
Efficient Solution of Maximum-Entropy
Sampling Problems

Kurt M. Anstreicher∗

July 10, 2018

Abstract

We consider a new approach for the maximum-entropy sampling problem (MESP)
that is based on bounds obtained by maximizing a function of the form ldetM(x)
over linear constraints, where M(x) is linear in the n-vector x. These bounds can be
computed very efficiently and are superior to all previously known bounds for MESP on
most benchmark test problems. A branch-and-bound algorithm using the new bounds
solves challenging instances of MESP to optimality for the first time.

Keywords: Maximum-entropy sampling, convex programming, nonlinear integer program-
ming

1 Introduction

The maximum entropy sampling problem (MESP) is a problem that arises in spatial statis-
tics. The problem was introduced in [17] and applied to the design of environmental moni-
toring networks in [8, 20]. In a typical application, C is a sample covariance matrix obtained
from time-series observations of an environmental variable at n locations, and it is desired to
choose s locations from which to collect subsequent data so as to maximize the information
obtained. The resulting problem is then

MESP : z(C, s) := max {ldet C[S, S] : S ⊂ N, |S| = s} ,

where ldet denotes the natural logarithm of the determinant, N = {1, . . . , n}, and for subsets
S ⊂ N and T ⊂ N , C[S, T ] denotes the submatrix of C having rows indexed by S and
columns indexed by T . The use of entropy as a metric for information, together with the
assumption that values at the n locations are drawn from a multivariate normal distribution,
leads naturally to the problem MESP because ldetC[S, S] is, up to constants, the entropy
of the Gaussian random variables having covariance matrix C[S, S]. For survey articles
describing the MESP see [14, 15].

The study of exact algorithms for MESP was initiated in [11]. Exact algorithms to com-
pute a maximum-entropy design use the “branch-and-bound” (B&B) framework, for which
a key ingredient is the methodology for producing an upper bound on z(C, s). Subsequent
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nodes in the B&B tree, corresponding to indeces being fixed into or out of S, result in
problems of the same form as MESP but with modified data (C ′, s′). A fast method that
can provide a good upper bound on z(C, s) is critical to the success of this approach. The
exact algorithm in [11] used a bound based on the eigenvalues of C. A variety of different
bounding methods have subsequently been developed and investigated [1, 2, 3, 4, 5, 9, 16],
and several of these have been incorprated into complete B&B algorithms. Recent results
using the optimized “masked spectral” [1, 5] and BQP bounds [2] are the most promising so
far, although both of these bounds involve challenging computational problems posed over
an n× n variable matrix X � 0.

In this paper we consider a new bound for the MESP that is based on maximizing
a function of the form ldetM(x) subject to the constraints 0 ≤ xi ≤ 1, i = 1, . . . , n,∑n

i=1 xi = s, where solutions of MESP correspond to binary x. This bound has similarities
with both the NLP bound [3, 4] and the BQP bound [2]. The NLP bound is based on
maximizing a function of the form ldetM(x) over the same constraints, where M(x) is
a nonlinear function of x. For appropriate parameter choices this function ldetM(x) is
provably concave, although M(x) is too complex for ldetM(x) to be recognized as concave
by the cvx convex-programming system [7]. The BQP bound [2] is based on maximizing a
function of the form ldetM(X), where M(X) is linear in the n× n matrix variable X � 0.
We refer to the new bound as the “linx” bound because M(x) is linear in x. Validity of the
linx bound is based on a simple but previously unexploited determinant identity (Lemma 1).
Advantages of the linx bound over the NLP, BQP and other bounds for the MESP include
the following:

• The linx bound can be computed more efficiently than the NLP bound because M(x)
is linear in x. The linx bound can be computed much more efficiently than the BQP
bound because the linx bound is based on a matrix M(x), x ∈ Rn

+ instead of a matrix
M(X) where X � 0.

