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Abstract Semidefinite programming (SDP) problems typically utilize a con-
straint of the form X � xxT to obtain a convex relaxation of the condition
X = xxT , where x ∈ Rn. In this paper we consider a new hyperplane branch-
ing method for SDP based on using an eigenvector of X−xxT . This branching
technique is related to previous work of Saxeena, Bonami and Lee [19] who
used such an eigenvector to derive a disjunctive cut. We obtain excellent com-
putational results applying the new branching technique to difficult instances
of the two-trust-region subproblem.
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1 Introduction

We consider a semidefinite programming (SDP) [21] problem of the form

SDP : min C • Y
s.t. Ai • Y = bi, i ∈ E

Ai • Y ≤ bi, i ∈ I
Y � 0.

In SDP the matrix Y has the form

Y =

(
Y00 xT

x X

)
,
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where x ∈ Rn. The constraint Y � 0, with Y00 = 1, is then equivalent to
X � xxT , which is a convex relaxation of the rank-one condition X = xxT .
We will consider the rows and columns of Y to be indexed 0, 1, . . . , n, and
assume that the equality constraint for i = 0 ∈ E is the constraint Y00 = 1.
Since the constraints for all other i > 0, i ∈ E ∪ I are written in terms of Y ,
if desired we may assume without loss of generality that bi = 0 for all i > 0.
This assumption is convenient at some points in the sequel.

Problems of the form SDP have wide applications in approximating dif-
ficult Mixed-Integer Nonlinear Programming (MINLP) problems with binary
variables and/or nonconvexities in the objective or constraints [5]. The condi-
tion that a variable xi ∈ {0, 1} can be incorporated in SDP via the equality
constraint Xii = xi. If the solution of SDP results in such a variable having
a nonbinary value then one may branch on the binary condition and produce
two child problems, one with xi = 0 and the other with xi = 1. If the child
problems contain additional binary variables with nonbinary solution values
then this process can be continued to produce a branching tree which will
eventually enforce all binary conditions. Branching is generally viewed as the
“method of last resort” since the branching tree is potentially of exponential
size in the nunber of binary variables, but in many cases there is no alternative
if an exact solution is required.

We are particularly interested in the application of SDP to problems with
continuous variables and a nonconvex quadratic objective or constraints. For
example, an indefinite quadratic objective f(x) = xTQx+cTx can be modeled
in SDP using the matrix

C =

(
0 1

2c
T

1
2c Q

)
.

A solution with X = xxT then has C • X = f(x). If the solution of SDP is
not rank-one, then spatial branching can be applied to produce child problems
that provide tighter relaxations of the original nonconvex problems. Spatial
branching is usually performed by splitting the range of a continuous vari-
able xi to produce two child problems with constraints xi ≤ θ and xi ≥ θ,
respectively, where θ is often taken to be the the value of xi in the current
solution. In order for spatial branching to produce an improvement in the
child problems, it is essential that the reduced range for xi be used to improve
the relaxation in each child problem [6]. For example, when SDP contains
Reformulation-Linearization Technique (RLT) constraints [20] on (x,X) gen-
erated from linear inequality constraints on x, then the reduced range for xi in
the child problems can be used to tighten these constraints. Spatial branching
is even less efficient than branching on binary variables, but nevertheless has
been successfully applied in global optimization solvers such as BARON [18]
and Couenne [13].

Spatial branching based on a single continuous variable may result in child
problems that have improved bounds, but such branching has little or noth-
ing to do with the semidefiniteness condition Y � 0. It would be desireable
to have a branching mechanism that is more closely related to this condition,
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especially when Y � 0 is being enforced through the use of a conic solver. This
is exactly the topic that we consider in this paper. In the next section we de-
scribe a new branching technique for SDP that we term eigenvector branching.
Our terminology is based on the use of the eigenvector corresponding to the
maximal eigenvalue of X − xxT as the basis for spatial branching. The use of
this maximal eigenvector to strengthen SDP was first suggested in [19], but the
approach taken there is not based on branching but rather the construction of
a disjunctive cut that can be added to SDP. In the next section we describe
eigenvector branching and how different kinds of constraints can be generated
that strengthen the resulting child problems. We then apply the technique
to a set of difficult instances of the two-trust-region subproblem (TTRS), a
well-studied nonconvex quadratic problem. We consider several versions of the
algorithm based on differences in branching and the constraints that are added
to the child problems. We obtain excellent computational results, particularly
when the branching inequalities are used to generate SOC-RLT constraints
[10] that are added to the child problems.

