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Abstract 
 

This paper analyzes optimal non-linear portfolio management contracts. We consider a setting where the 

investor faces moral hazard with respect to the effort and risk choices of the portfolio manager. The 

manager’s employment contract promises her: (a) a fixed payment, (b) a proportional asset-based fee, (c) 

a benchmark-linked fulcrum fee, and (d) a benchmark-linked option-type “bonus” incentive fee. We show 

that the option-type incentive helps overcome the effort-underinvestment problem that undermines linear 

contracts. More generally, we find that for the set of contracts we consider, with the appropriate choice of 

benchmark it is always optimal to include a bonus incentive fee in the contract. We derive the conditions 

that such a benchmark must satisfy. Our results suggest that current regulatory restrictions on asymmetric 

performance-based fees in mutual fund advisory contracts may be costly. 
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When investors delegate the portfolio management decision to a professional manager, they are faced 

with the classic problem of designing management-fee contracts. Neither the manager’s information nor 

the effort expended by him is directly observable by investors. Consequently, the appropriate contract 

should motivate manager to exert costly effort to gather information relevant to security payoffs. The 

contract should also induce the manager to subsequently use this information in choosing a portfolio with 

the desirable risk characteristics. Importantly, as recognized by Stoughton (1993), the effort incentives 

and the risk-taking incentives interact in a particular way in the delegated portfolio management setting, 

and therefore, the solutions offered by the generic principal-agent literature are not readily applicable. For 

example, Stoughton shows that, due to the feedback effect of risk incentives on the effort incentive, 

contracts in which the management fee is linearly related to portfolio returns lead to an underinvestment 

in effort expended by the manager and such an underinvestment problem cannot be addressed by 

increasing the manager’s stake.1 Further, as shown by Admati and Pfleiderer (1997), this underinvestment 

problem cannot be resolved by the use of benchmark-adjusted linear compensation contracts.  

A natural question then is whether non-linear portfolio management contracts can help overcome 

the effort-underinvestment problem faced by investors while at the same time providing the appropriate 

risk incentives. Furthermore, if a non-linear contract is to be employed, what form should it take? 

Stoughton (1993) shows that within a security-analyst context in which the portfolio manager simply 

reveals his information to the investor, quadratic contracts proposed by Bhattacharya and Pfleiderer 

(1985) help overcome the effort underinvestment problem. However, as Stoughton points out, such 

contracts cannot be implemented in the more realistic portfolio management environment where investors 

delegate the portfolio choice decision to the manager. Hence, the question of the optimal management fee 

contract in this environment remains largely unanswered.  

                                                 
1 These results contrast with those from the standard agency literature that suggest that linear contracts are optimal 
in a second best sense under fairly general conditions (see, for example, Holmstrom and Milgrom (1987)). The 
difference stems from the structure and the timing of the delegated portfolio management problem under which the 
manager first expends costly effort to acquire an information signal, and then chooses the portfolio allocation based 
on the signal. Importantly, the manager can alter the scale of his response to the signal, thereby controlling both the 
level and the volatility of the portfolio return. This structure limits the effectiveness of linear contracts. 
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In this paper we adopt Stoughton’s framework in order to analyze the optimal contracting 

problem. We examine a model in which a risk-averse portfolio manager proposes an employment contract 

while soliciting funds from a representative potential investor. The contract specifies the manager’s 

compensation, which consists of (i) a fixed payment, (ii) a proportional management fee equal to a 

portion of the assets under management, (iii) a symmetric or “fulcrum” performance incentive fee that 

yields a bonus or a penalty as a function of  the portfolio performance relative to a benchmark, and (iv) an 

option-type performance fee that yields a bonus depending on the portfolio performance relative to a 

benchmark, without a corresponding penalty in the event of underperformance. Once the contract terms 

are agreed upon by the investor, the manager invests the funds on the investor’s behalf. The manager’s 

investment opportunity set consists of (a) the market index portfolio representing the passive component 

of the manager’s portfolio, (b) a risky asset that represents the actively managed component of the 

portfolio, and (c) the riskfree asset. The manager first undertakes the level of costly effort in order to 

collect information about the actively managed risky asset’s payoff. His effort level determines the 

precision of the information. Conditional on this information, he then chooses the portfolio allocation.  

Our analysis proceeds in two steps. In the first step, we take the contract as being exogenous, and 

study how the managerial effort is influenced by the contract composition. In the second step of the 

analysis, we address the optimal contract choice problem. Our analysis leads to three main conclusions. 

One, the managerial effort incentive is critically dependent on the choice of an appropriate benchmark in 

the design of the option-type performance fee. Two, when the benchmark is appropriately chosen the use 

of an option-type “bonus” incentive fee can motivate the portfolio manager to expend increased effort. 

Three, for the set of contracts considered here, it is always optimal to include a “bonus” incentive fee in 

the managerial contract. We assess the economic magnitude of the potential efficiency gains by 

calibrating the model to empirically observed values for the key parameters based on a sample of U.S. 

equity mutual funds. We find that the inclusion of the option-type incentive fee in the managerial contract 

leads to an improvement in information production from the manager of over 90 percent relative to the 

optimal linear contract.  
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To highlight the relevance of the benchmark in the bonus incentive fee for managerial effort, we 

demonstrate the existence of two main scenarios characterized by the choice of the benchmark. In the first 

case, the benchmark is specified such that it closely tracks the investment style of the manager, and 

thereby, successfully purges the factors that are beyond the manager’s control, but that have an impact on 

the portfolio outcome. In this case, the option-type performance fee can enhance the manager’s effort 

incentive, and therefore, help mitigate the effort underinvestment problem. In the second case, the 

benchmark fails to purge the factors that are beyond the manager’s control. In this scenario the use of the 

bonus fee is counterproductive and in effect encourages the manager to shirk effort and rely solely on 

luck in order to beat the benchmark. Therefore, if the benchmark is not chosen with care, the option-type 

“bonus” incentive fee is actually detrimental to the manager’s effort incentive.  

While the use of a well designed option-type bonus performance fee can improve the effort 

incentives of the portfolio manager, it distorts the risk incentives and leads to sub-optimal risk sharing 

between the manager and the investor. Such concerns lead to a natural question: “Are the resultant gains 

from the improved effort choices of portfolio managers sufficiently large to offset the cost of such an 

incentive scheme?” We show analytically that for the set of contracts considered by us, it is always 

optimal to include a bonus performance incentive fee in the managerial contract.    

In contrast to the extensive theoretical literature on the principal-agent contracting problem within 

the conventional corporate setting, there are relatively few studies that are specific to the delegated 

portfolio management environment. Our analysis makes a number of contributions to this particular 

strand of the theoretical literature. First, we obtain analytical results that provide an explicit link between 

the managerial effort choices and option-type performance incentive fees. In contrast to previous studies 

such as Starks (1987), we show that in a setting where the portfolio manager optimally determines both 

the effort allocation and the portfolio allocation, the use of the option-type performance incentive fees can 

in fact improve outcomes relative to the case with pure fulcrum performance fees. Furthermore, our study 
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differs in important ways from the general literature in the principal-agent setting, where the focus has 

been mainly on the risk incentives created by the option-type incentive contract.2 

Second, in contrast to extant results that suggest that benchmark-based compensation schemes are 

at best irrelevant (e.g., Admati and Pfleiderer (1997)), our analysis highlights the critical role played by 

the choice of benchmark in motivating managerial effort. The key difference is that Admati and Pfleiderer 

analyze a managerial compensation function that is linear in the portfolio returns. In contrast, we examine 

a more general set of compensation contracts that allows for a component that is a convex function of the 

portfolio returns, in addition to a component that is linear in the portfolio returns. Our results with respect 

to the significance of the benchmark choice are consistent with the widespread use of benchmark-based 

performance evaluation, either explicitly or implicitly, by investors.  

Finally, our analysis provides an answer to the long-standing question of whether regulatory 

restrictions on the form of performance-based fees in, say, mutual funds are theoretically justified.3 Our 

analytical results suggest that a universal prohibition of asymmetric performance-based fees is costly 

from a social welfare perspective.4 In this respect our results provide a justification for the existence of 

such “bonus” performance-based fees in mutual funds prior to the 1970 amendment that banned them. 

Interestingly, our analysis also provides theoretical justification for the empirical findings of Golec and 

Starks (2004). They document that mutual funds that were forced to alter their managerial contracts in 

                                                 
2 Examples of the extended literature include Ross (2004), Chen and Pennacchi (2005), and Hemmer, Kim, and 
Verrecchia (2000). Studies which primarily focus on the manager’s risk incentives in the portfolio management 
setting include Carpenter (2000) and Grinblatt and Titman (1989). 
3 In 1970 Congress brought investment company advisers under the purview of the Investment Advisers Act of 1940. 
At the same time it amended Section 205 of the Act to exempt these advisers from the general prohibition against 
performance-based fees. However, it required that performance-based fees should be symmetrical in terms of 
rewards or penalties around the chosen benchmark, and therefore ruled out the use of “bonus” or option-type 
performance incentive fees. 
4 While the analysis in this paper is based on the case where the manager has absolute market power, our results on 
the efficiency gains also hold in the less extreme cases where the investor is able to share a portion of the gain. Of 
course, a gain in the efficiency of information production is socially desirable, regardless of how it is divided up.  
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order to comply with the new restrictions that went into effect in 1971, lost both assets and shareholders 

in the aftermath.5   

The remainder of the paper is organized as follows. Section 1 presents the modeling framework. 