• Because the linx bound includes variables that explicitly correspond to choosing a sub-
matrix of C, like the NLP and BQP bounds, the bound can be directly employed to
handle instances of the constrained MESP (CMESP) that contains additional con-
straints

∑
j∈S aij ≤ bi, i = 1, . . . ,m by simply adding the inequality constraints∑n

j=1 aijxj ≤ bi, i = 1, . . . ,m. The fact that such linear constraints can be directly
incorporated is a considerable advantage over other bounds for CMESP, such as the
eigenvalue-based bound for CMESP described in [13].

• Because the linx bound is based on a convex programming problem, like the NLP and
BQP bounds, duality information can be used to potentially fix variables to 0/1 values.
Such variable-fixing logic is not possible using bounds based on eigenvalues, including
the optimized masked spectral bound [1, 5]. The variable-fixing logic associated with
the linx bound is much simpler than for the BQP bound, because the logic in the BQP
bound must be based on the SDP condition X − diag(X) diag(X)T � 0 rather than
the explict bounds 0 ≤ x ≤ e. Duality information can also be used as the basis for a
strong branching strategy in a B&B implementation.

• In general the optimal solution value for MESP is the same as the value for a “com-
plementary problem” that is based on replacing C with C−1 and s with n− s. Many
bounds for the MESP, including the NLP, BQP and masked-spectral bounds, can differ
for the original and complementary problems, and therefore in general both bounds
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must be computed to obtain the best possible result. We prove that for the linx bound,
as for the basic eigenvalue bound [11], the bound based on the complementary problem
is identical to the bound based on the original problem and therefore consideration of
the complementary problem is unnecessary.

In the next section we define the linx bound, establish its validity and show that the bound
is the same for the complementary problem. We also describe a dual problem and show how
dual variables can be used to potentially fix variables to 0/1 values. The linx bound, like
the NLP and BQP bounds, is sensitive to a scaling of the covariance matrix C. We describe
an initial choice for the scaling parameter that has performed well computationally as well
as a simple procedure that can be used to approximately optimize the scaling parameter.
Computational results using benchmark data sets with n = 63 and n = 124 as well as a
new data set with n = 90 show that the BQP bound performs extremely well compared to
all previously known bounds for MESP, including the masked spectral [1, 5] and BQP [2]
bounds. In Section 3 we describe the implementation of a complete B&B algorithm using
the BQP-based bounds. This implementation obtains the best computational results to date
on the benchmark instances with n = 63, as well as the first optimal solutions for the most
difficult benchmark instances with n = 124.

Notation: I is an identity matrix and e is a vector of all ones, with the dimension im-
plicit for both. For a square matrix X, X � 0 denotes that X is symmetric and positive
semidefinite and diag(X) is the vector of diagonal entries of X. For a vector x, Diag(x) is
the diagonal matrix such that x = diag(Diag(x)). For square matrices X and Y , X • Y
denotes the matrix inner product X • Y = tr(XY T ).

2 The linx bound

The linx bound is based on the following simple determinant identity, which has apparently
never been exploited in the context of the MESP.

Lemma 1. For a subset S ⊂ N = {1, . . . , n} let xi = 1, i ∈ S and xi = 0, i ∈ N \ S. Then
ldet(C Diag(x)C + I −Diag(x)) = 2 ldetCSS.

Proof. Let T = N \ S. After a symmetric permutation of indeces we can write

C Diag(x)C =

(
CSS CST

CT
ST CTT

)(
I 0
0 0

)(
CSS CST

CT
ST CTT

)
=

(
C2

SS CSSCST

CT
STCSS CT

STCST

)
,

and therefore

C Diag(x)C + I −Diag(x) =

(
C2

SS CSSCST

CT
STCSS CT

STCST + I

)
.

Applying the well-known Schur determinant formula [10, p.21], we then obtain

ldet(C Diag(x)C + I −Diag(x)) = 2 ldetCSS + ldet
(
CT

STCST + I − CT
STCSSC

−2
SSCSSCST

)
= 2 ldetCSS.
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We define the linx bound via the convex programming problem

zlinx(C, s) = max
1

2
ldet (C Diag(x)C + I −Diag(x))

s.t. eTx = s (1)

0 ≤ x ≤ e.