In Section 3 we consider an alternative use of the maximal eigenvector of
X − xxT , suggested in [19], to generate a disjunctive cut that can be used to
strengthen SDP. We extend the methodology in [19], which is based on poly-
hedral relaxations of SDP, to apply to the conic problem where the condition
Y � 0 is enforced and SOC-RLT constraints are also present. We then apply
an algorithm incorporating these disjunctive cuts to the same set of TTRS
instances used in Section 2. Our computational results using disjunctive cuts
compare favorably to previous methods based on other classes of cuts but
are not as good as the results using eigenvector branching. Examining the
instances where the method based on disjunctive cuts fails shows that failure
is always due to not generating a sufficiently accurate feasible solution rather
than failure to generate an accurate lower bound.
Notation. All matrices are square and symmetric. The matrix inner product
is denoted X•Y = tr(XY ), X � Y denotes that X−Y is positive semidefinite,
and X � Y denotes that X−Y is positive definite. We use e to denote a vector
of arbitrary dimension with each component equal to one.

2 Eigenvector branching

We are interested in the situation where a feasible solution to SDP has Ȳ � 0,
but X̄ − x̄x̄T 6= 0. In this case there is an a ∈ Rn with aT (X̄ − x̄x̄T )a > 0, or
equivalently aT X̄a > (aT x̄)2. The constraint aTXa ≤ (aTx)2 certainly holds
for all rank-one X = xxT , but this is not a convex constraint in the variables
(x,X). However by making a secant approximation of the function (aTx)2 we
can obtain a valid disjunction, one part of which must hold for any X = xxT

for which Y is feasible in SDP.

Proposition 2.1 ([19]) Suppose that Ȳ is feasible in SDP, with aT x̄ = θ and
aT X̄a > θ2. Assume that µ− ≤ aTx ≤ µ+ for all x feasible in SDP. Then if
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Y is feasible in SDP with X = xxT , one of the following must hold:

aTx ≥ θ, aTXa ≤ (θ + µ+)aTx− θµ+, (1)

aTx ≤ θ, aTXa ≤ (θ + µ−)aTx− θµ−. (2)

Note that µ− ≤ aTx ≤ θ is equivalent to −θ ≤ −aTx ≤ −µ−. It is then
obvious that (2) in Proposition 2.1 is exactly (1) with a replaced by −a, θ
replaced by −θ and µ+ replaced by −µ−. When Ȳ � 0 but X̄ − x̄x̄T 6= 0,
a good candidate for the vector a, as suggested in [19], is the eigenvector
corresponding to the maximum eigenvalue of X̄ − x̄x̄T . In [19] a problem of
the form SDP is further relaxed by using linear constraints to approximately
enforce the condition Y � 0. The eigenvector for a negative eigenvalue of
X̄ − x̄x̄T can then be used to generate a cut implied by Y � 0, and the
eigenvector for a positive eigenvalue can be used along with the disjunction
in Proposition 2.1 to generate a valid constraint, or cut, that can be added to
the problem. We will consider these disjunctive cuts in the next section.

In this section our intent is to use Proposition 2.1 as the basis for spatial
branching in the x variables. We use the term eigenvector branching to refer to
spatial branching based on the conditions aTx ≥ θ, aTx ≤ θ as in (1) and (2),
where Ȳ � 0, a is the eigenvector for the maximal eigenvalue of X̄ − x̄x̄T 6= 0
and θ = aT x̄. Then aT X̄a > (aT x̄)2 = θ2, and note that

(θ + µ+)aT x̄− θµ+ = (θ + µ−)aT x̄− θµ− = θaT x̄ = θ2.