In Section 2, we analyze the manager’s optimization problem under a contract which includes the option-

type performance fee. A key result of this section shows that the bonus incentive fee helps mitigate the 

effort-underinvestment problem that plagues the linear contract. Section 3 analyzes the optimal contract 

choice problem by simultaneously taking into account the impact of the three key aspects of the decision 

problem, namely risk sharing, the manager’s effort incentive, and the manager’s portfolio choice. This 

section also presents numerical results based on a calibration of the model using data on a sample of U.S. 

mutual funds. Our conclusions are presented in Section 4. 

1. Model Specification 

We consider a one-period stationary model in which a professional portfolio manager who can exert 

costly effort to generate private information meets a representative investor who has investment capital 

0W . At the start of the period, the manager proposes a contract to the investor under which the manager 

invests 0W  on the investor’s behalf. Upon the investor’s acceptance of the terms of the contract, the 

manager voluntarily undertakes a level of costly effort to collect information about assets payoffs and 

proceeds to make the portfolio allocation decision. At the end of the period, the asset returns are realized 

and the total wealth of the managed portfolio is returned to the investor, while the manager is 

compensated according to the terms of his contract.  We assume that the investor’s utility is driven to her 

reservation level due to competition for the manager’s services.6 We further assume that the investor can 

alternatively invest through other channels and get a certainty-equivalent return of 0R . 

 

                                                 
5 Our results complement those of de Meza and Webb (2007), and Dittman, Maug, and Spault (2007). Other related 
studies include Das and Sundaram (2002), Palomino and Prat (2003),  and Ou-Yang (2003). 
6 This is, for example, consistent with the argument made by Berk and Green (2004). Nevertheless, all our key 
results will remain unchanged if the surplus is divided between the investor and the manager in some other pre-
specified fashion, including, for example, the case where the investor retains the entire surplus. 
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1.1 Investment Opportunity Set and Information 

The investment opportunity set for the manager consists of three assets: a riskfree asset with constant 

return expressed in gross terms, 1>fR ; a market index portfolio (the passively managed asset) with a 

return denoted by mR , and the excess return fm
e
m RRR −≡ ; and a representative stock (stock a, the 

actively managed asset) with a return denoted by aR , which can be decomposed as e
a

e
mafa RRRR ++= β  

with 0)( =e
aRE  and 0),( =e

a
e
m RRcorr . Upon expending a level of effort, ε , the manager learns the value 

of a “firm-specific” signal, s ,  that is correlated with the stock’s excess return, e
aR . The manager’s effort 

level determines the informativeness of the signal, captured by ),( sRcorr e
a=ρ . The signal s  is 

uninformative about e
mR  (i.e., 0),( =sRcorr e

m ). After collecting information, the manager makes his 

portfolio allocation decision. For a portfolio allocation of ),( 21 ww  to the market index portfolio and stock 

a, the portfolio return realized at the end of the period is 

e
a

e
mafw RwRwwRR 221 )( +++= β .                                                 (1) 

For convenience, we will henceforth denote a vector ),( am www = , with am www β21 += , and 2wwa = , 

and refer to this vector as the manager’s portfolio allocation. We note that stock a in our model represents 

any generic stock that the manager researches. As his signal is firm specific, we anticipate that the 

manager will be long (or increase the holdings of) the stocks for which he receives a positive signal, and 

short (or reduce the holdings of) the stocks for which he receives a negative signal. We denote the 

portfolio’s excess return fw
e
w RRR −≡ , and the terminal value of the portfolio, wRWW 0≡ .7  

We make the following assumptions about the marginal distributions for the asset returns and the 

information signal. The market excess return is assumed to follow a discrete distribution with the 

following values:  m
e
mR δ=  with probability p , and m

e
mR δ−=  with probability p−1 . The excess return 

                                                 
7 Consistent with the typical practice in the case of say, mutual funds, we restrict the portfolio manager’s 
opportunity set to rule out investments in derivatives contracts. 
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of the actively managed asset, e
aR , can be either aδ  or aδ− , with equal probability. The manager’s 

signal, s , with equal probabilities, takes a value of either 1 (good news about e
aR ) or 0 (bad news).  

The joint distribution of the three variables ( e
mR , e

aR , and s ) is now uniquely determined. 

Conditional on the realization of s , we characterize the four states in the asset-return space by whether 

the market portfolio and/or the actively managed asset are up (U) or down (D) in value. Thus, there are 

eight states in the model, four states for the case when 1=s , and symmetrically another four states 

corresponding to 0=s . Conditional on 1=s , the four states in the asset-return space have the following 

distribution:  

State (UU): m
e
mR δ=  and a

e
aR δ=  with probability 2/)1( ρ+p ;  

State (UD): m
e
mR δ=  and a

e
aR δ−=  with probability 2/)1( ρ−p ;  

State (DU): m
e
mR δ−=  and a

e
aR δ=  with probability 2/)1)(1( ρ+− p ; 

State (DD): m
e
mR δ−=  and a

e
aR δ−=  with probability 2/)1)(1( ρ−− p .  

Clearly, 1=s  represents good news about e
aR , indicating a conditional marginal probability of 

2
1 ρ+  for 

0>e
aR . The probabilities for the above four states conditional on 0=s  are: 2/)1( ρ−p , 2/)1( ρ+p , 

2/)1)(1( ρ−− p , and 2/)1)(1( ρ+− p , respectively. Note that the realization of bad news ( 0=s ) 

implies a conditional marginal probability of 
2

1 ρ+  for 0<e
aR .8  

1.2 Utility Specification and the Cost of Effort 

Henceforth, we assume CARA preferences for both the manager and the investor. The manager’s utility is 

given by [ ]))((exp),( εε VCaCU −−−= , where C  denotes consumption and )(εV  represents the cost of 

                                                 
8  It is usual practice to think of a less accurate information signal as being equivalent to the sum of a more accurate 
signal plus a random noise component. In our discrete-distribution setup, a similar intuition holds. A manager with a 
signal of lower accuracy is practically equivalent to a manager with a signal of higher accuracy but who has the 
tendency to misinterpret her signal with a certain probability. 
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managerial effort, ε . The investor’s utility is given by [ ]bCCU p −−= exp)( . The parameters a  and b  

are the risk-aversion coefficients for the manager and the investor respectively. In the above specification 

of the manager’s utility, the cost function of effort is assumed to be a generic function. We make the same 

minimal assumption about )(εV  as Stoughton (1993):  

.0)( and,0)( ≥′′>′ εε VV                                               (2) 

Note that from the manager’s perspective, the choice of the effort level boils down to the perceived 

tradeoff between the cost and the benefits of effort. Hence, a value-based definition of managerial effort 

can allow for an economically meaningful comparison between the costs and the benefits of acquiring 

information. To that end, we define the effort level (ε ), as a linear transformation of the gain in the 

certainty-equivalent utility for the manager from the acquisition of information with accuracy ρ , if the 

manager were to invest for himself.9 Such a definition of ε  takes the following simple form: 

( )21ln
2
1 ρε −−= .                                                (3)  

Clearly, 0
)1( 2 >

−
=

ρ
ρ

ρ
ε

d
d . In other words, observing a signal with higher accuracy requires higher effort 

from the manager.  It is worth emphasizing that we do not lose generality from the specification in (3), 

because the cost function of effort, )(εV , is still in a generic form.10 Given our specification of the 

managerial effort, the second condition in (2) has precisely the following economic interpretation: it is 

increasingly costly for the manager to improve his certainty-equivalent utility by acquiring increasingly 

accurate information if he were to invest for himself.11  

 

                                                 
9 If the manager’s expected utility is Y , then the certainty-equivalent utility, by definition, is )ln(1 Y

a
−− . 

