and Wijers’ (1990) algorithm is accurate to 14 significant digits, whereas the complex-
valued Faddeva function ZERFE in IMSL is accurate to only 10 digits. Furthermore, ZERFE does
not appear to be fully reliable for all values of ξ , when compared with direct numerical integration
over the exponential density of γV .
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A.3. Time Aggregation

The key modification in this paper’s model relative to Duffie, Pan, and Single-
ton (2000) is to allow jump intensities to vary across periods, while maintain-
ing the Duffie, Pan, and Singleton (2000) assumption of a constant intraperiod
jump intensity. By iterating expectations over (A.12) progressively backwards
in time, the multiperiod conditional cumulant-generating function takes the
affine concatenated form

ln E
[
e	( fT − ft)+ψ ′V T +ξ ′(xT −xt)|V t

]
= μ0 	 (T − t) +

I∑
i = 1

Ci
t,T (	, ψ, ξ ) + Di

t,T (	, ψ, ξ ) Vit. (A.13)

Its components satisfy the backward recursion

D1
t,T = D1

(
τt;	, D1

t+1,T , ξ1

)
+ λ01 E0

(
τt;	, ξ0

)+ J∑
j = 1

λ j1 E1

(
τt;	, D1

t+1,T , ξ j

)
,

Di
t,T = Di

(
τt;	, Di

t+1,T , ξ i

)
+ λii Ei

(
τt;	, Di

t+1,T , ξ i

)
for i > 1,

Ci
t,T = Ci

t+1,T + Ci

(
τ ;	, Di

t+1,T , ξ i

)
+ λi0 Ei

(
τ ;	, Di

t+1,T , ξ i

)
for i ≥ 1,

(A.14)

subject to the terminal condition (Ci
T ,T , Di

T ,T ) = (0, ψ i) for i = 1, . . . , I. If
overnight periods are omitted, as in the cumulant-generating function associ-
ated with N-day future intradaily quadratic variation, the relevant ξ j values
are set to zero on overnight periods within the recursion.

Appendix B: Estimates of the Log Futures Price Process

The tables below contain parameter estimates and log likelihoods for the
log futures price process

d ft = μ0 dt +
I∑

i=1

[(
μi − 1/2

)
Vitdt +

√
VitdWit

]
+

J∑
j=1−K

γ jdNjt − λ jtk̄jdt,

dV1t = (α − β1V1t) dt + σ
√

V1tdWV t + γV 1dN1t,

dVit = −βiVitdt + γV idNit for i > 1, (B.1)

where I is the number of state variables in V t, J is the number of synchronous
jumps in spot variance and futures prices, and K is the number of jumps in
futures prices only. Diffusive shocks dW1t and dWV t have correlation ρ. The
intraperiod jump intensities λ jt of Poisson counter Njt and associated joint
jump distributions of (γ j, γV j) are in Table B.IV below.
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Table B.I
Log Likelihoods of Various Models

� ln L

Model I J K
Number of
Parameters ln L 0–5 ticks >5 ticks All

In-sample SP futures (1983–2008)

SVJ1 1 0 1 28 891,425.32
Vjump1a 1 1 0 30 892,063.47 740.48 −102.32 638.16
Vjump1b 1 1 1 33 892,575.37 1,533.22 −1,021.32 511.90
Vjump2 2 2 1 42

a
893,212.58 255.16 382.05 637.21

Vjump3 3 3 1 51 893,432.73 146.89 73.24 220.13
Vjump20 2 2 1 41

a
892,940.09 −550.57

b
286.08

b −264.49
b

Vjump30 3 3 1 49
a

893,211.30 −311.13
b

89.71
b −221.42

b

� ln L

ln L 0−3 ticks >3 ticks All

Out-of-sample E-minis (2009–16)

SVJ1 264,883.15
Vjump1a 264,849.78 −80.79 47.48 −33.31
Vjump1b 265,044.26 660.18 −499.01 161.17
Vjump2 265,196.38 900.44 −587.14 313.30
Vjump3 265,261.23 1040.69 −662.55 378.14
Vjump20

b
265,109.41 −313.42 226.44 −86.97

Vjump30
b

265,160.85 −311.13 187.21 −100.38

aMultifactor models use the Vjump1b estimates of overnight/intradaily and diurnal seasonals.
b� ln L for Vjump20 and Vjump30 is relative to the Vjump2 and Vjump3 fit, respectively.