Therefore the current point (x̄, X̄) is infeasible for both (1) and (2). The upper
and lower bounds µ+ and µ− in Proposition 2.1 can be obtained in several
different ways. One possibility, suggested in [19], is to maximize and minimize
aTx for x feasible in SDP. In some situations it may also be possible to ob-
tain values for µ+ and µ− without performing these explicit optimizations.
For example, if the constraints of SDP imply that ‖x‖ ≤ M , then one may
immediately take µ+ = M‖a‖, µ− = −M‖a‖.

We will apply eigenvector branching as described above to SDP relaxations
of the two-trust-region subproblem (TTRS). The TTRS, also referred to as the
Celis-Dennis-Tapia (CDT) problem [11], arises as a direction-finding subprob-
lem in certain trust-region based methods for nonlinear optimization [12]. The
TTRS has the form

TTRS : min xTQx+ cTx

s.t. xTx ≤ 1, xTHx+ 2hTx ≤ 1,

where Q is indefinite and H � 0. The constraints of TTRS can equivalently be
written in second-order cone (SOC) form, for example as ‖x‖ ≤ 1, ‖H1/2x‖2 +
(hTx)2 ≤ (1− hTx)2.

There is a large literature that considers problems of the form TTRS.
Optimality conditions for TTRS are given in [8] and [16], and papers such as
[1] and [4] give conditions under which the problem can be efficiently solved. A
convergent path-following method for TTRS is described in [23]. This method
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is not provably polynomial-time, but a polynomial-time algorithm for TTRS
based on methods for polynomial equations [3] is described in [7].

The basic SDP (Shor) relaxation for TTRS is

TTRSSDP : min Q •X + cTx

s.t. I •X ≤ 1, H •X + 2hTx ≤ 1,

X � xxT .

Then TTRSSDP can easily be written as a problem of the form SDP. It is
well known that the relaxation TTRSSDP can have a nonzero optimality gap,
unlike the simpler trust-region subproblem TRS (TTRS without the second
ellipsoid constraint), for which the Shor relaxation is tight [17]. Approximation
results for the Shor relaxation applied to problems with an indefinite quadratic
objective and two or more ellipsoidal constraints are given in [14] and [15].

For our computational tests here we will use a set of TTRS instances that
were first considered in [10]. These problems were generated in such a way
that they are likely to have a gap for TTRSSDP. If such a gap exists, the
approach taken in [10] is to add up to 25 SOC-RLT constraints based on the
two ellipsoid constraints of TTRS. At termination, an instance is considered
to be solved if the relative gap satisfies

v(x̄)− z(x̄, X̄)

|v(x̄)|
< 10−4, (3)

where v(x̄) = x̄TQx̄+ cT x̄, z(x̄, X̄) = Q • X̄ + cT x̄ and we are using the fact
that if (x̄, X̄) is feasible in TTRSSDP then x̄ is feasible in TTRS. When applied
to 1000 instances each of size n = 5, n = 10 and n = 20, the resulting numbers
of unsolved instances are then 41, 70 and 104, respectively.

The results of [10] are improved on in [22]. The methodology of [22] is
based on a detailed study of TTRS for n = 2. This approach results in an
exact cutting-plane algorithm for n = 2 that can be extended heuristically
to n > 2. When applied to the test problems from [10], the algorithm of [22]
solves some of the instances that are unsolved using only SOC-RLT cuts. Due
to differences in the solver and parameter settings, the number of instances
that are unsolved using SOC-RLT cuts for dimensions 5, 10 and 20 are taken
to be 38, 71 and 106, respectively.