10 Not surprisingly, the analytical results do not rely on this effort specification. By using this specific setup, we are 
saved from the trouble of repetitively citing some form of “single crossing” condition so that the voluntary effort 
choice problem has a definite solution.  
11 We note here that, for this interpretation to be equivalent to the second inequality in (2), ε  has to be defined as in 
(3), or as its positive linear transformation.  
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1.3 Managerial Contract 

The managerial contract is allowed to consist of four components: (a) the fixed payment with value F ; 

(b) the proportional management fee that pays a pre-specified portion of the assets under management 

with contingent payoff Wc1 ; (c) the “fulcrum” incentive fee with payoff )(2 BLWWc − , where the 

performance is measured against a pre-specified benchmark, BLW ; and (d) the option-type “bonus” 

incentive fee with payoff )0,max( BOWW −λ , where BOW  is another pre-specified benchmark. The 

subscript “BL” (“BO”) denotes the benchmark for the linear (option-type) fee component. We use the 

functional notation )(WWa  to denote the manager’s final reward contingent on his performance 

represented by the terminal portfolio value, W . Based on the contract, we have 

)0,max()()( 21 BOBLa WWWWcWcFWW −+−++= λ .                               (4) 

We assume that the benchmarks, BLW  and BOW , are themselves the terminal values of  portfolios 

formed by allocating the initial wealth ( 0W ) in different proportions to the market index portfolio and the 

riskfree asset. In particular, we assume that BLW  represents the terminal value of a portfolio that allocates 

a proportion BLw  to the market index and  ( )BLw−1  to the riskfree asset. Similarly, BOW  represents the 

terminal value of a portfolio with an allocation of BOw  to the market index and ( )BOw−1  to the riskfree 

asset. The corresponding excess returns to these benchmark portfolios are:   

e
mBLfBL

e
BL RwRWWR =−≡ 0 ,                                       (5) 

and12 

e
mBOfBO

e
BO RwRWWR =−≡ 0 .                                       (6) 

In summary, the dimensions of the managerial contract are captured by a set of six parameters: 

F , 1c , 2c , λ , BLw , and BOw . Three additional parameters ( c , m , and θ ) are used to simplify the 

                                                 
12 The often-observed practice, where the same benchmark is used for both kinds of fees, can be captured by 
imposing the constraint: BOBL ww = . Such a constraint has no effect on our analysis of the manager’s incentives, 
and therefore, can be assumed as being present wherever the reader finds it desirable. 
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notation throughout the rest of this paper: 21 ccc += , 2/λ+= cm , and 
m

2/λθ = . Note first that c  

represents the pay-performance sensitivity of the contract due to the proportional fee and the fulcrum fee. 

The term 2/λ  represents the “average” pay-performance sensitivity from the option like “bonus” fee. In 

this context the word “average” is to be understood purely as a mathematical formality. Similarly, m  

represents the “average” pay-performance sensitivity of the entire contract. Also note that the term θ  

captures the relative weight of the pay-performance sensitivity contributed by the option-type “bonus” fee 

in the contract. When 0=θ , which implies 0=λ , the contract consists exclusively of the linear 

components with no “bonus” fee. As θ  become larger, which can be achieved by decreasing c , 

increasing λ , or both, the “bonus” fee becomes an increasingly important component of the overall 

contract. We assume that 0>m , and )1,1(−∈θ . We allow λ  to be negative, in order to examine the 

possibility that the optimal contract is concave instead of convex. Nevertheless, our primary focus is on 

the case where λ  is non-negative.  

2. Managerial Effort Choice under Alternative Contract Forms 

In this section, we study the manager’s portfolio allocation and effort choice problem under different 

contract forms. In order to examine how the contract form influences the manager’s decision, for this part 

of the analysis we take the contract as being exogenously determined. Our primary objective at this stage 

is to investigate the ability of the option-type “bonus” incentive fee to resolve the effort-underinvestment 

problem that exists under the linear contract. One of the key results of the paper is contained in Theorem 

1 in Section 2.4, which shows that an appropriately designed “bonus” fee can in fact be used to improve 

the manager’s effort incentive. The importance of the benchmark choice in the design of the “bonus” fee 

is highlighted in the discussion in Section 2.5.  

2.1 First Best Solution and Managerial Effort-Underinvestment under the Linear Contract 

We begin our discussion of the managerial effort choice by presenting the classical effort-

underinvestment problem within our setting by comparing the linear contract solution with the first best 
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solution. A linear contract corresponds to the case with 0=λ  in expression (4). The solution to the 

manager’s optimization problem is straightforward. We report the result below. 

Proposition 1: Under the linear contract, the manager’s optimal portfolio allocations are 

m
BLlm amW

p
p

w
m
cw

δ0
2

, 2
1

ln ⎥
⎦

⎤
⎢
⎣

⎡
−

+= ;                                          (7a) 

a
sla amW

w
δ
ρ
ρ

0
1, 2

1
1ln ⎥

⎦

⎤
⎢
⎣

⎡
−
+

=
=

; and                                            (7b) 

1,0, ==
−=

slasla ww  ,                                                     (7c) 

where the subscript l  denotes the “linear contract”. The resulting manager’s certainty-equivalent utility, 

denoted by lΠ , is13  

( ) )(1)1(4ln
2
1

01 llfl V
a

pp
a

RWcF εε −+−−+=Π ,                       (8) 

where lε , the optimal managerial effort choice, is determined by the first order condition: 

 
a

V l
1)( =′ ε .                                                               (9) 

As a benchmark case, we next examine the contracting problem when the manager’s effort 

choice, the signal observed by him, and his portfolio allocations are verifiable and therefore can be 

contracted on. This is a setting devoid of moral hazard. The optimal solution of this problem is commonly 

referred to as the “first best solution” in the principal-agency literature. The manager’s optimization 

problem is the following: 

( )[ ])()(max
)(,,,

ε
ε

VWWUE aaWWww aam

− ,                                        (10) 

s.t. ( )f
e
aa

e
mm RRwRwWW ++= 0  ,                                            (11) 

                                                 
13 Unlike expected utility, the certainty-equivalent utility represents the economic agents’ well-being in a scale that 
is comparable with the initial wealth. We find it more accessible to interpretation, and therefore use it throughout the 
paper in place of expected utility when presenting results. 
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( )[ ] ( )00)( RWUWWWUE pap ≥− .                                    (12) 

Inequality (12) represents the investor’s participation constraint where the constant 0R  represents the 

opportunity cost of capital to the investor. The manager’s terminal wealth represented by ( )WWa  can be 

any measurable function of the terminal portfolio value, W . This function in effect specifies a sharing 

rule between the investor and the manager. The functional form of ( )WWa  is at the discretion of the 

manager. The solution to the optimization problem in (10)-(12), noted below, is the familiar result that the 

linear sharing rule is optimal. The derivation is omitted. 

Proposition 2: The first best solution of the principal-agent problem is:  

m
fbm abW

p
pba

w
δ0

, 2
1

ln)( ⎥
⎦

⎤
⎢
⎣

⎡
−

+
= ;                                                        (13a) 

a
sfba abW

ba
w

δ
ρ
ρ

0
1, 2

1
1ln)( ⎥

⎦

⎤
⎢
⎣

⎡
−
+

+
=

=
;                                                   (13b) 

1,0, ==
−=

sfbasfba ww ; and                                                        (13c) 

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

+
−+−++

+
= W

ba
abE

a
WWVW

ba
bWW Cfba expln1)()( 0, ε .               (14) 

In the expressions above, the subscript fb  denotes “first best” while fbaW ,  represents the first best 

sharing rule between the two parties. The certainty-equivalent utility for the manager, denoted by fbΠ ,  

is: 

( ) ( ) )()1(4ln
200 BBffb V

ab
bapp

ab
baRRW εε −

+
+−

+
−−=Π .                  (15) 

The first-best effort level, fbε , is determined by the first order condition:  

ba
V fb

11)( +=′ ε .                                                 (16)  
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Comparing Equation (9) with Equation (16), we have that )()( fbl VV εε ′<′  and therefore the 

effort-underinvestment problem under the linear contract: fbl εε < .14 Notice that the condition in (9) is 

independent of the slope coefficients of the linear contract (both 1c  and 2c ) and the specification of the 

benchmark ( BLw ). We thus conclude that, with a linear contract, neither changing the pay-performance 

sensitivity of the contract, nor using a benchmark in the fulcrum incentive fee, helps in resolving the 

effort-underinvestment problem, a conclusion known as the irrelevance result. In other words, 

Stoughton’s result holds in essentially the same fashion in the current model. 

2.2 Characterization of the Manager’s Portfolio Choice Problem under the Incentive Contract 

We now analyze the manager’s problem when facing a contract in the form of Equation (4). We solve the 

manager’s overall optimization problem in two steps. In the first step, we take the manager’s effort level 

as given, and solve for the manager’s optimal portfolio choices. In the second step, we plug in the optimal 

portfolio choices and solve for the manager’s effort choice.  

