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On the Performance of the 

Lottery Procedure for Controlling Risk Preferences 

1 Introduction 

 In theory, the lottery-based induction procedure for controlling risk preferences (Roth and Malouf, 1979; and 

Berg, Daley, Dickhaut and O'Brien, 1986) allows experimenters to induce subject to display pre-specified risk 

preferences.  Thus, like induced value theory (Smith, 1976), it extends experimenters' ability to perform controlled 

laboratory tests by controlling parameters, such as preferences, that are exogenous to the theory being tested.  

Theoretically, the procedure is incontrovertible.  However, the performance of the procedure is an open empirical issue.  

In this paper, we present the theoretical basis for the induction procedure and examine how it works in practice, using two 

example sets of data. 

 

2 Inducing Risk Preferences in Theory 

Often, experiments are conducted with explicit dollar payoffs or with a unit of exchange (e.g., “francs”) that 

later converts to dollars at a fixed rate.  Subjects' preferences over wealth can be concave (risk averse), convex (risk 

seeking), linear (risk neutral) or a combination of these in different regions.  Thus, such payment mechanisms leave risk 

preferences uncontrolled.  To see how this can affect choice, consider the utility function depicted by the heavy, curved 

line in the left panel of Figure 1, with the horizontal axis is denominated in dollars (or francs converted directly into 

dollars).  The utility function depicted represents a person who is risk averse in his choices among monetary gambles: the 

person strictly prefers the expected value of the gamble to the gamble itself.  If the graph were convex instead, the person 

would be risk loving and strictly prefer the gamble to the expected value of the gamble.  That is, depending on their risk 

preferences, subjects may make different choices among risky alternatives.  This is problematic in an experiment when 

we wish to determine whether behavior is in accordance with a particular theory and the predictions of the theory depend 

on risk preferences.  Deviations can occur because risk preferences differ from those assumed in theory or because the 

theory does not explain behavior.  Without a reliable method of controlling for risk preferences, we cannot untangle these 

two possibilities.1   

                                                           

1 Alternatively, the experimenter could choose to measure native risk preferences and use that information in analyzing experimental results.  Which 
choice is better depends on the experiment and its design.  
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In theory, the lottery-based induction procedure allows the experimenter to control risk preferences.  By using a 

unit of reward tied to the probability of winning a two-prize gamble, the lottery procedure induces expected utility 

maximizing subjects to behave as if they have pre-specified risk preferences relative to this unit of reward regardless of 

their native preferences over monetary gambles.  Thus, subjects can be induced to act as if they are risk averse, risk 

loving, or risk neutral.   

Risk preference induction depends on expected utility maximization as depicted by the lighter straight line in the 

left panel of Figure 1.  This line shows the expected utility of a two-prize gamble with payoffs of $0 and $1 (following 

Varian 1984, p. 159).  We have normalized utility so that the utility of $0 is 0 and the utility of $1 is 1.  Thus, the bottom 

axis can also be interpreted as the probability of winning the $1 prize.  (We can always normalize in this way since 

expected utility functions are unique up to a positive affine transformation.)  

Preference induction relies on the result that, independent of the shape of the utility function or the size of the 

prizes, expected utility is linear in the probability of winning the higher of a two-prize lottery.2  Graphically, expected 

utility as a function of probability is a straight line (as shown in Figure 1) independent of the original utility function.  

That is,  

E(U) = pU(Mh,X) + (1-p)U(Ml,X)  

where  

p = probability of winning the higher valued prize  

Mh = higher valued prize 

Ml = lower valued prize and 

X = is a vector of all other components in the utility function. 

When U(Mh,X) and U(Ml,X) are normalized to 1 and 0 respectively, we have: 

E(U) = pU(Mh,X) + (1-p)U(Ml,X) = p. 