The test instances that we will use here are the 38, 70 and 104 problems
of size 5, 10 and 20, repectively, that were considered to be unsolved in both
[10] and [22]. These same problems were also considered in the computational
results of [2]. The approach taken in [2] is to start with the Shor relaxation and
then add up to 25 constraints that are obtained from the Kronecker product of
the SOC representations of the two ellipsoid constraints in TTRS. It is proved
in [2] that these Kronecker product constraints imply the SOC-RLT constraints
used in [10], so problems that are solved using the SOC-RLT constraints would
always be solved using the Kronecker product constraints. The approach used
in [2] also solves some of the instances that are not solved using only SOC-
RLT cuts. Table 1, reproduced from [2], shows that the overall results using
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Table 1 Comparison of previous results on TTRS test instances

Number of instances solved in:
n Instances A. [2] only Y.B. [22] only Both Neither
5 38 8 8 12 10

10 70 34 7 14 15
20 104 35 14 24 31

212 77 29 50 56

the Kronecker product constraints on these instances are better than those
from [22], but neither method dominates the other.

When applying eigenvector branching, the problem for a node at depth
k ≥ 0 in the branching tree includes k branching inequalities. These inequal-
ities are used to derive additional constraints that are added to the Shor re-
laxation. The resulting problem is solved to obtain a lower bound z(x̄, X̄)
and feasible objective value v(x̄) = x̄TQx̄ + cT x̄. If v(x̄) is less than the best
known value (BKV) then the BKV is updated, and the problem is fathomed
if either it is infeasible, z(x̄, X̄) ≥ BKV or the relative gap condition (3) is
satisfied. If none of these conditions holds then two child problems are created
by using branching inequalities aTx ≥ θ, aTx ≤ θ, where a with ‖a‖ = 1 is the
eigenvector corresponding to the maximal eigenvalue of X̄− x̄x̄T and θ = aT x̄.

We will first consider using linear branching inequalities to generate SOC-
RLT constraints [10] that can be added to the Shor relaxation. With h = 0,
which is the case for the test problems here, a branching inequality aTx ≥ θ
implies the two SOC-RLT constraints

‖Xa− θx‖ ≤ aTx− θ, ‖H1/2Xa− θH1/2x‖ ≤ aTx− θ, (4)

and for each such inequality we add the two constraints from (4) to the Shor
relaxation. Note that ‖a‖ = 1 and ‖x‖ ≤ 1 together imply that aTx ≤ 1,
so we could take µ+ = 1 in Proposition 2.1. Then the SOC-RLT constraint
‖Xa − θx‖ ≤ aTx − θ implies that aT (Xa − θx) ≤ aTx − θ, which can be
written as aTXa ≤ (1 + θ)aTx− θ, and this is exactly the linear constraint in
(1) with µ+ = 1.

Before looking at the 212 test problems from Table 1, consider the following
instance with n = 2, h = 0 from [10]:

H =
1

2

(
3 0
0 1

)
, Q =

(
−4 1
1 −2

)
c =

(
1
1

)
. (5)

The true solution value for this problem is −4, and the value for the Shor
relaxation is −4.25. Applying the SOC-RLT cuts from [10] improves the lower
bound to approximately −4.036. The Kronecker product constraints used in [2]
produce a small further improvement but do not obtain the true solution value.
The method of [22], which is exact for n = 2, obtains the value z(x̄, X̄) = −4
for the strengthened Shor relaxation, but does not obtain a feasible x̄ with
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 v=‐36.4513
0  z=‐58.2183

 v=‐51.6506
1  v=‐57.2571 2  z=‐57.4792

 z=‐57.2571

3  v=‐56.9256 4  v=‐57.319
 z=‐56.9256  z=‐57.319

Fig. 1 Branching tree for instance 10 607

v(x̄) = −4 [9]. This is not surprising since this problem has two optimal
solutions, as shown in [10, Fig.1]. In the presence of multiple optimal solutions,
no method based on cutting planes alone can eliminate the convex hull of these
optimal solutions, and an interior-point solver is very unlikely to generate an
extreme point of the problem’s feasible set. When the objective is concave, as
in this example, it is then to be expected that v(x̄) > z(x̄, X̄) will always hold.