We start by examining the contribution of the option-type bonus incentive fee to the manager’s 

payoff. The manager ends up earning the bonus incentive fee ex post (i.e., 0)0,max( >− BOWWλ ) if and 

only if he outperforms the benchmark, i.e., BOw RR > , or equivalently,  

( ) e
aa

e
mBOm RwRww <−− .                                           (17) 

It is clear from this inequality that earning the incentive fee is contingent on the state of nature 

characterized by the signs of the excess returns on the two assets. Intuitively, in order to motivate the 

manager to exert effort to improve his signal precision, we would want to reward him when the state of 

nature ex post confirms his ex ante signal. In other words, we want Inequality (17) to be satisfied in the 

states where a
e
aR δ=  when 1=s , and in the states where a

e
aR δ−=  when 0=s . We note that it is only 

                                                 
14 If we adopt the perspective that coefficient b , representing the aggregate risk aversion of all shareholders of a 
fund, is much smaller than the manager’s risk aversion coefficient, a , then the difference between )( lV ε′  and 

)( fbV ε′  will be substantial, highlighting the severity of the underinvestment problem with a linear contract.  
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natural for the manager to choose 02 ≥w  when 1=s  and 02 ≤w  when 0=s . Substituting these values 

for e
aR  and 2w  in (17) and using the fact that m

e
mR δ±= , we arrive at the following inequality:  

maaBOm www δδ⋅<− .                                                                 (18)  
Consider the case when 1=s , for example. Inequality (18) implies that the bonus fee option is ‘in 

the money’ in states (UU) and (DU), i.e., when the actively managed asset is up in value while the market 

index portfolio can be either up or down. The bonus fee payoff is zero in the other two states (i.e., states 

(UD) and (DD)). Intuitively, the above inequality is satisfied when the benchmark allocation to the market 

index, BOw , is ‘sufficiently’ close to the manager’s allocation to the index, mw  at the equilibrium. 

Whether the respective portfolio weights are ‘close enough’ depends on the manager’s portfolio choices, 

namely, mw  and aw , which we need to solve for. Therefore, we need to exhaust all possible cases 

including those cases where Inequality (18) does not hold. Also, we need to confirm our intuition that it is 

optimal to reward the manager through a bonus fee in states (UU) and (DU) in the case where 1=s . 

Mathematically, the following three scenarios exhaust all the possibilities embedded in Inequality (18): 15  

Scenario (a)  
m

a
aBOm www

δ
δ
⋅≤− , 

Scenario (b)  
m

a
aBOm www

δ
δ
⋅>− , 

Scenario (c)  
m

a
aBOm www

δ
δ
⋅−<− . 

Under Scenario (b), the manager’s allocation to the market index portfolio is much higher than 

the benchmark’s allocation to the index portfolio. For the case 1=s  and therefore 0≥aw , in Scenario 

(b) the bonus is ‘in the money’ in states (UU) and (UD), i.e., when 0>e
mR , regardless of the sign of e

aR . 

Under Scenario (c), the manager’s portfolio allocation to the market index portfolio is much lower than 

the benchmark’s allocation to the index portfolio. Consequently, the bonus fee is ‘in the money’ in states 

(DU) and (DD), i.e., when 0<e
mR , regardless of the sign of e

aR . We solve for the manager’s optimal 

                                                 
15 Including the equality in Scenario (a) is a matter of convention for the consideration of completeness. 
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portfolio choices within each of these three scenarios, starting with Scenario (a). We then arrive at the 

complete solution of the manager’s optimal portfolio allocation problem by checking for consistency 

within each scenario and his optimal choice across the scenarios.     

2.3 Manager’s Portfolio and Effort Choices under Option-type Bonus Fee Contract 

We employ the following notation to highlight the recurring terms in the manager’s objective function and 

therefore help simplify our exposition:  

aamm wwu δδ +≡ , and                                                                      (19)  

aamm wwv δδ −≡ .                                                                             (20) 

We further define mBLBL wN δ≡ , and mBOBO wN δ≡ . The terms u and v represent the excess return of the 

overall portfolio e
wR , in the two states (UU) and (UD) respectively. The terms BLN  and BON  represent 

the excess returns of the benchmark portfolios, e
BLR  and e

BOR  respectively, in these two states. In Scenario 

(a), the manager’s objective function, conditional on receiving a positive signal (i.e., 1=s ), is the product 

of the constant, ( )[ ]fa RWcFa 0exp +−− , and the following minimization problem: 

( )[ ]{ }

( )[ ]{ }

( )[ ]{ }

( )[ ]{ }.)()(exp
2

1)1(

)(exp
2

1min

)(exp
2

1)1(

)()(exp
2

1min

210

210

210

210

vNNvcvcaWp

NvcvcaWp

NucucaWp

NuNucucaWp

BOBL

BLv

BL

BOBLu

−+−−−−
+

−+

−+−
−

+

−−−−
−

−+

−+−+−
+

λρ

ρ

ρ

λρ

                        (21) 

After solving (21) for u and v, the manager’s optimal portfolio choice is determined jointly by Equations 

(19) and (20). It is equally likely that the manager receives a negative signal ( 0=s ), and his portfolio 

choice problem can be solved the same way. In fact, due to the exact symmetry, all the manager does in 

this case is to reverse the sign of aw . We then combine the manager’s utility in both cases, include the 

cost of effort into his objective function, and then solve for his effort choice. The results are summarized 

in the following lemma. 
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Lemma 1: In the case of Scenario (a), the manager’s optimal portfolio weights are 

m
BOBLicm amW

p
p

ww
m
cw

δ
θ

0

2
, 2

1
ln ⎥

⎦

⎤
⎢
⎣

⎡
−

++= ;                                      (22a) 
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⎦
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−
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=
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; and                                 (22b)  

1,0, ==
−=

sicasica ww .                                                              (22c) 

We use the subscript “ ic ” to denote that these portfolio weights are the solutions to the optimization 

problem under the “incentive contract”. The manager’s optimal effort, icε  is determined implicitly by  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+=′ θ

ρ
ε

ic
ic a

V 111)(  ,                                                  (23) 

where icρ  is a function of icε  and is implicitly defined by Equation (3) (i.e., iceic
ερ 21 −−= ). An 

explicit form of the manager’s utility and a necessary condition for the manager’s optimization problem to 

fit Scenario (a) are given in the Appendix as expressions (A1) and (A2), respectively. 

We can see from Equation (22b) that the manager’s allocation to the actively managed asset is 

determined by two factors represented by the two terms in the expression for icaw , . The first term in (22b) 

takes the exact same form as that in the linear contract (Equation (7b)). Conditional on receiving a 

positive signal about e
aR  (i.e., conditional on 1=s ), the manager invests more in the actively managed 

asset when the signal is more informative (i.e., if ρ  is higher). The second term in (22b) is independent 

of information precision and depends solely on the convexity of the contract, captured by θ . We can also 

see from Equation (22a) that the manager’s allocation to the market index icmw , , is sensitive to the relative 

weights for the two fee components (i.e., mc /2  and θ ) in the contract and to the corresponding 

benchmark weights (i.e., BLw  and BOw ). Following a similar solution technique to that used for Scenario 

(a), we solve the manager’s optimization problem under Scenarios (b) and (c). We record the results in 

the following lemma.  

Lemma 2: In the case of Scenarios (b) and (c), the manager’s optimal portfolio weights are  
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mm
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where the last term in the expression for icmw ,  above takes the positive sign in Scenario (b), and it takes 

the negative sign in Scenario (c). The managerial effort is implicitly determined by the condition:  

0
2

)(),(/),( =′+
∂
∂

ζ
ρ

εθζθζ
ζ

ic
icVagg                                 (25) 

where 
ic

ic

ρ
ρζ

−
+

=
1
1 , ( )θθ ζζ

ζ
ζθζ +
+

≡ +− 1
1

2),( 2/)1(g , and as in (15), iceic
ερ 21 −−= . An explicit form of 

the manager’s utility and a necessary condition for the manager’s optimization problem to fit Scenario (b) 

are given in the Appendix as (A3) and (A4), and for Scenario (c) as (A5) and (A6). 

The final solution for the manager’s portfolio decision problem involves comparing the 

desirability of the outcomes across the three scenarios. The above lemmas provide the necessary 

conditions on the control variables for the manager’s problem to fit into one of the three scenarios. We 

now derive the corresponding necessary and sufficient conditions, and therefore have a complete 

description of the manager’s optimal strategy. In the following proposition, we present the solution to the 

manager’s optimization problem as a set of rules that determines the manager’s portfolio choices and 

ultimately determines the manager’s optimal effort level. 

Proposition 1: Conditional on the precision ( ρ ) of the signal observed by the manager, his optimal 

portfolio decision is as follows: 

(a) In the case when the information precision is sufficiently high such that 

)(2
1

ln
1
1ln 2

0 BLBOm w
c
cwcaW

p
p

−−
−

≥
−
+ δ
ρ
ρ                                       (26) 

the manager’s optimal portfolio decision ),( ,, icaicm ww  is specified by Lemma 1.  

(b) In the case that Inequality (26) does not hold, then either  
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and the manager’s optimal portfolio decision is specified by Lemma 2 for Scenario (b); or  

)(2
1
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−
+ δ
ρ
ρ                                     (28) 

and the manager’s optimal portfolio decision is specified by Lemma 2 for Scenario (c). 

The optimal effort level of the manager is subsequently determined by either Equation (23) in Scenario 

(a), or Equation (25) in Scenarios (b) and (c). 

Proof. See Appendix. 