Validity of the bound, zlinx(C, s) ≥ z(C, s) then follows immediately from Lemma 1, and
solving MESP corresponds to finding the optimal binary solution of (1). The convex op-
timization problem (1) has a dual which also corresponds to a determinant maximization
problem with linear constraints. The dual problem can be derived using the general theory
for determinant maximization problems described in [19]; note in particular that (1) is struc-
turally similar to the problem of D-optimal design considered in detail in [19]. Alternatively
the dual of (1) can be derived via explicit consideration of the Lagrangian as was done for
the BQP bound in [2]. In any case the resulting dual problem is

min −1

2
ldetS

s.t. tr(S) + su+ eTv = n (2)

diag(CSC)− diag(S) ≤ ue+ v

v ≥ 0.

In the dual problem (2) the unconstrained variable u is associated with the constraint eTx =
s, and the dual variables v ≥ 0 are associated with the upper bound constraints x ≤ e. The
slack variables in the other inequality constraints of (2) are the dual variables associated with
the nonnegativity constraints x ≥ 0. To demonstrate weak duality between (1) and (2), let
x be feasible for (1), (u, v, S) be feasible for (2) and w = ue+ v+ diag(S)− diag(CSC) ≥ 0.
The objective gap between the primal and dual solutions, for convenience ignoring the factor
1/2 in both, is then

− ldetS − ldetM(x) = − ldetS − ldet (C Diag(x)C + I −Diag(x))

= − ldetS1/2(C Diag(x)C + I −Diag(x))S1/2

≥ − diag(CSC)Tx− tr(S) + diag(S)Tx+ n

= wTx− ueTx− vTx− tr(S) + n

= u(s− eTx) + vT (e− x) + wTx+ n− us− vT e− tr(S)

= vT (e− x) + wTx, (3)

where the inequality uses the fact that for any X � 0, ldetX ≤ ldet I+tr(X−I) = tr(X)−n,
which follows from the concavity of ldet(·) and the fact [6, p.75] that

∂ ldet(X)

∂X
= X−1. (4)

Strong duality holds between problems (1) and (2) because both problems satisfy a Slater
condition [19].

The weak duality condition (3) can be used to derive variable-fixing logic for MESP
when the linx bound is applied. Let ẑ be the objective value for a known solution of MESP.
Assume that x̄ solves (1), and (ū, v̄, w̄, S) solves (2), where w̄ = ū+ v̄+diag(S)−diag(CSC).
Let zlinx = 1

2
ldetM(x̄) = −1

2
ldetS. From (3) we know that for any other x feasible in (1),

ldetM(x) ≤ 2zlinx − v̄T (e− x)− w̄Tx.
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We immediately conclude that if x∗ is a binary solution in (1) with objective value greater
than ẑ, then

w̄i ≥ 2(zlinx − ẑ) =⇒ x∗i = 0, (5)

v̄i ≥ 2(zlinx − ẑ) =⇒ x∗i = 1. (6)

The dual variables (v̄, w̄) associated with a solution of (1) can also be used to devise a strong
branching strategy in the context of a B&B algorithm for MESP, which is considered in the
next section.

As described in the introduction, for any MESP there is a “complementary” problem
that has the same solution value. The complementary problem is defined by replacing C
with C−1 and s with n− s. Using the identity

ldetC[S, S] = ldetC + ldetC−1[N \ S,N \ S],

we then have the identity

z(C, s) = z(C−1, n− s) + ldetC.

As a result, any bound for the complementary problem, adjusted by the constant ldetC,
provides a bound for the original problem. Use of the complementary problem is important
when employing many bounds for MESP, including the NLP, optimized masked spectral and
BQP bounds. In the next lemma we show that consideration of the complementary problem
is unnecessary for the linx bound.