The solution of the Shor relaxation for (5) has z(x̄, X̄) = −4.25 at a point
(x̄.X̄) with v(x̄) = −.75. Applying eigenvector branching results in two child
problems, both having solutions that are numerically rank-one with objective
values and lower bounds equal to -4 (the gap between the lower of the two
objective values and the lower of the two bounds is 3.63E-9). Thus the problem
is exactly solved with a total of 3 nodes in the branching tree.

The performance of eigenvector branching on the TTRS instance (5) is
extremely good, but the qualitative behavior on the test instances from Table
1 is typically not much worse. Consider for example instance 10 607, which is
one of the problems that was not solved in either [2] or [22]. The branching
tree for this problem is shown in Figure 1. The relative gap at the root node
is about 38%. The problem for node 1 has a solution that is numerically rank-
one and is therefore fathomed. Node 2 on level 1 produces 2 child nodes, both
of which have solutions that are numerically rank-one. The problem solution,
from node 4, has a relative gap of about 3E-8 obtained using a total of 5 nodes
with a maximum depth of 2.

In Figures 2, 3 and 4 we show the number of nodes, maximum depth and
final relative gap when solving the 212 instances from Table 1 using several
versions of eigenvector branching. Computations were performed on a 64-bit
PC with an Intel i7-6700 CPU running at 3.40 GHz with 16G of RAM, us-
ing the Matlab-based SeDuMi solver. Results obtained by branching on the
eigenvector corresponding to the maximum eigenvalue of X̄ − x̄x̄T , using the
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Fig. 2 Number of nodes using eigenvector branching

SOC-RLT constraints (4), are labeled SOCRLT - original. For this version,
206 of the 212 problems require 7 or fewer nodes and the maximum number
of nodes is 11. The maximum depth is 4, and 204 of the problems are solved
with a depth of 2 or less. The branching trees were traversed breadth-first, and
none of the solution times exceeded 2.5 seconds. The relative gaps shown in
Figure 4 are especially notable because the algorithm is implemented with the
fathoming criterion from (3). Despite the fact that nodes are fathomed based
on a relative gap of 1E-4, 184 of the 212 problems have solutions with relative
gaps of 1E-6 or less. The reason for this is that many nodes in the branching
trees for these problems have solutions that are numerically rank-one, as was
the case for all of the terminal nodes shown in Figure 1.

Figures 2, 3 and 4 also show results for two other versions of the algorithm.
The series labeled SOCRLT - nullspace give results when branching is based
on a = Zā, where ā is the eigenvector for the maximum eigenvalue of ZT X̄Z
and the columns of Z are an orthonormal basis for the nullspace of x̄T . By first
projecting onto the nullspace of x̄T we obtain a symmetric disjunction with
θ = aT x̄ = 0. It should be noted that the conditions Y � 0 and ZTXZ = 0
imply that X = λxxT for λ ≥ 1 but do not ensure that λ = 1. The case
of a solution with λ > 1 is unlikely to occur in applications, but can be
excluded in the presence of any equality constraint gTx = h by adding the
“squared” constraint gTXg = h2. As shown in the figures, the performance
for the nullspace version of eigenvector branching is still excellent, but not as
good as for the original version. For both the original and nullspace versions
we also considered adding the RLT constraints that can be generated using the
branching inequalities at each node, but adding these constraints had virtually
no effect.
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In addition to the algorithm based on the SOC-RLT constraints in (4) we
considered an implementation that used the linear constraints in (1) and (2).
For the branching inequalities (1) and (2), with ‖a‖ = 1, we first considered a
version using the values µ+ = min(1, ‖H−1/2a‖), µ− = −µ+, corresponding to
maximizing and minimizing aTx over each of the two individual ellipsoids in
TTRS. This version of the algorithm successfully solves all 212 instances, but
the number of nodes required is sometimes much higher than for the versions
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using SOC-RLT constraints; 77 of the problems required 21 or more nodes,
and the maximum number of nodes was over 300.