Preferences are induced by using an experimental unit of exchange (say, “francs”) that is later converted into the 

probability of winning the higher of two monetary prizes (instead of converting directly into dollars).3  The conversion 

function determines how subjects should behave relative to francs.  If the conversion function is p = V(francs) then, 

                                                           

2 Technically, induction does not depend specifically on expected utility maximization.  It works for any preference function that gives preferences that are 
linear in probabilities. 
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expected utility maximizing subject will maximize V(francs) because they maximize the probability of winning the 

higher valued prize.  Thus, they act as if they each have the utility function V(francs) regardless of their preferences over 

dollars! 

 Figure 1 shows how this works graphically.  Suppose you would like to investigate the effect of risk-seeking 

behavior on market prices and want to induce the utility function, V(francs) = (francs/2)2, shown in the right panel.  To do 

this, undertake the following procedures:   

(1) Have subjects trade in francs in a market with a maximum possible payoff (normalized here to 1) and a 

minimum possible payoff (normalized here to 0).   

(2) Translate francs into the probability of winning the higher of a two-prize lottery according to the function p 

= V(francs) = (francs/2)2.   

(3) Run an induction lottery to determine the prize won at the end of trading, thus determining the ultimate 

payoffs to subjects. 

Figure 1 shows how the translation works.  Start with the level of francs earned by the subject in the right panel.  

The desired level of utility for this level of francs is (francs/2)2.  Taking this desired level of utility into the left panel to 

the expected utility function (the straight line) shows the probability that must correspond to this level of francs to induce 

the desired preferences in francs (here, p=(francs/2)2). 

 This procedure has been implemented in a number of different ways.  Berg, Daley, Dickhaut and O’Brien 

(1986) use "spinners" where the probability of winning (chances the spinner lands in the “win area”) is determined by the 

number of points the subject earns in a choice or pricing task and the desired induced utility function.  If the spinner stops 

in the win area, the subject wins the higher monetary prize.  Rietz (1992) uses a box of lottery tickets numbered 1 to 

1000.  A ticket is drawn randomly from the box.  If the ticket number is less than or equal to the number of points earned 

by the subject, the subject wins the high monetary prize. 

 

                                                                                                                                                                                           

3 Note that the prize does not need to be monetary.  However, we discuss monetary prizes so that the lottery technique is more easily compared to induced 
value theory. 
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3 Evidence  

3.1 Inducing risk neutrality:  Evidence from sealed bid auctions 

 We will begin with evidence from attempts to induce risk neutral preferences in sealed bid auctions.  Harrison 

(1989); Walker, Cox and Smith (1990) and Rietz (1992) all attempt to induce risk neutral preferences in similar sealed 

bid auction experiments.  All run series of four-person, private-value, first-price sealed bid auctions with values drawn 

from a uniform distribution (over a range which we will normalize to 0 to 1000).  Some use dollar payoffs and some use 

a lottery procedure designed to induce risk neutral preferences.4  All compare the dollar payoff results to the induced 

results.   

Vickrey (1961) derives the symmetric Nash equilibrium bid functions for traders with risk neutral preferences 

as: 

Bid = [(n-1)/n] x Value, 

where n is the number of bidders in the auction.  Thus, in these 4 person auctions, bids should be ¾ of value for risk 

neutral traders.  Cox, Smith and Walker (1984) show that risk averse bidders will use a bid function with a higher slope 

than that of risk neutral traders.  Intuitively, bidders trade off expected value for a higher probability of winning the 

auction.  Thus, risk aversion is one possible explanation for the commonly observed “over-bidding” relative to the risk 

neutral bid function in sealed bid auctions (see Cox, Roberson and Smith, 1982; Cox, Smith and Walker, 1984; Cox, 

Smith and Walker, 1985; Cox, Smith and Walker, 1988; Harrison, 1989; Walker, Cox and Smith, 1990; and Rietz, 1992.)  

Alternatively, over-bidding could result from a positive intercept.  Intuitively, this results from a utility of winning the 

auction that is independent of the profit received. 