Lemma 2. For any C and s, the value obtained using the linx bound is the same for the
original and complementary problems.

Proof. It is clear that x is a feasible solution for (1) if and only if x̄ = e − x is a feasible
solution for the corresponding complementary problem. The objective value associated with
x̄ in the complementary problem, including adjustment by the constant ldetC, is then

1

2
ldet

(
C−1 Diag(x̄)C−1 + I −Diag(x̄)

)
+ ldetC

=
1

2
ldet

(
C−1(Diag(x̄) + C(I −Diag(x̄))C)C−1

)
+ ldetC

=
1

2
ldet (C(I −Diag(x̄))C + Diag(x̄))

=
1

2
ldet (C(Diag(x)C + I −Diag(x)) ,

which is exactly the objective value for the solution x in the original problem. Thus for any
solution x in the original problem there is a solution x̄ for the complementary problem with
the same objective value, and vice versa.

For an instance of MESP with data matrix C, and a positive scalar γ, note that z(γ C, s) =
z(C, s) + s ln γ. It follows that when applying any bound for MESP we are free to scale C
by a value γ and then adjust the resulting bound by subtracting s ln γ. Some bounds for
the MESP, including the eigenvalue bound [11], diagonal bound [9], and masked spectral
bound [1, 5] are invariant to such a scaling operation. However the linx bound, like the BQP
bound [2], and NLP bound [3, 4] is sensitive to the choice of scaling factor. To choose an
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appropriate scale factor for the linx bound we use a procedure similar to that employed for
the BQP bound in [2]. Define the function

v(γ,X) = ldet(γC Diag(x)C + I −Diag(x))− s ln γ.

Note that v(γ, ·) corresponds to scaling C by
√
γ, so the objective in (1), adjusted for the

value of γ, is exactly v(γ, x)/2. Using (4), we have

∂

∂γ
v(γ, x) = F (γ, x)−1 • (C Diag(x)C)− s/γ,

where F (γ, x) = γC Diag(x)C + I − Diag(x). For γ to be a minimizer of v(γ, x) we then
require that γF (γ, x)−1 • (C Diag(x)C) = s, which is equivalent to

(e− x)T diag(F (γ, x)−1) = n− s. (7)

To use (7) to improve the scale factor γ we use the fact [6, p.64] that

∂

∂γ
(e− x)T diag(F (γ,X)−1) = −(e− x)T diag

(
F (γ, x)−1C Diag(x)CF (γ,X)−1

)
(8)

to make a first-order correction to γ in an attempt to satisfy (7). Note that (8) implies
that the left-hand side of (7) is monotonically decreasing in γ, so (7) has a unique solution.
However, if γ is changed then (1) must be re-solved with the new scaling factor applied, so
x may also change. For the BQP bound [2], excellent results were obtained using an initial
scale factor of γ = 1/ diag(C)[s], where diag(C)[s] is the s’th largest component of diag(C).
To use this same value for the linx bound it seems that it might be appropriate to square it
due to the form of (1). In the end we consider an initial value of the form γ = 1/ diag(C)p[s],
where 1 ≤ p ≤ 2. The choice of p is determined empirically and varies with C; typically we
use either p = 1, p = 1.5 or p = 2. We then update the scale factor until (7) is satisfied
within a tolerance of 0.25, which typically requires the solution of 3 or 4 problems of the
form (1). We observe that the linx bound appears to be more sensitive to the scaling factor
than the BQP bound, and sometimes requires large changes to the initial scaling factor so
as to approximately satisfy (7). For this reason, when updating the scale factor γ to a new
value γ+ based on (7) and (8) we use a safeguard of the form 1/5 ≤ γ+/γ ≤ 5 to prevent
excessively large changes on one update.