We considered two modifications to improve the performance of the algo-
rithm using linear constraints. The first was to add the RLT constraints that
can be obtained from the branching inequalities at each node. The results us-
ing this version of the algorithm are shown in Figures 2, 3 and 4 as the series
Linear + RLT. The addition of the RLT constraints has a significant effect
on performance when using the linear constraints in (1) and (2). It is evident
from Figures 2 and 3 that the number of nodes and maxdepth distributions
for this version are still good, but notably worse than for the versions using
SOC-RLT constraints. The relative gaps shown in Figure 4 are substantially
worse than for the SOC-RLT versions; 116 of the 212 problems have final
relative gaps in the range 1E-5 to 1E-4, compared to only 23 problems for
SOCRLT - original and 37 problems for SOCRLT - nullspace. In addition to
the version where RLT constraints are added, we also considered a version of
the algorithm where the upper and lower bounds µ+ and µ− are obtained by
maximizing or minimizing aTx over the ellipsoid constraints and any other
branching inequalities that are in force at the node where the branching is
being applied. The performance for this version is very similar to the version
where RLT constraints are added. Using both the RLT constraints and the
optimized bounds produces a small marginal improvement over either method
used individually.

3 Disjunctive cuts

As described in the previous section, the original use of Proposition 2.1 in [19]
was not as the basis for branching but rather to generate a disjunctive con-
straint, or cut, that could be used to improve a polyhedral outer approximation
of SDP. In this section we consider applying such disjunctive cuts to TTRSSDP,
but with two differences compared to the treatment in [19]. First, we assume
that the semidefiniteness condition Y � 0 is being explicitly maintained, and
second we consider the possibility that each half of the disjunction in Propo-
sition 2.1 can be used to generate conic but non-polyhedral constraints. For
example, in the previous section a branching constraint aTx ≥ θ for TTRSSDP

was used to generate two SOC-RLT constraints (4), and the performance of
the algorithm was markedly better using these SOC-RLT constraints than
when the original linear constraints in (1) and (2) were used.

Consider TTRSSDP written as a problem of the form SDP, with one equal-
ity constraint Y00 = 1 and two homogenous inequality constraints Ai • Y ≤ 0,
i = 1, 2. Assume that Ȳ � 0, but X̄ − x̄x̄T 6= 0. Although Ȳ is evidently
not rank-one, it could be that Ȳ is in the convex hull of rank-one solutions
of TTRSSDP. Applying Proposition 2.1, but using SOC-RLT constraints as in
(4), there must then be Y + and Y − so that

Y + + Y − = Ȳ , (6)
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where Y + satisfies the constraints

Ai • Y + ≤ 0, i = 1, . . . ,m,
‖X+a− θx+‖ ≤ aTx+ − θY +

00 ,
‖H1/2X+a− θH1/2x+‖ ≤ aTx+ − θY +

00 ,
Y + � 0,

(7)

and Y − satisfies the constraints

Ai • Y − ≤ 0, i = 1, . . . ,m,
‖X−a− θx−‖ ≤ θY −

00 − aTx−
‖H1/2X−a− θH1/2x−‖ ≤ θY −

00 − aTx−
Y − � 0.

(8)

Note that the constraints in (7) and (8) have been fully homogenized
through the use of Y +

00 and Y −
00 , and the constraints Y +

00 = 1, Y −
00 = 1 are

not present. The constraints (7) and (8) initially have m = 2, corresponding
to the two original inequalities in TTRS, but will ultimately have additional
inequalities corresponding to disjunctive cuts that are added to the problem. In
order to determine if the constraints (6)-(8) are feasible we will augment them
with artificial variables. This can be done in different ways; the approach taken
here is similar to what is described for the polyhedral case in [19]. Consider
(7) with the added artificial variables (u+, v+, w+) ∈ Rm

+ × R2
+ × R+:

Ai • Y + ≤ u+i , i = 1, . . . ,m,
‖X+a− θx+‖ ≤ aTx+ − θY +

00 + v+1 ,
‖H1/2X+a− θH1/2x+‖ ≤ aTx+ − θY +

00 + v+2 ,
Y + + w+I � 0, u+ ≥ 0, v+ ≥ 0, w+ ≥ 0.