Proposition 1 specifies explicitly and completely the manager’s decision process in making his 

portfolio choice after observing a signal with precision ρ . The manager’s optimal effort choice is then 

the outcome of maximizing his utility using either Equation (23) or Equation (25) depending on which 

one is consistent.16 At equilibrium with icρρ = , the conditions in the proposition shall ultimately be 

viewed as restrictions on the contract space. With this in mind, it may be helpful to rearrange (26) and 

express it as a constraint on the choice of benchmarks: 

⎥
⎦
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⎢
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⎡
−
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−
+

−∈
−

−−
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ic

ic

ic
BLBOm p

pw
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cwcaW
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ρ

ρ
ρδ

1
1ln,

1
1ln

1
ln)(2 2

0                (29) 

From Equation (23) or (25), the only contract parameter that explicitly affects icρ  is θ . Hence, icρ  in 

(29) is a function of θ , BOw , and BLw . Therefore, (29) can be viewed as a joint restriction on the choice 

of contract parameters BOw , BLw , and θ . With this understanding in mind, we are in a position to 

analyze the implication of the contract form for the managerial effort choice.    

2.4  Motivating the Manager Using the Bonus Fee 

In the following theorem, we present the effort implications of the option-type “bonus” fee. 

Theorem 1: Corresponding to the three cases in Proposition 1, we have the following: 

                                                 
16 Depending on the specification of the contract parameters, Equation (23) is said to be consistent if it yields a 
solution for icρ  that satisfies Inequality (26). Similarly Equation (25) is said to be consistent if it yields a solution 

for icρ  that satisfies either (27) or (28). By making use of the results in Theorem 1, one can show that at least one of 
the two equations will be consistent. In the case that both are consistent, a direct comparison between the two levels 
of resulting managerial utility will resolve any remaining ambiguity.   
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(a) Among contracts that satisfy the relation in (29), the manager’s optimal effort level, icε , is an 

increasing function of θ  for 0≥θ . In particular, as 0=θ corresponds to the case of a linear contract, we 

have lic εε >  for 0>θ . On the other hand, in the case that 0<θ , the manager’s optimal effort level is 

lower than that in the linear contract. That is, icε  < lε  for 0<θ . 

(b) Among contracts that violate the relation in (29), and if 
1)2exp(
1)2exp(

+
−

<icρ  (i.e., if 7616.0<icρ ), the 

manager’s effort level, icε , is a decreasing function of θ  for 0≥θ . We assume here that icε  is an interior 

solution, and the second order condition of the effort choice problem is satisfied. 

Proof. See Appendix. 

Theorem 1 contains the main result of this paper, namely the relevance of the option-type bonus 

fee in motivating the manager, and the importance of the benchmark choice. According to the theorem, 

changing the relative weight of the manager’s bonus fee in the managerial contract (θ ) changes the 

manager’s optimal effort choice ( icε ). The precise relation between  icε  and θ  depends critically on the 

specification of the benchmarks (i.e., on the choice of BLw  and BOw ). In the case that BLw  and BOw  are 

so chosen that the relation in (29) is satisfied, increasing the relative weight of the manager’s bonus fee in 

the contract (i.e., increasing θ ) leads to higher effort (i.e., an increase in icε ). Under this scenario, the 

additional option-type bonus fee motivates the manager to work harder and potentially reduces the cost of 

effort-related moral hazard.17 On the other hand, increasing the relative weight of the bonus fee in the 

manager’s compensation when the relation in (29) is violated, will in fact lead to a reduction in the 

manager’s effort. In this case, the use of the bonus fee is counterproductive and in effect encourages the 

manager to shirk effort and rely solely on luck in order to beat the benchmark. It is therefore important to 

choose the benchmarks carefully so that the relation in (29) is satisfied. We will return to a discussion of 

these conditions in the next subsection. With the relation in (29) being satisfied, we can either increase λ  

                                                 
17 It is worth emphasizing that the optimal contract composition (including the composition of the benchmark) that 
would induce effort at minimal cost depends, among other things, on the effort cost. We address this issue in the 
next section when we formally analyze the optimal contract choice problem.  
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or decrease c  in order to increase the relative weight of the bonus fee, θ , and therefore induce higher 

managerial effort. In fact, we have the following corollary of the theorem.  

Corollary. Given a contract of the form in (4) and under any of the three scenarios, the manager’s optimal 

effort level, icε , is completely determined by the manager’s risk aversion ( a ), the relative weight of the 

option-type bonus fee (θ ) in the manager’s compensation, and the functional form of the effort cost, 

)(⋅V . 

The proof of this corollary is immediate. It follows by noting that the first order conditions of 

effort choice (Equations (23) and (25)) can ultimately be expressed in terms of only the above parameters 

(i.e., a  and θ ) and, of course, the variable icε  itself. An implication of the above corollary is that 

increasing the overall pay-performance sensitivity of the contract, i.e., increasing m  (the sum of 1c , 2c , 

and 2/λ ), while keeping the relative weight of the bonus fee constant, i.e., while keeping the 

ratioθ constant, will not affect the manager’s optimal effort choice. This strengthens Stoughton’s result 

under our setting, namely, that the average slope of the contract is irrelevant for the manager’s effort.  

2.5 The Relevance of the Benchmark  

We now interpret condition (29) in order to provide more meaningful guidelines with respect to the 

benchmark choice. In this context we note that, (29) can be transformed to the condition: 

malaBOicm www δδ,, <− . Intuitively, the appropriate benchmark weight on the passive asset ( BOw ) 

should track the manager’s allocation to the passive asset ( icmw , ) closely enough such that the bonus fee 

will be in the money only if the manager’s ex ante signal is confirmed ex post by the realized state of 

nature. This, in turn, motivates the manager to work hard to enhance the precision of his signal, and to 

appropriately invest in the actively managed asset, in order to improve the chances of earning a “bonus” 

fee as well its magnitude. Therefore, when the benchmark is chosen to accurately reflect the investment 

style of the manager, the use of the benchmark-linked incentive improves managerial effort. We therefore 

have confirmed the intuition that motivates our definition of Scenario (a). In essence, this result represents 



 21

an application of the Holmström (1979) “informativeness principle” to the delegated portfolio 

management problem. In this sense the use of style benchmarks, as advocated by Sharpe (1992), can be 

quite beneficial, even from a managerial incentive standpoint. 

On the other hand, as discussed previously under Scenarios (b) and (c), a benchmark may involve 

a weight on the passive index portfolio that is too little (too much), relative to the manager’s actual 

passive asset allocation. The option component of the manager’s “bonus” fee will now be in the money if 

the passive index portfolio happens to have a favorable (unfavorable) outcome, regardless of the 

performance of the actively managed asset. In this case, there is little incentive for the manager to 

improve his information precision. As a result, the manager will actually be more reluctant to exert effort, 

and consequently the incentive fee in this form encourages the manager to shirk. 

2.6 Understanding the Incentive Effects of the “Bonus” Incentive Fee  

From Theorem 1, we conclude that the inclusion of an appropriately specified “bonus” incentive fee in 

the contract provides the manager incentives to collect costly information. To get a sense of the potential 

magnitude of this incentive effect, let us take a concrete example. Suppose the manager faces an 

environment where the typical information signal has a correlation coefficient of 16.8% with the true state 

of nature, i.e. %8.16=ρ .18 Compared to a linear contract, how much harder will the manager work if he 

is given the “Two and Twenty” incentive contract often observed in hedge funds? That is, a contract 

where 02.0=c , 20.0=λ , and thus, 83.0=θ . According to (23), the marginal cost of effort increases 

multifold from 
a

V 1
=′  in the case of a linear contract to 

a
V 96.5

=′  in the case of the “bonus” incentive 

contract. Thus, the option-type “bonus” fee not only monotonically increases managerial effort in a 

qualitative sense, but also does so in a very economically meaningful way.  

 

                                                 
18 This value is calibrated from U.S. stock mutual fund data and is used in the numerical analysis in Section 3.5.  



 22

3. Optimal Contract Choice 

3.1 The Manager’s Optimization Problem with Endogenous Contract Choice 

After studying the manager’s incentive problem while taking the contract as given, we conclude that, by 

including the option-type “bonus” fee with an appropriately specified benchmark, the manager will be 

motivated to work harder to collect valuable information. However, as we have not considered the cost of 

including the “bonus” fee, it still leaves unanswered the question: Are incentive contracts desirable? To 

answer this question we need to take into account the investor’s participation constraint, which dictates a 

tradeoff among the components of the contract. We focus on a contract featuring option-type “bonus” 

incentive fees with the appropriately chosen benchmark that is consistent with the manager’s allocation to 

the passive asset. 