To evaluate the linx bound (1) we first consider two benchmark data sets that have been
repeatedly used in the literature on MESP. The first, having a matrix C of size n = 63, is
from [8] and the second, having a matrix C of size n = 124 was introduced in [9]. Figures
1 and 2 give the objective gaps between several bounds and the best feasible solutions
generated by a heuristic [11] which applies greedy and interchange heuristics to the original
and complementary problems. In Figure 1, gap values are given for s = 3, 4, . . . , 60, while in
Figure 2 they are given for s = 10, 20, . . . , 120. The eigenvalue and linx bounds are the same
for the original and complementary problems; for all other bounds the value reported is the
better of the two. In Figure 1 the values for the optimized masked spectral bound (MS)
are taken from the computational results of [5], while in Figure 2 they are taken from [1].
For the instances with n = 63 the linx and BQP bounds are comparable and dominate the
other bounds for all but very small or very large s. For problems of this size the CPU time
required to solve one instance of the form (1) using the Matlab-based SDPT3 solver [18] on
a PC with an Intel i7-6700 CPU running at 3.40 GHz, with 16G of RAM and a 64-bit OS is
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Figure 1: Entropy gaps for bounds on instances with n = 63
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Figure 2: Entropy gaps for bounds on instances with n = 124
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Figure 3: Entropy gaps for bounds on instances with n = 90

less than 0.5 seconds, which is approximately 10% of the time required to solve one instance
of the corresponding convex optimization problem associated with the BQP bound [2]. This
time difference grows with the dimension n; for the problems of size 124, one instance of (1)
requires approximately 4 seconds to solve, compared to approximately 100 seconds for the
corresponding problem from [2]. For the problems of size n = 124 it is clear from Figure 2
that the linx bound is dramatically better than previously known bounds for all but very
small or very large values of s.

In addition to the benchmark instances with n = 63 and n = 124 we considered another
data set having a C with n = 90 that is based on temperature data from monitoring stations
in the Pacific Northwest of the United States [12]. Gaps between several bounds and the
heuristic value computed for s = 5, 10, . . . , 85 are shown in Figure 3, which again shows
excellent results for the linx bound.

3 Branch and Bound implementation

In this section we consider a Matlab-based B&B implementation that uses the linx bound
to solve instances of MESP to optimality. We first describe some important features of our
B&B implentation and then give computational results on the same problems considered in
the previous section.

Each node in the B&B tree corresponds to a subproblem where some indeces are fixed
into or out of S, corresponding to variables xi being fixed to value 1 or 0, respectively. In
MESP, fixing a set of indeces F ⊂ N into S can be accomplished [11] by forming the reduced
problem where C is replaced by the Schur complement

C[N ′, N ′]− C[N ′, F ]C[F, F ]−1C[F,N ′], (9)

whereN ′ = N\F , s is replaced with s′ = s−|F |, and the objective is adjusted by the constant
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ldet(CFF ). Fixing indeces out of S is accomplished by simply deleting the corresponding
rows and columns of C.

Our B&B implementation is based on the B&B code using the BQP bounds described
in [2, Section 5], and uses the SDPT3 solver [18] to solve instances of (1). Details of the
implementation include the following.

1. The B&B tree is initialized with a root node corresponding to the given MESP, and a
best-known value (BKV) obtained from a set of heuristics for MESP [11]. We maintain
a queue of unfathomed nodes from the tree, which is processed using depth-first search.
Each node corresponds to a subproblem with some variables fixed to 0/1 values. When
a node is removed from the queue we form the reduced MESP problem obtained by
eliminating variables fixed to zero, and fixing variables to one using (9). The resulting
problem is an instance of MESP where s′ ≤ s indeces must be chosen from n′ ≤ n
candidate indeces. If s′ = 1 or s′ = n′− 1 then we enumerate the possible solutions. If
a solution is found with objective value better than the BKV then the BKV is updated
and the set of corresponding indeces saved. In either case the node is discarded.