(9)

Similarly, we augment the system (8) with artificial variables (u−, v−, w−):

Ai • Y − ≤ u−i i = 1, . . . ,m,
‖X−a− θx−‖ ≤ θY −

00 − aTx− + v−1
‖H1/2X−a− θH1/2x−‖ ≤ θY −

00 − aTx− + v−2
Y − + w−I � 0, u− ≥ 0, v− ≥ 0, w− ≥ 0.

(10)

Lemma 3.1 Assume that Ȳ � 0, X̄ − x̄x̄T 6= 0, θ = aT x̄, aT X̄a > θ2.
Consider the optimization problem to minimize eTu+ +eTu− +eT v+ +eT v− +
w++w− subject to the constraints (6), (9) and (10), Let S̄ be the dual solution
matrix for the constraint (6). Then S̄ • Y ≤ 0 for any Y that is in the convex
hull of rank-one solutions to TTRSSDP.

Proof: The system of constraints clearly has an interior solution, so strong
duality holds [21]. By construction, if Ȳ is in the convex hull of rank-one
solutions of TTRSSDP then the solution objective value is zero. The dual
objective is to maximize S • Ȳ , and therefore if Ȳ is in the convex hull of
rank-one solutions the dual solution must have S̄ • Ȳ = 0. Now consider the
same optimization problem but replacing Ȳ with any Y in the convex hull of
rank-one solutions. The resulting problem must have solution objective value
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equal to zero, and S̄ is a feasible dual solution for this problem. Therefore
S̄ • Y ≤ 0. ut

In (9) and (10) the coefficients of all artifical variables are equal to one,
but Lemma 1 continues to hold exactly as stated if any positive coefficients
are used. The use of unit coefficient for the artifical variables is appropriate if
all of the constraints in (7) and (8) are on similar scales.

To compare eigenvector branching to the use of disjunctive cuts we at-
tempted to solve the same TTRS problems considered in the previous section
using the disjunctive cuts described in Lemma 3.1. At iteration k ≥ 0 we have
a problem of the form SDP, with m = 2+k inequality constraints correspond-
ing to the two original inequalities of TTRSSDP and k cuts that have been
added on previous iterations. This problem is solved, resulting in a solution
Ȳ , feasible objective value v(x̄) and lower bound z(x̄, X̄). The BKV is up-
dated if v(x̄) < BKV. Termination occurs if either the current iterate meets
the relative gap criterion

BKV − z(x̄, X̄)

|BKV|
< 10−4, (11)

or k = 25. Otherwise a new disjunctive cut S̄ • Y ≤ 0 is generated as in
Lemma 3.1 and we go to iteration k + 1 with Am+1 = S̄/‖S̄‖. The criterion
(11) is used in place of (3) because the sequence of feasible objective values
can be markedly non-monotonic. Also, as suggested in [19], the constraints
(9)-(10) used to generate cuts are only periodically updated to include the
cuts generated on previous iterations. We experimented with updating these
constraints every 3-5 iterations; the results presented below were obtained
updating the constraints every 5 iterations.

Before turning to the problems described in Table 1 we again consider
the problem (5) from [10]. As described in the previous section this prob-
lem has a true solution value of -4. The SDP relaxation generates a bound
z(x̄, X̄) = −4.25 and a feasible solution with objective value v(x̄) = −.75. Ap-
plying 25 disjunctive cuts results in the sequence of objective values and lower
bounds shown in Figure 5. As shown in the figure the lower bounds rapidly
approach the value -4, and after 25 cuts the bound is approximately -4.0001.
The sequence of feasible values is very erratic and produces a BKV of -3.9551
on iteration 22, resulting in a final relative gap of about 1.2E-3. The erratic
behavior of the feasible values is due to the fact, mentioned earlier, that this
problem has two optimal solutions, neither of which can be eliminated using
disjunctive cuts. This fact, combined with the use of an interior-point solver,
means that we have no control over exactly where iterates will “land” and the
disjunctive cuts generated are dependent on the iterates.