To directly capture the tradeoff between the “bonus” fee and the fixed salary, we can solve the 

binding participation constraint of the investor (as in Inequality (12)) for F , and plug it, together with the 

manager’s decisions solved in Lemma 1, into the manager’s certainty-equivalent utility function. As a 

result, we are able to formulate the optimal contract problem for the manager as the following 

unconstrained maximization problem, with an explicit objective function, and five control variables, 

namely, 1c , 2c , BLw , λ , and BOw . The manager’s objective function representing his certainty-

equivalent utility is:  
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where icε  is determined by Equation (23) and  iceic
ερ 21 −−= . The derivation of the above expression 

is provided in the Appendix. The expressions for 1D , 2D , 3D , and 4D  are given by (A11)-(A14) in the 

appendix. Below, we characterize the solution of this optimization problem. 
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3.2 The Optimal Linear Contract 

We begin by searching for the optimal contract within the set of all linear contracts, a case of interest by 

itself. That is, we now impose the constraint, 0=λ  (i.e., 0=θ ). The resulting simplified expression for 

the manager’s objective is given by: 

( ) ( )
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where lε  is determined by Equation (9). Only the last term in the above expression depends on the 

contract coefficients. Therefore, the search for optimal contract parameters BLwcc  and ,, 21  boils down to 

minimizing the arithmetic average of four positive terms ( )4321 and,,, DDDD 19 whose geometric 

average, through direct computation, is )1)(1)(1( llpp ρρ −+− . As the arithmetic average cannot be less 

than the geometric average and the latter is independent of all control variables of the optimization 

problem in (31), the geometric average provides a natural lower bound for the minimization, which can be 

attained when 4321 DDDD === . The necessary and sufficient condition                           

is: 
ba

bc
+

= , and 02 =BLwc . We have arrived at the following proposition. 

Proposition 3: In the optimal linear portfolio management contract, 
ba

bc
+

=1  and 02 =c .20 

According to Proposition 3, the benchmark-linked fulcrum fee should not be used in the optimal 

linear contract. It therefore confirms the benchmark irrelevance result of Admati and Pfleiderer (1997). 

The merit here is that the result is arrived at directly from the optimization of the manager’s objective 

function and therefore it takes into account all of the aforementioned contracting issues simultaneously.21 

 

                                                 
19 The expressions for these terms in the case of a linear contract are given by (A21)-(A24) in Appendix C. 
20 The other possibility is to have 2c be nonzero but 0=BLw . However, in our model, setting 0=BLw  is 
equivalent to selecting an appropriate combination of the fixed fee and the proportional asset-based fee. Therefore, 
by skipping the case with 0=BLw , we do not miss out on any contracts in our optimal set. 
21 The result in Proposition 3 is anticipated by combining and comparing results in Propositions 1 and 2. 
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3.3 The Optimal Incentive Contract 

We have the form of the optimal linear contract according to Proposition 3. Are there circumstances under 

which this contract is the optimal contract within the broader contract space examined in this paper? We 

answer this question in the following theorem. 

Theorem 2: In the optimal managerial contract, 0>λ . More specifically, the optimal linear contract in 

Proposition 3 dominates all contracts with 0<λ , and there are contracts with 0>λ  that dominate the 

optimal linear contract. 

Proof. See Appendix. 

According to Theorem 2, it is always optimal for the investor to specify a contract that includes 

the option-type “bonus” incentive fee component. We prove the theorem by studying the marginal effect 

on the manager’s objective function of introducing a small amount of “bonus” incentive fee in the optimal 

linear contract. We show that at the margin, the benefits of including the “bonus” incentive fee, in terms 

of the improved effort incentives, outweigh the potential costs in terms of suboptimal risk sharing and 

distortions in the managerial risk incentives. Clearly, due to the nature of this argument, Theorem 2 is a 

qualitative result. Although in theory it is always desirable to include the option-type “bonus” fee in the 

contract, the economic significance of such a fee is not directly addressed in the theorem. However, based 

on the discussion in Subsection 2.6., we know that the managerial effort incentives induced by the option-

type bonus fee contract are indeed economically meaningful. We provide further evidence on this issue 

based on a calibration of the model in Subsection 3.5.  

3.4 Alternative Forms of the Portfolio Management Contract 

Even though the different elements of the generic contract that we examine are quite similar to what is 

observed in practice, it is reasonable to ask whether our results continue to hold when other forms of 

fulcrum fee or incentive fees are allowed. For example, is the option-type incentive fee still optimal when 

the fulcrum fee is say, convex (concave) in gains and concave (convex) in losses? Similarly, can the non-

linear component of the contract take the simpler form of a lump-sum bonus payment for exceeding a 
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performance threshold (and zero otherwise) rather than the option-type fee considered here? Our results 

suggest that our conclusion regarding the optimality of the option-type fee is robust to these extensions. 

We begin by stating the following proposition that shows that all forms of the fulcrum fee contracts, not 

just the linear fulcrum fee considered here, lead to the identical level of managerial effort.  

Proposition 4: Consider the general fulcrum fee contract form:  

)()( 1 BLa WWgWcFWW −++=                                              (32)  

where )(xg  is an odd function (i.e., Rx∈∀ , )()( xgxg −=− ). The manager’s optimal effort choice is 

determined by Equation (9), and is therefore independent of the form of the fulcrum fee. 

Proof. See Appendix.  

Proposition 4 implies that all forms of fulcrum fee contracts will result in the same managerial 

effort level under our setting. It is clear then that any non-linear fulcrum fee contract is dominated by the 

linear fulcrum fee due to the former’s (a) suboptimal risk sharing features, and (b) suboptimal managerial 

risk incentive (i.e., portfolio allocation incentive). However, as we have shown earlier, the option-type 

bonus fee when used in addition to the linear fulcrum fee, can in fact improve the managerial effort and 

utility. Therefore, the optimality of the option-type incentive fee is robust to more general forms of 

fulcrum fee arrangements. We next examine whether a non-linear component in the form of a simple 

lump-sum bonus would suffice in lieu of the option-type bonus incentive considered by us. We state the 

answer to this question in the form of the following proposition. 

Proposition 5: Consider a contract that adds to our general contract an additional item that corresponds to 

a lump-sum bonus fee if the manager outperforms a benchmark, and is zero otherwise. That is, consider a 

contract with the following compensation structure:22 

}{)0,max()()( 21 BPBOBLa WWWWWWcWcFWW >⋅+−+−++= ξλ              (33) 

                                                 
22 We adopt de Finetti’s notation and use the same symbol for a set and its indicator function. 
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Here BPW is the benchmark for the lump-sum bonus fee. The manager’s optimal effort choice under this 

contract is the same as that under contract (4). Therefore, adding a lump-sum bonus component to the 

contract does not alter the manager’s effort incentive. 

Proof. See Appendix. 

From the above proposition, when restricting λ to be zero, it follows that adding a lump-sum 

bonus fee to a linear contract does not improve the manager’s effort level. For that given level of effort, 

the linear contract in Proposition 3 will achieve the optimal risk sharing and lead to the appropriate 

managerial risk incentive. Consequently, unlike the option-type incentive fee, the inclusion of a simple 

lump sum bonus fee to a linear contract will in fact be detrimental to the manager’s utility. Therefore, the 

conclusion in Theorem 2 that 0>λ  in the optimal contract, still holds. 

3.5 Numerical Results 

In this section we provide an assessment of the potential efficiency gains from the adoption of the option-

type bonus incentive fee. For the sake of simplicity, we will assume in this subsection that the fund 

management contract does not include a benchmark-linked fulcrum fee. To calibrate the model, we 

assume that the typically observed linear contract in the mutual fund industry is the optimal linear 

contract, and the typically observed portfolio allocation to stocks by equity funds is the manager’s optimal 

response to the linear contract. Specifically, we assume that the optimal linear contract has a slope of 1 

percent. The manager’s allocation to the market index portfolio is assumed to be 90 percent. 

In order to get a reasonable estimate of the equilibrium value of the information precision 

parameter, ρ , we use data on a sample of stock mutual funds from the CRSP Survivor-Bias Free US 

Mutual Fund Database for the period 1962-2004. The sample includes 2,839 actively managed funds 

belonging to the “Aggressive Growth”, “Growth and Income”, and “Long Term Growth” categories. In 

the context of the model, with probability 2/)1( ρ+ , the manager achieves a positive Jensen’s alpha, ex 

post. For our sample of funds we find that the Jensen’s alpha based on gross returns is positive for 58.44% 

of the funds. Setting this figure equal to 2/)1( ρ+  yields a value of 16.88 percent for ρ . We assume that 
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this is the optimal choice of information precision for the manager under a linear contract. The market 

excess return was positive in 309 out of 516 months during the above period, i.e., 59.84 percent of the 

time. Accordingly, we set 5984.0=p . The monthly market risk premium was 61 basis points and the 

monthly market volatility was 4.21 percent during this period. This corresponds to a value of 16.30 

percent for the annualized square root of the second moment for the market excess return, which we use 

as the value for parameter mδ .  

When adding a bonus fee to a linear contract, we can utilize expressions (22a-22c) and rewrite 

Condition (18) as ⎟⎟
⎠

⎞
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ww . Given the above calibration, this condition is satisfied 

if 67.113.0 << BOw . In other words, as long as the benchmark weight on the market portfolio falls in the 

interval between 0.13 and 1.67, the corresponding bonus fee improves the managerial effort. While not 

very restrictive, this condition does imply that, for a typical mutual fund, the use of a bonus fee with the 

risk-free rate as the benchmark will hurt the manager’s effort incentive. 