 The red line in Figure 2 shows the average level of overbidding (bidding greater than the predicted risk neutral 

bid) as a function of value measured as the difference between the bid and the predicted bid and aggregating the data 

from all the dollar payoff auctions in Harrison (1989); Walker, Cox and Smith (1990) and Rietz (1992) using a least-

squares trend line.  Subjects with low values bid higher than the risk neutral prediction and the amount of this “over-

bidding” increases with value.5  Thus, the slope (0.1067) is greater than the risk neutral bid function prediction (0), as 

risk-averse preferences would predict.  Inducing risk neutral preferences should flatten the slope of the bidding line.  We 

                                                           

4 Rietz (1992) also runs second price sealed bid auctions and attempts to induce risk averse preferences in some treatments. 
5 We note that, in addition to being true in aggregate, this in nearly universally true for each individual subject. 
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classify the value of winning the auction as one of the "other" factors in the utility function, a factor unaffected by 

inducing, so we do not predict that the positive intercept will decrease with induction. 

 The rest of the lines in Figure 2 show, the average level of overbidding for various risk-neutral, preference-

induction treatments, aggregating the data from all similar-treatment auctions in Harrison (1989); Walker, Cox and Smith 

(1990) and Rietz (1992) using a least-squares trend line. 

When induction is attempted on subjects who have already been in dollar payoff auctions (shown as the blue 

line), the intercept drops but the slope (0.1096) changes little.  Apparently it is difficult to break the over-bidding 

behavior in subjects who have had experience in dollar-playoff auctions.  Rietz (1992) refers to this as hysteresis.  

Induction on inexperienced subjects or subject experienced with induction in the same or similar environments meets 

with more success.  

When induction is attempted on subjects who have no previous experience in sealed bid auctions (shown as the 

solid black line), there is a significant reduction in the slope of the bid function (down to 0.0542).  The slope falls further 

(to 0.0067) when subjects come back for a second set of induced-preference auctions, as shown by the dashed black line.  

In fact, this treatment results in a slope closest to the risk neutral prediction of 0. 

Finally, when subjects are given the opportunity to learn about the induction mechanism in second price sealed 

bid auctions before using it in first price sealed bid auctions (the green line), bids conform quite closely to the risk-neutral 

predictions. Rietz (1992) suggests that, because there is a dominant strategy in second-price sealed-bid auctions, subjects 

are able to learn about the induction mechanism without having to learn about optimal strategies at the same time.  Note 

also that, as values increase, the slight negative slope (-0.0114) results in bids becoming even closer to predictions.  This 

is consistent with the importance of saliency in experimental payoffs.  The chances of winning the auction increase and 

the rewards become more salient as the value increases. 

Overall, the evidence from sealed bid auctions suggests that: 

(1) It is more difficult to induce preferences when subjects have already formed strategies under dollar payoffs. 

(2) Under induction, the behavior of inexperienced subjects conforms more closely to the risk-neutral predictions 

than inexperienced subjects under dollar payoffs. 

(3) Experience with the induction mechanism, especially in a similar, but less complex context, increases the 

correspondence between the actual outcomes and the risk neutral prediction. 
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Finally, Rietz (1992) also shows that risk averse preference induction results in bid functions that closely track 

the appropriate risk averse predictions.  We will address the ability to induce risk seeking and risk averse preferences in 

more detail in the next two sections. 

 

3.2 Inducing risk aversion and risk seeking:  Evidence from paired choice tasks 

Berg, Daley, Dickhaut and O'Brien (1986) attempt to induce both risk averse and risk seeking preferences.  

Across these treatments, they compare the choices subjects make over paired bets.  The bets in a pair differ only in 

variance.  Each bet has the same expected value, but one is a relatively high variance bet while the other is a relatively 

low variance bet.  Figure 3 shows the percentage of subjects who chose the low variance bet of each pair.  Subjects with 

induced risk aversion chose the low variance bet the majority of the time (100% in some cases) and they chose it 

significantly more often than subjects with induced risk seeking preferences.  The evidence here suggests that inducing 

different risk preferences results in a significant change in behavior as predicted.6 

 

3.3 Inducing risk aversion and risk seeking:  Evidence from the Becker-DeGroot-Marshak procedure 

Berg, Daley, Dickhaut and O'Brien (1986) also study induced risk averse and risk seeking preferences using a 

pricing task.  Valuations for gambles are elicited as prices for the gambles using the Becker, DeGroot and Marschak 

(1964) procedure.  In this incentive-compatible procedure, subjects submit a minimum acceptable sales price for each 

gamble.  Then, a random draw from a known distribution determines an “offer” price.  If the offer price exceeds the 

minimum acceptable sales price, the subject sells the bet at the offer price.  If not, the subject plays the bet.  The dominant 

strategy for this pricing task is to reveal one’s true value as the minimum acceptable sales price. 