Results applying the algorithm using disjunctive cuts on the problems from
Table 1 are shown in Figures 6 and 7. In the figures the results are separated
for the problems of size 5, 10 and 20. Of the 212 problems, 145 met the
relative gap criterion (11) using 25 or fewer cuts (one problem of size 20 met
the criterion on the final iteration). From the two figures it is evident that
the fraction of problems successfully solved is decreasing with problem size.
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Fig. 5 Feasible values and bounds using disjunctive cuts on instance (5)

The times required are mainly dependent on the number of cuts; note that
until the final iteration, each iteration requires the solution of two semidefinite
programming problems, the first to generate the iterate Ȳ and the second to
generate the disjunctive cut matrix S̄. The solution time for a problem of size
20 requiring 7 cuts is about 5 seconds. Comparing these results with Table 1, it
is noteworthy that the number of problems successfully solved using disjunctive
cuts is higher than both the 127 problems solved in [2] and the 79 problems
solved in [22]. Comparing the results problem-by problem, however, there is
no simple relationship between which problems are solved using disjunctive
cuts or the methods in [2] and [22]. We also considered the effect of increasing
the iteration limit by running the algorithm for a maximum of 50 cuts. Using
up to 50 cuts increases the number of problems that meet the relative gap
criterion (11) from 145 to 164, which is higher than the 156 problems that are
solved in [2] and [22] put together.

Although the results using disjunctive cuts are better than those in either
[2] or [22], they are clearly worse than the results using eigenvalue branching in
the previous section. Since all of the 212 problems are solved using eigenvalue
branching, we can use those results to better understand what is happening
in the instances that are not solved using disjunctive cuts. Returning to the
results using a maximum of 25 cuts, it turns out that in all 67 cases where
the relative gap criterion (11) was not met, this was due to failure to generate
a feasible solution close enough to optimality and not failure to generate a
good enough lower bound. As already described in the context of the example
(5), any cutting-plane method using an interior-point solver on a problem of
the form SDP with multiple optimal solutions may have difficulty generating
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Fig. 7 Relative gap using disjunctive cuts

an optimal solution rank-one solution. The problems from Table 1 are not ex-
pected to have multiple optimal solutions, but it is possible that one side of the
disjunction used to generate a cut has the optimal solution while the other has
a near-optimal solution. Consider for example instance 10 607, whose solution
tree using eigenvalue branching is shown in Figure 1. This problem is one of
the instances that is not solved using disjunctive cuts, even when the number
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Fig. 8 Feasible values and bounds using disjunctive cuts on instance 10 607

of cuts is increased to 50. Note that the solution for the problem, obtained
at node 4 in Figure 1, has objective value −57.319. However the solution at
node 1 is also numerically rank-one, with an objective value of −57.251. The
disjunctive cut applied at the root node will likely be able to cut off the so-
lution (x̄, X̄) there, but the rank-one solution at node 1 cannot be removed
by any disjunctive cut. Figure 8 shows the sequence of objective values and
lower bounds obtained when the algorithm using disjunctive cuts is applied
to instance 10 607. Using 25 iterations, the BKV of −57.2624 is obtained on
iteration 22, resulting in a final relative gap of about 1E-3. The time to run
25 iterations is about 11 seconds. Figure 9 shows the sequence of objective
values for the feasibility problem from Lemma 3.1 on these same iterations.
The solution values fall off relatively quickly and are all below 0.0005 after
iteration 16.

4 Conclusion

Eigenvector branching is a new spatial branching method for semidefinite
optimization problems that is directly motivated by the rank-one condition
X = xxT . We obtain excellent computational results applying eigenvector
branching to difficult instances of the two-trust-region subproblem. A related
methodology based on disjunctive cuts obtains computational results on the
same problems that compare favorably with previous literature, but the re-
sults using disjunctive cuts are not as good as those obtained using eigenvec-
tor branching. Eigenvector branching appears to be a promising technique to
strengthen the initial semidefinite relaxation of problems with a nonconvex
quadratic objective and/or constraints.
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