To further characterize the optimal contract, we specify the following information cost function:  
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where γ  is a positive parameter, and ρ̂  is a parameter that falls in the interval [0, 1]. We use the 

parameter γ  to capture different levels of the information related costs. The parameter ρ̂  represents the 

highest possible information precision and we set it equal to 0.50. We note that the above cost function 

satisfies all theoretical requirements in the context of our model and allows for an explicit solution for the 

optimal managerial effort. We initially choose a value of γ  to fit the empirically observed value for ρ , 

i.e., 16.88 percent for a linear contract. We find that the optimal contract under this setting consists of a 

proportional fee of 0.74 percent of the assets under management, and a bonus fee equal to 7.35 percent of 

the outperformance against the benchmark. The optimal benchmark involves an 84 percent allocation to 

the market (portfolio) and 16 percent to T-bills. This contrasts with the optimal linear contract with a 

proportional asset-based fee of 1 percent.  
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Based upon the above parameters we find that the information precision under the optimal bonus 

fee contract increases to 32.29 percent from the linear contract level of 16.88 percent, an economically 

significant improvement. We next calculate the certainty-equivalent utility for the manager under three 

scenarios: the optimal linear contract, the optimal contract with the option-type bonus component, and the 

first best solution. We find that under the optimal bonus contract, the manager’s certainty-equivalent 

utility is 4.6 percent of the initial assets under management ( 0W ). This represents an improvement of over 

100 percent of the manager’s certainty-equivalent utility under the linear contract (2.1 percent of 0W ).23  

We next experiment with different choices for the information cost coefficient γ  while keeping 

all other model parameters unchanged. Panel A of Figure 1 depicts the manager’s certainty-equivalent 

utility, expressed as a proportion of the initial assets ( 0W ), under the optimal incentive contract, the 

optimal linear contract, and in the first best solution respectively, for varying levels of γ . As can be seen, 

the manager’s utility is consistently higher under the incentive contract compared to the linear contract, 

thereby reducing the gap between the contract-induced manager utility and the first-best level of utility.  

Panel B of Figure 1 shows the composition of the optimal bonus contract as a function of the cost 

of information. The composition of a contract is characterized by the “average” pay-performance 

sensitivity (m) and the relative weight on the “bonus” fee (θ ). Initially, as information become costly, it 

becomes increasingly important to motivate the manager to exert effort leading to a larger relative weight 

of the option-type bonus fee in the contract. This is accompanied by a correspondingly higher average 

pay-performance sensitivity to offset the shifted risk incentive of the manager. However, as the 

information cost increases further, the equilibrium level of information precision becomes small. At this 

point, aligning the manager’s risk incentive becomes the dominant concern. Therefore, we see a decrease 

in the relative weight assigned to the “bonus” fee along with an increase in the average pay-performance 

sensitivity of the contract.  

                                                 
23 Recall that in our analysis we have assumed that the manager has market power and thus captures all of the 
efficiency gains. Under the alternative assumption that the gains are captured by the investor, the option type bonus 
fee contract leads to an improvement in the investor’s certainty-equivalent return of over 50 percent.     
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We next explore the manager’s certainty-equivalent utility and the optimal contract composition 

under varying levels of investor risk aversion, while keeping the manager’s risk aversion and all other 

parameters fixed. In particular, we allow the ratio of the investor’s risk aversion coefficient ( b ) to the 

manager’s risk aversion coefficient ( a ) to vary from a low of 0.001 to a high of 0.01. The results are 

presented in Panels C and D of Figure 1. Panel C of the figure depicts the manager’s certainty-equivalent 

utility, expressed as a proportion of the initial assets ( 0W ). As the investor becomes less risk averse, the 

overall investment opportunity set looks more appealing to her. Therefore, we see a higher surplus left 

over to the manager when the investor is less risk averse. In Panel D of the figure we see that the relative 

weight on the “bonus” fee becomes higher as the investor becomes less risk averse. This is due to two 

reasons. First, as can be seen from Equation (16), as the investor becomes less risk averse, i.e., as 

b becomes smaller, the optimal managerial effort in the first best solution becomes higher. At the same 

time, the optimal managerial effort from a linear contract stays unchanged, as shown in Equation (9). 

Therefore, the underinvestment problem in managerial effort under a linear contract becomes more severe 

and hence, the need to use the “bonus” fee to motivate the manager becomes more urgent. Furthermore, 

with declining investor risk aversion, concerns over excessive managerial risk-taking as a consequence of 

the inclusion of a “bonus” fee in the contract, become less important. In Panel D we also see that the 

overall pay-performance sensitivity of the contract decreases as the investor becomes less risk averse. 

This is because the less risk-averse investor optimally bears more risk.  

Stoughton (1993) considers a truth revelation mechanism to overcome the moral hazard problem 

in the context of delegated portfolio management. While the mechanism cannot be implemented in the 

realistic portfolio management environment, we nevertheless adapt it to our setting to serve as a 

benchmark for evaluating the efficiency of the incentive contract. Under this mechanism the manager 

simply reports his forecast about the excess return on the actively managed asset to the investor who then 

implements the portfolio allocation based on the reported forecast. The manager receives a payoff equal 

to d+φ  if he is ex post correct, and d−φ  otherwise. The compensation can thus be specified by two 
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parameters: the arithmetic average of the two levels, denoted by φ , and the difference of the two levels, 

denoted by d2 . The appendix provides a brief analysis of this mechanism. The reader is referred to 

Stoughton (1993) for additional details.  

We find that, within the range of parameter variation considered in Figure 1, while the manager’s 

effort under the information revelation mechanism (denoted by the subscript “ir”) is often higher 

compared to that under the optimal incentive contract, the difference is very small. In fact, the ratios 

icir ρρ /  all fall into the interval ]01.1,99.0[ . This difference becomes noticeable only when the 

aggregate risk aversion of investors becomes comparable to that of the manager. If for instance we take 

the ratio ab /  as 0.05, a value higher than what we considered in Figure 1 (Panels C and D), the ratio 

icir ρρ /  is 1.08, which is noticeably higher than those ratios considered earlier but still very close to 1. 

Interestingly, in this case, the ratio of the manager’s certainty-equivalent utility under the information 

revelation mechanism to that under the incentive contract ( )icir ΠΠ /  is only 0.66. That is, the manager is 

much better off under the optimal incentive contract than under the information revelation mechanism 

despite the fact that the latter generates higher managerial effort. On the other hand, when the investor 

approaches risk neutrality, the ratio icir ΠΠ /  increases. For example, it reaches 1.16 for the case where 

001.0/ =ab . This highlights the intuition that by severing the feedback relation between portfolio 

allocation and information collection, the information revelation mechanism is quite effective in 

motivating the manager. However, when the investor becomes more risk averse, such a mechanism proves 

inferior to the incentive contract as it does not allow the investor to effectively share the portfolio risk 

with the manager.  

4. Conclusion 

The question of how to best design contracts in the delegated portfolio management setting has long 

engaged academics, regulators, and the investment community. Three considerations play important roles 

in determining the desirability of a contract in this setting. We want to find contracts that (a) provide the 

portfolio manager with the right incentives to exert costly effort to collect information, (b) lead the 
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manager to choose a portfolio with the desirable risk characteristics, and (c) provide effective risk-sharing 

between the manager and the investors. In this study, we address the optimal contract design problem by 

effectively considering all three of the above issues. We start with a simplifying assumption on the joint 

distribution of asset returns and information that introduces substantial symmetry into the structure of the 

model while preserving the richness of the contracting problem’s intrinsic decision structure.  

Our key results can be summarized as follows. One, when the benchmark is appropriately chosen 

to purge the impact of factors beyond the manager’s control, the use of the option-type “bonus” 

performance fee in the contract leads to increased effort from the portfolio manager. Two, with a poorly 

chosen benchmark, the option-type incentive fee actually hurts the manager’s effort incentive. Three, for 

the general set of contracts considered here, with the appropriate choice of benchmark, it is always 

optimal to include an option-type incentive fee in the contract. We derive the conditions that the 

benchmark must satisfy. Our results highlight the importance of benchmark choice in the design of 

performance-based fees in portfolio management contracts. Further, they suggest that a universal 

prohibition on the use of asymmetric performance-based fees in mutual fund advisory contracts may in 

fact be harmful to shareholder interests. 
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Appendix 
Proof of Lemma 1. The first order condition, which is also the sufficient condition of optimization for u  
in Expression (21) is 
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Similarly, we can solve the optimization problem for v . We get 

BOBL NN
m
c

amW
c

c
p

p

v θ

λ
ρ
ρ

++
⎟
⎠
⎞

⎜
⎝
⎛ +

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

= 2

02

ln
1
1ln

1
ln

. 