2. If 1 < s′ < n′ − 1 we first check if the bound inherited from the node’s parent is less
than the BKV. If so (which is possible since the BKV may have been updated since
the node was placed on the queue) then the node is discarded. Otherwise we compute
a bound by solving a problem of the form (1). At the root node we perform updates to
the scale factor γ based on (7) and (8) until (7) is satisfied to a tolerance of 0.25. At
all other nodes we compute a bound using the updated scale factor γ inherited from
the node’s parent. If (7) not is satisfied within a tolerance of 0.25 then we compute
one update of the scale factor and re-compute the bound; in any case we compute a
final update to γ based on (7) and (8) and pass this updated value of γ to child nodes.
If the computed bound is less than the BKV then we discard the node. Otherwise
we apply the variable-fixing logic from (5) and (6) to fix additional variables to 0/1
values, if possible. Following additional variable-fixing we are left with the problem
of choosing s′′ indeces from n′′ candidate indeces. If s′′ ≤ 1 or s′′ ≥ n′′ − 1 then we
enumerate the possible solutions, update the BKV if applicable, and discard the node.

3. 1 < s′′ < n′′ − 1 then we will replace the node with two children by branching on one
index. To choose the branching index we use a strong branching strategy based on
the dual variables v and w. Let δmax be the maximum of all of the vi and wi values
for the remaining variables, and let imax be the index for which this is maximum is
attained. Initially we branch on ximax , putting the “easy” node on the queue first and
the “hard” node second. If δimax = wimax then the easy node has ximax = 1 and the
hard node has ximax = 0, with the reverse if δmax = vimax . Putting the hard node on
second and using depth-first search induces an initial “dive” in the B&B tree. This
dive eventually produces a feasible solution and typically leads to rapid update of the
BKV when the initial BKV is not the optimal value. After the initial dive is complete,
resulting in a node being fathomed, we continue to use the strong branching criterion
if the value δmax is sufficiently large, but switch the order and place the hard node on
the queue first and the easy node second. We use simple criteria based on the absolute
value of δmax as well as the value of δmax relative to the current gap to decide if δmax

is sufficiently large, and if not we simply branch on the variable i with the minimum
value of |xi − .5| in the solution of (1).
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Table 1: B&B statistics for n = 124 instances

Heuristic Optimal Root Time Time to
s Value Value Gap Nodes (hours) Opt (sec)

20 76.999 77.827 2.306 1,239 0.21 181
30 106.674 106.700 2.010 3,413 0.47 147
40 130.162 131.055 3.304 11,202 2.42 167
50 148.661 149.498 4.197 159,302 51.81 1,515
60 163.371 164.012 3.992 171,383 67.01 171
70 172.243 172.528 3.680 140,240 37.93 215
80 174.813 175.091 3.298 42,989 12.71 230
90 171.262 171.262 2.918 21,495 4.82 249

100 162.616 162.865 2.393 5,334 1.15 298
110 147.730 147.933 1.919 1,589 0.40 343

We first consider the instances of MESP with n = 63 described in Section 2. These
problems were first solved to optimality by a B&B algorithm using the NLP bound [4],
and have subsequently been solved using the masked spectral [5] and BQP bounds [2]. For
these problems the objective value obtained by the heuristic is either optimal or very close to
optimal; the largest difference of approximately 0.04 occurs for the instance with s = 26. Our
B&B algorithm using the linx bound solves any of these instances to optimality in less than
one-half hour on a 3.4 GHz PC, which is approximately 60% of the maximum time required
when using the BQP bound [2] on the same machine. Given the difference in solution times
for computation of the linx and BQP bounds described in the previous section, one might
expect that the speed improvement for the B&B algorithm using the linx bound would be
greater. Recall, however, that the root gaps for the linx and BQP bounds are very similar
on these instances, as shown in Figure 1, with the gap for the BQP bound lower in some
cases. The number of nodes required when using the linx bound is often somewhat higher
than when using the BQP bound to solve these problems, and the speed differential between
the two bounds will decrease as the dimension of subproblems decreases in the B&B tree.