Figure 4 shows the ratio of average prices revealed to expected values for the gambles as a function of variance.  

The risk neutral prediction is that prices will equal expected values, making the ratio one.  Risk averse subjects should 

price gambles at less than expected values, with the discount increasing with risk.  Risk seeking subjects should price 

gambles at more than expected values, with the premium increasing with risk.  This pattern is clearly shown in Figure 4.  

The evidence suggests that inducing different risk preferences results in shifts in valuations as predicted. 
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4 Summary 

 In this article, we describe the lottery procedure for inducing preferences over units of experimental exchange 

and show how it is supported by several experiments on behavior in simple contexts.   

We consider the evidence from several papers by different researchers on attempts to induce risk neutral 

preferences in first price sealed bid auctions.  The evidence is quite clear in these auction experiments:  The type of 

experience subjects have affects how the inducing technique performs.  Experience with monetary payoffs appears to 

dampen the effect of the induction technique so much that results differ little from those observed under monetary 

payoffs.  This appears to be a hysteresis effect resulting from the prior monetary payoff auctions because the results come 

significantly closer to the risk neutral prediction when subject have no previous auction experience.  Results come even 

closer to the risk neutral prediction as subjects gain experience in auctions run with the induction mechanism.  Finally, the 

results point to the importance of simple settings as learning tasks.  Convergence toward the risk neutral prediction 

appears to be accelerated by experience with the induction mechanism in second price, sealed bid auctions (where there is 

a dominant strategy for bidding).   

 We also review evidence from a set of paired choice and pricing tasks designed to determine whether subjects’ 

revealed preferences over gambles are consistent with attempted risk preference induction.  There is strong support for 

the performance of inducing when subjects choose between paired gambles.  Subjects induced to be risk seeking nearly 

always choose the riskier gamble, while those induced to be risk averse choose the less risky one.  There is similar 

support for pricing gambles, but the strength of the effect is a function of the variance of the gambles.  This is consistent 

with other experimental evidence about the importance of saliency.  Risk preferences matter little when there is little risk!  

As risk increases, risk preference should become more important and, in fact, we see this in the experiment.  Subjects 

appear to price gambles more consistently with their induced risk preferences as variance increases. 

 The lottery technique can be a powerful experimental tool.  Theoretically it depends on very few assumptions 

and is therefore robust to many conditions.  We note several of interest to experimenters:   

(1) Preferences can be induced in single person or multiple person settings.  

(2) The ability to induce preferences is independent of an equilibrium concept. 

                                                                                                                                                                                           

6 Prasnikar (1998) demonstrates that the comparative static results hold for a much larger set of gambles.  She also builds a method of calibrating the 
degree of error in induction enabling her to demonstrate more precisely the relationship between saliency and the performance of the lottery method. 
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(3) The technique is immune to wealth changes during the experiment.7   

(4) There is no limitation on the form of the induced preference function, V(.), with the caveat that the range of V 

must be mapped in a 0 to 1 probability range.8   

(5) There is no limitation on the dimensionality of the induced preference function, V(.), so that V(.) could be used 

to induce a multi-period utility function.  Thus, if francs1 and francs2 represented the amount of francs received 

at the end of each of two periods then a multi-period utility function can be defined by: 

V(francs1,francs2) = p. 

(6) Preferences can be induced even when subjects are not expected utility maximizers, provided that (i) it is 

possible to reduce the payoffs in the setting to be one of two prizes and (ii) preferences are linear in probability.  

Thus induction should “work” for some of the proposed replacements of expected utility theory such as rank 

dependent utility theory and regret theory. 9 

Finally, because the lottery technique of inducing risk preferences relies on a strict subset of the axioms of expected 

utility theory, to reject induction is to reject expected utility theory.   