Table B.II
Volatility-Dependent Changes in Log Likelihoods

Relative to Nested Models
This table categorizes changes � ln L in log likelihoods of nested models based on the previous
day’s realized volatility. The tercile breakpoints of 0.62% and 0.96% that determine low, medium,
and high volatility are based on all intradaily realized volatilities over 1983 to 2016. The change in
log likelihood for Vjump1a is relative to the SVJ1 model, while � ln L for Vjump20 and Vjump30
is relative to the Vjump2 and Vjump3 fit, respectively.

� ln L in 1983–2008 � ln L in 2009–2016

RVn−1 tercile Low Medium High Low Medium High

Vjump1a 281.80 232.28 123.70 40.56 −30.63 −42.85
Vjump1b 246.14 145.60 120.68 120.55 51.88 22.30
Vjump2 161.31 148.80 326.61 84.16 12.90 55.33
Vjump3 67.53 78.58 73.52 40.01 23.11 1.95
Vjump20 −84.30 −0.99 −179.61 −101.95 5.58 8.51
Vjump30 −64.78 −44.14 −112.88 −79.05 −6.39 −16.18
% of sample 30% 38% 33% 46% 29% 25%
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Table B.III
Parameter Estimates for Specific Models

This table presents estimates of parameters of the conditional mean and the variance processes
in equation (B.1) above. Estimates are generally on an annualized basis, with Tuesday close to
Wednesday close equal to 1/252 years. The half-lives HLi = 252(ln 2)/(βi − λii γ̄V i) to variance
shocks are reported in days. ρadj is the value of ρ = Corr(dW1t,dWV t) if the jumps (γ0, γ1, γV 1)
are replaced with diffusive equivalents. Standard errors are in parentheses.

Vjump1a Vjump1b Vjump2 Vjump3

V1t V1t V1t V2t V1t V2t V3t

Conditional mean

μ0 −0.10 −0.08 −0.08 0.01
(0.02) (0.03) (0.04) (0.04)

μi 8.0 8.0 5.9 7.4 2.5 1.9 0.3
(1.5) (2.5) (4.3) (2.9) (9.0) (11.7) (3.7)

Variance processes√
E(Vi) 0.155 0.131 0.108 0.082 0.092 0.070 0.071

(0.003) (0.003) (0.003) (0.004) (0.004) (0.004) (0.009)
HLi (days) 3.6 5.2 9.4 0.35 13.4 0.08 1.6

(0.2) (0.3) (0.7) (0.03) (1.1) (0.01) (0.4)
σ 0.47 0.51 0.26 0.19

(0.05) (0.02) (0.03) (0.03)
ρ −0.70 −0.63 −0.81 −0.99

(0.07) (0.03) (0.08) (0.13)
ρadj −0.52 −0.60 −0.69

(0.02) (0.03) (0.42)
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Table B.IV
Jump Parameters from Specific Models

This table presents the jump parameters of equation (B.1) above. The log futures jump sizes and
annualized jump intensities for Poisson counter Njt are

γ j = ρJ γV j + γfj ∼ (γ̄ j , δ
2
j ),

λjt =
{
λ j1V1t∗ for j ≤ 1
λ j0 + λ j1V1t∗ + λ j j Vjt∗ for j > 1

,

where γV j ∼ Exp(γ̄V j ) is the synchronous jump in annualized diffusive variance Vjt, γfj is an
independent Gaussian shock, and Vjt∗ is the variance at the start of the period. Log futures price
jumps have correlation Corr j = ρ j γ̄V j/δ j with variance jumps, with no variance jumps (γ̄V 0 = 0)
for Poisson counter N0t. The γ j parameters are in basis points; γ̄1 = −0.051% for the Vjump1a
model, with a standard deviation of 0.326%. E[�N|J] is the expected number of additional jumps
over a one-day or infinite horizon conditional on a variance jump of size γ̄V j . Intradaily 15-minute
periods were on average 1.20e-4 years, while the unconditional standard deviation of all 15-minute
returns over 1983 to 2008 was 0.19%. Standard errors are in parentheses.