Most instances using the data matrix C with n = 124 have to date been out of reach
for exact methods. The most difficult instance previously solved to optimality, with s = 30,
required 93,652 nodes and 117 hours of computation on a 3.4 GHz PC, using the BQP
bound [2]. Using the linx bound, this problem is solved to optimality using only 3,413
nodes and about 30 minutes of CPU time on the same machine, with approximately 75% of
the CPU time utilized by the SDPT3 solver. Statistics for the solutions of instances with
s = 20, 30, . . . , 110 are given in Table 1. Instances of MESP for a given C are generally
most difficult for values of s that are approximately n/2. As can be seen from Table 1 the
differences between heuristic1 and optimal values are substantially higher for some of these
problems than for the problems with n = 63. A notable feature of our B&B algorithm is
that the initial dive based on dual information is very effective in rapidly generating the
optimal solution. In most cases this occurs shortly after the first node is fathomed at the
end of the initial dive, although in some cases (for example the instance with s = 50) the
optimal solution is found somewhat later in the solution process.

Finally we consider the MESP instances using the matrix C with n = 90. Given our
success in solving the instances with n = 124, and the excellent gaps for the linx bounds

1The heuristic value for the instance with s = 20 is incorrectly given in Table 1 of [2].
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Table 2: B&B statistics for n = 90 instances

Heuristic Best Root Final Time Time to
s Value Value Gap Tol Nodes (hours) Best (sec)

10 58.532 58.532 1.068 0.00 8,923 0.58 61
20 111.352 111.482 1.269 0.00 169,339 26.66 54
30 161.515 161.539 1.234 0.25 222,126 46.61 55
40 209.958 209.969 1.132 0.35 215,170 52.04 232
50 257.115 257.160 0.977 0.25 178,143 24.42 52
60 302.975 303.019 0.782 0.15 47,114 3.45 53
70 347.353 347.471 0.575 0.00 5,289 0.29 59
80 389.997 389.997 0.213 0.00 137 0.01 19

shown in Figure 3, we were surprised to find some of these problems to be more difficult to
solve to optimality than the corresponding problems with n = 124. For example, the instance
with s = 20 was solved to optimality using 169,339 nodes and 26.66 hours. This is much more
effort than required for the instance with n = 124, s = 20 as reported in Table 1, despite
the fact that the root gap and number of possible solutions for the problem with n = 90 are
both considerably lower. One possibility that could lead to increased complexity to verify
optimality in MESP is the situation where a problem has many near-optimal solutions. We
believe that this is likely to be the case for the matrix with n = 90. The locations of the
monitoring stations from which this data was obtained are shown in the map in Figure 4
[12]. It is obvious from the map that there are many locations that are quite close together,
which could naturally lead to many near-optimal solutions. Given the difficulty of proving
optimality for some of the instances with n = 90, we implemented the B&B algorithm
allowing for the use of a positive tolerance for fathoming nodes (this same tolerance can also
then be applied in the variable-fixing logic). The result using a final tolerance τ > 0 is then
that there is no feasible solution to the problem with objective higher than the BKV plus
τ . In Table 2 we give results applying the B&B algorithm using the linx bound to instances
with n = 90. The problems with s = 10, 20, 70 and 80 were solved to optimality, while the
problems with s = 30, 40, 50 and 60 were solved with a tolerance that was initially zero and
was then increased to a positive value after one-half hour of CPU time had been used. Based
on our experience with other instances of MESP, the initial use of a zero tolerance makes it
seem likely that the BKV obtained after one-half hour of computation would be the optimal
value. For the instance with s = 40 we know that this is not the case. For this problem
solutions with the heuristic value of 209.958 and a higher value of 209.965 were found in less
than 60 seconds, and a solution with a value of 209.969 was found after less than 4 minutes.
However on an earlier attempt to solve the problem to optimality, solutions with values of
209.971 and 209.972 were found much later. The extremely close objective values of these
distinct solutions gives further evidence that some of the instances with n = 90 suffer from
a multiplicity of near-optimal solutions.
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Figure 4: Locations of monitoring stations for matrix with n = 90
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