From Equations (19) and (20), we have 
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computation then leads to Equations (22a) and (22b) in the lemma. Equation (22c) is due to symmetry. It 
is then straightforward to compute the manager’s certainty-equivalent utility, which we report below: 
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The first order condition of the above maximization problem of effort choice ε  is: 
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Total differentiation of Equation (3) yields 
ε
ρ

d
d . After substituting the result in the above expression and 

upon further simplification, we arrive at Equation (23). To be consistent, we need icmw ,  and icaw ,  to fit in 

Scenario (a). Inequality (18), after plugging in the solutions for icmw ,  and icaw , , turns into the following 
condition: 
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Appendix for Lemma 2. The manager’s optimal certainty-equivalent utility for Scenario (b) is 
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A necessary condition for the manager’s optimization problem to fit Scenario (b) is: 
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The manager’s optimal certainty-equivalent utility for Scenario (c) is: 

( ) ( )[ ]
( )

( ) .)()1()1()1()1(ln1max

ln)1ln()1()1ln()1ln()1(
2
1

2/)1(2/)1(2/)1(2/)1(

20

01,

⎥⎦
⎤

⎢⎣
⎡ −−++−+−+

−+

−+++−−−−++=Π

−++− ερρρρ

θδ

θθθθ

θθθθ

ε
V

a

cwwcW

pp
a

RWcF

BOBLm

fcic

            (A5) 

A necessary condition for the manager’s optimization problem to fit Scenario (c) is 
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Notice that the optimization problem of ε  is identical in (A3) and (A5). The first order condition of the 
optimization problem, after simplification, is given by Equation (25).  
 
Proof of Proposition 1: After Lemmas 1 and 2, the manager’s choice of portfolio weights is still not yet 
completely solved for, because conditions (A2), (A4) and (A6) are not mutually exclusive. First, when 
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the manager needs to compare the portfolio solution according to Scenario (a) described by Lemma 1 
with that according to Scenario (b) described by Lemma 2. For any given level of ρ  that satisfies (A9), 
we compare the manager’s utility under the optimal portfolio choice for Scenario (a) (Equation (A1) 
without taking the maximization on ε ) with that for Scenario (b) (Equation (A3)). We find that the 
manager will choose to go with Scenario (a) rather than Scenario (b) if and only if 
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which is exactly at the middle point of the interval in (A7). Similarly, we compare the manager’s interior 
optimal utility for Scenario (a) with that for the Scenario (c) (Equation (A5)). We arrive at the condition 
that the manager will choose to go with Scenario (a) rather than Scenario (c) if and only if,  
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After this, there is no more ambiguity in the manager’s portfolio decision. Combining (A8) and (A9), we 
arrive at (26) in the proposition. The rest follows. 
 
Proof of Theorem 1: Case (a): Through differentiation of Equation (23) in Section 2.3, we have  
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for 0>θ , as V ′′  is positive. As for the case where 0<λ  (i.e. 0<θ ), notice that from Equation (23) we 
have aV ic /1)( <′ ε . By comparing this inequality with Equation (9), we conclude that lic εε < .  
Case (b):  The proof of the corollary in this case makes use of the following claim. 
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We now get back to the proof of the theorem. Through direct computation, we have: 
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As per assumption, the second order condition of the manager’s optimal effort choice problem is satisfied:  
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Deriving the reduced-form objective function for the manager (Expression (30)): Due to symmetry, 
we only need to look at the case with 1=s . By plugging in the manager’s optimal portfolio strategy, 
specified by Equations (22a-22c) in Lemma 1 into Equation (1), subsequently applying Equation (4), and 
finally combining the results, we can get the distribution for )(WWW a− , the investor’s payoff. The 
investor’s certainty-equivalent utility can be readily computed, which leads to an explicit form of the 
investor’s participation constraint:  
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In the above expressions, ⎥
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bF . Substituting the left hand side of (A10) for FRWcF 01+  in the manager’s 

certainty-equivalent utility (i.e., A1), we arrive at (32) in Section 3.1. In the special case when 0=λ , and 
therefore 0=θ , we have 
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where ⎥⎦
⎤

⎢⎣
⎡= BLNbW

c
cG 0

2
3 exp .  

Proof of Theorem 2: We first prove that the optimal linear contract is dominated by a contract 
with 0>λ . Let us denote the manager’s objective function in expression (30) in Section 3.1 by 

),,,,( 2 BBL wwcc λΠ . We change to the equivalent set of control variables: { m , 2c , BLw , θ , Bw }. To 
prove the theorem, we need to first prove that 
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Applying the expression for Π  in Expression (30) in Section 3.1, we get 
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Here icε  is a function of θ  implicitly defined by Equation (25). One can directly verify that 
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Because icε  solves the maximization problem in (A1), we have 02 =
∂
Π∂

= icεεε
. This serves as the 

envelope condition. Because of the envelope condition, we can take the derivative of 2Π  with respective 
to θ  without the concern that icε  depends on θ . We have the following partial differentiation:  
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In the derivation of the above equation, we used the fact that lic εε = , when 0=θ . Taking partial 

derivative for each iD , summing up the four items, and then dividing by ∑ iD  we can show that: 
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Plugging (A21), (A22), and (A23) into (A20), we have 
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We have thus proved inequality (A19). What is left is to prove that the optimal linear contract dominates 
all contracts with 0<λ . Although intuitive, the rigorous proof is long and tedious. We only sketch out 
the main steps here. Consider a contract with 0<λ . The manager will voluntarily choose the effort level, 
denoted by icε . For this fixed effort level ( icε ), changing the contract parameters in (30) to the set that is 
in accordance with the optimal linear contract will lead to an improvement in the objective function due 
to the optimal contract’s more appropriate risk incentive and better risk sharing properties. Then one can 
prove that, with the optimal linear contract parameters, the objective function in (30) is monotonic in ρ  
for all cases with lic εε < . From Corollary 1, we know that lic εε < . Therefore, increasing the effort level 
to lε  leads to a further increase in the value of the objective function in (30). The above chain of 
comparisons leads to the conclusion of the theorem.  

Proof of Proposition 4: The manager’s objective function is:  
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For the moment, we denote that ( )( ))(exp 1 BLNugucaD −+−= , and look at the optimization problem that 
involves u. The problem transforms to: ( ) 2/)1)(1()1(min

0
DpDp

D
ρρ −−++

>
. We are in effect 

minimizing the arithmetic average of two items whose geometric average is )1)(1)(1( ρρ −+− pp , 
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which no longer depends on the control variable and is therefore the minimum.24 The minimization 
problem for v can be solved in the same fashion. It is then straightforward to check that the resulting 
managerial utility is the same as in Equation (8), which then leads to the effort choice condition (9).  

Proof of Proposition 5: In the following proof, we will assume that condition (a) under Theorem 1 is 
satisfied. The other two cases follow similarly. We denote that: 

( )

( )
2

1exp
2

1
2

1exp
2

1

ρξρ

ρξρ

ρ
−

+−
+

−
−−

+

=′
a

a
 .                                                        (A24) 

After some manipulation, the manager’s portfolio choice problem can be expressed in exactly the same 
form as that in Expression (21) in Section 2.3, except the term ρ  is replaced by ρ′  here. We can therefore 
invoke Lemma 1 to solve the portfolio allocation problem. The proof of the proposition then follows. 

Information Revelation Mechanism: The manager reports the signal to the investor and gets d+φ  if he 
is ex post correct, and d−φ  otherwise. The manager’s incentive compatibility condition to report the 
signal truthfully is simply: 0≥d . The manager’s incentive compatibility condition for information 
collection is straightforward: 
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Here the subscript ir  denotes the information revelation mechanism. It is clear from (A25) that only the 
term d , and not φ , motivates the manager. The investor anticipates, correctly in equilibrium, the signal 
precision irρ . Start with the investor’s payoff distribution, which leads to the derivation of her expected 
utility. After some simplification, the investor’s expected utility is the product of ( ))(exp 0 φ−−− fRWb  
and the following minimization problem: 

⎥⎦
⎤

⎢⎣
⎡ +

−+
−

+
−

−+
+ −−−− vbWbdvbWbdubWbdubWbd

vu
eepeepeepeep 0000

2
1)1(

2
1

2
1)1(

2
1min

,

ρρρρ
. 

Again, we can view the above as minimizing an arithmetic average of four terms whose geometric 
average is )1)(1(2 2ρ−− pp , which does not depend on the control variables and hence, is the 
minimum. From this, the investor’s participation constraint implies: 
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−−−−−= ρφ . The manager has the freedom to choose the 

compensation parameter d . By applying the investor’s participation constraint, the manager’s certainty-
equivalent utility is obtained by the following maximization: 
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In the above optimization, irρ  is viewed as a function of the control variable d  implicitly defined by 
(A25). 

                                                 
24 To be exact, we need to ensure that after solving for D, we are able to obtain a solution for u. We can, for 
example, assume that )(xg  is continuous. 
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