Vjump1a Vjump1b

N1t N0t N1t

λ j1 × 10−4 38.3 (3.7)
λ j j × 10−4 2.0 0.31

(0.1) (0.02)
γ̄ j × 104 −5.1 −1.0 −20.4

(0.7) (0.1) (4.0)
δ j × 104 32.6 11.4 90.2

(0.6) (0.3) (2.7)
γ̄V j 0.0063 0.0115

(0.0002) (0.0006)
ρ j −0.27 −0.49

(0.01) (0.03)
Corrj −0.52 −0.62

(0.02) (0.03)
E[�Nday|J] 0.46 16.4 0.13

(0.02) (1.4) (0.01)
E[�N∞|J] 2.63 131 1.05

(0.16) (14) (0.09)

Vjump2 Vjump3

N0t N1t N2t N0t N1t N2t N3t

λ j0 5.4 9.8 0.0
(2.8) (23.3) (0.0)

λ j1 × 10−4 130 0.36 229 5.5 .09
(30) (0.06) (82) (1.3) (.01)

λ j j × 10−4 5.6 2.1 6.5 2.0 0.7
(1.5) (0.6) (2.2) (1.3) (0.2)

γ̄ j × 104 −0.8 −2.3 −2.5 −0.6 0.2 −3.2 −19.9
(0.2) (1.4) (3.9) (0.2) (1.7) (2.2) (8.6)

(Continued)
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Table B.IV—Continued

Vjump2 Vjump3

N0t N1t N2t N0t N1t N2t N3t

δ j × 104 6.9 20.2 36.5 5.6 17.8 6.3 103.3
(0.5) (1.6) (2.5) (0.5) (1.6) (6.4) (7.1)

γ̄V j 0.0016 0.070 0.0006 0.022 0.076
(0.0002) (0.011) (0.0001) (0.003) (0.012)

ρ j −1.18 −0.05 −1.89 −0.02 −0.10
(0.22) (0.01) (0.40) (0.01) (0.02)

Corr j −0.60 −0.92 −0.68 −0.83 −0.76
(0.07) (0.05) (0.09) (0.96) (0.06)

E[�Nday|J] 5.1 0.22 2.6 5.6 0.16 0.20 1.7
(1.1) (0.04) (0.3) (1.6) (0.03) (0.11) (0.2)

E[�N∞|J] 72 3.1 3.0 112 3.2 0.20 4.9
(16) (0.5) (0.4) (33) (0.7) (0.11) (1.4)

Table B.V
Variance Factor Loadings

This table presents estimates of the individual and total contribution Vit[1 +∑ j λ jiE(γ 2
j )] of each

state variable Vit to diffusive and jump variances. Standard errors are in parentheses.

Jump variance loading λ jiE(γ 2
j ) on Vit

Model
and Vi ’s E(Vit) SD(Vit) j = 0 1 2 3

Total variance
loading

Vjump1a 0.0239 0.0211 0.22 1.22
V1 (0.0008) (0.0008) (0.01) (0.01)
Vjump1b 0.0171 0.0165 0.50 0.26 1.76
V1 (0.0008) (0.0010) (0.03) (0.02) (0.04)
Vjump2
V1 0.0116 0.0077 0.63 0.23 0.05 1.91

(0.0007) (0.0005) (0.07) (0.03) (0.01) (0.09)
V2 0.0066 0.0431 0.28 1.28

(0.0007) (0.0041) (0.07) (0.07)
Vjump3
V1 0.0085 0.0053 0.72 0.21 0.03 0.10 2.05

(0.0008) (0.0005) (0.13) (0.04) (0.05) (0.02) (0.17)
V2 0.0049 0.0118 0.01 1.01

(0.0006) (0.0009) (0.02) (0.02)
V3 0.0051 0.0478 0.79 1.79

(0.0013) (0.0115) (0.14) (0.14)
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Appendix C: Change of Measure

The pricing kernel specification affects three types of parameter values:

(i) the risk-neutral jump intensities and average jump sizes,
(ii) the risk-neutral rate of mean reversion of the jump-diffusive spot variance

V1t, and
(iii) the intraperiod conditional mean of futures returns.