 

                                                           

7 Suppose we had the subject make two choices and between choices we used the lottery technique to pay the subject.  Using the technique after choice 1 
would in no way alter our ability to induce using exactly the same procedure on choice two.  Preferences are still linear in probability even after the wealth 
change and the function used to transform units of experimental exchange to probability will determine the utility function that is induced. 
8 Frequently, given the structure of economic theory (e.g., portfolio and agency theory) monotonic functions (e.g., linear or risk averse utility functions) are 
necessary to test the predictions of theory.  However, V(francs) could be much more general and in fact non-monotonic or non-differentiable. 
9 Even for prospect theory for probabilities bounded away from the endpoints the valuations of outcomes are weighted by a monotonic function, ϕ(p), of 
the probability of the preferred outcome.  Thus, in principle, if we could determine ϕ(p), we would be able to induce an arbitrary function under prospect 
theory by mapping francs into the probability of winning the larger prize using p=ϕ−1(V(francs)).  Then, subjects would act as if maximizing V(francs). 
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Figures 

  Figure 1:  A graphical depiction of inducing a risk averse subject to have risk seeking preferences.  The left panel shows 

the utility function for a subject with the risk averse utility function:  U(dollars) = dollars0.5.  The straight line gives the 

expected utility function for a gamble with a $1 payoff with probability p.  The utility function is normalized so that 

U(1)=1 and U(0)=0.  (This can be done with any utility function since expected utility is unique up to an affine 

transformation.)  Then, the expected utility equals p.  The right panel shows the desired, risk seeking utility function 

U(francs) = (francs/2)2.  This function maps francs into the probability of winning the $1 prize.  Since the expected utility 

is p, the subject’s utility for francs is given by the transformation from francs into p.  In this case, U(francs)=(francs/2)2. 
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 Figure 2:  Least-squares trend lines for deviations in bids from the risk neutral prediction using data from Harrison 

(1989); Walker, Cox and Smith (1990) and Rietz (1992).  A trend line slope of “0” would indicate on-average, risk-

neutral bidding behavior.  Within each treatment, data is aggregated across sources.  The treatments are as follows.  “No 

Induction” includes data for dollar-valued auctions.  “Induction w/ $ exp” includes data from auctions in which risk 

neutral preferences were induced on subjects who had previously participated in dollar-valued auctions.  “Induction w/o 

exp” includes data from auctions in which risk neutral preferences were induced on subjects without previous auction 

experience.  “Induction w/ induction exp” includes data from auctions in which risk neutral preferences were induced on 

subjects who had previously participated in auctions with risk neutral, induced preferences.  “Induction w/ 2nd Price exp” 

includes data from auctions in which risk neutral preferences were induced on subjects who had previously participated 

in second price auctions under risk neutral, induced preferences. 

y = 0.1067x + 8.9197
R2 = 0.1892

y = 0.1096x - 18.554
R2 = 0.1817

y = 0.0542x + 13.456
R2 = 0.0463

y = 0.0067x + 31.239
R2 = 0.001

y = -0.0112x + 13.364
R2 = 0.002

-50

-30

-10

10

30

50

70

90

110

130

150

0 200 400 600 800 1000

Value

B
id

 - 
Pr

ed
ic

tio
n

No Induction; n=1120

Induction w/ $ exp; n=852

Induction w/o exp; n=1680

Induction w/ induction exp;
n=300
Induction w/ 2nd Price exp;
n=480

Bid=Prediction



 12

 

Figure 3:  Percentage of subjects choosing the low-variance bet in paired choice tasks in Berg, Daley, Dickhaut and 

O'Brien, 1986.  The green bars are choices made by subjects with induced risk averse preferences.  The red bars are 

choices made by subjects with induced risk seeking preferences. 
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Figure 4:  Ratio of average prices to expected values of gambles in Berg, Daley, Dickhaut and O'Brien, 1986.  Prices are 

elicited using the incentive compatible mechanism of Becker, DeGroot and Marschak.  
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