For a pricing kernel with log changes of the form

d ln Mt = μm dt + R d ln F −
∑

i

RV idVit, (C.1)

the transformation from objective to risk-neutral jump intensities is

λ∗
jt

λ jt
= E

[
ed lnMt |dNjt = 1

]

=
exp
(
−Rγ̄fj + 1/2 R2δ2

fj

)
1 − (RV j − Rρ j

)
γ̄V j

, (C.2)

where γfj ∼ N(γ̄fj, δ
2
fj) and γV j ∼ exp(γ̄V j) are the underlying Gaussian and ex-

ponential components of the jth log futures jump γ j = γfj + ρ jγV j .
The risk-neutral distribution for any jump γ̃ has a characteristic function

E∗
t

[
ei	γ̃ ] = Et

[
ed lnMt+ei	γ̃ |dNt = 1

]
Et
[
ed lnMt |dNt = 1

] . (C.3)

The Gaussian shocks γfj remain Gaussian under this change of measure, with
identical variance and shifted mean γ̄ ∗

fj = γ̄fj − Rδ2
fj. The exponential shocks γV j

remain exponential, with shifted mean

γ̄ ∗
V j = γ̄V j

1 − (RV j − Rρ j
)
γ̄V j

. (C.4)

The overall mean jump in log futures prices becomes γ̄ ∗
j = γ̄ ∗

fj + ρ j γ̄
∗
V j , with

associated expected percentage jump k̄∗
j = exp(γ̄ ∗

fj + 1/2δ
2
fj)/(1 − ρ j γ̄

∗
V j) − 1.

The futures price is a martingale under the risk-neutral measure, with the
log futures price evolving as

d ft =
I∑

i=1

[
−1/2Vitdt +

√
VitdWit

]
+

J∑
j=1−K

(
γ ∗

j dN∗
jt − λ∗

jtk̄
∗
j dt
)
,

dV1t = (α − β∗
1 V1t
)

dt + σ
√

V1tdW∗
V t + γ ∗

V 1dN∗
1t,

dVit = −βiVitdt + γ ∗
V idN∗

it for i > 1, (C.5)
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Table C.I
Objective versus Risk-Neutral Parameters from Vjump3 Estimates

This table presents estimates of the change of measure from objective to risk-neutral parameters for
the Vjump3 model, based on constrained and unconstrained values of the risk aversion parameters
(R; RV ) that best fit option prices. The rp1 parameters are from Bates (2012). The rp2 parameters
are constrained to be positive, while the rp3 parameters are unconstrained.

rp1 : (R; RV ) = (2.45; 0); (β1, β
∗
1) = (54.59, 54.14);

rp2 : (R; RV ) = (0.075; .001, 10.37, .074); (β1, β
∗
1) = (54.59, 54.58);

rp3 : (R; RV ) = (300; −933, 2.17,−34.6); (β1, β
∗
1) = (54.59, 31.42).

Jump j

Jump Parameters 0 1 2 3

λ∗
jt/λ jt |rp1 1.0002 0.9996 1.0008 1.0052
λ∗

jt/λ jt |rp2 1.0000 1.0000 1.2916 1.0058
λ∗

jt/λ jt |rp3 1.0328 0.6066 1.1877 1.0640
γ̄V j 0.000637 0.0218 0.0758
γ̄ ∗

V j |rp1 0.000638 0.0218 0.0772
γ̄ ∗

V j |rp2 0.000637 0.0281 0.0762
γ̄ ∗

V j |rp3 0.000516 0.0273 0.0591
k̄j −0.00608% 0.00230% −0.0317% −0.194%
k̄∗

j |rp1 −0.00616% 0.00153% −0.0318% −0.220%
k̄∗

j |rp2 −0.00609% 0.00228% −0.0469% −0.199%
k̄∗

j |rp3 −0.01538% −0.02627% −0.0487% −1.384%

where β∗
1 = β1 + Rρσ − RV 1σ

2 and N∗
jt are Poisson counters with intensity λ∗

jt =
λ jt (

λ∗
jt

λ jt
).

The instantaneous expected percentage return of the futures price under the
objective measure is the conditional equity premium, which takes the form(

μ0t +
∑

i

μiVit

)
dt = −Et

[(
dFt

Ft

)(
dMt

Mt

)]
. (C.6)

Because jump intensities are assumed constant within periods, with a linear
dependency on the spot variances at the start of the period, the intraperiod
parameter values are

μ0t =
∑

j

λ jt

(
k̄j − λ∗

jt

λ jt
k̄∗

j

)
,

μ1 = R − RV 1ρσ,

μi = R for i > 1, (C.7)

where λ jt is specified in equation (3) and the ratio λ∗
jt/λ jt is a constant given in

(C.2).
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